scalation.linalgebra

Householder

object Householder extends AnyRef

This object provides methods to compute Householder vectors and reflector matrices.

Linear Supertypes
AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. Hide All
  2. Show all
  1. Householder
  2. AnyRef
  3. Any
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  7. def clone(): AnyRef

    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws()
  8. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  9. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  10. def finalize(): Unit

    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws()
  11. final def getClass(): java.lang.Class[_]

    Definition Classes
    AnyRef → Any
  12. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  13. def house(x: VectorD): (VectorD, Double)

    Compute a Householder vector v and its corresponding scalar b, where P = I - b * v * v.

    Compute a Householder vector v and its corresponding scalar b, where P = I - b * v * v.t is an orthogonal matrix and Px = ||x|| * e_1.

    x

    the vector to create the Householder vector from

    See also

    Algorithm 5.1.1 in Matrix Computations.

  14. def houseR(x: VectorD): MatrixD

    Compute the Householder reflector matrix h = I - 2*u*u.

    Compute the Householder reflector matrix h = I - 2*u*u.t.

    x

    the vector to create the Householder reflector from

    See also

    www.math.siu.edu/matlab/tutorial4.pdf

  15. def houseV(x: VectorD): VectorD

    Compute the Householder unit vector u, where P = I - b * u * u.

    Compute the Householder unit vector u, where P = I - b * u * u.t is an orthogonal matrix.

    x

    the vector to create the unit Householder vector from

    See also

    www.math.siu.edu/matlab/tutorial4.pdf

  16. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  17. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  18. final def notify(): Unit

    Definition Classes
    AnyRef
  19. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  20. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  21. def toString(): String

    Definition Classes
    AnyRef → Any
  22. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws()
  23. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws()
  24. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws()

Inherited from AnyRef

Inherited from Any