
Composing Semantic Web services with
Interaction Protocols

Zixin Wu, John F. Harney, Kunal Verma, John A. Miller, Amit P. Sheth

LSDIS Lab, University of Georgia, Athens, Georgia
{wu, harney, verma, amit, jam} @cs.uga.edu

Abstract. Web service composition has quickly become an important area of
research in the services oriented architecture community. One of the challenges
in composition is the existence of heterogeneities between independently
created and autonomously managed Web service requesters and Web service
providers. This paper focuses on the problem of composing Web services in
the presence of ordering constraints on their operations imposed by the service
providers. We refer to the ordering constraints on an services operations as
interaction protocol We present a novel approach to composition involving
what we term as pseudo operations to expressively capture the service
provider’s interaction protocol. Pseudo operations are used to resolve
heterogeneities by constructing a plan of services in a more intelligent and
efficient manner. They accomplish this by utilizing descriptive human
knowledge from the service provider and capture this knowledge as part of a
planning problem to create more flexible and expressive Web service
operations that may be made available to service requesters. We use a
customer-retailer scenario to show that this method alleviates planning
complexities and generates more robust Web service compositions. Empirical
testing was performed using this scenario and compared to existing methods to
show the improvement attributable to our method.

1. Introduction

Web services are software systems designed to support interoperable
machine-to-machine interaction over a network. They are the preferred standards-
based way to realize Service Oriented Architecture computing. A problem that has
seen much interest from the research community is that of automated composition of
Web services to realize Web service compositions or Web processes by leveraging
the functionality of autonomously created services. Previous work in this regard has
considered various approaches to composition, and have included use of HTN [1],
Golog [2], classic AI planning and constraint satisfaction [3]. Much of the previous
work has not considered the ordering constraints that may be imposed service
providers on the invocation of their operations. For example, a service provider may
require the requestor to login before executing any other operation and this ordering
constraint must be respected in any composition that uses this service.

2 Zixin Wu, John F. Harney, Kunal Verma, John A. Miller, Amit P. Sheth

We refer to the ordering constraints on the operations of a service as the
Interaction Protocol of the service (also called conversation protocol in previous
literature [4]). These constraints may range from simple sequential ordering of
operations to very complicated structures involving advanced constructs such as
nested looping and branching dependencies.

Our focus is on automatically composing Web services based on user
requirements in the presence of ordering constraints specified by the service
providers. We use semantic representation of the functionality of operations as a
building block for this work. The semantic descriptions of the operations are based on
preconditions and effects, as well as, the data semantics of the operations [5]. The
semantic representation is based on the formal semantics of recent W3C member
submission WSDL-S [6] and is used by our planning algorithm to generate the
compositions. In order to handle interaction protocol during planning, we provide an
expressive construct named pseudo operations, to represent such dependencies. A
pseudo operation can be defined as a collection of service operations with ordering
constraints that can be viewed at a higher level of abstract as a single operation. We
also introduce a novel extension to classical AI planning techniques that incorporates
the concept of semantic data type matching. This work was done as part of the
METEOR-S project[7] which focuses on creating a broad framework of semantics
(data, functional, non-functional and execution) for supporting the complete lifecycle
of Web services.

The contributions of this paper are the following:
• This is one of the first papers to talk about composition in presence of

interaction protocols.
• Using pseudo operations in planning allows certain workflow patterns such

as loops to be included in the compositions, something that is not easily
done using simple planning techniques.

• Our evaluation shows that the complexity of the planning problem is
significantly reduced; representing multiple operations as one pseudo
operation allows the planner to perform a less intensive searching strategy.

The remainder of this paper is organized as follows. We first introduce a

motivating scenario. In section 3, we discuss the problem of protocol heterogeneity,
and define our approach of using Semantic Template and pseudo operation for service
composition in Semantic Web service. Section 4 discusses the system architecture,
and section 5 gives the evaluation result. Finally a discussion of related work in
section 6 and conclusions and future work in section 7 are presented.

