//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** @author John Miller * @version 1.1 * @date Wed Feb 20 17:39:57 EST 2013 * @see LICENSE (MIT style license file). */ package scalation.analytics import math.exp import scalation.linalgebra.{MatrixD, VectorD} import scalation.math.DoubleWithExp._ import scalation.minima.QuasiNewton import scalation.plot.Plot import scalation.util.Error //::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** The `NonLinRegression` class supports non-linear regression. In this case, * 'x' can be multi-dimensional [1, x1, ... xk] and the function 'f' is non-linear * in the parameters 'b'. Fit the parameter vector 'b' in the regression equation *

* y = f(x, b) + e *

* where 'e' represents the residuals (the part not explained by the model). * Use Least-Squares (minimizing the residuals) to fit the parameter vector * 'b' by using Non-linear Programming to minimize Sum of Squares Error (SSE). * @see www.bsos.umd.edu/socy/alan/stats/socy602_handouts/kut86916_ch13.pdf * @param x the input/design matrix augmented with a first column of ones * @param y the response vector * @param f the non-linear function f(x, b) to fit * @param b_init the initial guess for the parameter vector b */ class NonLinRegression (x: MatrixD, y: VectorD, f: (VectorD, VectorD) => Double, b_init: VectorD) extends Predictor with Error { if (y != null && x.dim1 != y.dim) flaw ("constructor", "dimensions of x and y are incompatible") private val DEBUG = false // debug flag private val m = x.dim1 // number of data points (rows in matrix x) private var b: VectorD = null // parameter vector (b0, b1, ... bp) private var rSquared = -1.0 // coefficient of determination (quality of fit) //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Function to compute the Sum of Squares Error (SSE) for given values for * the parameter vector b. * @param b the parameter vector */ def sseF (b: VectorD): Double = { val z = new VectorD (m) // create vector z to hold predicted outputs for (i <- 0 until m) z(i) = f (x(i), b) // compute values for z val e = y - z // residual/error vector e dot e // residual/error sum of squares } // sseF //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Train the predictor by fitting the parameter vector (b-vector) in the * non-linear regression equation * y = f(x, b) * using the least squares method. * Caveat: Optimizer may converge to an unsatisfactory local optima. * If the regression can be linearized, use linear regression for * starting solution. */ def train () { val bfgs = new QuasiNewton (sseF) // minimize sse using NLP b = bfgs.solve (b_init) // estimate for b from optimizer val sse = sseF (b) // residual/error sum of squares val sst = (y dot y) - y.sum~^2.0 / m // total sum of squares rSquared = (sst - sse) / sst // coefficient of determination if (DEBUG) println ("sse = " + sse) } // train //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Return the fit (parameter vector b, quality of fit rSquared) */ def fit: Tuple2 [VectorD, Double] = (b, rSquared) //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Predict the value of y = f(z) by evaluating the formula y = f(z, b), * i.e.0, (b0, b1) dot (1.0, z1). * @param z the new vector to predict */ def predict (z: VectorD): Double = f(z, b) //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Predict the value of y = f(z) by evaluating the formula y = f(z_i, b) for * each row of matrix z. * @param z the new matrix to predict */ def predict (z: MatrixD): VectorD = { val zp = new VectorD (z.dim1) for (i <- 0 until z.dim1) zp(i) = f(z(i), b) zp } // predict } // NonLinRegression class //::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** The `NonLinRegressionTest` object tests the `NonLinRegression` class: * y = f(x; b) = b0 + exp (b1 * x0). * @see www.bsos.umd.edu/socy/alan/stats/socy602_handouts/kut86916_ch13.pdf * Answers: sse = 49.45929986243339 * fit = (VectorD (58.606566327280426, -0.03958645286504356), 0.9874574894685292) * predict (VectorD (50.0)) = 8.09724678182599 * FIX: check this example */ object NonLinRegressionTest extends App { // 5 data points: constant term, x1 coordinate, x2 coordinate val x = new MatrixD ((15, 1), 2.0, 5.0, 7.0, 10.0, 14.0, 19.0, 26.0, 31.0, 34.0, 38.0, 45.0, 52.0, 53.0, 60.0, 65.0) val y = VectorD (54.0, 50.0, 45.0, 37.0, 35.0, 25.0, 20.0, 16.0, 18.0, 13.0, 8.0, 11.0, 8.0, 4.0, 6.0) println ("x = " + x) println ("y = " + y) def f (x: VectorD, b: VectorD): Double = b(0) * exp (b(1) * x(0)) // non-linear regression function val b_init = VectorD (4.04, .038) // initial guess for parameter vector b val rg = new NonLinRegression (x, y, f, b_init) rg.train () println ("fit = " + rg.fit) val z = VectorD (1); z(0) = 50.0 // predict y for one point val yp = rg.predict (z) println ("predict (" + z + ") = " + yp) } // NonRegressionTest object