scalation.analytics.par

TranRegression

Related Doc: package par

class TranRegression extends Predictor with Error

The TranRegression class supports transformed multiple linear regression. In this case, 'x' is multi-dimensional [1, x_1, ... x_k]. Fit the parameter vector 'b' in the transformed regression equation

transform (y) = b dot x + e = b_0 + b_1 * x_1 + b_2 * x_2 ... b_k * x_k + e

where 'e' represents the residuals (the part not explained by the model) and 'transform' is the function (defaults to log) used to transform the response vector 'y'. Use Least-Squares (minimizing the residuals) to fit the parameter vector

b = x_pinv * y

where 'x_pinv' is the pseudo-inverse.

See also

www.ams.sunysb.edu/~zhu/ams57213/Team3.pptx

Linear Supertypes
Error, Predictor, AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. TranRegression
  2. Error
  3. Predictor
  4. AnyRef
  5. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Instance Constructors

  1. new TranRegression(x: MatrixD, y: VectorD, transform: FunctionS2S = log, technique: RegTechnique = Fac_QR)

    x

    the design/data matrix

    y

    the response vector

    transform

    the transformation function (defaults to log)

    technique

    the technique used to solve for b in x.t*x*b = x.t*y

Value Members

  1. final def !=(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  5. def backElim(): (Int, VectorD, Double, Double)

    Perform backward elimination to remove the least predictive variable from the model, returning the variable to eliminate, the new parameter vector, the new R-squared value and the new F statistic.

  6. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  7. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  8. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  9. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  10. def fit: (VectorD, Double, Double, Double)

    Return the fit (parameter vector b, quality of fit including rSquared).

  11. def flaw(method: String, message: String): Unit

    Show the flaw by printing the error message.

    Show the flaw by printing the error message.

    method

    the method where the error occurred

    message

    the error message

    Definition Classes
    Error
  12. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  13. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  14. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  15. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  16. final def notify(): Unit

    Definition Classes
    AnyRef
  17. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  18. def predict(z: Matrix): VectorD

    Predict the value of y = f(z) by evaluating the formula y = b dot zi for each row zi of matrix z.

    Predict the value of y = f(z) by evaluating the formula y = b dot zi for each row zi of matrix z.

    z

    the new matrix to predict

    Definition Classes
    TranRegressionPredictor
  19. def predict(z: VectorD): Double

    Predict the value of y = f(z) by evaluating the formula y = b dot z, e.g., (b_0, b_1, b_2) dot (1, z_1, z_2).

    Predict the value of y = f(z) by evaluating the formula y = b dot z, e.g., (b_0, b_1, b_2) dot (1, z_1, z_2).

    z

    the new vector to predict

    Definition Classes
    TranRegressionPredictor
  20. def predict(z: VectorI): Double

    Given a new discrete data vector z, predict the y-value of f(z).

    Given a new discrete data vector z, predict the y-value of f(z).

    z

    the vector to use for prediction

    Definition Classes
    Predictor
  21. val rg: Regression

  22. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  23. def toString(): String

    Definition Classes
    AnyRef → Any
  24. def train(yy: VectorD): Unit

    Retrain the predictor by fitting the parameter vector (b-vector) in the multiple regression equation yy = b dot x + e = [b_0, ...

    Retrain the predictor by fitting the parameter vector (b-vector) in the multiple regression equation yy = b dot x + e = [b_0, ... b_k] dot [1, x_1, x_2 ... x_k] + e using the least squares method.

    yy

    the new response vector

  25. def train(): Unit

    Train the predictor by fitting the parameter vector (b-vector) in the regression equation y = b dot x + e = [b_0, ...

    Train the predictor by fitting the parameter vector (b-vector) in the regression equation y = b dot x + e = [b_0, ... b_k] dot [1, x_1, x_2 ... x_k] + e using the least squares method.

    Definition Classes
    TranRegressionPredictor
  26. def vif: VectorD

    Compute the Variance Inflation Factor (VIF) for each variable to test for multi-colinearity by regressing xj against the rest of the variables.

    Compute the Variance Inflation Factor (VIF) for each variable to test for multi-colinearity by regressing xj against the rest of the variables. A VIF over 10 indicates that over 90% of the varaince of xj can be predicted from the other variables, so xj is a candidate for removal from the model.

  27. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  28. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  29. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  30. val yy: VectorD

Inherited from Error

Inherited from Predictor

Inherited from AnyRef

Inherited from Any

Ungrouped