//:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** @author John Miller * @version 1.1 * @date Sun Sep 16 14:09:25 EDT 2012 * @see LICENSE (MIT style license file). */ package scalation.linalgebra import java.io.PrintWriter import io.Source.fromFile import math.{abs, max} import scalation.linalgebra.MatrixI.eye import scalation.math.Basic.oneIf import scalation.util.Error //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** The `MatrixI` class stores and operates on Numeric Matrices of type Int. * This class follows the MatrixN framework and is provided for efficieny. * @param d1 the first/row dimension * @param d2 the second/column dimension * @param v the 2D array used to store matrix elements */ class MatrixI (val d1: Int, val d2: Int, private var v: Array [Array [Int]] = null) extends Matrii with Error with Serializable { // Note: implementations for the following methods are from the Matrii trait: // foreach, mag, rank, sameDimensions, leDimensions, sameCrossDimensions, // isSquare, isSymmetric /** Dimension 1 */ lazy val dim1 = d1 /** Dimension 2 */ lazy val dim2 = d2 if (v == null) { v = Array.ofDim [Int] (dim1, dim2) } else if (dim1 != v.length || dim2 != v(0).length) { flaw ("constructor", "dimensions are wrong") } // if //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Construct a dim1 by dim1 square matrix. * @param dim1 the row and column dimension */ def this (dim1: Int) { this (dim1, dim1) } //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Construct a dim1 by dim2 matrix and assign each element the value x. * @param dim1 the row dimension * @param dim2 the column dimesion * @param x the scalar value to assign */ def this (dim1: Int, dim2: Int, x: Int) { this (dim1, dim2) for (i <- range1; j <- range2) v(i)(j) = x } // constructor //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Construct a matrix and assign values from array of arrays u. * @param u the 2D array of values to assign */ def this (u: Array [Array [Int]]) { this (u.length, u(0).length, u) } //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Construct a matrix from repeated values. * @param dim the (row, column) dimensions * @param u the repeated values */ def this (dim: Tuple2 [Int, Int], u: Int*) { this (dim._1, dim._2) for (i <- range1; j <- range2) v(i)(j) = u(i * dim2 + j) } // constructor //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Construct a matrix and assign values from array of vectors u. * @param u the 2D array of values to assign */ def this (u: Array [VectorI]) { this (u.length, u(0).dim) for (i <- range1; j <- range2) v(i)(j) = u(i)(j) } // constructor //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Construct a matrix and assign values from matrix u. * @param b the matrix of values to assign */ def this (b: MatrixI) { this (b.d1, b.d2) for (i <- range1; j <- range2) v(i)(j) = b.v(i)(j) } // constructor //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Get this matrix's element at the i,j-th index position. * @param i the row index * @param j the column index */ def apply (i: Int, j: Int): Int = v(i)(j) //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Get this matrix's vector at the i-th index position (i-th row). * @param i the row index */ def apply (i: Int): VectorI = new VectorI (v(i)) //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Get a slice this matrix row-wise on range ir and column-wise on range jr. * Ex: b = a(2..4, 3..5) * @param ir the row range * @param jr the column range */ def apply (ir: Range, jr: Range): MatrixI = slice (ir.start, ir.end, jr.start, jr.end) //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Get a slice this matrix row-wise on range ir and column-wise at index j. * Ex: u = a(2..4, 3) * @param ir the row range * @param j the column index */ def apply (ir: Range, j: Int): VectorI = col(j)(ir) //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Get a slice this matrix row-wise at index i and column-wise on range jr. * Ex: u = a(2, 3..5) * @param i the row index * @param jr the column range */ def apply (i: Int, jr: Range): VectorI = this(i)(jr) //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Set this matrix's element at the i,j-th index position to the scalar x. * @param i the row index * @param j the column index * @param x the scalar value to assign */ def update (i: Int, j: Int, x: Int) { v(i)(j) = x } //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Set this matrix's row at the i-th index position to the vector u. * @param i the row index * @param u the vector value to assign */ def update (i: Int, u: VectorI) { v(i) = u() } //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Set a slice this matrix row-wise on range ir and column-wise on range jr. * Ex: a(2..4, 3..5) = b * @param ir the row range * @param jr the column range * @param b the matrix to assign */ def update (ir: Range, jr: Range, b: MatrixI) { for (i <- ir; j <- jr) v(i)(j) = b.v(i - ir.start)(j - jr.start) } // update //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Set a slice this matrix row-wise on range ir and column-wise at index j. * Ex: a(2..4, 3) = u * @param ir the row range * @param j the column index * @param u the vector to assign */ def update (ir: Range, j: Int, u: VectorI) { col(j)(ir) = u } //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Set a slice this matrix row-wise at index i and column-wise on range jr. * Ex: a(2, 3..5) = u * @param i the row index * @param jr the column range * @param u the vector to assign */ def update (i: Int, jr: Range, u: VectorI) { this(i)(jr) = u } //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Set