scalation.linalgebra

ParSparseMatrixD

class ParSparseMatrixD extends Matrix with Error with Serializable

The ParSparseMatrixD class stores and operates on Matrices of Doubles. Rather than storing the matrix as a 2 dimensional array, it is stored as an array of sorted-linked-maps, which record all the non-zero values for each particular row, along with their j-index as (j, v) pairs. Note: _npp versions of methods are not appropriate for sparse matrices (i.e., always use partial pivoting).

Linear Supertypes
Serializable, Serializable, Matrix, Error, AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. ParSparseMatrixD
  2. Serializable
  3. Serializable
  4. Matrix
  5. Error
  6. AnyRef
  7. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Instance Constructors

  1. new ParSparseMatrixD(u: SymTriMatrixD)

    Construct a sparse matrix and assign values from (SymTriMatrixN) matrix u.

    Construct a sparse matrix and assign values from (SymTriMatrixN) matrix u.

    u

    the matrix of values to assign

  2. new ParSparseMatrixD(u: ParMatrixD)

    Construct a sparse matrix and assign values from (MatrixN) matrix u.

    Construct a sparse matrix and assign values from (MatrixN) matrix u.

    u

    the matrix of values to assign

  3. new ParSparseMatrixD(u: ParSparseMatrixD)

    Construct a sparse matrix and assign values from matrix u.

    Construct a sparse matrix and assign values from matrix u.

    u

    the matrix of values to assign

  4. new ParSparseMatrixD(dim1: Int, x: Double)

    Construct a dim1 by dim1 square sparse matrix with x assigned on the diagonal and 0 assigned off the diagonal.

    Construct a dim1 by dim1 square sparse matrix with x assigned on the diagonal and 0 assigned off the diagonal. To obtain an identity matrix, let x = 1.

    dim1

    the row and column dimension

    x

    the scalar value to assign on the diagonal

  5. new ParSparseMatrixD(dim1: Int, dim2: Int, x: Double)

    Construct a dim1 by dim2 sparse matrix and assign each element the value x.

    Construct a dim1 by dim2 sparse matrix and assign each element the value x.

    dim1

    the row dimension

    dim2

    the column dimesion

    x

    the scalar value to assign

  6. new ParSparseMatrixD(dim1: Int)

    Construct a dim1 by dim1 square sparse matrix.

    Construct a dim1 by dim1 square sparse matrix.

    dim1

    the row and column dimension

  7. new ParSparseMatrixD(dim1: Int, dim2: Int, u: Array[SortedLinkedHashMap[Int, Double]])

    Construct a dim1 by dim2 sparse matrix from an array of sorted-linked-maps.

    Construct a dim1 by dim2 sparse matrix from an array of sorted-linked-maps.

    dim1

    the row dimension

    dim2

    the column dimension

    u

    the array of sorted-linked-maps

  8. new ParSparseMatrixD(d1: Int, d2: Int)

    d1

    the first/row dimension

    d2

    the second/column dimension

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. def *(x: Double): ParSparseMatrixD

    Multiply this sparse matrix by scalar x.

    Multiply this sparse matrix by scalar x.

    x

    the scalar to multiply by

    Definition Classes
    ParSparseMatrixDMatrix
  5. def *(u: VectorD): VectorD

    Multiply this sparse matrix by vector u.

    Multiply this sparse matrix by vector u.

    u

    the vector to multiply by

    Definition Classes
    ParSparseMatrixDMatrix
  6. def *(b: ParMatrixD): ParSparseMatrixD

    Multiply this sparse matrix by matrix b.

    Multiply this sparse matrix by matrix b.

    b

    the matrix to multiply by (requires sameCrossDimensions)

  7. def *(b: ParSparseMatrixD): ParSparseMatrixD

    Multiply this sparse matrix by sparse matrix b, by performing a merge operation on the rows on this sparse matrix and the transpose of the b matrix.

