scalation.linalgebra

SparseMatrixC

class SparseMatrixC extends Matric with Error with Serializable

The SparseMatrixC class stores and operates on Matrices of Complex numbers. Rather than storing the matrix as a 2 dimensional array, it is stored as an array of sorted-linked-maps, which record all the non-zero values for each particular row, along with their j-index as (j, v) pairs. Note: _npp versions of methods are not appropriate for sparse matrices (i.e., always use partial pivoting).

Linear Supertypes
Serializable, Serializable, Matric, Error, AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. SparseMatrixC
  2. Serializable
  3. Serializable
  4. Matric
  5. Error
  6. AnyRef
  7. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Instance Constructors

  1. new SparseMatrixC(u: SymTriMatrixC)

    Construct a sparse matrix and assign values from (SymTriMatrixN) matrix u.

    Construct a sparse matrix and assign values from (SymTriMatrixN) matrix u.

    u

    the matrix of values to assign

  2. new SparseMatrixC(u: MatrixC)

    Construct a sparse matrix and assign values from (MatrixN) matrix u.

    Construct a sparse matrix and assign values from (MatrixN) matrix u.

    u

    the matrix of values to assign

  3. new SparseMatrixC(u: SparseMatrixC)

    Construct a sparse matrix and assign values from matrix u.

    Construct a sparse matrix and assign values from matrix u.

    u

    the matrix of values to assign

  4. new SparseMatrixC(dim: (Int, Int), u00: Double, u: Double*)

    Construct a matrix from repeated real values.

    Construct a matrix from repeated real values.

    dim

    the (row, column) dimensions

    u00

    the first value (necessary due to type erasure)

    u

    the rest of the repeated values

  5. new SparseMatrixC(dim: (Int, Int), u: Complex*)

    Construct a matrix from repeated values.

    Construct a matrix from repeated values.

    dim

    the (row, column) dimensions

    u

    the repeated values

  6. new SparseMatrixC(dim1: Int, x: Complex)

    Construct a dim1 by dim1 square sparse matrix with x assigned on the diagonal and 0 assigned off the diagonal.

    Construct a dim1 by dim1 square sparse matrix with x assigned on the diagonal and 0 assigned off the diagonal. To obtain an identity matrix, let x = 1.

    dim1

    the row and column dimension

    x

    the scalar value to assign on the diagonal

  7. new SparseMatrixC(dim1: Int, dim2: Int, x: Complex)

    Construct a dim1 by dim2 sparse matrix and assign each element the value x.

    Construct a dim1 by dim2 sparse matrix and assign each element the value x.

    dim1

    the row dimension

    dim2

    the column dimesion

    x

    the scalar value to assign

  8. new SparseMatrixC(dim1: Int)

    Construct a dim1 by dim1 square sparse matrix.

    Construct a dim1 by dim1 square sparse matrix.

    dim1

    the row and column dimension

  9. new SparseMatrixC(dim1: Int, dim2: Int, u: Array[RowMap])

    Construct a dim1 by dim2 sparse matrix from an array of sorted-linked-maps.

    Construct a dim1 by dim2 sparse matrix from an array of sorted-linked-maps.

    dim1

    the row dimension

    dim2

    the column dimension

    u

    the array of sorted-linked-maps

  10. new SparseMatrixC(d1: Int, d2: Int)

    d1

    the first/row dimension

    d2

    the second/column dimension

Value Members

  1. final def !=(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Definition Classes
    AnyRef → Any
  3. def *(x: Complex): SparseMatrixC

    Multiply this sparse matrix by scalar x.

    Multiply this sparse matrix by scalar x.

    x

    the scalar to multiply by

    Definition Classes
    SparseMatrixCMatric
  4. def *(u: VectorC): VectorC

    Multiply this sparse matrix by vector u.

    Multiply this sparse matrix by vector u.

    u

    the vector to multiply by

    Definition Classes
    SparseMatrixCMatric
  5. def *(b: MatrixC): SparseMatrixC

    Multiply this sparse matrix by matrix b.

    Multiply this sparse matrix by matrix b.

    b

    the matrix to multiply by (requires sameCrossDimensions)

  6. def *(b: SparseMatrixC): SparseMatrixC

    Multiply this sparse matrix by sparse matrix b, by performing a merge operation on the rows on this sparse matrix and the transpose of the b matrix.

