scalation.dynamics

Radau

object Radau extends Integrator

Radau IIA is a simple Ordinary Differential Equation (ODE) solver for moderately stiff systems. Solve for y given y' = f(t, y).

Linear Supertypes
Integrator, Error, AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. Hide All
  2. Show all
  1. Radau
  2. Integrator
  3. Error
  4. AnyRef
  5. Any
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  7. def clone(): AnyRef

    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws()
  8. val defaultStepSize: Double

    The default step size for the t dimension

    The default step size for the t dimension

    Attributes
    protected
    Definition Classes
    Integrator
  9. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  10. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  11. var error: Double

    Estimate of the error in calculating y

    Estimate of the error in calculating y

    Attributes
    protected
    Definition Classes
    Integrator
  12. def finalize(): Unit

    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws()
  13. def flaw(method: String, message: String): Unit

    Show the flaw by printing the error message.

    Show the flaw by printing the error message.

    method

    the method where the error occurred

    message

    the error message

    Definition Classes
    Error
  14. final def getClass(): java.lang.Class[_]

    Definition Classes
    AnyRef → Any
  15. def getError: Double

    Get the error estimate.

    Get the error estimate.

    Definition Classes
    Integrator
  16. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  17. def integrate(f: (Double, Double) ⇒ Double, y0: Double, t: Double, t0: Double = 0., step: Double = defaultStepSize): Double

    f

    the derivative function f(t, y)

    y0

    the intial value of the y-function at time t0, y0 = y(t0)

    t

    the time value at which to compute y(t)

    t0

    the initial time

    step

    the step size

    Definition Classes
    RadauIntegrator
  18. def integrateV(f: Array[(Double, Double) ⇒ Double], y0: VectorD, t: Double, t0: Double = 0., step: Double = defaultStepSize): VectorD

    Apply the integrate method to each derivative to compute the trajectory of a time-dependent vector function y(t) governed by a separable system of Ordinary Differential Equations (ODE's) where [f_j(t, y_j)] is an array of derivative functions.

    Apply the integrate method to each derivative to compute the trajectory of a time-dependent vector function y(t) governed by a separable system of Ordinary Differential Equations (ODE's) where [f_j(t, y_j)] is an array of derivative functions. Each derivative function takes a scalar t and a scalar y_j = y(j).

    f

    the array of derivative functions [f_j(t, y_j)]

    y0

    the initial value vector, y0 = y(t0)

    t

    the time value at which to compute y(t)

    t0

    the initial time

    step

    the step size

    Definition Classes
    Integrator
  19. def integrateVV(f: Array[(Double, VectorD) ⇒ Double], y0: VectorD, t: Double, t0: Double = 0., step: Double = defaultStepSize): VectorD

    f

    the array of derivative functions [f_j(t, y)]

    y0

    the initial value vector, y0 = y(t0)

    t

    the time value at which to compute y(t)

    t0

    the initial time

    step

    the step size

    Definition Classes
    RadauIntegrator
  20. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  21. def jacobian(f: Array[(Double, VectorD) ⇒ Double], y: VectorD, t: Double): MatrixD

    Compute the Jacobian matrix for a vector-valued derivative function represented as an array of scalar-valued functions.

    Compute the Jacobian matrix for a vector-valued derivative function represented as an array of scalar-valued functions. The i-th row in the matrix is the gradient of the i-th function.

    f

    the array of functions whose Jacobian is sought

    y

    the point (vector) at which to estimate the Jacobian

  22. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  23. final def notify(): Unit

    Definition Classes
    AnyRef
  24. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  25. def solve(f: Array[(Double, VectorD) ⇒ Double], yn_1: VectorD, fn_1: VectorD, tn_1: Double, tn: Double, h: Double): Unit

  26. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  27. def toString(): String

    Definition Classes
    AnyRef → Any
  28. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws()
  29. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws()
  30. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws()

Inherited from Integrator

Inherited from Error

Inherited from AnyRef

Inherited from Any