    Multiply this sparse matrix by sparse matrix b, by performing a merge operation on the rows on this sparse matrix and the transpose of the b matrix.

    b

    the matrix to multiply by (requires sameCrossDimensions)

  8. def **(u: VectorD): ParSparseMatrixD

    Multiply this sparse matrix by vector u to produce another matrix (a_ij * u_j)

    Multiply this sparse matrix by vector u to produce another matrix (a_ij * u_j)

    u

    the vector to multiply by

    Definition Classes
    ParSparseMatrixDMatrix
  9. def **=(u: VectorD): ParSparseMatrixD

    Multiply in-place this sparse matrix by vector u to produce another matrix (a_ij * u_j)

    Multiply in-place this sparse matrix by vector u to produce another matrix (a_ij * u_j)

    u

    the vector to multiply by

    Definition Classes
    ParSparseMatrixDMatrix
  10. def *=(x: Double): ParSparseMatrixD

    Multiply in-place this sparse matrix by scalar x.

    Multiply in-place this sparse matrix by scalar x.

    x

    the scalar to multiply by

    Definition Classes
    ParSparseMatrixDMatrix
  11. def *=(b: ParMatrixD): ParSparseMatrixD

    Multiply in-place this sparse matrix by matrix b.

    Multiply in-place this sparse matrix by matrix b.

    b

    the matrix to multiply by (requires sameCrossDimensions)

  12. def *=(b: ParSparseMatrixD): ParSparseMatrixD

    Multiply in-place this sparse matrix by sparse matrix b, by performing a merge operation on the rows on this sparse matrix and the transpose of the b matrix.

    Multiply in-place this sparse matrix by sparse matrix b, by performing a merge operation on the rows on this sparse matrix and the transpose of the b matrix.

    b

    the matrix to multiply by (requires square and sameCrossDimensions)

  13. def +(x: Double): ParMatrixD

    Add this sparse matrix and scalar x.

    Add this sparse matrix and scalar x. Note: every element will be likely filled, hence the return type is a dense matrix.

    x

    the scalar to add

    Definition Classes
    ParSparseMatrixDMatrix
  14. def +(b: Matrix): ParSparseMatrixD

    Add 'this' sparse matrix and matrix 'b'.

    Add 'this' sparse matrix and matrix 'b'. 'b' may be any subtype of Matrix.

    b

    the matrix to add (requires sameCrossDimensions)

    Definition Classes
    ParSparseMatrixDMatrix
  15. def +(b: ParMatrixD): ParSparseMatrixD

    Add 'this' sparse matrix and matrix 'b'.

    Add 'this' sparse matrix and matrix 'b'. FIX: if same speed as method below - remove

    b

    the matrix to add (requires sameCrossDimensions)

  16. def +(b: ParSparseMatrixD): ParSparseMatrixD

    Add 'this' sparse matrix and sparse matrix 'b'.

    Add 'this' sparse matrix and sparse matrix 'b'.

    b

    the matrix to add (requires sameCrossDimensions)

  17. def ++(u: VectorD): ParSparseMatrixD

    Concatenate 'this' sparse matrix and vector 'u'.

    Concatenate 'this' sparse matrix and vector 'u'.

    u

    the vector to be concatenated as the new last row in matrix

    Definition Classes
    ParSparseMatrixDMatrix
  18. def +=(x: Double): ParSparseMatrixD

    Add in-place this sparse matrix and scalar x.

    Add in-place this sparse matrix and scalar x.

    x

    the scalar to add

    Definition Classes
    ParSparseMatrixDMatrix
  19. def +=(b: ParMatrixD): ParSparseMatrixD

    Add in-place this sparse matrix and matrix b.

    Add in-place this sparse matrix and matrix b.

    b

    the matrix to add (requires sameCrossDimensions)

  20. def +=(b: ParSparseMatrixD): ParSparseMatrixD

    Add in-place this sparse matrix and sparse matrix b.

