//:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** @author John Miller, Zhe Jin * @version 1.2 * @date Sat Sep 8 13:53:16 EDT 2012 * @see LICENSE (MIT style license file). */ package scalation.analytics.classifier import scalation.linalgebra.{MatriI, VectoI, VectorD, VectorI} import scalation.linalgebra.gen.HMatrix3 import scalation.relalgebra.Relation import scalation.util.{banner, time} import BayesClassifier.me_default //::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** The `NaiveBayes` class implements an Integer-Based Naive Bayes Classifier, * which is a commonly used such classifier for discrete input data. The * classifier is trained using a data matrix 'x' and a classification vector 'y'. * Each data vector in the matrix is classified into one of 'k' classes numbered * 0, ..., k-1. Prior probabilities are calculated based on the population of * each class in the training-set. Relative posterior probabilities are computed * by multiplying these by values computed using conditional probabilities. The * classifier is naive, because it assumes feature independence and therefore * simply multiplies the conditional probabilities. * ----------------------------------------------------------------------------- * @param x the integer-valued data vectors stored as rows of a matrix * @param y the class vector, where y(l) = class for row l of the matrix x, x(l) * @param fn the names for all features/variables * @param k the number of classes * @param cn the names for all classes * @param vc the value count (number of distinct values) for each feature * @param me use m-estimates (me == 0 => regular MLE estimates) */ class NaiveBayes (x: MatriI, y: VectoI, fn: Array [String], k: Int, cn: Array [String], private var vc: VectoI = null, me: Int = me_default) extends BayesClassifier (x, y, fn, k, cn) { private val DEBUG = true // debug flag private val cor = calcCorrelation // feature correlation matrix private val f_C = new VectorI (k) // frequency counts for class yi private val f_CX = new HMatrix3 [Int] (k, n) // frequency counts for class yi & feature xj private var p_C: VectorD = _ // prior probabilities for class yi private val p_X_C = new HMatrix3 [Double] (k, n) // conditional probabilities for feature xj given class yi if (vc == null) { shiftToZero; vc = vc_fromData // set value counts from data } // if f_CX.alloc (vc().toArray) p_X_C.alloc (vc().toArray) if (DEBUG) { println ("distinct value count vc = " + vc) println ("correlation matrix = " + cor) } // if //::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Build a model. * @param testStart starting index of test region (inclusive) used in cross-validation * @param testEnd ending index of test region (exclusive) used in cross-validation */ def buildModel (testStart: Int, testEnd: Int): (Array [Boolean], DAG) = { (Array.fill (n)(true), new DAG (Array.ofDim [Int] (n, 0))) } // buildModel //::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Increment frequency counters based on the 'i'th row of the data matrix. * @param i the index for current data row */ private def increment (i: Int) { val yi = y(i) // get the class for ith row f_C(yi) += 1 // increment frequency for class yi for (j <- 0 until n) f_CX(yi, j, x(i, j)) += 1 // increment frequency for class yi and all X-features } // increment //::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Count the frequencies for 'y' having class 'yi' and value 'x' for cases 0, 1, ... * Only the test region from 'testStart' to 'testEnd' is skipped, the rest is * training data. * @param testStart starting index of test region (inclusive) used in cross-validation * @param testEnd ending index of test region (exclusive) used in cross-validation */ private def frequencies (testStart: Int, testEnd: Int) { if (DEBUG) banner ("frequencies (testStart, testEnd)") for (i <- 0 until m if i < testStart || i >= testEnd) increment (i) if (DEBUG) { println ("f_C = " + f_C) // #(C = yi) println ("f_CX = " + f_CX) // #(C = yi & X_j = x) } // if } // frequencies //::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Count the frequencies for 'y' having class 'yi' and value 'x' for cases 0, 1, ... * Only the test region from 'testStart' to 'testEnd' is skipped, the rest is * training data. * @param itrain indices of the instances considered train data */ private def frequencies (itrain: Array [Int]) { if (DEBUG) banner ("frequencies (itrain)") for (i <- itrain) increment (i) if (DEBUG) { println ("f_C = " + f_C) // #(C = yi) println ("f_CX = " + f_CX) // #(C = yi & X_j = x) } // if } // frequencies //::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Train the classifier by computing the probabilities for C, and the * conditional probabilities for X_j. * @param testStart starting index of test region (inclusive) used in cross-validation. * @param testEnd ending index of test region (exclusive) used in cross-validation. */ def train (testStart: Int, testEnd: Int) { frequencies (testStart, testEnd) // compute frequencies skipping test region if (DEBUG) banner ("train (testStart, testEnd)") train2 () } // train //::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Train the classifier by computing the probabilities for C, and the * conditional probabilities for X_j. * @param itrain indices of the instances considered train data */ override def train (itrain: Array [Int]) { frequencies (itrain) // compute frequencies skipping test region if (DEBUG) banner ("train (itrain)") train2 () } // train //::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Train the classifier by computing the probabilities for C, and the * conditional probabilities for X_j. */ private def train2 () { p_C = f_C.toDouble / md // prior probability for class yi for (i <- 0 until k; j <- 0 until n) { // for each class yi & feature xj val me_vc = me / vc(j).toDouble for (xj <- 0 until vc(j)) { // for each value for feature j: xj p_X_C(i, j, xj) = (f_CX(i, j, xj) + me_vc) / (f_C(i) + me) } // for } // for if (DEBUG) { println ("p_C = " + p_C) // P(C = yi) println ("p_X_C = " + p_X_C) // P(X_j = x | C = yi) } // if } // train2 //::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Given a discrete data vector 'z', classify it returning the class number * (0, ..., k-1) with the highest relative posterior probability. * Return the best class, its name and its relative probability. * @param z the data vector to classify */ def classify (z: VectoI): (Int, String, Double) = { if (DEBUG) banner ("classify (z)") val prob = new VectorD (p_C) for (i <- 0 until k) { for (j <- 0 until n) prob(i) *= p_X_C(i, j, z(j)) // P(X_j = z_j | C = i) } // for if (DEBUG) println ("prob = " + prob) val best = prob.argmax () // class with the highest relative posterior probability (best, cn(best), prob(best)) // return the best class and its name } // classify //::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Reset or re-initialize all the population and probability vectors and * hypermatrices to 0. */ def reset () { f_C.set (0) f_CX.set (0) p_C.set (0) p_X_C.set (0) } // reset } // NaiveBayes class //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** `NaiveBayes` is the companion object for the `NaiveBayes` class. */ object NaiveBayes { //::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Create a `NaiveBayes` object, passing 'x' and 'y' together in one matrix. * @param xy the data vectors along with their classifications stored as rows of a matrix * @param fn the names of the features * @param k the number of classes * @param vc the value count (number of distinct values) for each feature * @param me use m-estimates (me == 0 => regular MLE estimates) */ def apply (xy: MatriI, fn: Array [String], k: Int, cn: Array [String], vc: VectoI = null, me: Int = me_default) = { new NaiveBayes (xy(0 until xy.dim1, 0 until xy.dim2 - 1), xy.col(xy.dim2 - 1), fn, k, cn, vc, me) } // apply } // NaiveBayes object import scalation.linalgebra.MatrixI //::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** The `NaiveBayesTest` object is used to test the `NaiveBayes` class. * Classify whether a car is more likely to be stolen (1) or not (1). * @see www.inf.u-szeged.hu/~ormandi/ai2/06-naiveBayes-example.pdf * > run-main scalation.analytics.classifier.NaiveBayesTest */ object NaiveBayesTest extends App { // x0: Color: Red (1), Yellow (0) // x1: Type: SUV (1), Sports (0) // x2: Origin: Domestic (1), Imported (0) // x3: Mpg: High (1), Low (0) // features: x0 x1 x2 x3 val x = new MatrixI ((10, 4), 1, 0, 1, 1, // data matrix 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0) val y = VectorI (1, 0, 1, 0, 1, 0, 1, 0, 0, 1) // classification vector: 0(No), 1(Yes)) val fn = Array ("Color", "Type", "Origin", "Mpg") // feature/variable names val cn = Array ("No", "Yes") // class names println ("x = " + x) println ("y = " + y) println ("---------------------------------------------------------------") val nb = new NaiveBayes (x, y, fn, 2, cn) // create the classifier // train the classifier --------------------------------------------------- nb.train() // test sample ------------------------------------------------------------ val z1 = VectorI (1, 0, 1, 1) // existing data vector to classify val z2 = VectorI (1, 1, 1, 0) // new data vector to classify println ("classify (" + z1 + ") = " + nb.classify (z1) + "\n") println ("classify (" + z2 + ") = " + nb.classify (z2) + "\n") // nb.crossValidateRand () // cross validate the classifier } // NaiveBayesTest object //::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** The `NaiveBayesTest2` object is used to test the 'NaiveBayes' class. * Given whether a person is Fast and/or Strong, classify them as making C = 1 * or not making C = 0 the football team. * > run-main scalation.analytics.classifier.NaiveBayesTest2 */ object NaiveBayesTest2 extends App { // training-set ----------------------------------------------------------- // x0: Fast // x1: Strong // y: Classification (No/0, Yes/1) // features: x0 x1 y val xy = new MatrixI ((10, 3), 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0) val fn = Array ("Fast", "Strong") // feature names val cn = Array ("No", "Yes") // class names println ("xy = " + xy) println ("---------------------------------------------------------------") val nb = NaiveBayes (xy, fn, 2, cn, null, 0) // create the classifier // train the classifier --------------------------------------------------- nb.train () // test sample ------------------------------------------------------------ val z = VectorI (1, 0) // new data vector to classify println ("classify (" + z + ") = " + nb.classify (z) + "\n") nb.crossValidate () // cross validate the classifier } // NaiveBayesTest2 object //::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** The `NaiveBayesTest3` object is used to test the 'NaiveBayes' class. * > run-main scalation.analytics.classifier.NaiveBayesTest3 */ object NaiveBayesTest3 extends App { val filename = BASE_DIR + "breast-cancer.arff" var data = Relation (filename, -1, null) val xy = data.toMatriI2 (null) val fn = data.colName.toArray val cn = Array ("0", "1") // class names val nb = NaiveBayes (xy, fn, 2, cn, null, 0) // create the classifier nb.train () nb.crossValidate () } // NaiveBayesTest3 object