all the elements in this matrix to the scalar x. * @param x the scalar value to assign */ def set (x: Int) { for (i <- range1; j <- range2) v(i)(j) = x } //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Set all the values in this matrix as copies of the values in 2D array u. * @param u the 2D array of values to assign */ def set (u: Array [Array [Int]]) { for (i <- range1; j <- range2) v(i)(j) = u(i)(j) } // set //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Set this matrix's ith row starting at column j to the vector u. * @param i the row index * @param u the vector value to assign * @param j the starting column index */ def set (i: Int, u: VectorI, j: Int = 0) { for (k <- 0 until u.dim) v(i)(k+j) = u(k) } // set //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Slice this matrix row-wise 'from' to 'end'. * @param from the start row of the slice (inclusive) * @param end the end row of the slice (exclusive) */ def slice (from: Int, end: Int): MatrixI = { new MatrixI (end - from, dim2, v.slice (from, end)) } // slice //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Slice this matrix column-wise 'from' to 'end'. * @param from the start column of the slice (inclusive) * @param end the end column of the slice (exclusive) */ def sliceCol (from: Int, end: Int): MatrixI = { val c = new MatrixI (dim1, end - from) for (i <- c.range1; j <- c.range2) c.v(i)(j) = v(i)(j + from) c } // sliceCol //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Slice this matrix row-wise 'r_from' to 'r_end' and column-wise 'c_from' to 'c_end'. * @param r_from the start of the row slice * @param r_end the end of the row slice * @param c_from the start of the column slice * @param c_end the end of the column slice */ def slice (r_from: Int, r_end: Int, c_from: Int, c_end: Int): MatrixI = { val c = new MatrixI (r_end - r_from, c_end - c_from) for (i <- c.range1; j <- c.range2) c.v(i)(j) = v(i + r_from)(j + c_from) c } // slice //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Slice this matrix excluding the given row and/or column. * @param row the row to exclude (0 until dim1, set to dim1 to keep all rows) * @param col the column to exclude (0 until dim2, set to dim2 to keep all columns) */ def sliceExclude (row: Int, col: Int): MatrixI = { val c = new MatrixI (dim1 - oneIf (row < dim1), dim2 - oneIf (col < dim2)) for (i <- range1 if i != row) for (j <- range2 if j != col) { c.v(i - oneIf (i > row))(j - oneIf (j > col)) = v(i)(j) } // for c } // sliceExclude //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Select rows from this matrix according to the given index/basis. * @param rowIndex the row index positions (e.g., (0, 2, 5)) */ def selectRows (rowIndex: Array [Int]): MatrixI = { val c = new MatrixI (rowIndex.length, dim2) for (i <- c.range1) c.v(i) = v(rowIndex(i)) c } // selectRows //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Get column 'col' from the matrix, returning it as a vector. * @param col the column to extract from the matrix * @param from the position to start extracting from */ def col (col: Int, from: Int = 0): VectorI = { val u = new VectorI (dim1 - from) for (i <- from until dim1) u(i-from) = v(i)(col) u } // col //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Set column 'col' of the matrix to a vector. * @param col the column to set * @param u the vector to assign to the column */ def setCol (col: Int, u: VectorI) { for (i <- range1) v(i)(col) = u(i) } //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Select columns from this matrix according to the given index/basis. * Ex: Can be used to divide a matrix into a basis and a non-basis. * @param colIndex the column index positions (e.g., (0, 2, 5)) */ def selectCols (colIndex: Array [Int]): MatrixI = { val c = new MatrixI (dim1, colIndex.length) for (j <- c.range2) c.setCol (j, col(colIndex(j))) c } // selectCols //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Transpose this matrix (rows => columns). */ def t: MatrixI = { val b = new MatrixI (dim2, dim1) for (i <- b.range1; j <- b.range2) b.v(i)(j) = v(j)(i) b } // t //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Concatenate this matrix and vector u. * @param u the vector to be concatenated as the new last row in matrix */ def ++ (u: VectorI): MatrixI = { if (u.dim != dim2) flaw ("++", "vector does not match row dimension") val c = new MatrixI (dim1 + 1, dim2) for (i <- c.range1) c(i) = if (i < dim1) this(i) else u c } // ++ //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Add this matrix and matrix b. * @param b the matrix to add (requires leDimensions) */ def + (b: MatrixI): MatrixI = { val c = new MatrixI (dim1, dim2) for (i <- range1; j <- range2) c.v(i)(j) = v(i)(j) + b.v(i)(j) c } // + //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Add this matrix and matrix b. * @param b the matrix to add (requires leDimensions) */ def + (b: Matrii): MatrixI = { val c = new MatrixI (dim1, dim2) for (i <- range1; j <- range2) c(i, j) = v(i)(j) + b(i, j) c } // + //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Add this matrix and vector u. * @param u the vector to add */ def + (u: VectorI): MatrixI = { val c = new MatrixI (dim1, dim2) for (i <- range1; j <- range2) c.v(i)(j) = v(i)(j) + u(j) c } // + //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Add this matrix and scalar x. * @param x the scalar to add */ def + (x: Int): MatrixI = { val c = new MatrixI (dim1, dim2) for (i <- range1; j <- range2) c.v(i)(j) = v(i)(j) + x c } // + //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Add in-place this matrix and matrix b. * @param b the matrix to add (requires leDimensions) */ def += (b: MatrixI): MatrixI = { for (i <- range1; j <- range2) v(i)(j) = v(i)(j) + b.v(i)(j) this } // += //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Add in-place this matrix and scalar x. * @param x the scalar to add */ def += (x: Int): MatrixI = { for (i <- range1; j <- range2) v(i)(j) = v(i)(j) + x this } // += //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** From this matrix subtract matrix b. * @param b the matrix to subtract (requires leDimensions) */ def - (b: MatrixI): MatrixI = { val c = new MatrixI (dim1, dim2) for (i <- range1; j <- range2) c.v(i)(j) = v(i)(j) - b.v(i)(j) c } // - //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** From this matrix subtract scalar x. * @param x the scalar to subtract */ def - (x: Int): MatrixI = { val c = new MatrixI (dim1, dim2) for (i <- c.range1; j <- c.range2) c.v(i)(j) = v(i)(j) - x c } // - //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** From this matrix subtract in-place matrix b. * @param b the matrix to subtract (requires leDimensions) */ def -= (b: MatrixI): MatrixI = { for (i <- range1; j <- range2) v(i)(j) = v(i)(j) - b.v(i)(j) this } // -= //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** From this matrix subtract in-place scalar x. * @param x the scalar to subtract */ def -= (x: Int): MatrixI = { for (i <- range1; j <- range2) v(i)(j) = v(i)(j) - x this } // -= //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Multiply this matrix by matrix b, transposing b to improve efficiency. * Use 'times' method to skip the transpose step. * @param b the matrix to multiply by (requires sameCrossDimensions) */ def * (b: MatrixI): MatrixI = { if (dim2 != b.dim1) flaw ("*", "matrix * matrix - incompatible cross dimensions") val c = new MatrixI (dim1, b.dim2) val bt = b.t // transpose the b matrix for (i <- range1; j <- c.range2) { var sum = 0 for (k <- range2) sum += v(i)(k) * bt.v(j)(k) c.v(i)(j) = sum } // for c } // * //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Multiply this matrix by vector u. * @param u the vector to multiply by */ def * (u: VectorI): VectorI = { if (dim2 != u.dim) flaw ("*", "matrix * vector - incompatible cross dimensions") val c = new VectorI (dim1) for (i <- range1) { var sum = 0 for (k <- range2) sum += v(i)(k) * u(k) c(i) = sum } // for c } // * //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Multiply this matrix by scalar x. * @param x the scalar to multiply by */ def * (x: Int): MatrixI = { val c = new MatrixI (dim1, dim2) for (i <- range1; j <- range2) c.v(i)(j) = v(i)(j) * x c } // * //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Multiply in-place this matrix by matrix b, transposing b to improve * efficiency. Use 'times_ip' method to skip the transpose step. * @param b the matrix to multiply by (requires square and sameCrossDimensions) */ def *= (b: MatrixI): MatrixI = { if (! b.isSquare) flaw ("*=", "matrix b must be square") if (dim2 != b.dim1) flaw ("*=", "matrix *= matrix - incompatible cross dimensions") val bt = b.t // use the transpose of b for (i <- range1) { val row_i = new VectorI (dim2) // save ith row so not overwritten for (j <- range2) row_i(j) = v(i)(j) // copy values from ith row of this matrix for (j <- range2) { var sum = 0 for (k <- range2) sum += row_i(k) * bt.v(j)(k) v(i)(j) = sum } // for } // for this } // *= //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Multiply in-place this matrix by scalar x. * @param x the scalar to multiply by */ def *= (x: Int): MatrixI = { for (i <- range1; j <- range2) v(i)(j) = v(i)(j) * x this } // *= //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Compute the dot product of 'this' matrix and matrix 'b', by first transposing * 'this' matrix and then multiplying by 'b' (ie., 'a dot b = a.t * b'). * @param b the matrix to multiply by (requires same first dimensions) */ def dot (b: MatrixI): MatrixI = { if (dim1 != b.dim1) flaw ("dot", "matrix dot matrix - incompatible first dimensions") val c = new MatrixI (dim2, b.dim2) val at = this.t // transpose the this matrix for (i <- range2; j <- c.range2) { var sum = 0 for (k <- range1) sum += at.v(i)(k) * b.v(k)(j) c.v(i)(j) = sum } // for c } // dot //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Compute the dot product of 'this' matrix and vector 'u', by first transposing * 'this' matrix and then multiplying by 'u' (ie., 'a dot u = a.t * u'). * @param u the vector to multiply by (requires same first dimensions) */ def dot (u: VectorI): VectorI = { if (dim1 != u.dim) flaw ("dot", "matrix dot vector - incompatible first dimensions") val c = new VectorI (dim2) val at = this.t // transpose the this matrix for (i <- range2) { var sum = 0 for (k <- range1) sum += at.v(i)(k) * u(k) c(i) = sum } // for c } // dot //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Multiply this matrix by matrix b without first transposing b. * @param b the matrix to multiply by (requires sameCrossDimensions) */ def times (b: MatrixI): MatrixI = { if (dim2 != b.dim1) flaw ("times", "matrix * matrix - incompatible cross dimensions") val c = new MatrixI (dim1, b.dim2) for (i <- range1; j <- c.range2) { var sum = 0 for (k <- range2) sum += v(i)(k) * b.v(k)(j) c.v(i)(j) = sum } // for c } // times //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Multiply in-place this matrix by matrix b without first transposing b. * If b and this reference the same matrix (b == this), a copy of the this * matrix is made. * @param b the matrix to multiply by (requires square and sameCrossDimensions) */ def times_ip (b: MatrixI) { if (! b.isSquare) flaw ("times_ip", "matrix b must be