    Add in-place this sparse matrix and sparse matrix b.

    b

    the matrix to add (requires sameCrossDimensions)

  21. def -(x: Double): ParMatrixD

    From this sparse matrix subtract scalar x.

    From this sparse matrix subtract scalar x. Note: every element will be likely filled, hence the return type is a dense matrix.

    x

    the scalar to subtract

    Definition Classes
    ParSparseMatrixDMatrix
  22. def -(b: ParMatrixD): ParSparseMatrixD

    From this sparse matrix substract matrix b.

    From this sparse matrix substract matrix b.

    b

    the matrix to subtract (requires sameCrossDimensions)

  23. def -(b: ParSparseMatrixD): ParSparseMatrixD

    From this sparse matrix substract matrix b.

    From this sparse matrix substract matrix b.

    b

    the sparse matrix to subtract (requires sameCrossDimensions)

  24. def -=(x: Double): ParSparseMatrixD

    From this sparse matrix subtract in-place scalar x.

    From this sparse matrix subtract in-place scalar x.

    x

    the scalar to subtract

    Definition Classes
    ParSparseMatrixDMatrix
  25. def -=(b: ParMatrixD): ParSparseMatrixD

    From this sparse matrix substract in-place matrix b.

    From this sparse matrix substract in-place matrix b.

    b

    the matrix to subtract (requires sameCrossDimensions)

  26. def -=(b: ParSparseMatrixD): ParSparseMatrixD

    From this sparse matrix substract in-place sparse matrix b.

    From this sparse matrix substract in-place sparse matrix b.

    b

    the sparse matrix to subtract (requires sameCrossDimensions)

  27. def /(x: Double): ParSparseMatrixD

    Divide this sparse matrix by scalar x.

    Divide this sparse matrix by scalar x.

    x

    the scalar to divide by

    Definition Classes
    ParSparseMatrixDMatrix
  28. def /=(x: Double): ParSparseMatrixD

    Divide in-place this sparse matrix by scalar x.

    Divide in-place this sparse matrix by scalar x.

    x

    the scalar to divide by

    Definition Classes
    ParSparseMatrixDMatrix
  29. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  30. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  31. def apply(i: Int, jr: Range): VectorD

    Get a slice this matrix row-wise at index i and column-wise on range jr.

    Get a slice this matrix row-wise at index i and column-wise on range jr. Ex: u = a(2, 3..5)

    i

    the row index

    jr

    the column range

    Definition Classes
    ParSparseMatrixDMatrix
  32. def apply(ir: Range, j: Int): VectorD

    Get a slice this matrix row-wise on range ir and column-wise at index j.

    Get a slice this matrix row-wise on range ir and column-wise at index j. Ex: u = a(2..4, 3)

    ir

    the row range

    j

    the column index

    Definition Classes
    ParSparseMatrixDMatrix
  33. def apply(ir: Range, jr: Range): ParSparseMatrixD

    Get a slice this matrix row-wise on range ir and column-wise on range jr.

    Get a slice this matrix row-wise on range ir and column-wise on range jr. Ex: b = a(2..4, 3..5)

    ir

    the row range

    jr

    the column range

    Definition Classes
    ParSparseMatrixDMatrix
  34. def apply(i: Int): VectorD

    Get this sparse matrix's vector at the i-th index position (i-th row).

    Get this sparse matrix's vector at the i-th index position (i-th row).

    i

    the row index

    Definition Classes
    ParSparseMatrixDMatrix
  35. def apply(i: Int, j: Int): Double

    Get this sparse matrix's element at the i,j-th index position.

    Get this sparse matrix's element at the i,j-th index position.

    i

    the row index

    j

    the column index

    Definition Classes
    ParSparseMatrixDMatrix
  36. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  37. def clean(thres: Double, relative: Boolean = true): ParSparseMatrixD

    Clean values in matrix at or below the threshold by setting them to zero.