2. Motivating scenario

In order to illustrate the need for interaction protocol we present a motivating
scenario specified by the Semantic Web Services Challenge 2006[8] shown in Figure
1. A customer (depicted on the left side of the figure) desires to purchase goods from
a provider (depicted on the right side of the figure) offering retail services. The
customer sends a request for an order. The expectation of the customer is that upon

Composing Semantic Web services with Interaction Protocols 3

the request being submitted, the order will be processed and a purchase order
confirmation will be

Fig. 1. Customer – Retailer scenario1

received, verifying that the order was received and processed by the provider. The
provider owns an array of legacy services defined in WSDL that consist of operations
performing many different tasks. However, none of the operations of these services
explicitly performs the functionality of the customer’s request.

It is clear that the provider does not have one atomic service that has the
functionality of receiving a purchase order request from the customer as input,
processes this request and supplies a purchase order confirmation to customer. Thus,
the customer has no way to simply invoke one service to get its desired purchase
order process. This exemplifies protocol heterogeneity.

The operations offered do, however, have the ability to perform the customer’s
desired task when synthesized together in a suitable manner. The provider will have
to utilize a sequence of these operations and make them available through some

1 http://sws-challenge.org/wiki/index.php/Scenario: _Purchase_Order_Mediation

4 Zixin Wu, John F. Harney, Kunal Verma, John A. Miller, Amit P. Sheth

interface that the customer can use. First, the provider must create a customer
identification number using the search customer operation, then invoke the
createOrder operation to initialize the purchase order, followed by invoking
addLineItem operation (possibly many times) to allow individual products to be
placed in an order, the closing the order when all desired products have been added to
the purchase order, and finally sending an acknowledgement back to the customer.
Therefore, without a mediation mechanism to introduce a service that satisfies the
customer’s requirements there would be no method of interaction between the
customer and the provider.

3. Interaction Protocol approach for Web service composition

The scenario illustrates an important problem in the Web services
composition domain. Ideally, a client would prefer to invoke any provider’s services
without effort or risk. Conversely, a provider needs to maintain its services such that
its constraints are satisfied. Our approach attempts to alleviate efforts by both parties
by introducing a protocol mediation mechanism using pseudo operations.

3.1 Background

There are two categories of partners that are described within the web
services domain, namely the service provider and service requester. 1 A service
provider presents its web service functionality by providing a set of operation
specifications (or operations). These operations allow service requesters to use these
services by simply invoking them. These operations might be inter-dependent. Using
these available operations, a service requester performs one or more inter-related
steps, also known as tasks, to achieve the desired goal. Tasks can be best viewed as
activities in a process and can be divided into smaller and more concrete sub-tasks
[1]. These tasks may be organized into a process specification which may consist of
one or more activities that may be executed one or more times.

Service requesters and providers are autonomously created. This causes
heterogeneity to exist between the requester and provider when Web services are
aggregated to perform a task. These heterogeneities in general may exist at many
different levels, such as the data level or at a communication/protocol level. We say
that protocol heterogeneity exists when any activity instances (i.e. an execution of an
activity) cannot be finished by atomically invoking exactly one operation once, or the
invocation violates the dependencies on a service provider. There are three types of
protocol heterogeneity that may exist:
1. One activity instance can be finished only by invoking one operation more than

once or by invoking more than one operation. We call this a 1:n problem. Our
motivating scenario described above related to the 1:n problem, since there are two
independent tasks (Send PO, Receive POC), and each task has no sub-task.

1 “ Web Services Glossary” (http://www.w3.org/TR/ws-gloss/), and the discussion of
terminologies (http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/#wordonspr).

Composing Semantic Web services with Interaction Protocols 5

2. More than one activity instance can be finished only by invoking exactly one
operation once. We call this a n:1 problem.

3. More than one activity instance can be finished only by invoking one operation
more than once or more than one operation. Naturally this is called a n:n problem.

Figure 2 shows the different types of protocol heterogeneity.

Fig. 2. Three types of Protocol Heterogeneity

This paper focuses on 1:n problems (the others are left to future work).

