//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** @author John Miller * @version 1.6 * @date Sun Jan 11 19:05:20 EST 2015 * @see LICENSE (MIT style license file). * * @title Model: Poisson Regression * * ncss-wpengine.netdna-ssl.com/wp-content/themes/ncss/pdf/Procedures/NCSS/Poisson_Regression.pdf */ // U N D E R D E V E L O P M E N T // FIX: needs improved optimization package scalation.analytics import scala.collection.mutable.Set import scala.math.{exp, log, round} import scalation.linalgebra.{MatriD, MatrixD, VectoD, VectorD, VectoI, VectorI} import scalation.math.noDouble import scalation.math.Combinatorics.fac import scalation.minima.QuasiNewton import scalation.plot.Plot import scalation.stat.Statistic import Fit._ //::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** The `PoissonRegression` class supports Poisson regression. In this case, * x' may be multi-dimensional '[1, x_1, ... x_k]'. Fit the parameter * vector 'b' in the Poisson regression equation *

* log (mu(x)) = b dot x = b_0 + b_1 * x_1 + ... b_k * x_k *

* where 'e' represents the residuals (the part not explained by the model) * and 'y' is now integer valued. * @see see.stanford.edu/materials/lsoeldsee263/05-ls.pdf * @param x the data/input matrix augmented with a first column of ones * @param y the integer response/output vector, y_i in {0, 1, ... } * @param fname_ the names of the features/variables * @param hparam the hyper-parameters (currently has none) */ class PoissonRegression (x: MatriD, y: VectoD, fname_ : Strings = null, hparam: HyperParameter = null) extends PredictorMat (x, y, fname_, hparam) { private val DEBUG = false // debug flag /* private val k = x.dim2 - 1 // number of variables private val n = x.dim1.toDouble // number of data points (rows) private val r_df = (n-1.0) / (n-k-1.0) // ratio of degrees of freedom */ private var aic = -1.0 // Akaike’s Information Criterion private var n_dev = -1.0 // null dev: -LL, for null model (intercept only) private var r_dev = -1.0 // residual dev: -LL, for full model private var pseudo_rSq = -1.0 // McFaffen's pseudo R-squared //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** For a given parameter vector 'b', compute '-Log-Likelihood' (-LL). * '-LL' is the standard measure. * @see dept.stat.lsa.umich.edu/~kshedden/Courses/Stat600/Notes/glm.pdf * @param b the parameters to fit */ def ll (b: VectoD): Double = { var sum = 0.0 for (i <- x.range1) { val bx = b dot x(i) sum += y(i) * bx - exp (bx) // last term not needed [ - log (fac (y(i))) ] } // for -sum // set up for minimization } // ll //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** For a given parameter vector 'b = [b(0)], compute -2 * Log-Likelihood' (-2LL). * '-2LL' is the standard measure that follows a Chi-Square distribution. * @see dept.stat.lsa.umich.edu/~kshedden/Courses/Stat600/Notes/glm.pdf * @param b the parameters to fit */ def ll_null (b: VectoD): Double = { var sum = 0.0 for (i <- x.range1) { val bx = b(0) // only use the intercept sum += y(i) * bx - exp (bx) // last term not needed [ - log (fac (y(i))) ] } // for - sum // set up for minimization } // ll_null //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** For the full model, train the predictor by fitting the parameter vector * (b-vector) in the Poisson regression equation using maximum likelihood. * @param x_ the training/full data/input matrix * @param y_ the training/full response/output vector */ def train (x_ : MatriD = x, y_ : VectoD = y.toDouble): PoissonRegression = { // FIX - currently only works for x_ = x and y_ = y train_null () val b0 = new VectorD (x_.dim2) // use b_0 = 0 for starting guess