    Clean values in matrix at or below the threshold by setting them to zero. Iterative algorithms give approximate values and if very close to zero, may throw off other calculations, e.g., in computing eigenvectors.

    thres

    the cutoff threshold (a small value)

    relative

    whether to use relative or absolute cutoff

    Definition Classes
    ParSparseMatrixDMatrix
  38. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  39. def col(col: Int, from: Int = 0): VectorD

    Get column 'col' from the matrix, returning it as a vector.

    Get column 'col' from the matrix, returning it as a vector.

    col

    the column to extract from the matrix

    from

    the position to start extracting from

    Definition Classes
    ParSparseMatrixDMatrix
  40. val d1: Int

    the first/row dimension

  41. val d2: Int

    the second/column dimension

  42. def det: Double

    Compute the determinant of this sparse matrix.

    Compute the determinant of this sparse matrix.

    Definition Classes
    ParSparseMatrixDMatrix
  43. def diag(p: Int, q: Int): ParSparseMatrixD

    Form a matrix [Ip, this, Iq] where Ir is a r by r identity matrix, by positioning the three matrices Ip, this and Iq along the diagonal.

    Form a matrix [Ip, this, Iq] where Ir is a r by r identity matrix, by positioning the three matrices Ip, this and Iq along the diagonal.

    p

    the size of identity matrix Ip

    q

    the size of identity matrix Iq

    Definition Classes
    ParSparseMatrixDMatrix
  44. def diag(b: ParMatrixD): ParSparseMatrixD

    Combine this sparse matrix with matrix b, placing them along the diagonal and filling in the bottom left and top right regions with zeros; [this, b].

    Combine this sparse matrix with matrix b, placing them along the diagonal and filling in the bottom left and top right regions with zeros; [this, b].

    b

    the matrix to combine with this matrix

  45. lazy val dim1: Int

    Dimension 1

    Dimension 1

    Definition Classes
    ParSparseMatrixDMatrix
  46. lazy val dim2: Int

    Dimension 2

    Dimension 2

    Definition Classes
    ParSparseMatrixDMatrix
  47. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  48. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  49. var fString: String

    Format string used for printing vector values (change using setFormat)

    Format string used for printing vector values (change using setFormat)

    Attributes
    protected
    Definition Classes
    Matrix
  50. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  51. def flaw(method: String, message: String): Unit

    Show the flaw by printing the error message.

    Show the flaw by printing the error message.

    method

    the method where the error occurred

    message

    the error message

    Definition Classes
    Error
  52. def foreach[U](f: (Array[Double]) ⇒ U): Unit

    Iterate over the matrix row by row.

    Iterate over the matrix row by row.

    f

    the function to apply

    Definition Classes
    Matrix
  53. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  54. def getDiag(k: Int = 0): VectorD

    Get the kth diagonal of this matrix.

    Get the kth diagonal of this matrix. Assumes dim2 >= dim1.

    k

    how far above the main diagonal, e.g., (-1, 0, 1) for (sub, main, super)

    Definition Classes
    ParSparseMatrixDMatrix
  55. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  56. def inverse: ParSparseMatrixD

    Invert this sparse matrix (requires a squareMatrix) using partial pivoting.

    Invert this sparse matrix (requires a squareMatrix) using partial pivoting.

    Definition Classes
    ParSparseMatrixDMatrix
  57. def inverse_ip: ParSparseMatrixD

    Invert in-place this sparse matrix (requires a squareMatrix).

    Invert in-place this sparse matrix (requires a squareMatrix). This version uses partial pivoting.

    Definition Classes
    ParSparseMatrixDMatrix
  58. def inverse_npp: ParSparseMatrixD

    Invert this sparse matrix (requires a squareMatrix) not using partial pivoting.

    Invert this sparse matrix (requires a squareMatrix) not using partial pivoting.

    Definition Classes
    ParSparseMatrixDMatrix
  59. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  60. def isNonnegative: Boolean

    Check whether this sparse matrix is nonnegative (has no negative elements).