3.2 Formal Model

 A method that can be used to solve the problem of protocol mediation in
Web services is the application of AI planning techniques. Since our approach does
not restrict to a specific planning technique, we can simply adopt any planning
technique that uses propositional logic. Most classical AI planning problems are
defined by the STRIPS representational language (or its variants like ADL), which
divides its representational scheme into three components, namely, states, goals, and
actions. Planners that use STRIPS suffer from the branching problem and
combinatorial searching complexities. This places additional burdens on the planner,
especially for Web service composition problems with many available operations.

Our approach to protocol mediation attempts to alleviate these drawbacks.
First, we introduce an extension of the STRIPS language as the base representational
language of our method. Second, we allow the service provider to represent its
interaction protocol in an expressive way by using pseudo operations, which
encompass composite processes that the service provider makes available based on its
own functional constraints. Then, the planner exploits this knowledge in effectively
constructing a plan. In order accommodate this new methodology, we must use a
definition that extends the classical AI planning problem. This extension will focus
on two aspects of the problem - semantics (by using ontologies) and type checking
(considering input/output of operations). Our extension can defined as the following:

− Extended State. We extend a traditional notion of STRIPS state by adding a set of

semantic data types in order to ensure the input of an operation is available before
it is invoked. An extended state s has two components: s = <SF, ST>, where:

• SF is a conjunction of a set of status flags (literals) representing the status of a
process by using concepts in a domain ontology. We use propositional logic for
status flags, thus a status flag is a propositional variable. Status flags with False

6 Zixin Wu, John F. Harney, Kunal Verma, John A. Miller, Amit P. Sheth

value are prefixed by ¬ . We also assume an open-world assumption, i.e., any
status flag not mentioned in the state is unknown.

• ST is a set of semantic types representing the availability of data by using concepts
in a domain ontology. We use description logic for semantic types.

An example state could be:
<ontology1#orderPlaced & ¬ ontology1#orderPaid, (ontology2#orderID)>

− Condition. A condition also has two components as a state, except that a condition

is a requirement for a state.
− For example, <ontology1#orderPaid, ontology2#paidAmount>

− Semantic Web Service[9]. Our definition of a semantic Web service is based on

the definition of WSDL and proposed SWS specifications – OWL-S [10] and
WSDL-S, with Interaction Protocol included.

SWS = (∪)∪()
i

}{sopi ∪
i

}{psopi
1

Where, SWS is the union of a set of semantic operations (sop) and a set of pseudo
semantic operations (psop).
sop = <op:FunctionalConcept, input:SemanticType, output:SemanticType, Pre, Effects, fault:SemanticFault>

Where, a semantic operation (or operation) (sop) is defined as a 6- tuple of the
following:
• op is an operation mapped to a functional concept in a domain ontology.
• Pre is the precondition. It is a conjunction of status flags stating which status flags

must be true (or false) before an operation can be executed.
• Eff is the effect. It is a conjunction of status flags describing how the status flags in

a state changes when the action is executed. Status flags prefixed by ¬ are called
negative effects, whereas others are called positive effects.

• input is mapped to a set of semantic types stating what data are required in order to
execute the operation.

• output is mapped to a set of semantic types stating what data are available after the
operation is executed.

• fault is the exceptions of the operation represented using concepts in a domain
ontology.

A pseudo operation can be used to define the Interaction Protocol expressively. It is
defined as follows.
sop = <op:FunctionalConcept, input:SemanticType, output:SemanticType, Pre, Effects, fault:SemanticFault, Process>

Where, a pseudo semantic operation (or pseudo operation) (psop) is defined as a 7-
tuple. All the elements are the same as in sop, except that Process is a process
calculus expression borrowed from CCS[11]. We define the syntax of Process in a
pseudo operation in EBNF as follows.

Process := flow | process ‘|’ flow

1 We union a set of operations and a set of pseudo operations by ignoring the “process”

component in the pseudo operations.

