
. . .

Introduction to

Computational Data Science

Using ScalaTion

. . .

John A. Miller

Department of Computer Science

University of Georgia

. . .

February 10, 2024

1

2

Brief Table of Contents

1 Introduction to Data Science 33

1.1 Data Science . 33

1.2 ScalaTion . 35

1.3 A Data Science Project . 42

1.4 Additional Textbooks . 45

I Foundations 47

2 Linear Algebra 49

2.1 Linear System of Equations . 49

2.2 Matrix Inversion . 50

2.3 Vector . 51

2.4 Vector Calculus . 54

2.5 Matrix . 57

2.6 Matrix Factorization . 60

2.7 Internal Representation . 61

2.8 Tensor . 62

2.9 Exercises . 64

2.10 Further Reading . 67

3 Probability 69

3.1 Probability Measure . 69

3.2 Random Variable . 71

3.3 Probability Distribution . 72

3.4 Empirical Distribution . 76

3.5 Expectation . 77

3.6 Algebra of Random Variables . 80

3.7 Median, Mode and Quantiles . 84

3.8 Joint, Marginal and Conditional Distributions . 85

3.9 Odds . 91

3.10 Example Problems . 92

3.11 Estimating Parameters from Samples . 94

3.12 Entropy . 98

3

3.13 Exercises . 104

3.14 Further Reading . 109

3.15 Notational Conventions . 110

3.16 Model . 112

4 Data Management 117

4.1 Introduction . 117

4.2 Relational Data Model . 119

4.3 Columnar Relational Data Model . 129

4.4 SQL-Like Language . 136

4.5 Exercises . 139

5 Data Preprocessing 141

5.1 Basic Operations . 141

5.2 Methods for Outlier Detection . 142

5.3 Imputation Techniques . 145

5.4 Align Multiple Time Series . 146

5.5 Creating Vectors and Matrices . 147

5.6 Exercises . 148

II Modeling 149

6 Prediction 151

6.1 Predictor . 153

6.2 Quality of Fit for Prediction . 156

6.3 Null Model . 158

6.4 Simpler Regression . 162

6.5 Simple Regression . 167

6.6 Regression . 177

6.7 Ridge Regression . 202

6.8 Lasso Regression . 208

6.9 Quadratic Regression . 214

6.10 Cubic Regression . 222

6.11 Symbolic Regression . 227

6.12 Transformed Regression . 234

6.13 Regression with Categorical Variables . 243

6.14 Weighted Least Squares Regression . 249

6.15 Polynomial Regression . 252

6.16 Trigonometric Regression . 255

7 Classification 257

7.1 Classifier . 258

7.2 Quality of Fit for Classification . 261

7.3 Null Model . 263

4

7.4 Näıve Bayes . 266

7.5 Bayes Classifier . 275

7.6 Tree Augmented Näıve Bayes . 276

7.7 Bayesian Network Classifier . 281

7.8 Markov Network . 282

7.9 Decision Tree ID3 . 284

7.10 Hidden Markov Model . 291

7.11 Further Reading . 297

8 Classification: Continuous Variables 299

8.1 Gaussian Näıve Bayes . 300

8.2 Simple Logistic Regression . 303

8.3 Logistic Regression . 309

8.4 Simple Linear Discriminant Analysis . 311

8.5 Linear Discriminant Analysis . 314

8.6 K-Nearest Neighbors Classifier . 316

8.7 Decision Tree C45 . 318

8.8 Bagging Trees . 322

8.9 Random Forest . 324

8.10 Support Vector Machine . 326

8.11 Neural Network Classifiers . 331

9 Generalized Linear Models and Regression Trees 335

9.1 Generalized Linear Model . 335

9.2 Maximum Likelihood Estimation . 338

9.3 Poisson Regression . 341

9.4 Regression Trees . 343

9.5 Linear Model Trees . 347

9.6 Random Forest Regression . 348

9.7 Gradient Boosting Regression . 349

9.8 Exercises . 350

9.9 Further Reading . 351

10 Nonlinear Models and Neural Networks 353

10.1 Nonlinear Regression . 354

10.2 Simple Exponential Regression . 362

10.3 Exponential Regression . 366

10.4 Perceptron . 369

10.5 Multi-Output Prediction . 386

10.6 Two-Layer Neural Networks . 391

10.7 Three-Layer Neural Networks . 398

10.8 Multi-Hidden Layer Neural Networks . 411

10.9 Convolutional Neural Networks . 417

10.101D CNN . 418

5

10.112D CNN . 427

10.12Transfer Learning . 432

10.13Extreme Learning Machines . 436

11 Time Series/Temporal Models 439

11.1 Forecaster . 441

11.2 Baseline Models: Random Walk, Null and Trend Models . 446

11.3 Simple Exponential Smoothing . 454

11.4 Auto-Regressive (AR) Models . 458

11.5 Moving-Average (MA) Models . 469

11.6 Auto-Regressive, Moving Average (ARMA) Models . 473

11.7 Rolling-Validation . 477

11.8 ARIMA (Integrated) Models . 486

11.9 SARIMA (Seasonal) Models . 492

11.10Further Reading . 495

12 Multivariate and Nonlinear Time Series 497

12.1 Auto-Regressive with eXogenous variables (ARX) Models . 498

12.2 SARIMAX Models . 503

12.3 Vector Auto-Regressive (VAR) Models . 505

12.4 Nonlinear Time Series Models . 509

12.5 Recurrent Neural Networks (RNN) . 510

12.6 Gated Recurrent Unit (GRU) Networks . 516

12.7 Minimal Gated Unit (MGU) Networks . 525

12.8 Long Short Term Memory (LSTM) Networks . 527

12.9 Encoder-Decoder Architectures . 530

12.10Transformer Models . 533

13 Dimensionality Reduction 539

13.1 Reducer . 540

13.2 Principal Component Analysis (PCA) . 541

13.3 Autoencoder (AE) . 543

14 Clustering 545

14.1 KNN Regression . 547

14.2 Clusterer . 549

14.3 K-Means Clustering . 551

14.4 K-Means Clustering - Hartigan-Wong . 556

14.5 K-Means++ Clustering . 558

14.6 Clustering Predictor . 560

14.7 Hierarchical Clustering . 562

14.8 Markov Clustering . 564

6

III Simulation 567

15 Simulation Foundations 569

15.1 Basic Concepts . 571

15.2 Types of Models . 572

15.3 Random Number Generation . 573

15.4 Random Variate Generation . 577

15.5 Poisson Process . 582

15.6 Monte Carlo Simulation . 587

15.7 Hand Simulation . 594

15.8 Tableau-Oriented Simulation . 599

16 State Space Models 603

16.1 Example: Trajectory of a Ball in One-Dimensional Space . 604

16.2 Markov Chains . 607

16.3 Dynamic Linear Models . 620

16.4 Kalman Filter . 623

16.5 Extended Kalman Filter . 627

16.6 ODE Parameter Estimation . 638

17 Event-Oriented Models 639

17.1 A Taxonomy/Ontology for Simulation Modeling . 639

17.2 List Processing . 642

17.3 Event Scheduling . 645

17.4 Event Graphs . 660

17.5 Exercises . 664

18 Process-Oriented Models 667

18.1 Base Traits and Classes for Process-Oriented Models . 668

18.2 Concurrent Processing of Actors . 669

18.3 Process Interaction . 672

18.4 Agent-Based Simulation . 693

18.5 Animation . 700

19 Simulation Output Analysis 705

19.1 Point and Interval Estimates . 705

19.2 One-Shot Simulation . 707

19.3 Simulation Model Validation . 708

19.4 Method of Independent Replications (MIR) . 711

19.5 Method of Batch Means (MBM) . 715

19.6 Exercises . 720

Appendices 721

7

A Optimization in Data Science 723

A.1 Partial Derivatives and Gradients . 724

A.2 Automatic Differentiation . 728

A.3 Gradient Descent . 734

A.4 Stochastic Gradient Descent . 737

A.5 Stochastic Gradient Descent with Momentum . 740

A.6 SGD with ADAptive Moment Estimation . 744

A.7 Coordinate Descent . 746

A.8 Conjugate Gradient . 748

A.9 Quasi-Newton Methods . 750

A.10 Method of Lagrange Multipliers . 755

A.11 Karush-Kuhn-Tucker Conditions . 757

A.12 Quadratic Programming . 758

A.13 Augmented Lagrangian Method . 760

A.14 Alternating Direction Method of Multipliers . 762

A.15 Nelder-Mead Simplex . 765

B Graph Databases and Analytics 767

B.1 Directed Graphs . 769

B.2 A Graph Database with Relational Roots . 776

B.3 Property Graphs . 779

B.4 Special Types of Graph Databases . 792

B.5 Knowledge Graphs . 795

B.6 Exercises - Part I . 799

B.7 Graph Data Science . 801

B.8 Graph Pattern Matching . 802

B.9 Graph Representation Learning . 804

B.10 Graph Neural Networks . 806

B.11 Exercises - Part II . 808

8

Contents

1 Introduction to Data Science 33

1.1 Data Science . 33

1.2 ScalaTion . 35

1.2.1 Package Structure . 35

1.2.2 Scala 3 Control Structures . 36

1.2.3 Scala 3 Top-Level Functions . 37

1.2.4 Classes . 38

1.2.5 Basic Types . 39

1.2.6 Collection Types . 40

1.2.7 ScalaTion: Vectors, Matrices and Tensors . 40

1.3 A Data Science Project . 42

1.4 Additional Textbooks . 45

I Foundations 47

2 Linear Algebra 49

2.1 Linear System of Equations . 49

2.2 Matrix Inversion . 50

2.3 Vector . 51

2.3.1 Vector Addition and Subtraction . 51

2.3.2 Element-wise Multiplication and Division . 51

2.3.3 Vector Dot Product . 51

2.3.4 Norm . 51

