class
Eigenvalue extends Eigen with Error
Instance Constructors
-
new
Eigenvalue(a: MatrixD)
Value Members
-
final
def
!=(arg0: Any): Boolean
-
final
def
##(): Int
-
final
def
==(arg0: Any): Boolean
-
val
DEBUG: Boolean
-
final
def
asInstanceOf[T0]: T0
-
def
clone(): AnyRef
-
var
converging: Boolean
-
final
def
eq(arg0: AnyRef): Boolean
-
def
equals(arg0: Any): Boolean
-
def
finalize(): Unit
-
def
flaw(method: String, message: String): Unit
-
-
final
def
getClass(): Class[_]
-
-
def
hashCode(): Int
-
final
def
isInstanceOf[T0]: Boolean
-
var
lastE: Double
-
final
def
ne(arg0: AnyRef): Boolean
-
final
def
notify(): Unit
-
final
def
notifyAll(): Unit
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
-
def
toString(): String
-
final
def
wait(): Unit
-
final
def
wait(arg0: Long, arg1: Int): Unit
-
final
def
wait(arg0: Long): Unit
Inherited from AnyRef
Inherited from Any
The
Eigenvalue
class is used to find the eigenvalues of an 'n' by 'n' matrix 'a' using an iterative technique that applies similarity transformations to convert 'a' into an upper triangular matrix, so that the eigenvalues appear along the diagonal. To improve performance, the 'a' matrix is first reduced to Hessenburg form. During the iterative steps, a shifted QR decomposition is performed. Caveats: (i) it will not handle eigenvalues that are complex numbers, (ii) it uses a simple shifting strategy that may slow convergence.