scalation.analytics

ExpRegression

Related Doc: package analytics

class ExpRegression extends Predictor with Error

The ExpRegression class supports exponential regression. In this case, 'x' is multi-dimensional [1, x_1, ... x_k]. Fit the parameter vector 'b' in the exponential regression equation

log (mu (x)) = b dot x = b_0 + b_1 * x_1 + ... b_k * x_k

See also

www.stat.uni-muenchen.de/~leiten/Lehre/Material/GLM_0708/chapterGLM.pdf

Linear Supertypes
Error, Predictor, AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. ExpRegression
  2. Error
  3. Predictor
  4. AnyRef
  5. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Instance Constructors

  1. new ExpRegression(x: MatrixD, nonneg: Boolean, y: VectorD)

    x

    the data/design matrix

    nonneg

    whether to check that responses are nonnegative

    y

    the response vector

Value Members

  1. final def !=(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  5. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  6. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  7. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  8. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  9. def fit: (VectorD, Double, Double, Double)

    Return the fit (parameter vector b, quality of fit including rSquared).

  10. def flaw(method: String, message: String): Unit

    Show the flaw by printing the error message.

    Show the flaw by printing the error message.

    method

    the method where the error occurred

    message

    the error message

    Definition Classes
    Error
  11. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  12. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  13. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  14. def ll(b: VectorD): Double

    For a given parameter vector b, compute -2 * Log-Likelihood (-2LL).

    For a given parameter vector b, compute -2 * Log-Likelihood (-2LL). -2LL is the standard measure that follows a Chi-Square distribution.

    b

    the parameters to fit

    See also

    www.statisticalhorizons.com/wp-content/uploads/Allison.StatComp.pdf

    www.stat.cmu.edu/~cshalizi/350/lectures/26/lecture-26.pdf

  15. def ll_null(b: VectorD): Double

    For a given parameter vector b, compute -2 * Log-Likelihood (-2LL) for the null model (the one that does not consider the effects of x(i)).

    For a given parameter vector b, compute -2 * Log-Likelihood (-2LL) for the null model (the one that does not consider the effects of x(i)).

    b

    the parameters to fit

  16. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  17. final def notify(): Unit

    Definition Classes
    AnyRef
  18. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  19. def predict(z: Matrix): VectorD

    Predict the value of y = f(z) by evaluating the formula y = b dot zi for each row zi of matrix z.

    Predict the value of y = f(z) by evaluating the formula y = b dot zi for each row zi of matrix z.

    z

    the new matrix to predict

    Definition Classes
    ExpRegressionPredictor
  20. def predict(z: VectorD): Double

    Predict the value of y = f(z) by evaluating the formula y = b dot z, e.g., (b_0, b_1, b_2) dot (1, z_1, z_2).

    Predict the value of y = f(z) by evaluating the formula y = b dot z, e.g., (b_0, b_1, b_2) dot (1, z_1, z_2).

    z

    the new vector to predict

    Definition Classes
    ExpRegressionPredictor
  21. def predict(z: VectorI): Double

    Given a new discrete data vector z, predict the y-value of f(z).

    Given a new discrete data vector z, predict the y-value of f(z).

    z

    the vector to use for prediction

    Definition Classes
    Predictor
  22. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  23. def toString(): String

    Definition Classes
    AnyRef → Any
  24. def train(): Unit

    Train the predictor by fitting the parameter vector (b-vector) in the exponential regression equation.

    Train the predictor by fitting the parameter vector (b-vector) in the exponential regression equation.

    Definition Classes
    ExpRegressionPredictor
  25. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  26. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  27. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Error

Inherited from Predictor

Inherited from AnyRef

Inherited from Any

Ungrouped