Composing Semantic Web services with Interaction Protocols 7

flow := seq | flow ‘||’ seq
seq := loop | seq ‘;’ loop
loop := sop | sop ‘*’ | sop ‘+’ | ‘(‘ process ‘)’

Figure 3 illustrates an example of the representation of the provder’s services
described in our running scenario. Using our definition, we allocate the operation
parameters for “CreateNewOrder”, “AddLineItem”, “CloseOrder”, and “PlaceOrder”
accordingly. “PlaceOrder” is a pseudo operation is composed of the other operations.

Operation name Precondition Input Effect Output
CreateNewOrder haveCustomerID CustomerIdentification haveOrderID^

¬ completeOrder^
¬ closeOrder

OrderIdentification

AddLineItem haveOrderID^
¬ completeOrder

LineItemEntry completeOrder LineItemSubmission

CloseOrder completeOrder OrderIdentification closeOrder ConfirmedOrder
PlaceOrder haveCustomerID CustomerIdentification,

LineItemEntry
haveOrderID^
completeOrder^
closeOrder

ConfirmedOrder

 Fig. 3. Representation of Order Management System Web Service

Figure 4 gives the flow diagram of the “PlaceOrder” and its corresponding expression
using the syntax shown above. Here, the grammar states a defined sequence of
atomic operations. The operation “createNewOrder” is to be invoked first. Following
this invocation, the “addLineItem” operation is invoked one (or more) times - the “*”
denotes that the operation is contained within a loop structure – and then the
“closeOrder” operation is invoked to complete the sequence.

createNewOrder; addLineItem * ; closeOrder

Fig. 4. “PlaceOrder” pseudo operation

− Semantic Template. While a semantic Web service definition represents a service

provider on a concrete level, a semantic template captures the semantic capabilities
of a service provider on an abstract level. It is the way a service requester defines
its task specifications.

ST = i{sopt }

i
∪

sopt = <Action , I , O , Pre , Eff , F > o o o o o o

8 Zixin Wu, John F. Harney, Kunal Verma, John A. Miller, Amit P. Sheth

Where, a semantic operation template (sopt) is an abstract representation of the
functionality of an operation. It is defined as a 6-tuple that is similar to a sop, except
that it is the requirement for an operation.
The following table illustrates the sopt “SendPO” from the scenario.

Operation name Precondition Input Effect Output
SendPO haveCompanyInfo OrderInformation completeOrder^

closeOrder
Acknowledgement

A semantic Web service composition problem is composing a set of semantic

Web services (SWSs) to fulfill the requirement of one specific semantic operation
template. Before we give the definition of the problem, we need to define the initial
state, the goal, the “apply” and “satisfy” operator for the problem.

For convenience, we use Eff(a) to represent the effect of operation a, SF(s)
for the set of status flags in state s, SF(eff) for the set of status flags in eff, value(sfs)
for the value of status flag sf in state s, value(sfeff) for the value of status flag sf in
effect eff, ST(s) for the set of semantic types in state s, and ST(c) for the set of
semantic types in condition c.

− Initial state. One of the possible extended states when the service requester’s

process runs to an activity 1 which defined by the semantic operation template
soptp. It is defined by the precondition and input of the semantic operation
template.

s0 = <Pre(soptp), In(soptp)>

Initial state, like the extended state, includes a set of status flags and semantic types.

− Goal. A goal is a condition which is defined by the effect and output of the

semantic operation template soptp.

g = < Eff(soptp), Out(soptp)>

− “Apply” operator. We use the notation “+” for “apply” operator which is a

function mapping an extended state s and an operation (or pseudo operation) a to a
new extended state s’:

+: (s, a) s’ (Alternatively, we may write s + a = s’) 6
))(()()'(aEffSFsSFsSF ∪=

)()()),(()(' aEffs sfvaluesfvalueaEffSFsf =∈∀

)()()),(()(' ss sfvaluesfvalueaEffSFsfsSFsf =∉∧∈∀
That is, a positive/negative status flag in eff is also in s’ with the same value, while
any status flag in s but not in eff is assumed to remain in s’ with the same value in s.

1 There may be more than one initial state for an activity because of the non-deterministic

behavior of previous activities. For the time being, we only handle one initial state.