    Check whether this sparse matrix is nonnegative (has no negative elements).

    Definition Classes
    ParSparseMatrixDMatrix
  61. def isRectangular: Boolean

    Check whether this sparse matrix is rectangular (all rows have the same number of columns).

    Check whether this sparse matrix is rectangular (all rows have the same number of columns).

    Definition Classes
    ParSparseMatrixDMatrix
  62. def isSquare: Boolean

    Check whether this matrix is square (same row and column dimensions).

    Check whether this matrix is square (same row and column dimensions).

    Definition Classes
    Matrix
  63. def isSymmetric: Boolean

    Check whether this matrix is symmetric.

    Check whether this matrix is symmetric.

    Definition Classes
    Matrix
  64. def leDimensions(b: Matrix): Boolean

    Check whether this matrix dimensions are less than or equal to (le) those of the other Matrix.

    Check whether this matrix dimensions are less than or equal to (le) those of the other Matrix.

    b

    the other matrix

    Definition Classes
    Matrix
  65. def lud: (ParSparseMatrixD, ParSparseMatrixD)

    Decompose this sparse matrix into the product of lower and upper triangular matrices (l, u) using the LU Decomposition algorithm.

    Decompose this sparse matrix into the product of lower and upper triangular matrices (l, u) using the LU Decomposition algorithm. This version uses partial pivoting.

    Definition Classes
    ParSparseMatrixDMatrix
  66. def lud_ip: (ParSparseMatrixD, ParSparseMatrixD)

    Decompose in-place this sparse matrix into the product of lower and upper triangular matrices (l, u) using the LU Decomposition algorithm.

    Decompose in-place this sparse matrix into the product of lower and upper triangular matrices (l, u) using the LU Decomposition algorithm. This version uses partial pivoting.

    Definition Classes
    ParSparseMatrixDMatrix
  67. def mag: Double

    Find the magnitude of this matrix, the element value farthest from zero.

    Find the magnitude of this matrix, the element value farthest from zero.

    Definition Classes
    Matrix
  68. def max(e: Int = dim1): Double

    Find the maximum element in this sparse matrix.

    Find the maximum element in this sparse matrix.

    e

    the ending row index (exclusive) for the search

    Definition Classes
    ParSparseMatrixDMatrix
  69. def min(e: Int = dim1): Double

    Find the minimum element in this sparse matrix.

    Find the minimum element in this sparse matrix.

    e

    the ending row index (exclusive) for the search

    Definition Classes
    ParSparseMatrixDMatrix
  70. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  71. def norm1: Double

    Compute the 1-norm of this matrix, i.

    Compute the 1-norm of this matrix, i.e., the maximum 1-norm of the column vectors. This is useful for comparing matrices (a - b).norm1

    Definition Classes
    ParSparseMatrixDMatrix
  72. final def notify(): Unit

    Definition Classes
    AnyRef
  73. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  74. def nullspace: VectorD

    Compute the (right) nullspace of this m by n matrix (requires n = m + 1) by performing Gauss-Jordan reduction and extracting the negation of the last column augmented by 1.

    Compute the (right) nullspace of this m by n matrix (requires n = m + 1) by performing Gauss-Jordan reduction and extracting the negation of the last column augmented by 1. The nullspace of matrix a is "this vector v times any scalar s", i.e., a*(v*s) = 0. The left nullspace of matrix a is the same as the right nullspace of a.t (a transpose).

    Definition Classes
    ParSparseMatrixDMatrix
  75. def nullspace_ip: VectorD

    Compute the (right) nullspace in-place of this m by n matrix (requires n = m + 1) by performing Gauss-Jordan reduction and extracting the negation of the last column augmented by 1.