square") if (dim2 != b.dim1) flaw ("times_ip", "matrix * matrix - incompatible cross dimensions") val bb = if (b == this) new MatrixI (this) else b for (i <- range1) { val row_i = new VectorI (dim2) // save ith row so not overwritten for (j <- range2) row_i(j) = v(i)(j) // copy values from ith row of this matrix for (j <- range2) { var sum = 0 for (k <- range2) sum += row_i(k) * bb.v(k)(j) v(i)(j) = sum } // for } // for } // times_ip //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Multiply this matrix by matrix b using dot product (concise solution). * @param b the matrix to multiply by (requires sameCrossDimensions) */ def times_d (b: MatrixI): MatrixI = { if (dim2 != b.dim1) flaw ("*", "matrix * matrix - incompatible cross dimensions") val c = new MatrixI (dim1, b.dim2) for (i <- range1; j <- c.range2) c.v(i)(j) = this(i) dot b.col(j) c } // times_d //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Multiply this matrix by matrix b using the Strassen matrix multiplication * algorithm. Both matrices (this and b) must be square. Although the * algorithm is faster than the traditional cubic algorithm, its requires * more memory and is often less stable (due to round-off errors). * FIX: could be make more efficient using a virtual slice (vslice) method. * @see http://en.wikipedia.org/wiki/Strassen_algorithm * @param b the matrix to multiply by (it has to be a square matrix) */ def times_s (b: MatrixI): MatrixI = { if (dim2 != b.dim1) flaw ("*", "matrix * matrix - incompatible cross dimensions") val c = new MatrixI (dim1, dim1) // allocate result matrix var d = dim1 / 2 // half dim1 if (d + d < dim1) d += 1 // if not even, increment by 1 val evenDim = d + d // equals dim1 if even, else dim1 + 1 // decompose to blocks (use vslice method if available) val a11 = slice (0, d, 0, d) val a12 = slice (0, d, d, evenDim) val a21 = slice (d, evenDim, 0, d) val a22 = slice (d, evenDim, d, evenDim) val b11 = b.slice (0, d, 0, d) val b12 = b.slice (0, d, d, evenDim) val b21 = b.slice (d, evenDim, 0, d) val b22 = b.slice (d, evenDim, d, evenDim) // compute intermediate sub-matrices val p1 = (a11 + a22) * (b11 + b22) val p2 = (a21 + a22) * b11 val p3 = a11 * (b12 - b22) val p4 = a22 * (b21 - b11) val p5 = (a11 + a12) * b22 val p6 = (a21 - a11) * (b11 + b12) val p7 = (a12 - a22) * (b21 + b22) for (i <- c.range1; j <- c.range2) { c.v(i)(j) = if (i < d && j < d) p1.v(i)(j) + p4.v(i)(j)- p5.v(i)(j) + p7.v(i)(j) else if (i < d) p3.v(i)(j-d) + p5.v(i)(j-d) else if (i >= d && j < d) p2.v(i-d)(j) + p4.v(i-d)(j) else p1.v(i-d)(j-d) - p2.v(i-d)(j-d) + p3.v(i-d)(j-d) + p6.v(i-d)(j-d) } // for c // return result matrix } // times_s //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Multiply this matrix by vector u to produce another matrix (a_ij * u_j) * E.g., multiply a matrix by a diagonal matrix represented as a vector. * @param u the vector to multiply by */ def ** (u: VectorI): MatrixI = { val c = new MatrixI (dim1, dim2) for (i <- range1; j <- range2) c.v(i)(j) = v(i)(j) * u(j) c } // ** //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Multiply in-place this matrix by vector u to produce another matrix (a_ij * u_j) * @param u the vector to multiply by */ def **= (u: VectorI): MatrixI = { for (i <- range1; j <- range2) v(i)(j) = v(i)(j) * u(j) this } // **= //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Divide this matrix by scalar x. * @param x the scalar to divide by */ def / (x: Int): MatrixI = { val c = new MatrixI (dim1, dim2) for (i <- range1; j <- range2) c.v(i)(j) = v(i)(j) / x c } // / //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Divide in-place this matrix by scalar x. * @param x the scalar to divide by */ def /= (x: Int): MatrixI = { for (i <- range1; j <- range2) v(i)(j) = v(i)(j) / x this } // /= //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Raise this matrix to the pth power (for some integer p >= 2). * Caveat: should be replace by a divide and conquer algorithm. * @param p the power to raise this matrix to */ def ~^ (p: Int): MatrixI = { if (p < 2) flaw ("~^", "p must be an integer >= 2") if (! isSquare) flaw ("~^", "only defined on square matrices") val c = new MatrixI (dim1, dim1) for (i <- range1; j <- range1) { var sum = 0 for (k <- range1) sum += v(i)(k) * v(k)(j) c.v(i)(j) = sum } // for if (p > 2) c ~^ (p-1) else c } // ~^ //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Find the maximum element in this matrix. * @param e the ending row index (exclusive) for the search */ def max (e: Int = dim1): Int = { var x = v(0).max for (i <- 1 until e if v(i).max > x) x = v(i).max x } // max //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Find the minimum element in this matrix. * @param e the ending row index (exclusive) for the search */ def min (e: Int = dim1): Int = { var x = v(0).min for (i <- 1 until e if v(i).min < x) x = v(i).min x } // min //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Decompose this matrix into the product of upper and lower triangular * matrices (l, u) using the LU Decomposition algorithm. This version uses * no partial pivoting. */ def lud_npp: Tuple2 [MatrixI, MatrixI] = { val l = new MatrixI (dim1, dim2) // lower triangular matrix val u = new MatrixI (this) // upper triangular matrix (a copy of this) for (i <- u.range1) { val pivot = u.v(i)(i) if (pivot == 0) flaw ("lud_npp", "use lud since you have a zero pivot") l.v(i)(i) = 1 for (j <- i + 1 until u.dim2) l.v(i)(j) = 0 for (k <- i + 1 until u.dim1) { val mul = u.v(k)(i) / pivot l.v(k)(i) = mul for (j <- u.range2) u.v(k)(j) = u.v(k)(j) - mul * u.v(i)(j) } // for } // for Tuple2 (l, u) } // lud_npp //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Decompose this matrix into the product of lower and upper triangular * matrices (l, u) using the LU Decomposition algorithm. This version uses * partial pivoting. */ def lud: Tuple2 [MatrixI, MatrixI] = { val l = new MatrixI (dim1, dim2) // lower triangular matrix val u = new MatrixI (this) // upper triangular matrix (a copy of this) for (i <- u.range1) { var pivot = u.v(i)(i) if (pivot == 0) { val k = partialPivoting (u, i) // find the maxiumum element below pivot u.swap (i, k, i) // swap rows i and k from column k pivot = u.v(i)(i) // reset the pivot } // if l.v(i)(i) = 1 for (j <- i + 1 until u.dim2) l.v(i)(j) = 0 for (k <- i + 1 until u.dim1) { val mul = u.v(k)(i) / pivot l.v(k)(i) = mul for (j <- u.range2) u.v(k)(j) = u.v(k)(j) - mul * u.v(i)(j) } // for } // for Tuple2 (l, u) } // lud //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Decompose in-place this matrix into the product of lower and upper triangular * matrices (l, u) using the LU Decomposition algorithm. This version uses * partial pivoting. */ def lud_ip: Tuple2 [MatrixI, MatrixI] = { val l = new MatrixI (dim1, dim2) // lower triangular matrix val u = this // upper triangular matrix (this) for (i <- u.range1) { var pivot = u.v(i)(i) if (pivot == 0) { val k = partialPivoting (u, i) // find the maxiumum element below pivot u.swap (i, k, i) // swap rows i and k from column k pivot = u.v(i)(i) // reset the pivot } // if l.v(i)(i) = 1 for (j <- i + 1 until u.dim2) l.v(i)(j) = 0 for (k <- i + 1 until u.dim1) { val mul = u.v(k)(i) / pivot l.v(k)(i) = mul for (j <- u.range2) u.v(k)(j) = u.v(k)(j) - mul * u.v(i)(j) } // for } // for Tuple2 (l, u) } // lud_ip //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Use partial pivoting to find a maximal non-zero pivot and return its row * index, i.e., find the maximum element (k, i) below the pivot (i, i). * @param a the matrix to perform partial pivoting on * @param i the row and column index for the current pivot */ private def partialPivoting (a: MatrixI, i: Int): Int = { var max = a.v(i)(i) // initially set to the pivot var kMax = i // initially the pivot row for (k <- i + 1 until a.dim1 if abs (a.v(k)(i)) > max) { max = abs (a.v(k)(i)) kMax = k } // for if (kMax == i) { flaw ("partialPivoting", "unable to find a non-zero pivot for row " + i) } // if kMax } // partialPivoting //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Swap the elements in rows 'i' and 'k' starting from column 'col'. * @param i the first row in the swap * @param k the second row in the swap * @param col the starting column for the swap (default 0 => whole row) */ def swap (i: Int, k: Int, col: Int = 0) { for (j <- col until dim2) { val tmp = v(k)(j); v(k)(j) = v(i)(j); v(i)(j) = tmp } // for } // swap //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Swap the elements in columns 'j' and 'l' starting from row 'row'. * @param j the first column in the swap * @param l the second column in the swap * @param row the starting row for the swap (default 0 => whole column) */ def swapCol (j: Int, l: Int, row: Int = 0) { for (i <- row until dim1) { val tmp = v(i)(l); v(i)(l) = v(i)(j); v(i)(j) = tmp } // for } // swapCol //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Solve for x in the equation l*u*x = b (see lud above). * @param l the lower triangular matrix * @param u the upper triangular matrix * @param b the constant vector */ def solve (l: Matrii, u: Matrii, b: VectorI): VectorI = { val y = new VectorI (l.dim2) for (k <- 0 until y.dim) { // solve for y in l*y = b y(k) = b(k) - (l(k) dot y) } // for val x = new VectorI (u.dim2) for (k <- x.dim - 1 to 0 by -1) { // solve for x in u*x = y x(k) = (y(k) - (u(k) dot x)) / u(k, k) } // for x } // solve //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Solve for x in the equation l*u*x = b (see lud above). * @param lu the lower and upper triangular matrices * @param b the constant vector */ def solve (lu: Tuple2 [Matrii, Matrii], b: VectorI): VectorI = { solve (lu._1, lu._2, b) } // solve //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Solve for x in the equation a*x = b where a is this matrix (see lud above). * @param b the constant vector. */ def solve (b: VectorI): VectorI = { solve (lud, b) } // solve //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Combine this matrix with matrix b, placing them along the diagonal and * filling in the bottom left and top right regions with zeros; [this, b]. * @param b the matrix to combine with this matrix */ def diag (b: MatrixI): MatrixI = { val m = dim1 + b.dim1 val n = dim2 + b.dim2 val c = new MatrixI (m, n) for (i <- 0 until m; j <- 0 until n) { c.v(i)(j) = if (i < dim1 && j < dim2) v(i)(j) else if (i >= dim1 && j >= dim2) b.v(i-dim1)(j-dim2) else 0 } // for c } // diag //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Form a matrix [Ip, this] where Ip is a p by p identity matrix, by * positioning the two matrices Ip and this along the diagonal. * Fill the rest of matrix with zeros. * @param p the size of identity matrix Ip */ def diag (p: Int): MatrixI = { val m = dim1 + p // new number of rows val n = dim1 + p // new number of columns val c = new MatrixI (m, n) for (i <- 0 until p) c.v(i)(i) = 1 c(p until m, p until n) = this c } // diag //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Form a matrix [Ip, this, Iq] where Ir is a r by r identity matrix, by * positioning the three matrices Ip, this and Iq along the diagonal. * Fill the rest of matrix with zeros. * @param p the size of identity matrix Ip * @param q the size of identity matrix Iq */ def diag (p: Int, q: Int): MatrixI = { if (! isSquare) flaw ("diag", "this matrix must be square") val n = dim1 + p + q val c = new MatrixI (n, n) for (i <- 0 until p) c.v(i)(i) = 1 // Ip for (i <- 0 until dim1; j <- 0 until dim1) c.v(i+p)(j+p) = v(i)(j) // this for (i <- p + dim1 until n) c.v(i)(i) = 1 // Iq c } // diag //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Get the kth diagonal of this matrix. Assumes dim2 >= dim1. * @param k how far above the main diagonal, e.g., (-1, 0, 1) for (sub, main, super) */ def getDiag (k: Int = 0): VectorI = { val mm = dim1 - abs (k) val c = new VectorI (mm) for (i <- 0 until mm) c(i) = v(i)(i+k) c } // getDiag //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Set the kth diagonal of this matrix to the vector u. Assumes dim2 >= dim1. * @param u the vector to set the diagonal to * @param k how far above the main diagonal, e.g., (-1, 0, 1) for (sub, main, super) */ def setDiag (u: VectorI, k: Int = 0) { val mm = dim1 - abs (k) for (i <- 0 until mm) v(i)(i+k) = u(i) } // setDiag //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Set the main diagonal of this matrix to the scalar x. Assumes dim2 >= dim1. * @param x the scalar to set the diagonal to */ def setDiag (x: Int) { for (i <- range1) v(i)(i) = x } //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Invert this matrix (requires a squareMatrix) and does not use partial pivoting. */ def inverse_npp: MatrixI = { val b = new MatrixI (this) // copy this matrix into b val c = eye (dim1) // let c represent the augmentation for (i <- b.range1) { val pivot = b.v(i)(i) if (pivot == 0) flaw ("inverse_npp", "use inverse since you have a zero pivot") for (j <- b.range2) { b.v(i)(j) /= pivot c.v(i)(j) /= pivot } // for for (k <- 0 until b.dim1 if k != i) { val mul = b.v(k)(i) for (j <- b.range2) { b.v(k)(j) -= mul * b.v(i)(j) c.v(k)(j) -= mul * c.v(i)(j) } // for } // for } // for c } // inverse_npp //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Invert this matrix (requires a squareMatrix) and use partial pivoting. */ def inverse: MatrixI = { val b = new MatrixI (this) // copy this matrix into b val c = eye (dim1) // let c represent the augmentation for (i <- b.range1) { var pivot = b.v(i)(i) if (pivot == 0) { val k = partialPivoting (b, i) // find the maxiumum element below pivot b.swap (i, k, i) // in b, swap rows i and k from column i c.swap (i, k, 0) // in c, swap rows i and k from column 0 pivot = b.v(i)(i) // reset the pivot } // if for (j <- b.range2) { b.v(i)(j) /= pivot c.v(i)(j) /= pivot } // for for (k <- 0 until dim1 if k != i) { val mul = b.v(k)(i) for (j <- b.range2) { b.v(k)(j) -= mul * b.v(i)(j) c.v(k)(j) -= mul * c.v(i)(j) } // for } // for } // for c } // inverse //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Invert in-place this matrix (requires a squareMatrix) and uses partial pivoting. * Note: this method turns the orginal matrix into the identity matrix. * The inverse is returned and is captured by assignment. */ def inverse_ip: MatrixI = { var b = this // use this matrix for b val c = eye (dim1) // let c represent the augmentation for (i <- b.range1) { var pivot = b.v(i)(i) if (pivot == 0) { val k = partialPivoting (b, i) // find the maxiumum element below pivot b.swap (i, k, i) // in b, swap rows i and k from column i c.swap (i, k, 0) // in c, swap rows i and k from column 0 pivot = b.v(i)(i) // reset the pivot } // if for (j <- b.range2) { b.v(i)(j) /= pivot c.v(i)(j) /= pivot } // for for (k <- 0 until dim1 if k != i) { val mul = b.v(k)(i) for (j <- b.range2) { b.v(k)(j) -= mul * b.v(i)(j) c.v(k)(j) -= mul * c.v(i)(j) } // for } // for } // for c // return the solution } // inverse_ip //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Use Gauss-Jordan reduction on this matrix to make the left part embed an * identity matrix. A constraint on this m by n matrix is that n >= m. */ def reduce: MatrixI = { if (dim2 < dim1) flaw ("reduce", "requires n (columns) >= m (rows)") val b = new MatrixI (this) // copy this matrix into b for (i <- b.range1) { var pivot = b.v(i)(i) if (pivot == 0) { val k = partialPivoting (b, i) // find the maxiumum element below pivot b.swap (i, k, i) // in b, swap rows i and k from column i pivot = b.v(i)(i) // reset the pivot } // if for (j <- b.range2) b.v(i)(j) /= pivot for (k <- 0 until dim1 if k != i) { val mul = b.v(k)(i) for (j <- b.range2) b.v(k)(j) -= mul * b.v(i)(j) } // for } // for b } // reduce //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Use Gauss-Jordan reduction in-place on this matrix to make the left part * embed an identity matrix. A constraint on this m by n matrix is that n >= m. */ def reduce_ip { if (dim2 < dim1) flaw ("reduce", "requires n (columns) >= m (rows)") val b = this // use this matrix for b for (i <- b.range1) { var pivot = b.v(i)(i) if (pivot == 0) { val k = partialPivoting (b, i) // find the maxiumum element below pivot b.swap (i, k, i) // in b, swap rows i and k from column i pivot = b.v(i)(i) // reset the pivot } // if for (j <- b.range2) b.v(i)(j) /= pivot for (k <- 0 until dim1 if k != i) { val mul = b.v(k)(i) for (j <- b.range2) b.v(k)(j) -= mul * b.v(i)(j) } // for } // for } // reduce_ip //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Clean values in matrix at or below the threshold by setting them to zero. * Iterative algorithms give approximate values and if very close to zero, * may throw off other calculations, e.g., in computing eigenvectors. * @param thres the cutoff threshold (a small value) * @param relative whether to use relative or absolute cutoff */ def clean (thres: Int, relative: Boolean = true): MatrixI = { val s = if (relative) mag else 1 // use matrix magnitude or 1 for (i <- range1; j <- range2) if (abs (v(i)(j)) <= thres * s) v(i)(j) = 0 this } // clean //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Compute the (right) nullspace of this m by n matrix (requires n = m + 1) * by performing Gauss-Jordan reduction and extracting the negation of the * last column augmented by 1. The nullspace of matrix a is "this vector v * times any scalar s", i.e., a*(v*s) = 0. The left nullspace of matrix a is * the same as the right nullspace of a.t (a transpose). * FIX: need a more robust algorithm for computing nullspace (@see Fac_QR.scala) * @see http://ocw.mit.edu/courses/mathematics/18-06sc-linear-algebra-fall-2011/ax-b-and-the-four-subspaces * /solving-ax-0-pivot-variables-special-solutions/MIT18_06SCF11_Ses1.7sum.pdf */ def nullspace: VectorI = { if (dim2 != dim1 + 1) flaw ("nullspace", "requires n (columns) = m (rows) + 1") reduce.col(dim2 - 1) * -1 ++ 1 } // nullspace //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Compute the (right) nullspace in-place of this m by n matrix (requires n = m + 1) * by performing Gauss-Jordan reduction and extracting the negation of the * last column augmented by 1. The nullspace of matrix a is "this vector v * times any scalar s", i.e., a*(v*s) = 0. The left nullspace of matrix a is * the same as the right nullspace of a.t (a transpose). */ def nullspace_ip: VectorI = { if (dim2 != dim1 + 1) flaw ("nullspace", "requires n (columns) = m (rows) + 1") reduce_ip col(dim2 - 1) * -1 ++ 1 } // nullspace_ip //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Compute the trace of this matrix, i.e., the sum of the elements on the * main diagonal. Should also equal the sum of the eigenvalues. * @see Eigen.scala */ def trace: Int = { if ( ! isSquare) flaw ("trace", "trace only works on square matrices") var sum = 0 for (i <- range1) sum += v(i)(i) sum } // trace //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Compute the sum of this matrix, i.e., the sum of its elements. */ def sum: Int = { var sum = 0 for (i <- range1; j <- range2) sum += v(i)(j) sum } // sum //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Compute the sum of the lower triangular region of this matrix. */ def sumLower: Int = { var sum = 0 for (i <- range1; j <- 0 until i) sum += v(i)(j) sum } // sumLower //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Compute the abs sum of this matrix, i.e., the sum of the absolute value * of its elements. This is useful for comparing matrices (a - b).sumAbs */ def sumAbs: Int = { var sum = 0 for (i <- range1; j <- range2) sum += abs (v(i)(j)) sum } // sumAbs //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Compute the 1-norm of this matrix, i.e., the maximum 1-norm of the * column vectors. This is useful for comparing matrices (a - b).norm1 */ def norm1: Int = { val c = new VectorI (dim2) for (j <- range2) c(j) = col(j).norm1 c.max () } // norm1 //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Compute the determinant of this matrix. The value of the determinant * indicates, among other things, whether there is a unique solution to a * system of linear equations (a nonzero determinant). */ def det: Int = { if ( ! isSquare) flaw ("det", "determinant only works on square matrices") var sum = 0 var b: MatrixI = null for (j <- range2) { b = sliceExclude (0, j) // the submatrix that excludes row 0 and column j sum += (if (j % 2 == 0) v(0)(j) * (if (b.dim1 == 1) b.v(0)(0) else b.det) else -v(0)(j) * (if (b.dim1 == 1) b.v(0)(0) else b.det)) } // for sum } // det //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Check whether this matrix is rectangular (all rows have the same number * of columns). */ def isRectangular: Boolean = { for (i <- range1 if v(i).length != dim2) return false true } // isRectangular //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Check whether this matrix is nonnegative (has no negative elements). */ def isNonnegative: Boolean = { for (i <- range1; j <- range2 if v(i)(j) < 0) return false true } // isNonegative //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Convert this real (double precision) matrix to a string. */ override def toString: String = { var sb = new StringBuilder ("\nMatrixI(") if (dim1 == 0) return sb.append (")").mkString for (i <- range1) { for (j <- range2) { sb.append (fString.format (v(i)(j))) if (j == dim2-1) sb.replace (sb.length-1, sb.length, "\n\t") } // for } // for sb.replace (sb.length-3, sb.length, ")").mkString } // toString //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Write this matrix to a CSV-formatted text file. * @param fileName the name of file holding the data * @param sep the character separating the values */ def write (fileName: String) { val out = new PrintWriter (fileName) for (i <- range1) { for (j <- range2) { out.print (v(i)(j)); if (j < dim2-1) out.print (",") } out.println () } // for out.close } // write } // MatrixI class //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** The `MatrixI` companion object provides operations for `MatrixI` that don't require * 'this' (like static methods in Java). It provides factory methods for building * matrices from files or vectors. */ object MatrixI extends Error { //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Create a matrix by reading from a text file, e.g., a CSV file. * @param fileName the name of file holding the data * @param sep the character separating the values */ def apply (fileName: String, sep: Char = ','): MatrixI = { val lines = fromFile (fileName).getLines.toArray // get the lines from file val (m, n) = (lines.length, lines(0).split (sep).length) val x = new MatrixI (m, n) for (i <- 0 until m) x(i) = VectorI (lines(i).split (sep)) x } // apply //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Create an n-by-n identity matrix (ones on main diagonal, zeros elsewhere). * @param n the dimension of the square matrix */ def eye (n: Int): MatrixI = { val c = new MatrixI (n) for (i <- 0 until n) c.v(i)(i) = 1 c } // eye //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Multiply vector u by matrix a. Treat u as a row vector. * @param u the vector to multiply by * @param a the matrix to multiply by (requires sameCrossDimensions) */ def times (u: VectorI, a: MatrixI): VectorI = { if (u.dim != a.dim1) flaw ("times", "vector * matrix - incompatible cross dimensions") val c = new VectorI (a.dim2) for (j <- a.range2) { var sum = 0 for (k <- a.range1) sum += u(k) * a.v(k)(j) c(j) = sum } // for c } // times //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Compute the outer product of vector x and vector y. The result of the * outer product is a matrix where c(i, j) is the product of i-th element * of x with the j-th element of y. * @param x the first vector * @param y the second vector */ def outer (x: VectorI, y: VectorI): MatrixI = { val c = new MatrixI (x.dim, y.dim) for (i <- 0 until x.dim; j <- 0 until y.dim) c(i, j) = x(i) * y(j) c } // outer //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Form a matrix from two vectors, row-wise. * @param x the first vector -> row 0 * @param y the second vector -> row 1 */ def form_rw (x: VectorI, y: VectorI): MatrixI = { if (x.dim != y.dim) flaw ("form_rw", "dimensions of x and y must be the same") val cols = x.dim val c = new MatrixI (2, cols) c(0) = x c(1) = y c } // form_rw //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Form a matrix from scalar and a vector, row-wise. * @param x the first scalar -> row 0 (repeat scalar) * @param y the second vector -> row 1 */ def form_rw (x: Int, y: VectorI): MatrixI = { val cols = y.dim val c = new MatrixI (2, cols) for (j <- 0 until cols) c(0, j) = x c(1) = y c } // form_rw //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Form a matrix from a vector and a scalar, row-wise. * @param x the first vector -> row 0 * @param y the second scalar -> row 1 (repeat scalar) */ def form_rw (x: VectorI, y: Int): MatrixI = { val cols = x.dim val c = new MatrixI (2, cols) c(0) = x for (j <- 0 until cols) c(1, j) = y c } // form_rw //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Form a matrix from two vectors, column-wise. * @param x the first vector -> column 0 * @param y the second vector -> column 1 */ def form_cw (x: VectorI, y: VectorI): MatrixI = { if (x.dim != y.dim) flaw ("form_cw", "dimensions of x and y must be the same") val rows = x.dim val c = new MatrixI (rows, 2) c.setCol(0, x) c.setCol(1, y) c } // form_cw //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Form a matrix from a scalar and a vector, column-wise. * @param x the first scalar -> column 0 (repeat scalar) * @param y the second vector -> column 1 */ def form_cw (x: Int, y: VectorI): MatrixI = { val rows = y.dim val c = new MatrixI (rows, 2) for (i <- 0 until rows) c(i, 0) = x c.setCol(1, y) c } // form_cw //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Form a matrix from a vector and a scalar, column-wise. * @param x the first vector -> column 0 * @param y the second scalar -> column 1 (repeat scalar) */ def form_cw (x: VectorI, y: Int): MatrixI = { val rows = x.dim val c = new MatrixI (rows, 2) c.setCol(0, x) for (i <- 0 until rows) c(i, 1) = y c } // form_cw } // MatrixI companion object //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** The `MatrixITest` object tests the operations provided by `MatrixI` class. */ object MatrixITest extends App { for (l <- 1 to 4) { println ("\n\tTest MatrixI on real matrices of dim " + l) val x = new MatrixI (l, l) val y = new MatrixI (l, l) x.set (2) y.set (3) println ("x + y = " + (x + y)) println ("x - y = " + (x - y)) println ("x * y = " + (x * y)) println ("x * 4. = " + (x * 4)) } // for println ("\n\tTest MatrixI on additional operations") val z = new MatrixI ((2, 2), 1, 2, 3, 2) val t = new MatrixI ((3, 3), 1, 2, 3, 4, 3, 2, 1, 3, 1) val b = VectorI (8, 7) val lu = z.lud val lu2 = z.lud_npp println ("z = " + z) println ("z.t = " + z.t) println ("z.lud = " + lu) println ("z.lud_npp = " + lu2) println ("z.solve = " + z.solve (lu._1, lu._2, b)) println ("z.inverse = " + z.inverse) println ("z.inverse_ip = " + z.inverse_ip) println ("t.inverse = " + t.inverse) println ("t.inverse_ip = " + t.inverse_ip) println ("z.inv * b = " + z.inverse * b) println ("z.det = " + z.det) println ("z = " + z) z *= z // in-place matrix multiplication println ("z squared = " + z) val w = new MatrixI ((2, 3), 2, 3, 5, -4, 2, 3) val v = new MatrixI ((3, 2), 2, -4, 3, 2, 5, 3) println ("w = " + w) println ("v = " + v) println ("w.reduce = " + w.reduce) println ("right: w.nullspace = " + w.nullspace) println ("check right nullspace = " + w * w.nullspace) println ("left: v.t.nullspace = " + v.t.nullspace) println ("check left nullspace = " + v.t.nullspace * v) for (row <- z) println ("row = " + row.deep) val aa = new MatrixI ((3, 2), 1, 2, 3, 4, 5, 6) val bb = new MatrixI ((2, 2), 1, 2, 3, 4) println ("aa = " + aa) println ("bb = " + bb) println ("aa * bb = " + aa * bb) aa *= bb println ("aa *= bb = " + aa) println ("aa dot aa = " + (aa dot aa)) println ("aa.t * aa = " + aa.t * aa) println ("csv = " + MatrixI ("data/matrices/matrix.csv")) bb.write ("data/matrices/bb_matrix.csv") println ("bb_csv = " + MatrixI ("data/matrices/bb_matrix.csv")) } // MatrixITest object