    Multiply this sparse matrix by sparse matrix b, by performing a merge operation on the rows on this sparse matrix and the transpose of the b matrix.

    b

    the matrix to multiply by (requires sameCrossDimensions)

  7. def **(u: VectorC): SparseMatrixC

    Multiply this sparse matrix by vector u to produce another matrix (a_ij * b_j)

    Multiply this sparse matrix by vector u to produce another matrix (a_ij * b_j)

    u

    the vector to multiply by

    Definition Classes
    SparseMatrixCMatric
  8. def **=(u: VectorC): SparseMatrixC

    Multiply in-place this sparse matrix by vector u to produce another matrix (a_ij * b_j)

    Multiply in-place this sparse matrix by vector u to produce another matrix (a_ij * b_j)

    u

    the vector to multiply by

    Definition Classes
    SparseMatrixCMatric
  9. def *=(x: Complex): SparseMatrixC

    Multiply in-place this sparse matrix by scalar x.

    Multiply in-place this sparse matrix by scalar x.

    x

    the scalar to multiply by

    Definition Classes
    SparseMatrixCMatric
  10. def *=(b: MatrixC): SparseMatrixC

    Multiply in-place this sparse matrix by matrix b.

    Multiply in-place this sparse matrix by matrix b.

    b

    the matrix to multiply by (requires sameCrossDimensions)

  11. def *=(b: SparseMatrixC): SparseMatrixC

    Multiply in-place this sparse matrix by sparse matrix b, by performing a merge operation on the rows on this sparse matrix and the transpose of the b matrix.

    Multiply in-place this sparse matrix by sparse matrix b, by performing a merge operation on the rows on this sparse matrix and the transpose of the b matrix.

    b

    the matrix to multiply by (requires sameCrossDimensions)

  12. def +(x: Complex): MatrixC

    Add this sparse matrix and scalar x.

    Add this sparse matrix and scalar x. Note: every element will be likely filled, hence the return type is a dense matrix.

    x

    the scalar to add

    Definition Classes
    SparseMatrixCMatric
  13. def +(b: MatrixC): SparseMatrixC

    Add this sparse matrix and matrix b.

    Add this sparse matrix and matrix b.

    b

    the matrix to add (requires sameCrossDimensions)

  14. def +(b: SparseMatrixC): SparseMatrixC

    Add this sparse matrix and sparse matrix b.

    Add this sparse matrix and sparse matrix b.

    b

    the matrix to add (requires sameCrossDimensions)

  15. def ++(u: VectorC): SparseMatrixC

    Concatenate this sparse matrix and vector u.

    Concatenate this sparse matrix and vector u.

    u

    the vector to be concatenated as the new last row in matrix

    Definition Classes
    SparseMatrixCMatric
  16. def +=(x: Complex): SparseMatrixC

    Add in-place this sparse matrix and scalar x.

    Add in-place this sparse matrix and scalar x.

    x

    the scalar to add

    Definition Classes
    SparseMatrixCMatric
  17. def +=(b: MatrixC): SparseMatrixC

    Add in-place this sparse matrix and matrix b.

    Add in-place this sparse matrix and matrix b.

    b

    the matrix to add (requires sameCrossDimensions)

  18. def +=(b: SparseMatrixC): SparseMatrixC

    Add in-place this sparse matrix and sparse matrix b.

    Add in-place this sparse matrix and sparse matrix b.

    b

    the matrix to add (requires sameCrossDimensions)

  19. def -(x: Complex): MatrixC

    From this sparse matrix subtract scalar x.

    From this sparse matrix subtract scalar x. Note: every element will be likely filled, hence the return type is a dense matrix.

    x

    the scalar to subtract

    Definition Classes
    SparseMatrixCMatric
  20. def -(b: MatrixC): SparseMatrixC

    From this sparse matrix substract matrix b.

    From this sparse matrix substract matrix b.

    b

    the matrix to subtract (requires sameCrossDimensions)

  21. def -(b: SparseMatrixC): SparseMatrixC

    From this sparse matrix substract matrix b.

    From this sparse matrix substract matrix b.

    b

    the sparse matrix to subtract (requires sameCrossDimensions)

  22. def -=(x: Complex): SparseMatrixC

    From this sparse matrix subtract in-place scalar x.