    Compute the (right) nullspace in-place of this m by n matrix (requires n = m + 1) by performing Gauss-Jordan reduction and extracting the negation of the last column augmented by 1. The nullspace of matrix a is "this vector v times any scalar s", i.e., a*(v*s) = 0. The left nullspace of matrix a is the same as the right nullspace of a.t (a transpose).

    Definition Classes
    ParSparseMatrixDMatrix
  76. val range1: Range

    Range for the storage array on dimension 1 (rows)

    Range for the storage array on dimension 1 (rows)

    Attributes
    protected
    Definition Classes
    Matrix
  77. val range2: Range

    Range for the storage array on dimension 2 (columns)

    Range for the storage array on dimension 2 (columns)

    Attributes
    protected
    Definition Classes
    Matrix
  78. def rank: Int

    Determine the rank of this m by n matrix by taking the upper triangular matrix from the LU Decomposition and counting the number of non-zero diagonal elements.

    Determine the rank of this m by n matrix by taking the upper triangular matrix from the LU Decomposition and counting the number of non-zero diagonal elements.

    Definition Classes
    Matrix
  79. def reduce: ParSparseMatrixD

    Use Guass-Jordan reduction on this sparse matrix to make the left part embed an identity matrix.

    Use Guass-Jordan reduction on this sparse matrix to make the left part embed an identity matrix. A constraint on this m by n matrix is that n >= m.

    Definition Classes
    ParSparseMatrixDMatrix
  80. def reduce_ip: Unit

    Use Guass-Jordan reduction in-place on this sparse matrix to make the left part embed an identity matrix.

    Use Guass-Jordan reduction in-place on this sparse matrix to make the left part embed an identity matrix. A constraint on this m by n matrix is that n >= m.

    Definition Classes
    ParSparseMatrixDMatrix
  81. def sameCrossDimensions(b: Matrix): Boolean

    Check whether this matrix and the other matrix have the same cross dimensions.

    Check whether this matrix and the other matrix have the same cross dimensions.

    b

    the other matrix

    Definition Classes
    Matrix
  82. def sameDimensions(b: Matrix): Boolean

    Check whether this matrix and the other Matrix have the same dimensions.

    Check whether this matrix and the other Matrix have the same dimensions.

    b

    the other matrix

    Definition Classes
    Matrix
  83. def selectCols(colIndex: Array[Int]): ParSparseMatrixD

    Select columns from this matrix according to the given index/basis.

    Select columns from this matrix according to the given index/basis. Ex: Can be used to divide a matrix into a basis and a non-basis.

    colIndex

    the column index positions (e.g., (0, 2, 5))

    Definition Classes
    ParSparseMatrixDMatrix
  84. def selectRows(rowIndex: Array[Int]): ParSparseMatrixD

    Select rows from this matrix according to the given index/basis.

    Select rows from this matrix according to the given index/basis.

    rowIndex

    the row index positions (e.g., (0, 2, 5))

    Definition Classes
    ParSparseMatrixDMatrix
  85. def set(i: Int, u: VectorD, j: Int = 0): Unit

    Set this matrix's ith row starting at column j to the vector u.

    Set this matrix's ith row starting at column j to the vector u.

    i

    the row index

    u

    the vector value to assign

    j

    the starting column index

    Definition Classes
    ParSparseMatrixDMatrix
  86. def set(u: Array[Array[Double]]): Unit

    Set all the values in this matrix as copies of the values in 2D array u.

    Set all the values in this matrix as copies of the values in 2D array u.

    u

    the 2D array of values to assign

    Definition Classes
    ParSparseMatrixDMatrix
  87. def set(x: Double): Unit

    Set all the elements in this matrix to the scalar x.

    Set all the elements in this matrix to the scalar x.

    x

    the scalar value to assign

    Definition Classes
    ParSparseMatrixDMatrix
  88. def setCol(col: Int, u: VectorD): Unit

    Set column 'col' of the matrix to a vector.

