scalation.linalgebra

Householder

object Householder

The Householder object provides methods to compute Householder vectors and reflector matrices.

Linear Supertypes
AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. Householder
  2. AnyRef
  3. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  5. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  6. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  7. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  8. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  9. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  10. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  11. def house(x: VectorD): (VectorD, Double)

    Compute a Householder vector v and its corresponding scalar b, where P = I - b * v * v.

    Compute a Householder vector v and its corresponding scalar b, where P = I - b * v * v.t is an orthogonal matrix and Px = ||x|| * e_1.

    x

    the vector to create the Householder vector from

    See also

    Algorithm 5.1.1 in Matrix Computations.

  12. def houseR(x: VectorD): MatrixD

    Compute the Householder reflector matrix h = I - 2*u*u.

    Compute the Householder reflector matrix h = I - 2*u*u.t.

    x

    the vector to create the Householder reflector from

    See also

    www.math.siu.edu/matlab/tutorial4.pdf

  13. def houseV(x: VectorD): VectorD

    Compute the Householder unit vector u, where P = I - b * u * u.

    Compute the Householder unit vector u, where P = I - b * u * u.t is an orthogonal matrix.

    x

    the vector to create the unit Householder vector from

    See also

    www.math.siu.edu/matlab/tutorial4.pdf

  14. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  15. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  16. final def notify(): Unit

    Definition Classes
    AnyRef
  17. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  18. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  19. def toString(): String

    Definition Classes
    AnyRef → Any
  20. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  21. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  22. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from AnyRef

Inherited from Any

Ungrouped