for parameters val bfgs = new QuasiNewton (ll) // minimizer for -2LL b = bfgs.solve (b0) // find optimal solution for parameters r_dev = ll (b) // measure of fitness for full model aic = r_dev + 2.0 * x_.dim2 this } // train //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** For the null model, train the classifier by fitting the parameter vector * (b-vector) in the Poisson regression equation using maximum likelihood. * Do this by minimizing '-2LL'. */ def train_null () { val b0 = new VectorD (x.dim2) // use b0 = 0 for starting guess for parameters val bfgs = new QuasiNewton (ll_null) // minimizer for -2LL val b_n = bfgs.solve (b0) // find optimal solution for parameters n_dev = ll_null (b_n) // measure of fitness for null nodel } // train_null //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Compute the error and useful diagnostics. * FIX - not x * b override def eval (x_e: MatriD, y_e: VectoD) { e = y_e - x_e * b // compute residual/error vector e diagnose (e, y_e) // compute diagnostics } // eval */ //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Return the quality of fit including 'rSquared'. Assumes both train_null and * train have already been called. */ override def fit: VectoD = { pseudo_rSq = 1.0 - r_dev / n_dev VectorD (n_dev, r_dev, aic, pseudo_rSq) } // fit //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Return the labels for the fit. */ override def fitLabel: Seq [String] = Seq ("n_dev", "r_dev", "aic", "pseudo_rSq") //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Classify the value of 'y = f(z)' by evaluating the formula 'y = exp (b dot z)'. * @param z the new vector to predict */ override def predict (z: VectoD): Double = round (exp (b dot z)) //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Build a sub-model that is restricted to the given columns of the data matrix. * @param x_cols the columns that the new model is restricted to */ def buildModel (x_cols: MatriD): PoissonRegression = { new PoissonRegression (x_cols, y) } // buildModel } // PoissonRegression class //::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** The `PoissonRegression` companion object provides factory functions. */ object PoissonRegression { val drp = (null, null) // default remaining parameters //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Create a `PoissonRegression` object from a combined data matrix. * @param xy the combined data-response matrix * @param fname the feature/variable names * @param hparam the hyper-parameters (currently has none) */ def apply (xy: MatriD, fname: Strings = null, hparam: HyperParameter = null): PoissonRegression = { val (x, y) = pullResponse (xy) new PoissonRegression (x, y, fname, hparam) } // apply //:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** Create a `PoissonRegression` object given an integer response vector. * @param x the data matrix * @param y the response vector as an integer vector * @param fname the feature/variable names * @param hparam the hyper-parameters (currently has none) */ def apply (x: MatriD, y: VectoI, fname: Strings, hparam: HyperParameter): PoissonRegression = { new PoissonRegression (x, y.toDouble, fname, hparam) } // apply } // PoissonRegression object import PoissonRegression.drp //::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** The `PoissonRegressionTest` object tests the `PoissonRegression` class. * @see http://www.cookbook-r.com/Statistical_analysis/Logistic_regression/ * Answer: b = (-8.8331, 0.4304), * n_dev = 43.860, r_dev = 25.533, aci = 29.533, pseudo_rSq = 0.4178 * > runMain scalation.analytics.PoissonRegressionTest */ object PoissonRegressionTest extends