Composing Semantic Web services with Interaction Protocols 9

ST(s’) = ST(s)∪out
That is, a semantic type in out is added to s’ if it is not in s, while other semantic types
in s are also in s’.

− “Satisfy” operator. We use the notation “→” for “satisfy” operator which is a

function mapping an extended state s and a condition c to T or F:
→: (s, c) {T, F} 6
This function maps to T (we call it “s satisfies c” and we may write it as: s→c) if and
only if:
• c s, that is, for each status flag sfc∈SF(c), there is a semantically equivalent status

flag sfs∈SF(s), such that their values are the same.
)(),(sSTstcSTst sc ∈∃∈∀ |sts stc∨(stc is part of sts), that is for each semantic

type stc∈ST(c), there exists a semantic type sts∈ST(s), such that stc subsumes sts. or
stc is part of sts
− A semantic Web service composition problem is the following function:
p: (sopt, SWSs) 6 plan
Where,
• sopt is a semantic operation template.
• SWSs is the union of the given semantic Web services.
• plan is a partially ordered set of operations. Every sequence (total order) of

operations (say a1, a2, … an) that satisfies the partial order must conform to the
following restrictions:

s0 → <Pre(a1), In(a1)>
s0 + a1 = s1

si → <Pre(ai+1), In(ai+1)>
si + ai+1 = si+1

sn → g
Where s0 is the initial state, g is the goal, and ai∈SWSs. Remember that a condition
has two components: set of status flags and set of semantic types, so the condition for
s0 consists of the precondition and input of a1.

3.3 Extending the graphplan Algorithm

Our planner devises a plan using an extension of the graphplan algorithm [7].
In addition to modeling the preconditions and effects, our extension effectively
handles the semantic typing of data that flows within the Web service operations of
the plan. This allows the planner to account for the semantic and state dependencies
that exist within the provider’s protocol.

Although our approach may be utilized by a broad range of planning
algorithms, we have chosen to implement the graphplan algorithm for a variety of
reasons. First, the algorithm has the ability to extract a plan without suffering from
any inaccuracies (eg illogical web service compositions). Second, the algorithm can
be easily applied to larger scale planning problems, such as the problem that we are
attempting to resolve. Third, the algorithm can be easily extended to use the model

10 Zixin Wu, John F. Harney, Kunal Verma, John A. Miller, Amit P. Sheth

we defined above. Finally, the application of this algorithm materializes quite well the
improvements that pseudo-operations within the interaction protocol will contribute.

The general idea of the graphplan algorithm is to represent the combination
of possible states and actions that may exist in the plan as an expandable graph data
structure, where nodes may be represented as state parameters (status flags and
semantic types) and actions, and edges representing relations between the state
parameters and actions. The structure consists of a sequence of alternating state and
action levels which consist of state parameters and actions (operations in the context
of Web services), respectively, that may exist at that particular level. The graph is
expanded by adding the effects of actions to the existing state. When the goal literals
are contained in a state level, the algorithm attempts to extract a plan by backtracking
through the action levels of the graph starting from the goal state. Our approach
requires an extension to the EXPANDGRAPH function to accommodate the semantic
type parameters defined above. Pseudocode for this procedure is shown in figure 5.