    Set column 'col' of the matrix to a vector.

    col

    the column to set

    u

    the vector to assign to the column

    Definition Classes
    ParSparseMatrixDMatrix
  89. def setDiag(x: Double): Unit

    Set the main diagonal of this matrix to the scalar x.

    Set the main diagonal of this matrix to the scalar x. Assumes dim2 >= dim1.

    x

    the scalar to set the diagonal to

    Definition Classes
    ParSparseMatrixDMatrix
  90. def setDiag(u: VectorD, k: Int = 0): Unit

    Set the kth diagonal of this matrix to the vector u.

    Set the kth diagonal of this matrix to the vector u. Assumes dim2 >= dim1.

    u

    the vector to set the diagonal to

    k

    how far above the main diagonal, e.g., (-1, 0, 1) for (sub, main, super)

    Definition Classes
    ParSparseMatrixDMatrix
  91. def setFormat(newFormat: String): Unit

    Set the format to the newFormat.

    Set the format to the newFormat.

    newFormat

    the new format string

    Definition Classes
    Matrix
  92. def showAll: Unit

    Show all elements in this sparse matrix.

  93. def slice(r_from: Int, r_end: Int, c_from: Int, c_end: Int): ParSparseMatrixD

    Slice this sparse matrix row-wise r_from to r_end and column-wise c_from to c_end.

    Slice this sparse matrix row-wise r_from to r_end and column-wise c_from to c_end.

    r_from

    the start of the row slice

    r_end

    the end of the row slice

    c_from

    the start of the column slice

    c_end

    the end of the column slice

    Definition Classes
    ParSparseMatrixDMatrix
  94. def slice(from: Int, end: Int): ParSparseMatrixD

    Slice this sparse matrix row-wise from to end.

    Slice this sparse matrix row-wise from to end.

    from

    the start row of the slice

    end

    the end row of the slice

    Definition Classes
    ParSparseMatrixDMatrix
  95. def sliceExclude(row: Int, col: Int): ParSparseMatrixD

    Slice this sparse matrix excluding the given row and column.

    Slice this sparse matrix excluding the given row and column.

    row

    the row to exclude

    col

    the column to exclude

    Definition Classes
    ParSparseMatrixDMatrix
  96. def solve(b: VectorD): VectorD

    Solve for x in the equation a*x = b where a is this sparse matrix (see lud above).

    Solve for x in the equation a*x = b where a is this sparse matrix (see lud above).

    b

    the constant vector.

    Definition Classes
    ParSparseMatrixDMatrix
  97. def solve(lu: (Matrix, Matrix), b: VectorD): VectorD

    Solve for x in the equation l*u*x = b (see lud above).

    Solve for x in the equation l*u*x = b (see lud above).

    lu

    the lower and upper triangular matrices

    b

    the constant vector

    Definition Classes
    ParSparseMatrixDMatrix
  98. def solve(l: Matrix, u: Matrix, b: VectorD): VectorD

    Solve for x in the equation l*u*x = b (see lud above).

    Solve for x in the equation l*u*x = b (see lud above).

    l

    the lower triangular matrix

    u

    the upper triangular matrix

    b

    the constant vector

    Definition Classes
    ParSparseMatrixDMatrix
  99. def sum: Double

    Compute the sum of this sparse matrix, i.

    Compute the sum of this sparse matrix, i.e., the sum of its elements.

    Definition Classes
    ParSparseMatrixDMatrix
  100. def sumAbs: Double

    Compute the abs sum of this matrix, i.

    Compute the abs sum of this matrix, i.e., the sum of the absolute value of its elements. This is useful for comparing matrices (a - b).sumAbs

    Definition Classes
    ParSparseMatrixDMatrix
  101. def sumLower: Double

    Compute the sum of the lower triangular region of this sparse matrix.

    Compute the sum of the lower triangular region of this sparse matrix.

    Definition Classes
    ParSparseMatrixDMatrix
  102. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  103. def t: ParSparseMatrixD

    Transpose this sparse matrix (rows => columns).

