scalation.linalgebra

SymmetricQRstep

object SymmetricQRstep extends Eigen with Error

This class performs a symmetric QR step with a Wilkinson shift.

See also

http://people.inf.ethz.ch/arbenz/ewp/Lnotes/chapter3.pdf (Algorithm 3.6)

,

Algorithm 8.3.2 in Matrix Computations.

Linear Supertypes
Error, Eigen, AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. Hide All
  2. Show all
  1. SymmetricQRstep
  2. Error
  3. Eigen
  4. AnyRef
  5. Any
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. val DEBUG: Boolean

    Debug flag

    Debug flag

    Attributes
    protected
    Definition Classes
    Eigen
  7. val EPSILON: Double

    Error tolerance value

    Error tolerance value

    Attributes
    protected
    Definition Classes
    Eigen
  8. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  9. def clone(): AnyRef

    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws()
  10. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  11. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  12. def finalize(): Unit

    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws()
  13. def flaw(method: String, message: String): Unit

    Show the flaw by printing the error message.

    Show the flaw by printing the error message.

    method

    the method where the error occurred

    message

    the error message

    Definition Classes
    Error
  14. final def getClass(): java.lang.Class[_]

    Definition Classes
    AnyRef → Any
  15. def givens(a: Double, b: Double): (Double, Double)

    Create the values for a Givens 2-by-2 rotation matrix.

    Create the values for a Givens 2-by-2 rotation matrix. Given scalars a and b, efficiently compute c = cos(theta) and s = sin(theta) that can be used to form the rotation matrix.

    a

    the first scalar

    b

    the second scalar

    See also

    Algorithm 5.1.3 in Matrix Computation.

  16. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  17. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  18. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  19. final def notify(): Unit

    Definition Classes
    AnyRef
  20. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  21. def qRStep(t: SymTriMatrixD, p: Int, q: Int): Unit

    Apply a QR reduction step to matrix t.

    Apply a QR reduction step to matrix t.

    t

    the unreduced symmetric tridiagonal matrix

    p

    the row index

    q

    the column index

  22. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  23. def toString(): String

    Definition Classes
    AnyRef → Any
  24. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws()
  25. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws()
  26. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws()

Inherited from Error

Inherited from Eigen

Inherited from AnyRef

Inherited from Any