2.3.5 Vector Operations in ScalaTion . 52

2.4 Vector Calculus . 54

2.4.1 Gradient Vector . 54

2.4.2 Jacobian Matrix . 55

2.4.3 Hessian Matrix . 56

2.5 Matrix . 57

2.5.1 Matrix Operation in ScalaTion . 57

2.6 Matrix Factorization . 60

2.6.1 Eigenvalues and Eigenvectors . 60

2.7 Internal Representation . 61

9

2.8 Tensor . 62

2.8.1 Three Dimensional Tensors . 62

2.8.2 Four Dimensional Tensors . 63

2.9 Exercises . 64

2.10 Further Reading . 67

3 Probability 69

3.1 Probability Measure . 69

3.1.1 Joint Probability . 69

3.1.2 Conditional Probability . 70

3.2 Random Variable . 71

3.2.1 Discrete Random Variable . 71

3.2.2 Continuous Random Variable . 71

3.3 Probability Distribution . 72

3.3.1 Cumulative Distribution Function . 72

3.3.2 Probability Mass Function . 72

3.3.3 Probability Density Function . 73

3.4 Empirical Distribution . 76

3.5 Expectation . 77

3.5.1 Continuous Case . 77

3.5.2 Discrete Case . 77

3.5.3 Variance . 77

3.5.4 Covariance . 78

3.6 Algebra of Random Variables . 80

3.6.1 Expectation is a Linear Operator . 80

3.6.2 Variance is not a Linear Operator . 80

3.6.3 Convolution of Probability Distributions . 80

3.6.4 Central Limit Theorem . 82

3.7 Median, Mode and Quantiles . 84

3.7.1 Median . 84

3.7.2 Quantile . 84

3.7.3 Mode . 84

3.8 Joint, Marginal and Conditional Distributions . 85

3.8.1 Discrete Case: Joint and Marginal Mass . 85

3.8.2 Continuous Case: Joint and Marginal Density . 86

3.8.3 Discrete Case: Conditional Mass . 87

3.8.4 Continuous Case: Conditional Density . 87

3.8.5 Independence . 88

3.8.6 Conditional Expectation . 89

3.8.7 Conditional Independence . 90

3.9 Odds . 91

3.10 Example Problems . 92

3.11 Estimating Parameters from Samples . 94

3.11.1 Sample Mean . 94

10

3.11.2 Confidence Interval . 95

3.11.3 Estimation for Discrete Outcomes/Responses . 97

3.12 Entropy . 98

3.12.1 Positive Log Probability . 99

3.12.2 Joint Entropy . 100

3.12.3 Conditional Entropy . 100

3.12.4 Relative Entropy . 100

3.12.5 Cross Entropy . 101

3.12.6 Mutual Information . 102

3.12.7 Probability Object . 103

3.13 Exercises . 104

3.14 Further Reading . 109

3.15 Notational Conventions . 110

3.16 Model . 112

4 Data Management 117

4.1 Introduction . 117

4.1.1 Analytics Databases . 118

4.1.2 The Tabular Trait . 118

4.2 Relational Data Model . 119

4.2.1 Data Definition Language . 119

4.2.2 Data Manipulation Language . 119

4.2.3 Relational Algebra . 120

4.2.4 Example Queries . 124

4.2.5 Persistence . 125

4.2.6 Transactions . 125

4.2.7 Table Class . 126

4.2.8 LTable Class . 127

4.2.9 VTable Class . 127

4.3 Columnar Relational Data Model . 129

4.3.1 Data Definition Language . 130

4.3.2 Data Manipulation Language . 131

4.3.3 Columnar Relational Algebra . 131

4.3.4 Example Queries . 134

4.3.5 Relation Class . 134

4.4 SQL-Like Language . 136

4.4.1 Relation Creation . 136

4.4.2 Sample Queries . 136

4.4.3 RelationSQL Class . 137

4.5 Exercises . 139

11

5 Data Preprocessing 141

5.1 Basic Operations . 141

5.1.1 Remove Identifiers . 141

5.1.2 Convert String Columns to Numeric Columns . 141

5.1.3 Identify Missing Values . 141

5.1.4 Preliminary Feature Selection . 141

5.2 Methods for Outlier Detection . 142

5.2.1 Based on Standard Deviation . 142

5.2.2 Based on InterQuartile Range . 143

5.2.3 Based on Quantiles/Percentiles . 143

5.3 Imputation Techniques . 145

5.3.1 Imputation Trait . 145

5.4 Align Multiple Time Series . 146

5.5 Creating Vectors and Matrices . 147

5.6 Exercises . 148

II Modeling 149

6 Prediction 151

6.1 Predictor . 153

6.1.1 Predictor Trait . 153

6.2 Quality of Fit for Prediction . 156

6.2.1 Fit Trait . 156

6.3 Null Model . 158

6.3.1 Model Equation . 158

6.3.2 Training . 158

6.3.3 Optimization - Derivative . 158

6.3.4 Example Calculation . 159

6.3.5 NullModel Class . 160

6.3.6 Exercises . 160

6.4 Simpler Regression . 162

6.4.1 Model Equation . 162

6.4.2 Training . 162

6.4.3 Optimization - Derivative . 162

6.4.4 Example Calculation . 163

6.4.5 SimplerRegression Class . 164

6.4.6 Exercises . 164

6.5 Simple Regression . 167

6.5.1 Model Equation . 167

6.5.2 Training . 167

6.5.3 Optimization - Gradient . 168

6.5.4 Example Calculation . 169

6.5.5 Exploratory Data Analysis . 171

12

6.5.6 SimpleRegression Class . 173

6.5.7 Exercises . 174

6.6 Regression . 177

6.6.1 Model Equation . 177

6.6.2 Training . 177

6.6.3 Optimization - Gradient . 178

6.6.4 Matrix Inversion Technique . 179

6.6.5 LU Factorization Technique . 180

6.6.6 Cholesky Factorization Technique . 181

6.6.7 QR Factorization Technique . 182

6.6.8 Use of Factorization in Regression . 182

6.6.9 Model Assessment . 183

6.6.10 Model Validation . 185

6.6.11 Collinearity . 187

6.6.12 Feature Selection . 189

6.6.13 Regression Problem: Texas Temperatures . 192

6.6.14 Regression Class . 196

6.6.15 Exercises . 196

6.6.16 Further Reading . 201

6.7 Ridge Regression . 202

6.7.1 Model Equation . 202

6.7.2 Training . 202

6.7.3 Optimization . 203

6.7.4 Centering . 203

6.7.5 The λ Hyper-parameter . 204

6.7.6 Comparing RidgeRegression with Regression . 204

6.7.7 RidgeRegression Class . 206

6.7.8 Exercises . 206

6.8 Lasso Regression . 208

6.8.1 Model Equation . 208

6.8.2 Training . 208

6.8.3 Optimization Strategies . 209

6.8.4 The λ Hyper-parameter . 209

6.8.5 Regularized and Robust Regression . 211

6.8.6 LassoRegression Class . 211

6.8.7 Exercises . 211

6.8.8 Further Reading . 213

6.9 Quadratic Regression . 214

6.9.1 Model Equation . 214

6.9.2 Comparison of quadratic and Regression . 214

6.9.3 SymbolicRegression.quadratic Method . 216

6.9.4 Quadratic Regression with Cross Terms . 217

6.9.5 Response Surface . 217

13

6.9.6 Exercises . 219

6.10 Cubic Regression . 222

6.10.1 Model Equation . 222

6.10.2 Comparison of cubic, quadratic and Regression . 222

6.10.3 SymbolicRegression.cubic Method . 223

6.10.4 Cubic Regression with Cross Terms . 224

6.10.5 Exercises . 225

6.11 Symbolic Regression . 227

6.11.1 Sample Calculation . 227

6.11.2 As a Data Science Problem . 227

6.11.3 SymbolicRegression Object . 228

6.11.4 Implementation of the apply Method . 229

6.11.5 Regularization . 231

6.11.6 Exercises . 232

6.12 Transformed Regression . 234

6.12.1 Model Equation . 234

6.12.2 Training . 235

6.12.3 Square Root Transformation . 236

6.12.4 Log Transformation . 237

6.12.5 Reciprocal Transformation . 238

6.12.6 Box-Cox Transformation . 239

6.12.7 Quality of Fit . 239

6.12.8 TranRegression Class . 240

6.12.9 Exercises . 240

6.13 Regression with Categorical Variables . 243

6.13.1 Handling Categorical Variables . 243

6.13.2 ANOVA . 245

6.13.3 RegressionCat Implementation . 245

6.13.4 RegressionCat Class . 246

6.13.5 Exercises . 246

6.14 Weighted Least Squares Regression . 249

6.14.1 Model Equation . 249

6.14.2 Root Absolute Deviation . 249

6.14.3 RegressionWLS Class . 250

6.14.4 Exercises . 251

6.15 Polynomial Regression . 252

6.15.1 Model Equation . 252

6.15.2 PolyRegression Class . 253

6.15.3 PolyORegression Class . 253

6.15.4 Exercises . 254

6.16 Trigonometric Regression . 255

6.16.1 Model Equation . 255

6.16.2 TrigRegression Class . 255

14

6.16.3 Exercises . 256

7 Classification 257

7.1 Classifier . 258

7.1.1 Classifier Trait . 258

7.2 Quality of Fit for Classification . 261

7.2.1 FitC Trait . 261

7.3 Null Model . 263

7.3.1 NullModel Class . 264

7.3.2 Exercises . 264

7.4 Näıve Bayes . 266

7.4.1 Factoring the Probability . 266

7.4.2 Estimating Conditional Probabilities . 267

7.4.3 Laplace Smoothing . 269

7.4.4 Table Storage . 270

7.4.5 The train Method . 270

7.4.6 The test Method . 271

7.4.7 The predictI Method . 271

7.4.8 The lpredictI Method . 271

7.4.9 Feature Selection . 272

7.4.10 NaiveBayes Class . 272

7.4.11 Exercises . 273

7.5 Bayes Classifier . 275

7.5.1 BayesClassifier Trait . 275

7.6 Tree Augmented Näıve Bayes . 276

7.6.1 Structure Learning . 277

7.6.2 Conditional Probability Tables . 277

7.6.3 Smoothing . 278

7.6.4 The train Method . 279