    Transpose this sparse matrix (rows => columns).

    Definition Classes
    ParSparseMatrixDMatrix
  104. def times_s(b: ParSparseMatrixD): ParSparseMatrixD

    Multiply this sparse matrix by sparse matrix b using the Strassen matrix multiplication algorithm.

    Multiply this sparse matrix by sparse matrix b using the Strassen matrix multiplication algorithm. Both matrices (this and b) must be square. Although the algorithm is faster than the traditional cubic algorithm, its requires more memory and is often less stable (due to round-off errors). FIX: could be make more efficient using a virtual slice (vslice) method.

    b

    the matrix to multiply by (it has to be a square matrix)

    See also

    http://en.wikipedia.org/wiki/Strassen_algorithm

  105. def toString(): String

    Show the non-zero elements in this sparse matrix.

    Show the non-zero elements in this sparse matrix.

    Definition Classes
    ParSparseMatrixD → AnyRef → Any
  106. def trace: Double

    Compute the trace of this sparse matrix, i.

    Compute the trace of this sparse matrix, i.e., the sum of the elements on the main diagonal. Should also equal the sum of the eigenvalues.

    Definition Classes
    ParSparseMatrixDMatrix
    See also

    Eigen.scala

  107. def update(i: Int, jr: Range, u: VectorD): Unit

    Set a slice this matrix row-wise at index i and column-wise on range jr.

    Set a slice this matrix row-wise at index i and column-wise on range jr. Ex: a(2, 3..5) = u

    i

    the row index

    jr

    the column range

    u

    the vector to assign

    Definition Classes
    ParSparseMatrixDMatrix
  108. def update(ir: Range, j: Int, u: VectorD): Unit

    Set a slice this matrix row-wise on range ir and column-wise at index j.

    Set a slice this matrix row-wise on range ir and column-wise at index j. Ex: a(2..4, 3) = u

    ir

    the row range

    j

    the column index

    u

    the vector to assign

    Definition Classes
    ParSparseMatrixDMatrix
  109. def update(ir: Range, jr: Range, b: SparseMatrixD): Unit

    Set a slice this matrix row-wise on range ir and column-wise on range jr.

    Set a slice this matrix row-wise on range ir and column-wise on range jr. Ex: a(2..4, 3..5) = b

    ir

    the row range

    jr

    the column range

    b

    the matrix to assign

  110. def update(i: Int, u: SortedLinkedHashMap[Int, Double]): Unit

    Set this sparse matrix's row at the i-th index position to the sorted-linked-map u.

    Set this sparse matrix's row at the i-th index position to the sorted-linked-map u.

    i

    the row index

    u

    the sorted-linked-map of non-zreo values to assign

  111. def update(i: Int, u: VectorD): Unit

    Set this sparse matrix's row at the i-th index position to the vector u.

    Set this sparse matrix's row at the i-th index position to the vector u.

    i

    the row index

    u

    the vector value to assign

    Definition Classes
    ParSparseMatrixDMatrix
  112. def update(i: Int, j: Int, x: Double): Unit

    Set this sparse matrix's element at the i,j-th index position to the scalar x.

    Set this sparse matrix's element at the i,j-th index position to the scalar x. Only store x if it is non-zero.

    i

    the row index

    j

    the column index

    x

    the scalar value to assign

    Definition Classes
    ParSparseMatrixDMatrix
  113. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  114. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  115. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  116. def ~^(p: Int): ParSparseMatrixD

    Raise this sparse matrix to the pth power (for some integer p >= 2).

    Raise this sparse matrix to the pth power (for some integer p >= 2). Caveat: should be replace by a divide and conquer algorithm.

    p

    the power to raise this matrix to

    Definition Classes
    ParSparseMatrixDMatrix

Inherited from Serializable

Inherited from Serializable

Inherited from Matrix

Inherited from Error

Inherited from AnyRef

Inherited from Any

Ungrouped