    From this sparse matrix subtract in-place scalar x.

    x

    the scalar to subtract

    Definition Classes
    SparseMatrixCMatric
  23. def -=(b: MatrixC): SparseMatrixC

    From this sparse matrix substract in-place matrix b.

    From this sparse matrix substract in-place matrix b.

    b

    the matrix to subtract (requires sameCrossDimensions)

  24. def -=(b: SparseMatrixC): SparseMatrixC

    From this sparse matrix substract in-place sparse matrix b.

    From this sparse matrix substract in-place sparse matrix b.

    b

    the sparse matrix to subtract (requires sameCrossDimensions)

  25. def /(x: Complex): SparseMatrixC

    Divide this sparse matrix by scalar x.

    Divide this sparse matrix by scalar x.

    x

    the scalar to divide by

    Definition Classes
    SparseMatrixCMatric
  26. def /=(x: Complex): SparseMatrixC

    Divide in-place this sparse matrix by scalar x.

    Divide in-place this sparse matrix by scalar x.

    x

    the scalar to divide by

    Definition Classes
    SparseMatrixCMatric
  27. final def ==(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  28. def apply(i: Int, jr: Range): VectorC

    Get a slice this matrix row-wise at index i and column-wise on range jr.

    Get a slice this matrix row-wise at index i and column-wise on range jr. Ex: u = a(2, 3..5)

    i

    the row index

    jr

    the column range

    Definition Classes
    SparseMatrixCMatric
  29. def apply(ir: Range, j: Int): VectorC

    Get a slice this matrix row-wise on range ir and column-wise at index j.

    Get a slice this matrix row-wise on range ir and column-wise at index j. Ex: u = a(2..4, 3)

    ir

    the row range

    j

    the column index

    Definition Classes
    SparseMatrixCMatric
  30. def apply(ir: Range, jr: Range): SparseMatrixC

    Get a slice this matrix row-wise on range ir and column-wise on range jr.

    Get a slice this matrix row-wise on range ir and column-wise on range jr. Ex: b = a(2..4, 3..5)

    ir

    the row range

    jr

    the column range

    Definition Classes
    SparseMatrixCMatric
  31. def apply(i: Int): VectorC

    Get this sparse matrix's vector at the i-th index position (i-th row).

    Get this sparse matrix's vector at the i-th index position (i-th row).

    i

    the row index

    Definition Classes
    SparseMatrixCMatric
  32. def apply(i: Int, j: Int): Complex

    Get this sparse matrix's element at the i,j-th index position.

    Get this sparse matrix's element at the i,j-th index position.

    i

    the row index

    j

    the column index

    Definition Classes
    SparseMatrixCMatric
  33. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  34. def clean(thres: Double, relative: Boolean = true): SparseMatrixC

    Clean values in matrix at or below the threshold by setting them to zero.

    Clean values in matrix at or below the threshold by setting them to zero. Iterative algorithms give approximate values and if very close to zero, may throw off other calculations, e.g., in computing eigenvectors.

    thres

    the cutoff threshold (a small value)

    relative

    whether to use relative or absolute cutoff

    Definition Classes
    SparseMatrixCMatric
  35. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  36. def col(col: Int, from: Int = 0): VectorC

    Get column 'col' from the matrix, returning it as a vector.

    Get column 'col' from the matrix, returning it as a vector.

    col

    the column to extract from the matrix

    from

    the position to start extracting from

    Definition Classes
    SparseMatrixCMatric
  37. val d1: Int

    the first/row dimension

  38. val d2: Int

    the second/column dimension

  39. def det: Complex

    Compute the determinant of this sparse matrix.

    Compute the determinant of this sparse matrix.

    Definition Classes
    SparseMatrixCMatric
  40. def diag(p: Int, q: Int): SparseMatrixC

    Form a matrix [Ip, this, Iq] where Ir is a r by r identity matrix, by positioning the three matrices Ip, this and Iq along the diagonal.

    Form a matrix [Ip, this, Iq] where Ir is a r by r identity matrix, by positioning the three matrices Ip, this and Iq along the diagonal.

    p

    the size of identity matrix Ip

    q

    the size of identity matrix Iq

    Definition Classes
    SparseMatrixCMatric
  41. def diag(b: MatrixC): SparseMatrixC

    Combine this sparse matrix with matrix b, placing them along the diagonal and filling in the bottom left and top right regions with zeros; [this, b].