7.6.5 The predictI Method . 279

7.6.6 TANBayes Class . 279

7.6.7 Exercises . 280

7.7 Bayesian Network Classifier . 281

7.7.1 Network Augmented Näıve Bayes . 281

7.8 Markov Network . 282

7.8.1 Markov Blanket . 282

7.8.2 Factoring the Joint Probability . 283

7.8.3 Exercises . 283

7.9 Decision Tree ID3 . 284

7.9.1 Entropy . 284

7.9.2 Example Problem . 284

7.9.3 Early Termination . 288

7.9.4 DecisionTree Trait . 288

7.9.5 DecisionTree ID3 Class . 289

15

7.9.6 Pruning . 289

7.9.7 DecisionTree ID3wp Class . 290

7.9.8 Exercises . 290

7.10 Hidden Markov Model . 291

7.10.1 Example Problem . 292

7.10.2 Forward Algorithm . 293

7.10.3 Backward Algorithm . 294

7.10.4 Viterbi Algorithm . 294

7.10.5 Training . 295

7.10.6 Reestimation of Parameters . 295

7.10.7 HiddenMarkov Class . 296

7.10.8 Exercises . 296

7.11 Further Reading . 297

8 Classification: Continuous Variables 299

8.1 Gaussian Näıve Bayes . 300

8.1.1 NaiveBayesR Class . 301

8.1.2 Exercises . 301

8.2 Simple Logistic Regression . 303

8.2.1 mtcars Example . 303

8.2.2 Logistic Function . 303

8.2.3 Logit Function . 303

8.2.4 Maximum Likelihood Estimation . 304

8.2.5 Likelihood Function . 304

8.2.6 Log-likelihood Function . 305

8.2.7 Computation in ScalaTion . 305

8.2.8 Making a Decision . 306

8.2.9 SimpleLogisticRegression Class . 306

8.2.10 Exercises . 307

8.3 Logistic Regression . 309

8.3.1 LogisticRegression Class . 310

8.3.2 Exercises . 310

8.4 Simple Linear Discriminant Analysis . 311

8.4.1 SimpleLDA Class . 313

8.4.2 Exercises . 313

8.5 Linear Discriminant Analysis . 314

8.5.1 LDA Class . 314

8.5.2 Exercises . 315

8.6 K-Nearest Neighbors Classifier . 316

8.6.1 Lazy Learning . 316

8.6.2 KNN Classifier Class . 316

8.6.3 Exercises . 317

8.7 Decision Tree C45 . 318

8.7.1 Example Problem . 318

16

8.7.2 DecisionTree C45 Class . 319

8.7.3 Pruning . 320

8.7.4 DecisionTree C45wp Class . 320

8.7.5 Exercises . 320

8.8 Bagging Trees . 322

8.8.1 Creating Subsample . 322

8.8.2 Training . 322

8.8.3 Hyper-parameters . 323

8.8.4 BaggingTrees Class . 323

8.9 Random Forest . 324

8.9.1 Extracting Sub-features . 324

8.9.2 Training . 324

8.9.3 RandomForest Class . 325

8.9.4 Exercises . 325

8.10 Support Vector Machine . 326

8.10.1 Separating Hyperplane . 326

8.10.2 Optimization Problem . 328

8.10.3 Running the Example Problem . 329

8.10.4 SupportVectorMachine Class . 329

8.10.5 Exercises . 330

8.11 Neural Network Classifiers . 331

8.11.1 Model Equation . 331

8.11.2 Training Equation . 331

8.11.3 Prediction Equation . 332

8.11.4 Optimization . 332

8.11.5 NeuralNet Class 3L Class . 333

8.11.6 Exercises . 333

9 Generalized Linear Models and Regression Trees 335

9.1 Generalized Linear Model . 335

9.2 Maximum Likelihood Estimation . 338

9.2.1 Akaike Information Criterion . 339

9.2.2 MLE for Generalized Linear Models . 339

9.3 Poisson Regression . 341

9.3.1 PoissonRegression Class . 342

9.4 Regression Trees . 343

9.4.1 Example Problem . 343

9.4.2 Regions . 344

9.4.3 Determining Thresholds . 345

9.4.4 RegressionTree Class . 345

9.5 Linear Model Trees . 347

9.5.1 Splitting . 347

9.5.2 Pruning . 347

9.5.3 Smoothing . 347

17

9.5.4 RegressionTreeMT class . 347

9.6 Random Forest Regression . 348

9.6.1 RegressionTreeRF Class . 348

9.7 Gradient Boosting Regression . 349

9.7.1 RegressionTreeGB Class . 349

9.8 Exercises . 350

9.9 Further Reading . 351

10 Nonlinear Models and Neural Networks 353

10.1 Nonlinear Regression . 354

10.1.1 Model Equation . 354

10.1.2 Training . 354

10.1.3 Optimization . 356

10.1.4 Use of the Chain Rule . 358

10.1.5 NonlinearRegression Class . 359

10.1.6 Exercises . 359

10.2 Simple Exponential Regression . 362

10.2.1 Model Equation . 362

10.2.2 Training . 362

10.2.3 Optimization . 362

10.2.4 Linearization . 364

10.2.5 Exercises . 364

10.3 Exponential Regression . 366

10.3.1 ExpRegression Class . 366

10.3.2 Exercises . 367

10.4 Perceptron . 369

10.4.1 Model Equation . 369

10.4.2 Ridge Functions . 370

10.4.3 Training . 370

10.4.4 Optimization . 371

10.4.5 Example Calculation for ε and δ . 374

10.4.6 Initializing Weights/Parameters . 376

10.4.7 Activation Functions . 377

10.4.8 Basic Gradient Descent Algorithm . 378

10.4.9 Perceptron Class . 382

10.4.10 Exercises . 383

10.5 Multi-Output Prediction . 386

10.5.1 Model Equation . 386

10.5.2 Training . 386

10.5.3 PredictorMV Trait . 387

10.5.4 RegressionMV Class . 388

10.5.5 Optimizer Object and Trait . 388

10.5.6 NetParam Class . 389

10.6 Two-Layer Neural Networks . 391

18

10.6.1 Model Equation . 391

10.6.2 Training . 392

10.6.3 Optimization . 392

10.6.4 Matrix Version . 393

10.6.5 NeuralNet 2L Class . 395

10.6.6 NeuralNet 2L Object . 396

10.6.7 Exercises . 397

10.7 Three-Layer Neural Networks . 398

10.7.1 Model Equation . 398

10.7.2 Ridge Functions . 399

10.7.3 Training . 401

10.7.4 Optimization . 401

10.7.5 Matrix Version . 403

10.7.6 train Method . 405

10.7.7 Stochastic Gradient Descent Algorithm . 405

10.7.8 Example Error Calculation Problem . 407

10.7.9 Response Surface . 408

10.7.10NeuralNet 3L Class . 408

10.7.11 Exercises . 409

10.8 Multi-Hidden Layer Neural Networks . 411

10.8.1 Model Equation . 411

10.8.2 Training . 412

10.8.3 Optimization . 412

10.8.4 Number of Nodes in Hidden Layers . 413

10.8.5 Avoidance of Overfitting . 413

10.8.6 Deep Learning . 414

10.8.7 NeuralNet XL Class . 414

10.8.8 Exercises . 415

10.9 Convolutional Neural Networks . 417

10.101D CNN . 418

10.10.1 Model Equation . 419

10.10.2 Training . 420

10.10.3 Optimization . 420

10.10.4 Matrix Version . 421

10.10.5 Gradient Descent Algorithm . 422

10.10.6 Example Error Calculation Problem . 423

10.10.7 Two Convolutional Filters . 423

10.10.8CNN 1D Class . 425

10.10.9 Exercises . 426

10.112D CNN . 427

10.11.1 Filtering Operation . 427

10.11.2 Pooling Operation . 429

10.11.3 Flattening Operation . 429

19

10.11.4 Model Equation . 430

10.11.5 Training . 430

10.11.6 Optimization . 430

10.11.7 Exercises . 430

10.12Transfer Learning . 432

10.12.1 Definition of Transfer Learning . 432

10.12.2 Type of Transfer Learning . 433

10.12.3NeuralNet XLT Class . 434

10.12.4 Exercises . 435

10.13Extreme Learning Machines . 436

10.13.1 Model Equation . 436

10.13.2 Training . 436

10.13.3 Optimization . 436

10.13.4ELM 3L1 Class . 437

10.13.5 Exercises . 437

11 Time Series/Temporal Models 439

11.1 Forecaster . 441

11.1.1 Stats4TS Case Class . 442

11.1.2 Auto-Correlation Function . 443

11.1.3 Correlogram . 444

11.1.4 Quality of Fit (QoF) for Time Series Data . 444

11.2 Baseline Models: Random Walk, Null and Trend Models . 446

11.2.1 Random Walk Model . 446

11.2.2 White Noise . 446

11.2.3 Detecting Random Walks . 446

11.2.4 RandomWalk Class . 447

11.2.5 Null Model . 447

11.2.6 NullModel Class . 447

11.2.7 Trend Model . 448

11.2.8 TrendModel Class . 448

11.2.9 Forecasting Lake Levels - Battle of the Baselines . 448

11.2.10 Exercises . 452

11.3 Simple Exponential Smoothing . 454

11.3.1 Model Equation . 454

11.3.2 Training . 454

11.3.3 Effect of the Smoothing Parameter . 455

11.3.4 SimpleExpSmoothing Class . 455

11.3.5 Exercises . 456

11.4 Auto-Regressive (AR) Models . 458

11.4.1 AR(1) Model . 459

11.4.2 AR(p) Model . 460

11.4.3 Training . 462

11.4.4 Forecasting . 463

20

11.4.5 AR Class . 465

11.4.6 Exercises . 465

11.5 Moving-Average (MA) Models . 469

11.5.1 MA(q) Model . 470

11.5.2 Training . 471

11.5.3 Exercises . 472

11.6 Auto-Regressive, Moving Average (ARMA) Models . 473

11.6.1 Selection Based on ACF and PACF . 473

11.6.2 Training . 474

11.6.3 ARMA Class . 475

11.6.4 Exercises . 476

11.7 Rolling-Validation . 477

11.7.1 1-Fold Rolling-Validation . 477

11.7.2 Rolling Validation and the Forecasting Matrix . 478

11.7.3 Exercises . 484

11.8 ARIMA (Integrated) Models . 486

11.8.1 Differencing . 486

11.8.2 Forecasting . 487

11.8.3 Backshift Operator . 487

11.8.4 Stationarity Process . 488