App { // 32 data points: One Mpg val x = new MatrixD ((32, 2), 1.0, 21.0, // 1 - Mazda RX4 1.0, 21.0, // 2 - Mazda RX4 Wa 1.0, 22.8, // 3 - Datsun 710 1.0, 21.4, // 4 - Hornet 4 Drive 1.0, 18.7, // 5 - Hornet Sportabout 1.0, 18.1, // 6 - Valiant 1.0, 14.3, // 7 - Duster 360 1.0, 24.4, // 8 - Merc 240D 1.0, 22.8, // 9 - Merc 230 1.0, 19.2, // 10 - Merc 280 1.0, 17.8, // 11 - Merc 280C 1.0, 16.4, // 12 - Merc 450S 1.0, 17.3, // 13 - Merc 450SL 1.0, 15.2, // 14 - Merc 450SLC 1.0, 10.4, // 15 - Cadillac Fleetwood 1.0, 10.4, // 16 - Lincoln Continental 1.0, 14.7, // 17 - Chrysler Imperial 1.0, 32.4, // 18 - Fiat 128 1.0, 30.4, // 19 - Honda Civic 1.0, 33.9, // 20 - Toyota Corolla 1.0, 21.5, // 21 - Toyota Corona 1.0, 15.5, // 22 - Dodge Challenger 1.0, 15.2, // 23 - AMC Javelin 1.0, 13.3, // 24 - Camaro Z28 1.0, 19.2, // 25 - Pontiac Firebird 1.0, 27.3, // 26 - Fiat X1-9 1.0, 26.0, // 27 - Porsche 914-2 1.0, 30.4, // 28 - Lotus Europa 1.0, 15.8, // 29 - Ford Pantera L 1.0, 19.7, // 30 - Ferrari Dino 1.0, 15.0, // 31 - Maserati Bora 1.0, 21.4) // 32 - Volvo 142E val y = VectorI (0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1) var z: VectoD = null println ("x = " + x) println ("y = " + y) val rg = PoissonRegression (x, y, drp._1, drp._2) rg.train_null () // train based on null model rg.train ().eval () // train based on full model println (rg.report) val yp = rg.predict (x) println ("y = " + y) println ("yp = " + yp.toInt) z = VectorD (1.0, 15.0) // predict point z println ("predict (" + z + ") = " + rg.predict (z)) z = VectorD (1.0, 30.0) // predict point z println ("predict (" + z + ") = " + rg.predict (z)) } // PoissonRegressionTest object //::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: /** The `PoissonRegressionTest2` object tests the `PoissonRegression` class. * @see statmaster.sdu.dk/courses/st111/module03/index.html * @see www.stat.wisc.edu/~mchung/teaching/.../GLM.logistic.Rpackage.pdf * > runMain scalation.analytics.PoissonRegressionTest2 */ object PoissonRegressionTest2 extends App { // 40 data points: One Low Medium High val x = new MatrixD ((40, 4), 1.0, 102.0, 89.0, 0.0, 1.0, 7.0, 233.0, 1.0, 1.0, 0.0, 4.0, 41.0, 1.0, 8.0, 37.0, 13.0, 1.0, 40.0, 79.0, 26.0, 1.0, 0.0, 625.0, 156.0, 1.0, 0.0, 12.0, 79.0, 1.0, 0.0, 3.0, 119.0, 1.0, 115.0, 136.0, 65.0, 1.0, 428.0, 416.0, 435.0, 1.0, 34.0, 174.0, 56.0, 1.0, 0.0, 0.0, 37.0, 1.0, 97.0, 162.0, 89.0, 1.0, 56.0, 47.0, 132.0, 1.0, 1214.0, 1515.0, 324.0, 1.0, 30.0, 103.0, 161.0, 1.0, 8.0, 11.0, 158.0, 1.0, 52.0, 155.0, 144.0, 1.0, 142.0, 119.0, 24.0, 1.0, 1370.0, 2968.0, 1083.0, 1.0, 790.0, 161.0, 231.0, 1.0, 1142.0, 157.0, 131.0, 1.0, 0.0, 2.0, 49.0, 1.0, 0.0, 0.0, 50.0, 1.0, 5.0, 68.0, 49.0, 1.0, 0.0, 0.0, 48.0, 1.0, 0.0, 6.0, 40.0, 1.0, 1.0, 8.0, 64.0, 1.0, 0.0, 998.0, 551.0, 1.0, 253.0, 99.0, 60.0, 1.0, 1395.0, 799.0, 244.0, 1.0, 0.0, 0.0, 50.0, 1.0, 1.0, 68.0, 145.0, 1.0, 1318.0, 1724.0, 331.0, 1.0, 0.0, 0.0, 79.0, 1.0, 3.0, 31.0, 37.0, 1.0, 195.0, 108.0, 206.0, 1.0, 0.0, 15.0, 121.0, 1.0, 0.0, 278.0, 513.0, 1.0, 0.0, 0.0, 253.0) val y = VectorI (0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1) val fn = Array ("One", "Low", "Medium", "High") println ("x = " + x) println ("y = " + y) // val rg = PoissonRegression (x(0 until x.dim1, 0 until 2), y, fn) val rg = PoissonRegression (x, y, fn, drp._2) rg.train_null () // train based on null model rg.train ().eval () // train based on full model println (rg.report) val z = VectorD (1.0, 100.0, 100.0, 100.0) // predict point z println ("predict (" + z + ") = " + rg.predict (z)) // new Plot (x.col(1), y, yyp) // new Plot (x.col(2), y, yyp) } // PoissonRegressionTest2 object