    Combine this sparse matrix with matrix b, placing them along the diagonal and filling in the bottom left and top right regions with zeros; [this, b].

    b

    the matrix to combine with this matrix

  42. lazy val dim1: Int

    Dimension 1

    Dimension 1

    Definition Classes
    SparseMatrixCMatric
  43. lazy val dim2: Int

    Dimension 2

    Dimension 2

    Definition Classes
    SparseMatrixCMatric
  44. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  45. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  46. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  47. def flaw(method: String, message: String): Unit

    Show the flaw by printing the error message.

    Show the flaw by printing the error message.

    method

    the method where the error occurred

    message

    the error message

    Definition Classes
    Error
  48. def foreach[U](f: (Array[Complex]) ⇒ U): Unit

    Iterate over the matrix row by row.

    Iterate over the matrix row by row.

    f

    the function to apply

    Definition Classes
    Matric
  49. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  50. def getDiag(k: Int = 0): VectorC

    Get the kth diagonal of this sparse matrix.

    Get the kth diagonal of this sparse matrix. Assumes dim2 >= dim1.

    k

    how far above the main diagonal, e.g., (-1, 0, 1) for (sub, main, super)

    Definition Classes
    SparseMatrixCMatric
  51. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  52. def inverse: SparseMatrixC

    Invert this sparse matrix (requires a squareMatrix) and use partial pivoting.

    Invert this sparse matrix (requires a squareMatrix) and use partial pivoting.

    Definition Classes
    SparseMatrixCMatric
  53. def inverse_ip: SparseMatrixC

    Invert in-place this sparse matrix (requires a squareMatrix).

    Invert in-place this sparse matrix (requires a squareMatrix). This version uses partial pivoting.

    Definition Classes
    SparseMatrixCMatric
  54. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  55. def isNonnegative: Boolean

    Check whether this sparse matrix is nonnegative (has no negative elements).

    Check whether this sparse matrix is nonnegative (has no negative elements).

    Definition Classes
    SparseMatrixCMatric
  56. def isRectangular: Boolean

    Check whether this sparse matrix is rectangular (all rows have the same number of columns).

    Check whether this sparse matrix is rectangular (all rows have the same number of columns).

    Definition Classes
    SparseMatrixCMatric
  57. def isSquare: Boolean

    Check whether this matrix is square (same row and column dimensions).

    Check whether this matrix is square (same row and column dimensions).

    Definition Classes
    Matric
  58. def isSymmetric: Boolean

    Check whether this matrix is symmetric.

    Check whether this matrix is symmetric.

    Definition Classes
    Matric
  59. def leDimensions(b: Matric): Boolean

    Check whether this matrix dimensions are less than or equal to (le) those of the other Matrix.

    Check whether this matrix dimensions are less than or equal to (le) those of the other Matrix.

    b

    the other matrix

    Definition Classes
    Matric
  60. def lud: (SparseMatrixC, SparseMatrixC)

    Decompose this sparse matrix into the product of lower and upper triangular matrices (l, u) using the LU Decomposition algorithm.

    Decompose this sparse matrix into the product of lower and upper triangular matrices (l, u) using the LU Decomposition algorithm. This version uses partial pivoting.

    Definition Classes
    SparseMatrixCMatric
  61. def lud_ip: (SparseMatrixC, SparseMatrixC)

    Decompose in-place this sparse matrix into the product of lower and upper triangular matrices (l, u) using the LU Decomposition algorithm.

    Decompose in-place this sparse matrix into the product of lower and upper triangular matrices (l, u) using the LU Decomposition algorithm. This version uses partial pivoting.

    Definition Classes
    SparseMatrixCMatric
  62. def mag: Complex

    Find the magnitude of this matrix, the element value farthest from zero.

    Find the magnitude of this matrix, the element value farthest from zero.

    Definition Classes
    Matric
  63. def max(e: Int = dim1): Complex

    Find the maximum element in this sparse matrix.

    Find the maximum element in this sparse matrix.

    e

    the ending row index (exclusive) for the search

    Definition Classes
    SparseMatrixCMatric
  64. def min(e: Int = dim1): Complex

    Find the minimum element in this sparse matrix.

    Find the minimum element in this sparse matrix.

    e

    the ending row index (exclusive) for the search

    Definition Classes
    SparseMatrixCMatric
  65. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  66. def norm1: Complex

    Compute the 1-norm of this matrix, i.