11.8.5 ARIMA Class . 490

11.8.6 Exercises . 491

11.9 SARIMA (Seasonal) Models . 492

11.9.1 Determination of the Seasonal Period . 492

11.9.2 Seasonal Differencing . 492

11.9.3 Seasonal AR and MA Terms . 492

11.9.4 Case Study: COVID-19 . 493

11.9.5 SARIMA Class . 493

11.9.6 Exercises . 494

11.10Further Reading . 495

12 Multivariate and Nonlinear Time Series 497

12.1 Auto-Regressive with eXogenous variables (ARX) Models . 498

12.1.1 The ARX(p) Model . 498

12.1.2 The ARX(p, [a, b]) Model . 498

12.1.3 The ARX(p, n, [a, b]) Model . 498

12.1.4 Determining the Exogenous Lag Interval [a, b] . 499

12.1.5 Time Series Regression . 499

12.1.6 ARXA(p, n, k) Model . 499

12.1.7 ARXA MV Model . 500

12.1.8 ARX Class . 500

12.1.9 ARX MV Object . 501

12.1.10 Exercises . 501

12.2 SARIMAX Models . 503

21

12.2.1 Model Equations . 503

12.2.2 SARIMAX Object . 504

12.2.3 Exercises . 504

12.3 Vector Auto-Regressive (VAR) Models . 505

12.3.1 VAR(p, 2) . 505

12.3.2 VAR(p, n) . 506

12.3.3 Training . 506

12.3.4 VAR Object . 506

12.3.5 AR∗(p, n) . 507

12.3.6 Exercises . 507

12.4 Nonlinear Time Series Models . 509

12.4.1 Nonlinear Autoregressive (NAR) . 509

12.4.2 Autoregressive Neural Network (ARNN) . 509

12.4.3 Nonlinear Autoregressive, Moving-Average (NARMA) 509

12.5 Recurrent Neural Networks (RNN) . 510

12.5.1 RNN(1, 1) . 510

12.5.2 RNN(p, nh) . 511

12.5.3 RNN(p, nh, nv) . 513

12.5.4 Training . 513

12.5.5 Optimization . 514

12.5.6 Exercises . 515

12.6 Gated Recurrent Unit (GRU) Networks . 516

12.6.1 A GRU Layer . 518

12.6.2 Training . 519

12.6.3 Optimization . 520

12.6.4 Exercises . 523

12.7 Minimal Gated Unit (MGU) Networks . 525

12.8 Long Short Term Memory (LSTM) Networks . 527

12.8.1 Exercises . 529

12.9 Encoder-Decoder Architectures . 530

12.9.1 Simple Encoder-Decoder Consisting of Two GRU Cells 530

12.9.2 Teacher Forcing . 531

12.9.3 Attention Mechanisms . 531

12.9.4 Exercises . 532

12.10Transformer Models . 533

12.10.1 Self-Attention . 533

12.10.2 Positional Encoding . 535

12.10.3 Encoder-Decoder Architecture for Transformers . 536

12.10.4 Exercises . 537

12.10.5 Further Reading . 538

22

13 Dimensionality Reduction 539

13.1 Reducer . 540

13.2 Principal Component Analysis (PCA) . 541

13.2.1 Representation . 541

13.2.2 Exercises . 542

13.3 Autoencoder (AE) . 543

13.3.1 Representation . 543

13.3.2 Denoising Autoencoder (DEA) . 543

14 Clustering 545

14.1 KNN Regression . 547

14.1.1 KNN Regression Class . 547

14.1.2 Exercises . 548

14.2 Clusterer . 549

14.3 K-Means Clustering . 551

14.3.1 Initial Assignment . 551

14.3.2 Reassignment of Points to Closest Clusters . 552

14.3.3 Training . 552

14.3.4 KMeansClusterer Class . 553

14.3.5 Exercises . 554

14.4 K-Means Clustering - Hartigan-Wong . 556

14.4.1 Adjusted Distance . 557

14.4.2 KMeansClusteringHW Class . 557

14.4.3 Exercises . 557

14.5 K-Means++ Clustering . 558

14.5.1 Picking Initial Centroids . 558

14.5.2 KMeansClustererPP Class . 559

14.5.3 Exercises . 559

14.6 Clustering Predictor . 560

14.6.1 Training . 560

14.6.2 ClusteringPredictor Class . 560

14.6.3 Exercises . 561

14.7 Hierarchical Clustering . 562

14.7.1 HierClusterer Class . 562

14.7.2 Exercises . 563

14.8 Markov Clustering . 564

14.8.1 MarkovClusterer Class . 564

14.8.2 Exercises . 564

III Simulation 567

15 Simulation Foundations 569

15.1 Basic Concepts . 571

23

15.2 Types of Models . 572

15.2.1 Example: Modeling an M/M/1 Queue . 572

15.3 Random Number Generation . 573

15.3.1 Example RNG: Random0 . 573

15.3.2 Testing Random Number Generators . 574

15.3.3 Example RNG: Random3 . 575

15.3.4 Exercises . 575

15.4 Random Variate Generation . 577

15.4.1 Inverse Transform Method . 577

15.4.2 Convolution Method . 579

15.4.3 Acceptance-Rejection Method . 580

15.4.4 Exercises . 580

15.5 Poisson Process . 582

15.5.1 Generating a Poisson Process . 583

15.5.2 Generating a Non-Homogeneous Poisson Process . 585

15.5.3 Exercises . 585

15.6 Monte Carlo Simulation . 587

15.6.1 Simulation of Card Games . 587

15.6.2 Integral of a Complex Function . 588

15.6.3 Grain Dropping Experiment . 590

15.6.4 Simulation of the Monty Hall Problem . 591

15.6.5 Exercises . 591

15.7 Hand Simulation . 594

15.7.1 Little’s Law . 595

15.7.2 Event Times . 596

15.7.3 Spreadsheet Simulation . 597

15.7.4 Exercises . 597

15.8 Tableau-Oriented Simulation . 599

15.8.1 Iterating through Tableau Equations . 599

15.8.2 Reproducing the Hand Simulation . 600

15.8.3 Customized Logic/Equations . 600

15.8.4 Tableau.scala . 601

15.8.5 Exercises . 602

16 State Space Models 603

16.1 Example: Trajectory of a Ball in One-Dimensional Space . 604

16.1.1 Ordinary Differential Equations . 604

16.1.2 Discretization . 605

16.1.3 Trajectory Simulation . 605

16.1.4 Exercises . 606

16.2 Markov Chains . 607

16.2.1 Probability Mass Function . 608

16.2.2 Reducible Markov Chains . 609

16.2.3 Limiting/Steady-State Distribution . 609

24

16.2.4 MarkovChain Class . 612

16.2.5 Continuous-Time Markov Chains . 612

16.2.6 Limiting/Steady-State Distribution . 613

16.2.7 MarkovChainCT Class . 614

16.2.8 Queueing Models . 614

16.2.9 MMc Queue Class . 616

16.2.10MMcK Queue Class . 616

16.2.11 Exercises . 617

16.3 Dynamic Linear Models . 620

16.3.1 Example: Traffic Sensor . 621

16.3.2 Exercises . 622

16.4 Kalman Filter . 623

16.4.1 Example: Golf Ball Trajectory . 623

16.4.2 Training . 625

16.4.3 Exercises . 626

16.5 Extended Kalman Filter . 627

16.5.1 Training . 627

16.5.2 Example: SEIHRD Model . 628

16.5.3 Exercises . 633

16.6 ODE Parameter Estimation . 638

17 Event-Oriented Models 639

17.1 A Taxonomy/Ontology for Simulation Modeling . 639

17.2 List Processing . 642

17.2.1 FCFS Queue . 642

17.2.2 LCFS Queue . 643

17.2.3 Priority Queue . 643

17.2.4 Time Advance Mechanism . 643

17.3 Event Scheduling . 645

17.3.1 Event Class . 645

17.3.2 Example: Bank Model . 647

17.3.3 Example: Call Center Model . 653

17.3.4 Entity Class . 654

17.3.5 WaitQueue Class . 655

17.3.6 WaitQueue LCFS Class . 656

17.3.7 Model Class . 656

17.3.8 Example: Machine Shop Model . 657

17.4 Event Graphs . 660

17.4.1 Example: Bank Model . 660

17.4.2 EventNode Class . 663

17.4.3 CausalLink Class . 663

17.5 Exercises . 664

25

18 Process-Oriented Models 667

18.1 Base Traits and Classes for Process-Oriented Models . 668

18.1.1 Identifiable Trait . 668

18.1.2 Locatable Trait . 668

18.1.3 Modelable Trait . 668

18.1.4 Temporal Trait . 668

18.2 Concurrent Processing of Actors . 669

18.2.1 Java’s Thread Class . 669

18.2.2 ScalaTion’s Coroutine Class . 670

18.3 Process Interaction . 672

18.3.1 Model Template . 673

18.3.2 Component Trait . 674

18.3.3 Example: BankModel . 674

18.3.4 Executing the Bank Model . 677

18.3.5 Network Diagram . 677

18.3.6 Comparison to Event Scheduling . 677

18.3.7 SimActor Class . 678

18.3.8 Source Class . 679

18.3.9 Sink Class . 680

18.3.10 Transport Class . 681

18.3.11 Resource Class . 681

18.3.12 WaitQueue Class . 682

18.3.13 WaitQueue LCFS Class . 683

18.3.14 Junction Class . 683

18.3.15 Gate Class . 684

18.3.16 Route Class . 685

18.3.17 Model Class . 685

18.3.18 Vehicle Traffic Model . 687

18.3.19 Model MBM Class . 690

18.3.20 Exercises . 690

18.4 Agent-Based Simulation . 693

18.4.1 SimAgent . 694

18.4.2 Vertices . 695

18.4.3 Edges . 695

18.4.4 Bank Model . 696

18.4.5 Vehicle Traffic Model . 697

18.4.6 Hybrid Models . 698

18.4.7 Exercises . 698

18.5 Animation . 700

18.5.1 2D Animation . 700

18.5.2 3D Animation . 703

18.5.3 Exercises . 703

26

19 Simulation Output Analysis 705

19.1 Point and Interval Estimates . 705

19.2 One-Shot Simulation . 707

19.3 Simulation Model Validation . 708

19.3.1 Model Calibration . 709

19.3.2 Model Verification . 710

19.4 Method of Independent Replications (MIR) . 711

19.4.1 Confidence Intervals . 712

19.4.2 Example: MIR Version of BankModel . 713

19.5 Method of Batch Means (MBM) . 715

19.5.1 Effect of Increasing the Number of Batches . 715

