Standard functional form for parameter estimating functions
Estimate the parameter 'p' for the Bernoulli
distribution.
Estimate the parameter 'p' for the Bernoulli
distribution.
the statistical data vector
Estimate the parameters 'a' (alpha) and 'b' (beta) for the Beta
distribution.
Estimate the parameters 'a' (alpha) and 'b' (beta) for the Beta
distribution.
the statistical data vector
Estimate the parameter 'mu' for the Exponential
distribution.
Estimate the parameter 'mu' for the Exponential
distribution.
the statistical data vector
Estimate the parameters 'a' (alpha) and 'b' (beta) for the Gamma
distribution.
Estimate the parameters 'a' (alpha) and 'b' (beta) for the Gamma
distribution.
the statistical data vector
Estimate the parameter 'p' for the Geometric
distribution.
Estimate the parameter 'p' for the Geometric
distribution.
the statistical data vector
Estimate the parameters 'mu' and 'sigma2' for the Normal
distribution.
Estimate the parameters 'mu' and 'sigma2' for the Normal
distribution.
the statistical data vector
Estimate the parameters 'a' and 'b' for the Pareto
distribution.
Estimate the parameters 'a' and 'b' for the Pareto
distribution.
the statistical data vector
Estimate the parameter 'mu' for the Poisson
distribution.
Estimate the parameter 'mu' for the Poisson
distribution.
the statistical data vector
Estimate the parameters 'a' and 'b' for the Uniform
distribution.
Estimate the parameters 'a' and 'b' for the Uniform
distribution.
the statistical data vector
The
MethodOfMoments
object provides methods for estimating parameters for popular probability distributions using the Method of Moments (MOM). The main alternative is to use Maximum Likelihood Estimators (MLE).http://www.math.uah.edu/stat/point/Moments.html