    Compute the 1-norm of this matrix, i.e., the maximum 1-norm of the column vectors. This is useful for comparing matrices (a - b).norm1

    Definition Classes
    SparseMatrixCMatric
  67. final def notify(): Unit

    Definition Classes
    AnyRef
  68. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  69. def nullspace: VectorC

    Compute the (right) nullspace of this m by n matrix (requires n = m + 1) by performing Gauss-Jordan reduction and extracting the negation of the last column augmented by 1.

    Compute the (right) nullspace of this m by n matrix (requires n = m + 1) by performing Gauss-Jordan reduction and extracting the negation of the last column augmented by 1. The nullspace of matrix a is "this vector v times any scalar s", i.e., a*(v*s) = 0. The left nullspace of matrix a is the same as the right nullspace of a.t (a transpose).

    Definition Classes
    SparseMatrixCMatric
  70. def nullspace_ip: VectorC

    Compute the (right) nullspace in-place of this m by n matrix (requires n = m + 1) by performing Gauss-Jordan reduction and extracting the negation of the last column augmented by 1.

    Compute the (right) nullspace in-place of this m by n matrix (requires n = m + 1) by performing Gauss-Jordan reduction and extracting the negation of the last column augmented by 1. The nullspace of matrix a is "this vector v times any scalar s", i.e., a*(v*s) = 0. The left nullspace of matrix a is the same as the right nullspace of a.t (a transpose).

    Definition Classes
    SparseMatrixCMatric
  71. def oneIf(cond: Boolean): Int

    Return 1 if the condition is true else 0

    Return 1 if the condition is true else 0

    cond

    the condition to evaluate

    Definition Classes
    Matric
  72. val range1: Range

    Range for the storage array on dimension 1 (rows)

    Range for the storage array on dimension 1 (rows)

    Attributes
    protected
    Definition Classes
    Matric
  73. val range2: Range

    Range for the storage array on dimension 2 (columns)

    Range for the storage array on dimension 2 (columns)

    Attributes
    protected
    Definition Classes
    Matric
  74. def rank: Int

    Determine the rank of this m by n matrix by taking the upper triangular matrix from the LU Decomposition and counting the number of non-zero diagonal elements.

    Determine the rank of this m by n matrix by taking the upper triangular matrix from the LU Decomposition and counting the number of non-zero diagonal elements.

    Definition Classes
    Matric
  75. def reduce: SparseMatrixC

    Use Guass-Jordan reduction on this sparse matrix to make the left part embed an identity matrix.

    Use Guass-Jordan reduction on this sparse matrix to make the left part embed an identity matrix. A constraint on this m by n matrix is that n >= m.

    Definition Classes
    SparseMatrixCMatric
  76. def reduce_ip: Unit

    Use Guass-Jordan reduction in-place on this sparse matrix to make the left part embed an identity matrix.

    Use Guass-Jordan reduction in-place on this sparse matrix to make the left part embed an identity matrix. A constraint on this m by n matrix is that n >= m.

    Definition Classes
    SparseMatrixCMatric
  77. def sameCrossDimensions(b: Matric): Boolean

    Check whether this matrix and the other matrix have the same cross dimensions.

    Check whether this matrix and the other matrix have the same cross dimensions.

    b

    the other matrix

    Definition Classes
    Matric
  78. def sameDimensions(b: Matric): Boolean

    Check whether this matrix and the other Matrix have the same dimensions.

    Check whether this matrix and the other Matrix have the same dimensions.

    b

    the other matrix

    Definition Classes
    Matric
  79. def selectCols(colIndex: Array[Int]): SparseMatrixC

    Select columns from this matrix according to the given index/basis.

    Select columns from this matrix according to the given index/basis. Ex: Can be used to divide a matrix into a basis and a non-basis.

    colIndex

    the column index positions (e.g., (0, 2, 5))

    Definition Classes
    SparseMatrixCMatric
  80. def selectRows(rowIndex: Array[Int]): SparseMatrixC

    Select rows from this matrix according to the given index/basis.

    Select rows from this matrix according to the given index/basis.

    rowIndex

    the row index positions (e.g., (0, 2, 5))

    Definition Classes
    SparseMatrixCMatric
  81. def set(i: Int, u: VectorC, j: Int = 0): Unit

    Set this matrix's ith row starting at column j to the vector u.