19.5.2 Effect on Batch Correlation of Increasing the Batch Size 716

19.5.3 MBM versus MIR . 716

19.5.4 Relative Precision . 717

19.5.5 Example: MBM Version of BankModel . 717

19.6 Exercises . 720

Appendices 721

A Optimization in Data Science 723

A.1 Partial Derivatives and Gradients . 724

A.1.1 Basic Rules . 724

A.1.2 Chain Rules . 724

A.1.3 Gradient . 725

A.1.4 Generalized Chain Rules . 725

A.1.5 calculus Package . 726

A.2 Automatic Differentiation . 728

A.2.1 Forward Propagation . 728

A.2.2 Reverse Mode Backward Propagation . 728

A.2.3 Example Calculation for Perceptron . 729

A.2.4 Example for Three-Layer Neural Network . 731

A.2.5 Partial Derivatives w.r.t. B . 731

A.2.6 Partial Derivatives w.r.t. A . 732

A.3 Gradient Descent . 734

A.3.1 Line Search . 734

A.3.2 Application to Data Science . 736

A.3.3 Exercises . 736

A.4 Stochastic Gradient Descent . 737

A.4.1 Using SGD to Train Neural Networks . 738

A.5 Stochastic Gradient Descent with Momentum . 740

A.5.1 Using SGDM to Train Neural Networks . 741

A.5.2 Exercises . 743

A.6 SGD with ADAptive Moment Estimation . 744

A.6.1 Exercises . 745

27

A.7 Coordinate Descent . 746

A.8 Conjugate Gradient . 748

A.8.1 Exercises . 749

A.9 Quasi-Newton Methods . 750

A.9.1 Newton-Raphson Method . 750

A.9.2 Newton Method . 750

A.9.3 BFGS Method . 751

A.9.4 Limited Memory-BFGS Method . 752

A.9.5 Summary . 753

A.9.6 Exercises . 754

A.10 Method of Lagrange Multipliers . 755

A.10.1 Example Problem . 755

A.11 Karush-Kuhn-Tucker Conditions . 757

A.11.1 Active and Inactive Constraints . 757

A.12 Quadratic Programming . 758

A.13 Augmented Lagrangian Method . 760

A.13.1 Example Problem . 760

A.13.2 Exercises . 761

A.14 Alternating Direction Method of Multipliers . 762

A.14.1 Example Problem . 763

A.14.2 LassoAddm Object . 763

A.14.3 Exercises . 763

A.15 Nelder-Mead Simplex . 765

A.15.1 NelderMeadSimplex Class . 766

A.15.2 Exercises . 766

B Graph Databases and Analytics 767

B.1 Directed Graphs . 769

B.1.1 Adding Vertex Labels . 770

B.1.2 Adding Edge Labels . 771

B.1.3 Directed Multi-Graphs . 773

B.1.4 Exercises . 775

B.2 A Graph Database with Relational Roots . 776

B.2.1 The GTable Class . 776

B.2.2 Creating Graph Databases . 777

B.2.3 Graph Algebra . 777

B.2.4 Exercises . 778

B.3 Property Graphs . 779

B.3.1 Structure of a Property Graph . 779

B.3.2 Native Storage . 784

B.3.3 High-Level Query Language for Graph Databases . 786

B.3.4 Graph Algebra . 788

B.3.5 Query Processing in Graph Databases . 791

B.4 Special Types of Graph Databases . 792

28

B.4.1 Embedding Relationships in Vertex-Types . 792

B.4.2 Resource Description Framework (RDF) Graphs . 793

B.4.3 From Relational to Graph Databases . 794

B.5 Knowledge Graphs . 795

B.5.1 Type Hierarchies . 795

B.5.2 Constraints and Rules . 796

B.5.3 KGTable . 797

B.6 Exercises - Part I . 799

B.7 Graph Data Science . 801

B.7.1 Path Finding . 801

B.7.2 Centrality and Importance . 801

B.7.3 Community Detection . 801

B.8 Graph Pattern Matching . 802

B.8.1 Graph Simulation . 802

B.8.2 Subgraph Isomorphism . 803

B.8.3 Graph Homomorphism . 803

B.8.4 Application to Query Processing in Graph Databases 803

B.9 Graph Representation Learning . 804

B.9.1 Matrix Representations . 804

B.9.2 Graph Embeddings . 805

B.10 Graph Neural Networks . 806

B.10.1 AGGREGATE and COMBINE Operations . 807

B.11 Exercises - Part II . 808

29

30

Preface

Applied Mathematics accelerated starting with the differential equations of Euler’s analytical mechanics

published in early 1700s [45, 117]. Over time increasingly accurate mathematical models of natural phenomena

were developed. The models are scrutinized by how well they match empirical data and related models.

Theories were developed that featured a collection of consistent, related models. In his theory of Universal

Gravity [132], Newton argues the sufficiency of this approach, while others seek to understand the underlying

substructures and causal mechanisms [117].

Data Science can trace its linage back to Applied Mathematics. One way to represent a mathematical

model is as a function f : Rn → R.

y = f(x,b) + ε

This illustrates that a response variable y is functionally related to other predictive variables x (vector in

bold font). Uncertainty in the relationship is modeled as a random variable ε (blue font) that follows some

probability distribution.

Making useful predictions or even inferences that one product lasts longer than another product are

clouded by this uncertainty. DeMoivre developed a limiting distribution for the Binomial Distribution.

Laplace derived a central limit theorem that showed that the sample means from several distributions follow

this same distribution. Gauss [180] studied this uncertainty and deduced a distribution for measurement

errors from basic principles. This distribution is now known as the Gaussian or Normal distribution. Infer-

ences such as which of two products has the longer expected lifetimes can now be made to a certain level of

confidence. Gauss also developed the method of least squares estimation.

Momentum in using probability distributions to analyze data, fit parameters and make inferences under

uncertainty lead to mathematical statistics emerging from applied mathematics in the late 1800s. In par-

ticular, Galton and Pearson collected and transformed statistical techniques into a mathematical discipline

(e.g., Pearson correlation coefficient, method of moments estimation, p-value, Chi-square test, statistical

hypothesis testing, principal component analysis). In the early 1900s, Gosset and Fisher expanded mathe-

matical statistics (e.g., analysis of variance, design of experiments, maximum likelihood estimation, Student’s

t-distribution, F-distribution).

With the increasing capabilities of computers, the amount of data available for training models grew

rapidly. This lead Computer Scientists into the fray with machine learning coined in 1959 and data mining

beginning in the late 1980s. Machine Learning developed slowly over the decades until the invention of the

back-propagation algorithm for neural networks in the mid 1980s lead to important advances. Data Mining

billed itself as finding patterns in data. Databases are often utilized and data preprocessing is featured in

the sense that mining through large amounts of data should be done with care.

31

With greater computing capabilities and larger amounts of data, statistics and machine learning are

leaning toward each other: The emphasis is to develop of accurate, interpretable and explainable models

for prediction, classification and forecasting. Data may also be clustered and simulation models that mimic

phenomena or systems may be created. Training a model is typically done using an optimization algorithm

(e.g., gradient descent) to minimize the errors in the model’s predictions. These constitute the elements of

data science.

This book is an introduction to data science that includes mathematical and computational foundations.

It is divided into three parts: (I) Foundations, (II) Modeling, and (III) Simulation. A review of Optimization

from the point of view of data science is included in the Appendix. The level of the book is College Junior

through beginning Graduate Student. The ideal mathematical background includes Differential, Integral and

Vector Calculus, Applied Linear Algebra, Probability and Mathematical Statistics. The following advanced

topics may be found useful for Data Science: Differential Equations, Nonlinear Optimization, Measure

Theory, Functional Analysis and Differential Geometry. Data Science also involves Computer Programming,

Database Management, Data Structures and Algorithms. Advanced topics include Parallel Processing,

Distributed Systems and Big Data frameworks (e.g., Hadoop and Spark). This book has been used in the

Data Science I and Data Science II courses at the University of Georgia.