function EXPANDGRAPH(graph)
 create new action level ai

 create new state level si

 for all op ∈ A
 if pre(op) ∈ SF(si-1) and in(op) ∈ ST(si-1)
 add op to ai

 add eff(op) to si

 add out(op) to si

Figure 5 – Pseudocode for EXPANDGRAPH

An operation may only be invoked when its preconditions exist in the current
state level of the graph (ie pre(op) ∈ current graph level StatusFlags) and there is an
input data type (in(op) ∈ current graph level semantic type). When an operation is
placed in the graph, its effects as well as output data types are added to the existing
conditions of the previous state. Thus, the new current state level becomes the new
effects and output data of the operations in addition to the previous state’s defining
literals and data types.
 The introduction of pseudo-operations allows a significant simplification of
the graphplan algorithm. This is because pseudo-operations effectively aggregate
multiple operations that can be read by the algorithm as one action. Therefore, the
graph structure does not need to grow large and the EXTRACT-SOLUTION function
has fewer combinations of operations to select for searching. Let us refer to figure 6,
which depicts part of the planning graph for our scenario. At state level n, there exists
the status flag “haveCustomerID” and semantic type “CustomerID”. Thus sufficient
state parameters exist in state level n for pseudo operation “PlaceOrder” to be placed
in the corresponding action level. Similarly, state parameters exist for the atomic
service “CreateNewOrder” to be placed in the same action level. Using the
“PlaceOrder” pseudo operation allows the new state level n+1 to add its three effects
(“haveOrderID”, “closeOrder”, and “completeOrder”) to the existing status flags in
state level n. The “CreateNewOrder” atomic operation only provides the
“haveOrderID” status flag. In order to obtain the “closeOrder” and “completeOrder”
status flags, the graph would have to expand again to subsequent state levels (n+2,
n+3, etc). The graph structure becomes unnecessarily complicated and the planner

Composing Semantic Web services with Interaction Protocols 11

would have to search through many combinations of the atomic operations at each
subsequent level created.

Figure 6 – Planning Graph Level n with pseudo operation “PlaceOrder”

4. Architecture

Our implemented architecture is depicted in figure 7. The system accepts both the
semantic template from the service requester and the set of WSDL-S files from the
service providers, which gives the available operations, to create the desired BPEL
process file. We utilize WSDL-S4J as a parser to handle both the semantic template
file and WSDL-S files from providers. When the user invokes the mediation process,
the initial state, goal, and action set will be created from the semantic template file
and the WSDL-S files from providers and the plan will be created. If the plan includes
a pseudo operation, transformation is performed. When a target process (BPEL) is
generated, we use BPWS4J to serialize it into a file.

12 Zixin Wu, John F. Harney, Kunal Verma, John A. Miller, Amit P. Sheth

Figure 7 – Architecture

5. Evaluation

We have said that pseudo operations improve existing planning methods in two
ways. First, pseudo operations effectively reduce planning complexity (ie the
runtime) of composing plans of services. We ran 8 separate simulated instances of
our running scenario to illustrate. The simulations attempted to juxtapose the run
times of composing the process using the pseudo operation “PlaceOrder” (illustrated
earlier in figure 3) and composing the process consisting of the atomic operations
“createNewOrder, “addLineItem” and “closeOrder”. Figure 8 shows the comparison
results of these tests. The plot in general shows that the use of pseudo operations
reduces the run time of the planner using strictly atomic services (the first test has a
greater runtime due to the existence of a memory cache). We expect that the
runtimes will exhibit a greater differential for larger scale processes. Second, pseudo
operations have the ability to model complex workflow patterns. Perhaps the greatest
strength of the pseudo operation is the fact that it has the ability to represent complex
workflow patterns. Such is the case in our example, which requires a possible
looping structure over the atomic operation “addLineItem”. Without pseudo
operations, a typical planner could not model this structure, because it represents a
non-deterministic operation (most planners are design for deterministic applications).
In a sense, the true desired operation of the service requester could not be fulfilled
(the atomic operations would be invoked many times unnecessarily).

Composing Semantic Web services with Interaction Protocols 13

0
500

1000
1500
2000

1 2 3 4 5 6 7 8
Test Instance

T ime
(ms)

Plan with Pseudo OperationsPlan with Atom ic Serv ices

Figure 8 – Empirical Test Results

6. Related work

 The authors in [19] found a correlation between Hierarchical task network
(HTN) planning and web service representation in the OWL-S framework. HTN
planning uses the approach of refining plans by applying action, or task,
decompositions. The idea is to divide high-level tasks into smaller and smaller sub-
tasks until more primitive tasks can be performed directly and correctly using partial-
order planning over a smaller subset of actions. The benefit of this approach is that
planning complexity may be reduced for tasks that require many actions. Web
service activities can be modeled in much the same way. While our approach
similarly attempts to alleviate planning complexity, it differs from HTNs in that we
attempt to synthesize processes using the constraints defined by the provider. These
parameters contribute in creating well-defined and useable sub-services that
contribute to less demanding plan construction. Instead of synthesizing a plan
consisting of strictly atomic services, the planner can take advantage of pseudo-
services that may perform the tasks of multiple atomic services that internally consist
of the provder’s constraints. Thus, there is a higher likelihood that the planner will
have little or no difficulty in finding an execution path in a relatively fast and efficient
manner.