    Set this matrix's ith row starting at column j to the vector u.

    i

    the row index

    u

    the vector value to assign

    j

    the starting column index

    Definition Classes
    SparseMatrixCMatric
  82. def set(u: Array[Array[Complex]]): Unit

    Set all the values in this matrix as copies of the values in 2D array u.

    Set all the values in this matrix as copies of the values in 2D array u.

    u

    the 2D array of values to assign

    Definition Classes
    SparseMatrixCMatric
  83. def set(x: Complex): Unit

    Set all the elements in this matrix to the scalar x.

    Set all the elements in this matrix to the scalar x.

    x

    the scalar value to assign

    Definition Classes
    SparseMatrixCMatric
  84. def set(x: Double): Unit

    Set all the elements in this matrix to the scalar x.

    Set all the elements in this matrix to the scalar x.

    x

    the scalar value to assign

    Definition Classes
    Matric
  85. def setCol(col: Int, u: VectorC): Unit

    Set column 'col' of the matrix to a vector.

    Set column 'col' of the matrix to a vector.

    col

    the column to set

    u

    the vector to assign to the column

    Definition Classes
    SparseMatrixCMatric
  86. def setDiag(x: Complex): Unit

    Set the main diagonal of this matrix to the scalar x.

    Set the main diagonal of this matrix to the scalar x. Assumes dim2 >= dim1.

    x

    the scalar to set the diagonal to

    Definition Classes
    SparseMatrixCMatric
  87. def setDiag(u: VectorC, k: Int = 0): Unit

    Set the kth diagonal of this matrix to the vector u.

    Set the kth diagonal of this matrix to the vector u. Assumes dim2 >= dim1.

    u

    the vector to set the diagonal to

    k

    how far above the main diagonal, e.g., (-1, 0, 1) for (sub, main, super)

    Definition Classes
    SparseMatrixCMatric
  88. def setLower(x: Complex): Unit

    Set all the lower triangular elements in this matrix to the scalar x.

    Set all the lower triangular elements in this matrix to the scalar x.

    x

    the scalar value to assign

    Definition Classes
    Matric
  89. def showAll: Unit

    Show all elements in this sparse matrix.

  90. def slice(r_from: Int, r_end: Int, c_from: Int, c_end: Int): SparseMatrixC

    Slice this sparse matrix row-wise r_from to r_end and column-wise c_from to c_end.

    Slice this sparse matrix row-wise r_from to r_end and column-wise c_from to c_end.

    r_from

    the start of the row slice

    r_end

    the end of the row slice

    c_from

    the start of the column slice

    c_end

    the end of the column slice

    Definition Classes
    SparseMatrixCMatric
  91. def slice(from: Int, end: Int): SparseMatrixC

    Slice this sparse matrix row-wise from to end.

    Slice this sparse matrix row-wise from to end.

    from

    the start row of the slice

    end

    the end row of the slice

    Definition Classes
    SparseMatrixCMatric
  92. def sliceExclude(row: Int, col: Int): SparseMatrixC

    Slice this sparse matrix excluding the given row and column.

    Slice this sparse matrix excluding the given row and column.

    row

    the row to exclude

    col

    the column to exclude

    Definition Classes
    SparseMatrixCMatric
  93. def solve(b: VectorC): VectorC

    Solve for x in the equation a*x = b where a is this sparse matrix (see lud above).

    Solve for x in the equation a*x = b where a is this sparse matrix (see lud above).

    b

    the constant vector.

    Definition Classes
    SparseMatrixCMatric
  94. def solve(lu: (Matric, Matric), b: VectorC): VectorC

    Solve for x in the equation l*u*x = b (see lud above).

    Solve for x in the equation l*u*x = b (see lud above).

    lu

    the lower and upper triangular matrices

    b

    the constant vector

    Definition Classes
    SparseMatrixCMatric
  95. def solve(l: Matric, u: Matric, b: VectorC): VectorC

    Solve for x in the equation l*u*x = b (see lud above).

    Solve for x in the equation l*u*x = b (see lud above).

    l

    the lower triangular matrix

    u

    the upper triangular matrix

    b

    the constant vector

    Definition Classes
    SparseMatrixCMatric
  96. def strassenMult(b: SparseMatrixC): SparseMatrixC

    Multiply this sparse matrix by sparse matrix b using the Strassen matrix multiplication algorithm.