32

Chapter 1

Introduction to Data Science

1.1 Data Science

The field of Data Science can be defined in many ways. To its left is Machine Learning that emphasizes

algorithms for learning, while to its right is Statistics that focuses on procedures for estimating parame-

ters of models and determining statistical properties of those parameters. Both fields develop models to

describe/predict reality based on one or more datasets. Statistics has a greater interest in making inferences

or testing hypotheses based upon datasets. It also has a greater interest in fitting probability distributions

(e.g., are the residuals normally or exponentially distributed).

The common thread is modeling. A model should be able to make predictions (where is the hurricane

likely to make landfall, when will the next recession occur, etc.). In addition, it may be desirable for a model

to enhance the understanding of the system under study and to address what-if type questions (perspective

analytics), e.g., how will traffic flow improve/degrade if a light-controlled intersection is replaced with a

round-about.

A model may be viewed as replacement for a real system, phenomena to process. A model will map inputs

into outputs with the goal being that for a given input, the model will produce output that approximates

the output that the real system would produce. In addition to inputs and outputs, some models include

state information. For example, the output of a heat pump will depend if it is in the heating or cooling

state (internally this determines the direction of flow of the refrigerant). Further, some types of models are

intended to mimic the behavior of the actual system and facilitate believable animation. Examples of such

models are simulation models. They support prescriptive analytics which enables changes to a system to

tested on the model, before the often costly changes to the actual system are under taken.

Broad categories of modeling are dependent of the type output (also called response) of the model. When

the response is treated as a continuous variable, a predictive model (e.g., regression) is used. If the goal

is to forecast into the future (or there is dependency among the response values), a forecasting model

(e.g., ARIMA) is used. When the response is treated as a categorical variable, a classification model (e.g.,

support vector machine) is used. When the response values are largely missing, a clustering model may be

used. Finally, when values are missing from a data matrix, an imputation model (k-nearest neighbors) or

recommendation model (e.g., low-rank approximation using singular value decomposition) may be used.

Dimensionality reduction (e.g., principal component analysis) can be useful across categories.

Computational Data Science puts more emphasis on computational issues, such as optimization algo-

33

rithms for used for learning. Mathematical derivations are provided for the loss functions that are used

to train the models. Short Scala code snippets are provided to illustrate how the algorithms work. The

Scala object-oriented, functional language allows the creation of coincide code that looks very much like the

mathematical expressions. Modeling based on ordinary differential equations and simulation models are also

provided.

The prerequisite material for data science includes Vector Calculus, Applied Linear Algebra and Calculus-

based Probability and Statistics. Datasets can be stored as vectors and matrices, learning/parameter esti-

mation often involves taking gradients, and probability and statistics are needed to handle uncertainty.

34

1.2 ScalaTion

ScalaTion supports multi-paradigm modeling that can be used for simulation, optimization and analytics.

In ScalaTion, the modeling package provides tools for performing data analytics. Datasets are becom-

ing so large that statistical analysis or machine learning software should utilize parallel and/or distributed

processing. Databases are also scaling up to handle greater amounts of data, while at the same time increas-

ing their analytics capabilities beyond the traditional On-Line Analytic Processing (OLAP). ScalaTion

provides many analytics techniques found in tools like MATLAB, R and Weka. The analytics component

contains six types of tools: predictors, classifiers, forecasters, clusterers, recommenders and reduc-

ers. A trait is defined for each type.

To use ScalaTion, go to the Website http://www.cs.uga.edu/~jam/scalation.html and click on the

most recent version of ScalaTion and follow the first three steps: download, unzip, build.

Current projects are targeting Big Data Analytics in four ways: (i) use of sparse matrices, (ii) parallel

implementations using Scala’s support for parallelism (e.g., .par methods, parallel collections and actors),

(iii) distributed implementations using Akka, and (iv) high performance data stores including columnar

databases (e.g., Vertica), document databases (e.g., MongoDB), graph databases (e.g., Neo4j) and distributed

file systems (e.g., HDFS).

1.2.1 Package Structure

The package structure of ScalaTion is devided in four modules. Each modules can be independently com-

piled (e.g., package directories can be made removed or made inaccessible using the chmod 000 command).

The core module of ScalaTion consists of the following packages:

1. scalation - general utilities for the rest of ScalaTion packages.

2. mathstat - vectors, matrices, tensors and basic statistics

3. random - random number and random variate generators

4. scala2d - basic UI widgets and 2D graphics

The intermediate module of ScalaTion consists of the following packages:

1. animation - general purpose animation code

2. database - basic implementations for relational and graph databases

The modeling module of ScalaTion consists of the following packages:

1. calculus - derivatives, gradients, Jacobians, Hessians and integrals

2. modeling - regression models with sub-packages for classification, clustering, neural networks, and time

series

3. optimization - derivative-free, first-order, and second-order optimizers

The simulation module of ScalaTion consists of the following packages:

1. dynamics - differential equations: ODE and PDE solvers

35

http://www.cs.uga.edu/~jam/scalation.html

2. simulation - multiple simulation engines

The scala3d package is under development.

1.2.2 Scala 3 Control Structures

This section gives the Scala 3 control structures along with their Python equivalents:

• if

1 if x < y then if x < y:

2 x += 1 x += 1

3 else if x > y then elsif x > y:

4 y += 1 y += 1

5 else else:

6 x += 1 x += 1

7 y += 1 y += 1

8 end if

The else and end are optional, as are the line breaks. Note, the x += 1 shortcut simply means x =

x + 1 for both languages.

• match

1 z = c match match c:

2 case ’+’ => x + y case ’+’:

3 z = x + y

4 case ’-’ => x - y case ’-’:

5 z = x - y

6 case ’*’ => x * y case ’*’:

7 z = x * y

8 case ’/’ => x / y case ’/’:

9 z = x / y

10 case _ => println ("not supported") case -:

11 print ("not supported")

In Scala 3, the case may be indented like Python. Also an end may be added.

• while

1 while x <= y do while x <= y:

2 x += 0.5 x += 0.6

3 end while

The end is optional, as are the line breaks.

• for

1 for i <- 0 until 10 do for i in range (0, 10):

2 a(i) = 0.5 * i~ˆ2 a[i] = 0.5 * i**2

3 end for

The end is optional, as are the line breaks. Note: for i <- 0 to 10 do will include 10, while until

will stop at 9. Both Scala and Python support other variaties of for. The for-yield collects all the

computed values into a.

36

1 val a = for i <- 0 until 10 yield 0.5 * i~ˆ2

• cfor

1 var i = 0

2 cfor (i < 10, i += 1) {

3 a(i) = 0.5 * i~ˆ2

4 } // cfor

This for follows more of a C-style, provides improved efficiency and allows returns inside the loop. It

is defined as follows:

1 inline def cfor (pred: => Boolean , step: => Unit) (body: => Unit): Unit =

2 while pred do { body; step }

3 end cfor

• try

1 try try:

2 file = new File ("myfile.csv") x = 1 / 0

3 catch except ZeroDivisionError:

4 case ex: FileNotFound => println ("not found") print ("division by zero")

5 end try

The end is optional and a finally clause is available. Both support a finally clause and Python

provides a shortcut with statement that comes in handy for opening files and automatically closing

them at the statement’s end of scope.

• assign with if

1 val y = if x < 1 then sqrt (x) else x~ˆ2 y = sqrt (x) if x < 1 else x**2

All Scala control structures return values and so can be used in assignment statements. Note, prefix

sqrt with math for Python.

Note, the end tags are optional since Scala 3 uses significant indentation like Python.

1.2.3 Scala 3 Top-Level Functions

Both Scala 3 and Python support top level functions as well as methods inside classes. Here are functions

to compute the length of the hypotenuse of a right triangle with lengths a and b.

1 import scala.math.sqrt

2

3 def hypotenuse (a: Double , b: Double): Double =

4 sqrt (a ~ˆ 2 + b ~ˆ 2)

Optionally, an end hypotenuse may be added and is often useful for functions which include several lines

of code. The Python code below is very similar, with the exception of the exponentiation operator ~^ for

ScalaTion and ** in Python. Outside of Scalation import scalation.~^. Both Double in Scala and

float in Python indicate 64-bit floating point numbers.

37

1 import math

2

3 def hypotenuse (a: float , b: float) -> float =

4 math.sqrt (a ** 2 + b ** 2)

The dot product operator on vectors is used extensively in data science. It multiplies all the elements

in the two vectors and then sums the products. An implementation in ScalaTion is given followed by a

similar implementation in Python that includes type annotations for improved readability and type checking.

1 import scalation.mathstat.VectorD

2

3 def dot (x: VectorD , y: VectorD): Double =

4 (x * y).sum

1 import numpy as np

2

3 def dot (x: np.ndarray , y: np.ndarray) -> float:

4 return float (np.sum (x * y))

Note, see the Chapter on Linear Algebra for more efficient implementations of dot product. Also, both

numpy.ndarray and VectorD directly provide dot product.

1 val z = x dot y

1 z = x.dot (y)

In cases where the arguments are 2D arrays, np.dot is the same as matrix multiplication (x @ y) and for

scalars it is simple multiplication (x * y). ScalaTion supports several forms of multiplication for both

vectors and matrices (see the Linear Algebra Chapter).

Executable Top-Level Functions

Executable top-level functions can also be defined in similar ways in both Scala 3 and Python.

1 @main def hello (): Unit =

2 val message = "Hello Data Science"

3 println (s"message = $message")

1 def main () -> None:

2 message = "Hello Data Science"

3 print ("message = ", message)

1.2.4 Classes

Defining a class is a good way to combine a data structure with its natural operations. The class will

consists of fields/attributes for maintaining data and methods for retrieving and updating the data.

