class
NewtonRaphson extends AnyRef
Instance Constructors
-
new
NewtonRaphson(f: (Double) ⇒ Double)
Value Members
-
final
def
!=(arg0: AnyRef): Boolean
-
final
def
!=(arg0: Any): Boolean
-
final
def
##(): Int
-
final
def
==(arg0: AnyRef): Boolean
-
final
def
==(arg0: Any): Boolean
-
final
def
asInstanceOf[T0]: T0
-
def
clone(): AnyRef
-
final
def
eq(arg0: AnyRef): Boolean
-
def
equals(arg0: Any): Boolean
-
def
finalize(): Unit
-
final
def
getClass(): Class[_]
-
def
hashCode(): Int
-
final
def
isInstanceOf[T0]: Boolean
-
final
def
ne(arg0: AnyRef): Boolean
-
final
def
notify(): Unit
-
final
def
notifyAll(): Unit
-
def
solve(x0: Double): Double
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
-
def
toString(): String
-
final
def
wait(): Unit
-
final
def
wait(arg0: Long, arg1: Int): Unit
-
final
def
wait(arg0: Long): Unit
Inherited from AnyRef
Inherited from Any
This class is used to find roots (zeros) for a one-dimensional (scalar) function f. If f is the derivative of some other function g, then this technique can be used to find optima for g. Caveat: Use Conjugate Gradient or Quasi-Newton for complex optimizations.