 WSMO [12] refers to the problem of protocol mediation as process
mediation. A significant difference between their approach and ours is that they try to
create mediators at runtime to resolve the heterogeneities. We create compositions
that satisfy all the protocol requirements eschewing the need for mediation. Duan et
al., [13] discusses using the pre- and post-conditions of actions and automatic
synthesis of Web services by finding a backbone path as the first step. Using pseudo
operations allows considering complex constructs such as loops in the plan.

7. Conclusion and future work

In this paper, we have addressed some of the problematic issues presented by
protocol heterogeneities that exist in the Web service domain. We proposed a method
to overcome these challenges through the utilization of the Interaction Protocol,
which is represented expressively by pseudo operations. Encompassing this method

14 Zixin Wu, John F. Harney, Kunal Verma, John A. Miller, Amit P. Sheth

are novel extensions to the graphplan algorithm, which introduces semantic type
checking to process planning, and the flexibility of generating complex workflow
patterns that are difficult for a general planner to produce. Finally, through
experimentation, we have shown that this method significantly reduces computational
complexity of planning systems.
 We have identified the following three items for our future work. First, we
would like to integrate our approach with METEOR-S [7] discovery so that new
services can be considered for composition. Second, we would like to further extend
our planning algorithm to consider non-deterministic and hierarchical pseudo
operations, which allows more flexible workflow patterns to be utilized. Finally, we
would like to investigate resolving heterogeneities at the data level.

8. References

[1] Evren Sirin, Bijan Parsia, Dan Wu, James Hendler, and Dana Nau. HTN planning
for web service composition using SHOP2. Web Semantics Journal, (2004) 377-396
[2] Levesque, H.; Reiter, R.; Lesperance, Y.; Lin, F.; and Scherl, R. 1997. Golog: A
logic programming language for dynamic domains. Journal of Logic Programming
31:59-- 84.
[3] Russell, S., Norvig, P. 2003. Artificial Intelligence: A Modern Approach (Second
Edition). Prentice Hall.
[4] Xiaochuan Yi, A CPNets-based Design and Analysis Framework for Service
Oriented Distributed Systems. July 7, 2005.
[5] A.P. Sheth, “Semantic Web Process Lifecycle: Role of Semantics in Annotation,
Discovery, Composition and Orchestration,” Invited Talk, ESSW Workshop, 2003.
[6] Web Service Semantics - WSDL-S (http://www.w3.org/Submission/WSDL-S/)
[7]METEOR-S Semantic Web Services and Processses,
http://lsdis.cs.uga.edu/projects/METEOR-S
[8] Semantic Web Services Challenge 2006 (http://deri.stanford.edu/challenge/2006/)
[9] Kunal Verma, Configuration and Adaptation of Semantic Web Processes, Ph.D.
Thesis, Dept. of Computer Science, University of Georgia, 2006.
[10] OWL Services Coalition, OWL-S: Semantic markup for web services, OWL-S
White Paper http://www.daml.org/services/owl-s/0.9/owl-s.pdf (2003).
[11] Robin Milner, Calculus of Communicating Systems
[12] Web service Modeling Ontology (WSMO), http://www.wsmo.org
[13] Ziyang Duan, Arthur J. Bernstein, Philip M. Lewis, Shiyong Lu: A model for
abstract process specification, verification and composition. ICSOC 2004: 232-241

http://www.w3.org/Submission/WSDL-S/
http://www.daml.org/services/owl-s/0.9/owl-s.pdf
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/d/Duan:Ziyang.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/l/Lewis:Philip_M=.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/l/Lu:Shiyong.html
http://www.informatik.uni-trier.de/~ley/db/conf/icsoc/icsoc2004.html#DuanBLL04