An example of a class in Scala 3 is the Complex class that supports complex number (e.g., 2.1 + 3.2i)

and operations on complex numbers such as the + method. Of course, the actual implementation provides

many methods (see scalation.mathstat.Complex).

1 @param re the real part (e.g., 2.1)

2 @param im the imaginary part (e.g., 3.2)

3

4 class Complex (re: Double , im: Double = 0.0)

38

5 extends Fractional [Complex] with Ordered [Complex]:

6

7 def + (c: Complex): Complex = Complex (re + c.re, im + c.im)

Notice that second argument im provides a default value of 0.0, so the class can be instantiated using either

one or two arguments/parameters.

1 val c1 = new Complex (2.1, 3.2)

2 var c2 = new Complex (2.0)

Also observe that first variable cannot be reassigned as it is declared val, while the second variable c2 can be

as it is declared var. Finally, notice that the Complex class extends both Fractional and Ordered. These

are traits that the class Complex inherits. Some of the functionality (e.g., method implementations) can be

provided by the trait itself. The class must implement those that are not implemented or override the ones

with implementations to customize their behavior, if need be. Classes can extend several traits (multiple

inheritance), but may only extend one class (single inheritance).

Although Python already has a class called Complex, one could image coding one as follows:

1 class Complex:

2 def __init__ (self , re: float , im: float = 0.0):

3 self.re = re

4 self.im = im

5

6 def __add__ (self , c: Complex) -> Complex:

7 return Complex (self.re + c.re , self.im + c.im)

Notice there are few differences: The constructor for Scala is any code at the top level of the class and

arguments to the constructor are given in the class definition, while Python has an explicit constructor

called init . Scala has an implicit reference to the instance object called this, while Python has an

explicit reference to the instance object called self. Furthermore, naming the method add makes it so

+ can be used to add two complex numbers. Another difference (not shown here) is that fields/attributes

as well as methods in Scala can be made internal using the private access modifier. In Python, a code

convention of having the first character of an identifier be underscore () indicates that it should not be used

externally.

1.2.5 Basic Types

The basic data-types in Scala are integer types: Byte (8 bits), Short (16), Int (32) and Long (64), floating

point types: Float (32) and Double (64), character types: Char (single quotes) and String (double quotes),

and Boolean.

Corresponding Python data types are integer types: int (unlimited), floating point types: float32 (32)

and float (64), complex (128), character types: str (single or double quotes), and bool.

There are many operators that can be applied to these data-types, see https://docs.scala-lang.

org/tour/operators.html for the precedence of the operators. ScalaTion adds a few itself such as ˜^

for exponentiation. Also, ScalaTion provides complex numbers via the Complex class in the mathstat

package.

39

https://docs.scala-lang.org/tour/operators.html
https://docs.scala-lang.org/tour/operators.html

1.2.6 Collection Types

The most commonly used collection types in Scala are Array, ArrayBuffer, Range, List, Map, Set, and

Tuple. The Python rough equivalents (in lower case) are on the right (Map becomes dict).

1 val a = Array.ofDim [Double] (10) a = np.zeros (10)

2 val b = ArrayBuffer (2, 3, 3)

3 val r = 0 until 10 r = range (10)

4 val l = List (2, 3, 3) l = [2, 3, 3]

5 val m = Map ("no" -> 0, "yes" -> 1) m = {"no": 0, "yes": 1}}

6 val s = Set (1, 2, 3, 5, 7) s = {1, 2, 3, 5, 7}

7 val t = (firstName , lastName) t = (firstName , lastName)

For more collection types consult their documentation: https://scala-lang.org/api/3.x/ for Scala and

https://docs.python.org/3/library/collections.html for Python. Scala typically has mutable and

immutable versions of most collection types.

1.2.7 ScalaTion: Vectors, Matrices and Tensors

It is easy to make vectors, matrices and tensors in ScalaTion, via the VectorD, MatrixD, and TensorD

classes provided in the mathstat package. The following is a vector (1D array) consisting of 9 Doubles,

corresponding to float in Python.

1 val y = VectorD (1, 2, 4, 7, 9, 8, 6, 5, 3)

A matrix is a 2D array, that in this case is a 9-by-2 matrix holding two variables/features x0 and x1 in

columns of the matrix.

1 // col0 col1

2 val x = MatrixD ((9, 2), 1, 8, // row 0

3 2, 7, // row 1

4 3, 6, // row 2

5 4, 5, // row 3

6 5, 5, // row 4

7 6, 4 // row 5

8 7, 4, // row 6

9 8, 3, // row 7

10 9, 2) // row 8

As practice, try to find a vector b of length/dimension 2, so that x * b is close to y. The * operator does

matrix-vector multiplication. It takes the dot product of the ith row of matrix x and vector b to obtain the

ith element in the resulting vector.

In Python, numpy arrays can be used to do the same thing. The following 1D array can represent a

vector. Note the use of period “1.” to make the elements be floating point numbers. The “D” indicates such

for ScalaTion.

1 y = np.array ([1., 2., 4., 7., 9., 8., 6., 5., 3.])

Using double square brackets “[[”, numpy can be used to represent matrices. Each “[...]” corresponds to a

row in the matrix.

1 # col0 col1

2 x = np.array ([[1., 8.], # row 0

3 [2., 7.], # row 1

4 [3., 6.], # row 2

40

https://scala-lang.org/api/3.x/
https://docs.python.org/3/library/collections.html

5 [4., 5.], # row 3

6 [5., 5.], # row 4

7 [6., 4.], # row 5

8 [7., 4.], # row 6

9 [8., 3.], # row 7

10 [9., 2.]]) # row 8

Matrix multiplication-vector is similar in Python x.dot (b).

The following is a ScalaTion tensor (3D array).

1 // 4 rows , 3 columns , 2 sheets - x_ijk

2 // row columns sheet

3 val z = TensorD ((4, 3, 2), 1, 2, 3, // 0 0,1,2 0

4 4, 5, 6, // 1 0,1,2 0

5 7, 8, 9, // 2 0,1,2 0

6 10, 11, 12, // 3 0,1,1 0

7

8 13, 14, 15, // 0 0,1,2 1

9 16, 17, 18, // 1 0,1,2 1

10 19, 20, 21, // 2 0,1,2 1

11 22, 23, 24) // 3 0,1,2 1

In Python, the above tensor can be defined as a 3D numpy array. Each row and column position has two

sheet values, e.g., ”[1., 13.]”.

1 # column 0 column 1 column 2

2 z = np.array ([[[1. , 13.], [2., 14.], [3., 15.]] , # row 0

3 [[4., 16.], [5., 17.], [6., 18.]] , # row 1

4 [[7., 19.], [8., 20.], [9., 21.]] , # row 2

5 [[10., 22.], [11., 23.], [12., 24.]]]) # row 3

Vectors, matrices and tensors will discussed in greater detail in the Linear Algebra Chapter.

41

1.3 A Data Science Project

The orientation of this textbook is that of developing modeling techniques and the understanding of how

to apply them. A secondary goal is to explain the mathematics behind the models in sufficient detail to

understand the algorithms implementing the modeling techniques. Concise code based on the mathematics

is included and explained in the textbook. Readers may drill down to see the actual ScalaTion code.

The textbook is intended to facilitate trying out the modeling techniques as they are learned and to

support a group-based term project that includes the following ten elements. The term project is to culminate

in a presentation that explains what was done concerning these ten elements.

1. Problem Statement. Imagine that your group is hired as consultants to solve some problem for a

company or government agency. The answers and recommendations that your group produces should

not depend solely on prior knowledge, but rather on sophisticated analytics performed on multiple

large-scale datasets. In particular, the study should be focused and the purpose of the study should

clearly stated. What not to do: The following datasets are relevant to the company, so we ran them

through an analytics package (e.g., R) and obtained the following results.

2. Collection and Description of Datasets. To reduce the chances of results being relevant only to a

single dataset, multiple datasets should be used for the study (at least two). Explanation must be given

to how each dataset relates to the other datasets as well as to the problem statement. When a dataset

in the form of a matrix, metadata should be collected for each column/variable. In some cases the

response column(s)/variable(s) will be obvious, in others it will depend on the purpose of the study.

Initially, the result of columns/variables may be considered as features that may be useful in predicting

responses. Ideally, the datasets should loaded into a well-designed database. ScalaTion provides two

high-performance database systems: a relational database system and a graph database system

in scalation.database.table and scalation.database.graph, respectively.

3. Data Preprocessing Techniques Applied. During the preprocessing phase (before the modeling

techniques are applied), the data should be cleaned up. This includes elimination of features with zero

variance or too many missing values, as well as the elimination of key columns (e.g., on the training

data, the employee-id could perfectly predict the salary of an employee, but is unlikely to be of any

value in making predictions on the test data). For the remaining columns, strings should be converted

to integers and imputation techniques should be used to replace missing values.

4. Visual Examination. At this point, Exploratory Data Analysis (EDA) should be applied. Com-

monly, one column of a dataset in the combined data matrix will be chosen as the response column,

call it the response vector y, and the rest of the columns that remain after preprocessing form m-by-n

data matrix X. In general models are of the form

y = f(x) + ε (1.1)

where f is function mapping feature vector x into a predicted value for response y. The last term may be

viewed as random error ε. In an ideal model, the last term will be error (e.g., white noise). Since most

models are approximations, technically the last term should be referred to as a residual (that which

is not explained by the model). During exploratory data analysis, the value of y, should be plotted

against each feature/column x:j of data matrix X. The relationships between the columns should

42

be examined by computing a correlation matrix. Two columns that are very highly correlated are

supplying redundant information, and typically, one should be removed. For a regression type problem,

where y is treated as continuous random variable, a simple linear regression model should be created

for each feature xj ,

y = b0 + b1xj + ε (1.2)

where the parameters b = [b0, b1] are to be estimated. The line generated by the model should be

plotted along with the {(xij , yi)} data points. Visually, look for patterns such white noise, linear

relationship, quadratic relationship, etc. Plotting the residuals {(xij , εi)} will also be useful. One

should also create Histograms and Box-Plots for each variable as well as consider removing outliers.