    Multiply this sparse matrix by sparse matrix b using the Strassen matrix multiplication algorithm. Both matrices (this and b) must be square. Although the algorithm is faster than the traditional cubic algorithm, its requires more memory and is often less stable (due to round-off errors). FIX: could be make more efficient using a virtual slice (vslice) method.

    b

    the matrix to multiply by (it has to be a square matrix)

    See also

    http://en.wikipedia.org/wiki/Strassen_algorithm

  97. def sum: Complex

    Compute the sum of this sparse matrix, i.

    Compute the sum of this sparse matrix, i.e., the sum of its elements.

    Definition Classes
    SparseMatrixCMatric
  98. def sumAbs: Complex

    Compute the abs sum of this matrix, i.

    Compute the abs sum of this matrix, i.e., the sum of the absolute value of its elements. This is useful for comparing matrices (a - b).sumAbs

    Definition Classes
    SparseMatrixCMatric
  99. def sumLower: Complex

    Compute the sum of the lower triangular region of this sparse matrix.

    Compute the sum of the lower triangular region of this sparse matrix.

    Definition Classes
    SparseMatrixCMatric
  100. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  101. def t: SparseMatrixC

    Transpose this sparse matrix (rows => columns).

    Transpose this sparse matrix (rows => columns).

    Definition Classes
    SparseMatrixCMatric
  102. def toString(): String

    Show the non-zero elements in this sparse matrix.

    Show the non-zero elements in this sparse matrix.

    Definition Classes
    SparseMatrixC → AnyRef → Any
  103. def trace: Complex

    Compute the trace of this sparse matrix, i.

    Compute the trace of this sparse matrix, i.e., the sum of the elements on the main diagonal. Should also equal the sum of the eigenvalues.

    Definition Classes
    SparseMatrixCMatric
    See also

    Eigen.scala

  104. def update(i: Int, jr: Range, u: VectorC): Unit

    Set a slice this matrix row-wise at index i and column-wise on range jr.

    Set a slice this matrix row-wise at index i and column-wise on range jr. Ex: a(2, 3..5) = u

    i

    the row index

    jr

    the column range

    u

    the vector to assign

    Definition Classes
    SparseMatrixCMatric
  105. def update(ir: Range, j: Int, u: VectorC): Unit

    Set a slice this matrix row-wise on range ir and column-wise at index j.

    Set a slice this matrix row-wise on range ir and column-wise at index j. Ex: a(2..4, 3) = u

    ir

    the row range

    j

    the column index

    u

    the vector to assign

    Definition Classes
    SparseMatrixCMatric
  106. def update(ir: Range, jr: Range, b: SparseMatrixC): Unit

    Set a slice this matrix row-wise on range ir and column-wise on range jr.

    Set a slice this matrix row-wise on range ir and column-wise on range jr. Ex: a(2..4, 3..5) = b

    ir

    the row range

    jr

    the column range

    b

    the matrix to assign

  107. def update(i: Int, u: RowMap): Unit

    Set this sparse matrix's row at the i-th index position to the sorted-linked-map u.

    Set this sparse matrix's row at the i-th index position to the sorted-linked-map u.

    i

    the row index

    u

    the sorted-linked-map of non-zreo values to assign

  108. def update(i: Int, u: VectorC): Unit

    Set this sparse matrix's row at the i-th index position to the vector u.

    Set this sparse matrix's row at the i-th index position to the vector u.

    i

    the row index

    u

    the vector value to assign

    Definition Classes
    SparseMatrixCMatric
  109. def update(i: Int, j: Int, x: Complex): Unit

    Set this sparse matrix's element at the i,j-th index position to the scalar x.

    Set this sparse matrix's element at the i,j-th index position to the scalar x. Only store x if it is non-zero.

    i

    the row index

    j

    the column index

    x

    the scalar value to assign

    Definition Classes
    SparseMatrixCMatric
  110. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  111. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  112. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  113. def ~^(p: Int): SparseMatrixC

    Raise this sparse matrix to the pth power (for some integer p >= 2).

    Raise this sparse matrix to the pth power (for some integer p >= 2). Caveat: should be replace by a divide and conquer algorithm.

    p

    the power to raise this matrix to

    Definition Classes
    SparseMatrixCMatric

Inherited from Serializable

Inherited from Serializable

Inherited from Matric

Inherited from Error

Inherited from AnyRef

Inherited from Any

Ungrouped