//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** @author John Miller * @version 1.3 * @date Sun Jan 4 23:09:27 EST 2015 * @see LICENSE (MIT style license file). */ package scalation.analytics.par import scalation.linalgebra.{VectoD, VectorI} import scalation.linalgebra.par.{MatrixD, VectorD} import scalation.util.{Error, time} import scalation.analytics.Predictor import scalation.analytics.RegTechnique._ //::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** The `ANCOVA` class supports ANalysis of COVAriance (ANCOVA). It allows * the addition of a categorical treatment variable 't' into a multiple linear * regression. This is done by introducing dummy variables 'dj' to distinguish * the treatment level. The problem is again to fit the parameter vector 'b' * in the augmented regression equation *

* y = b dot x + e = b0 + b_1 * x_1 + b_2 * x_2 + ... b_k * x_k + b_k+1 * d_1 + b_k+2 * d_2 + ... b_k+l * d_l + e *

* where 'e' represents the residuals (the part not explained by the model). * Use Least-Squares (minimizing the residuals) to fit the parameter vector *

* b = x_pinv * y *

* where 'x_pinv' is the pseudo-inverse. * @see see.stanford.edu/materials/lsoeldsee263/05-ls.pdf * @param x_ the data/design matrix of continuous variables * @param t the treatment/categorical variable vector * @param y the response vector * @param levels the number of treatment levels (1, ... levels) * @param technique the technique used to solve for b in x.t*x*b = x.t*y */ class ANCOVA (x_ : MatrixD, t: VectorI, y: VectorD, levels: Int, technique: RegTechnique = QR) extends Predictor with Error { if (x_.dim1 != y.dim) flaw ("constructor", "dimensions of x_ and y are incompatible") if (t.dim != y.dim) flaw ("constructor", "dimensions of t and y are incompatible") val x = new MatrixD (x_.dim1, x_.dim2 + levels - 1) // augmented design matrix assignVars () // assign values for continuous variables assignDummyVars () // assign values for dummy variables val rg = new Regression (x, y, technique) // regular multiple linear regression //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Assign values for the continuous variables from the 'x' matrix. */ def assignVars () { for (i <- 0 until x_.dim1; j <- 0 until x_.dim2) x(i, j) = x_(i, j) } // for //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Assign values for the dummy variables based on the treatment vector 't'. */ def assignDummyVars () { for (i <- 0 until x_.dim1) { val lev = t(i) // treatment level for ith item if (lev < 1 || lev > levels) flaw ("assignDummyVars", "treatment level is out of range") if (lev < levels) x(i, x_.dim2 + lev) = 1.0 } // for } // assignDummyVars //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Train the predictor by fitting the parameter vector (b-vector) in the * regression equation * y = b dot x + e = [b_0, ... b_k+l] dot [1, x_1, ..., d_1, ...] + e * using the least squares method. */ def train () { rg.train () } //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Retrain the predictor by fitting the parameter vector (b-vector) in the * multiple regression equation * yy = b dot x + e = [b_0, ... b_k+l] dot [1, x_1, ..., d_1, ...] + e * using the least squares method. * @param yy the new response vector */ def train (yy: VectoD) { rg.train (yy) } //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Return the quality of fit including 'rSquared'. */ override def fit: VectoD = rg.fit //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Predict the value of y = f(z) by evaluating the formula y = b dot z, * e.g., (b0, b1, b2) dot (1, z1, z2). * @param z the new vector to predict */ def predict (z: VectoD): Double = rg.predict (z) //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Perform backward elimination to remove the least predictive variable * from the model, returning the variable to eliminate, the new parameter * vector, the new quality of fit. */ def backElim (): (Int, VectoD, VectoD) = rg.backElim () //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Compute the Variance Inflation Factor 'VIF' for each variable to test * for multi-collinearity by regressing 'xj' against the rest of the variables. * A VIF over 10 indicates that over 90% of the variance of 'xj' can be predicted * from the other variables, so 'xj' is a candidate for removal from the model. */ def vif: VectorD = rg.vif } // ANCOVA class //::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** The `ANCOVATest` object tests the `ANCOVA` class using the following * regression equation. *

* y = b dot x = b_0 + b_1*x_1 + b_2*x_2 + b_3*d_1 + b_4*d_2 *

*/ object ANCOVATest extends App { // 5 data points: constant term, x_1 coordinate, x_2 coordinate val x = new MatrixD ((5, 3), 1.0, 36.0, 66.0, // 5-by-3 matrix 1.0, 37.0, 68.0, 1.0, 47.0, 64.0, 1.0, 32.0, 53.0, 1.0, 1.0, 101.0) val t = VectorI (1, 1, 2, 2, 3) // treatements levels val y = VectorD (745.0, 895.0, 442.0, 440.0, 1598.0) // response vector val z = VectorD (1.0, 20.0, 80.0, 1.0) println ("x = " + x) println ("t = " + t) println ("y = " + y) val levels = 3 val anc = new ANCOVA (x, t, y, levels) anc.train () println ("fit = " + anc.fit) val yp = anc.predict (z) println ("predict (" + z + ") = " + yp) } // ANCOVATest object