5. Modeling Techniques Chosen. For every type of modeling problem, there is the notions of a

NullModel: For prediction it is guess the mean, i.e., given a feature vector z, predict the value E [y],

regardless of the value of z. The coefficient of determination R2 for such models will be zero. If a

more sophisticated model cannot beat the NullModel, it is not helpful in predicting or explaining the

phenomena. Projects should include four classes of models: (i) NullModel, (ii) simple, easy to explain

models (e.g., Multiple Linear Regression), (iii) complex, performant models (e.g., Quadratic Regression,

Extreme Learning Machines) (iv) complex, time-consuming models (e.g., Neural Networks). If classes

(ii-iv) do not improve upon class (i) models, new datasets should be collected. If this does not help, a

new problem should be sought. On the flip side, if class (ii) models are nearly perfect (R2 close to 1),

the problem being addressed may be too simple for a term project. At least one modeling technique

should be chosen from each class.

6. Explanation of Why Techniques Were Chosen. As a consultant to a company, a likely question

will be, ”why did you chose those particular modeling techniques”? There are an enormous number of

possible modeling techniques. Your group should explain how the candidate techniques were narrowed

down and ultimately how the techniques were chosen. A review of how well the selected modeling

techniques worked, as well as suggested changes for future work, should be given at the end of the

presentation.

7. Feature Selection. Although feature selection can occur during multiple phases in a modeling study,

an overview should be given at this point in the presentation. Explain which features were eliminated

and why they were eliminated prior to building the models. During model building, what features

were eliminated, e.g., using forward selection, backward elimination, Lasso Regression, dimensionality

reduction, etc. Also address and quantify the relative importance of the remaining features. Explain

how features that categorical are handled.

8. Reporting of Results. First the experimental setup should be described in sufficient detail to

facilitate reproducibility of your results. One way to show overall results is to plot predicted responses

ŷ and actual responses y versus the instance index i = 0 until m. Reports are to include the Quality

of Fit (QoF) for the various models and datasets in the form of tables, figures and explanation of the

results. Besides the overall model, for many modeling techniques the importance/significance of model

parameters/variables may be assessed as well. Tables and figures must include descriptive captions

and color/shape schemes should be consistent across figures.

43

9. Interpretation of Results. With the results clearly presented, they need to be given insightful

interpretations. What are the ramifications of the results? Are the modeling techniques useful in

making predictions, classifications or forecasts?

10. Recommendations of Study. The organization that hired your group would like some take home

messages that may result in improvements to the organization (e.g., what to produce, what processes

to adapt, how to market, etc.). A brief discussion of how the study could be improved (possibly leading

to further consulting work) should be given.

44

1.4 Additional Textbooks

More detailed development of this material can be found in textbooks on statistical learning, such as

• “An Introduction to Statistical Learning” (ISL) [85]

• “The Elements of Statistical Learning” (ESL) [72]

• “Mathematics for Machine Learning” (MML) [37]

See Table 1.1 for a mapping between the chapters in the four textbooks.

Table 1.1: Source Material Chapter Mappings

Topic ScalaTion ISL ESL MML

Linear Algebra Ch. 2 - - Ch. 2-5

Probability Ch. 3 - - Ch. 6

Data Management Ch. 4 - - -

Data Preprocessing Ch. 5 - - -

Prediction Ch. 6 Ch. 3, 5, 6 Ch. 3 Ch 8-9

Classification Ch. 7 Ch. 2, 5, 8 Ch. 4, 12, 13, 15 Ch. 8.5

Classification: Continuous Ch. 8 Ch. 4, 8, 9 Ch. 4, 12, 13, 15 Ch. 12

Generalized Linear Models Ch. 9 - - -

Nonlinear Models/Neural Networks Ch. 10 Ch. 7 Ch. 11 -

Time Series/Temporal Models Ch. 11 - - -

Multivariate Time Series Models Ch. 12 - - -

Dimensionality Reduction Ch. 13 Ch. 6, 10 Ch. 14 Ch. 10

Clustering Ch. 14 Ch. 10 Ch. 14 -

Simulation Foundations Ch. 15 - - -

State Space Models Ch. 16 - - -

Event-Oriented Models Ch. 17 - - -

Process-Oriented Models Ch. 18 - - -

Simulation Output Analysis Ch. 19 - - -

Optimization in Data Science Appendix A - - - Ch. 7

Graph Databases and Analytics Appendix C - - -

The next two chapters serve as quick reviews of the two principal mathematical foundations for data

science: linear algebra and probability.

45

46

Part I

Foundations

47

Chapter 2

Linear Algebra

Data science and analytics make extensive use of linear algebra. For example, let yi be the income of the ith

individual and xij be the value of the jth predictor/feature (age, education, etc.) for the ith individual. The

responses (outcomes of interest) are collected into a vector y, the values for predictors/features are collected

in a matrix X and the parameters/coefficients b are fit to the data.

2.1 Linear System of Equations

The study of linear algebra starts with solving systems of equations, e.g.,

y0 = x00b0 + x01b1

y1 = x10b0 + x11b1

This linear system has two equations with two variables having unknown values, b0 and b1. Such linear

systems can be used to solve problems like the following: Suppose a movie theatre charges 10 dollars per

child and 20 dollars per adult. The evening attendance is 100, while the revenue is 1600 dollars. How many

children (b0) and adults (b1) were in attendance?

100 = 1b0 + 1b1

1600 = 10b0 + 20b1

The solution is b0 = 40 children and b1 = 60 adults.

In general, linear systems may be written using matrix notation.

y = Xb (2.1)

where y is an m-dimensional vector, X is an m-by-n dimensional matrix and b is an n-dimensional vector.

49

2.2 Matrix Inversion

If the matrix is of full rank with m = n, then the unknown vector b may be uniquely determined by

multiplying both sides of the equation by the inverse of X, X−1

b = X−1y (2.2)

Multiplying matrix X and its inverse X−1, X−1X results in an n-by-n identity matrix In = [1i=j], where

the indicator function 1i=j equals 1 when i = j and 0 otherwise.

A faster and more numerically stable way to solve for b is to perform Lower-Upper (LU) Factorization.

This is done by factoring matrix X into lower L and upper U triangular matrices.

X = LU (2.3)

Then LUb = y, so multiplying both sides by L−1 gives Ub = L−1y. Taking an augmented matrix[
1 3 1

2 1 7

]
and performing row operations to make it upper right triangular has the effect of multiplying by L−1. In

this case, the first row multiplied by -2 is added to second row to give.[
1 3 1

0 −5 5

]
From this, backward substitution can be used to determine b1 = −1 and then that b0 = 4, i.e.,

b =

[
4

−1

]
In cases where m > n, the system may be overdetermined, and no solution will exist. Values for b are

then often determined to make y and Xb agree as closely as possible, e.g., minimize absolute or squared

differences.

Vector notation is used in this book, with vectors shown in boldface and matrices in uppercase. Note,

matrices in ScalaTion are in lowercase, since by convention, uppercase indicates a type, not a variable.

ScalaTion supports vectors and matrices in its mathstat package. A commonly used operation is the dot

(inner) product, x · y, or in ScalaTion, x dot y.

50

2.3 Vector

A vector may be viewed a point in multi-dimensional space, e.g., in three space, we may have

x = [x0, x1, x2] = [0.57735, 0.55735, 0.57735]

y = [y0, y1, y2] = [1.0, 1.0, 0.0]

where x is a point on the unit sphere and y is a point in the plane determined by the first two coordinates.

2.3.1 Vector Addition and Subtraction

Vectors may be added (x + y) and subtracted (x− y). For example, [1, 2] + [3, 4] = [4, 6].

2.3.2 Element-wise Multiplication and Division

Vectors may be multiplied element-by-element (like a Hadamard product) (x ∗ y), and divided element-by-

element (x/y). These operations are also supported when one of the arguments is a scalar.

2.3.3 Vector Dot Product

A particularly important operation, the dot product (or inner product) of two vectors is simply the sum of

the products of their elements.

x · y =

n−1∑
i=0

xiyi = 1.1547 (2.4)

Note, the inner product applies more generally, e.g., 〈x,y〉may be applied when x and y are infinite sequences

or functions. See the exercises for the definition of an inner product space.

2.3.4 Norm

The norm of a vector is its length. Assuming Euclidean distance, the norm is

‖x‖ =

√√√√n−1∑
i=0

x2
i = 1 (2.5)

The norm of y is
√

2. If θ is the angle between the x and y vectors, then the dot product is the product of

their norms and the cosine of the angle.

x · y = ‖x‖‖y‖ cos(θ) (2.6)

Thus, the cosine of θ is,

cos(θ) =
x · y
‖x‖‖y‖

=
1.1547

1 ·
√

2
= 0.8165

so the angle θ = .616 radians. Vectors x and y are orthogonal if the angle θ = π/2 radians (90 degrees).

In general there are `p norms. The two that are used here are the `2 norm ‖x‖ = ‖x‖2 (Euclidean

distance) and the `1 norm ‖x‖1 (Manhattan distance).

51

‖x‖1 =

n−1∑
i=0

|xi| (2.7)

Vector notation facilitates concise mathematical expressions. Many common statistical measures for

populations or samples can be given in vector notation. For an m dimensional vector (m-vector) the following

may be defined.

µ(x) = µx =
1 · x
m

σ2(x) = σ2
x =

(x − µx) · (x − µx)

m

=
x · x
m
− µ2

x

σ(x,y) = σx,y =
(x − µx) · (y − µy)

m

=
x · y
m
− µx µy

ρ(x,y) = ρx,y =
σx,y
σxσy

which are the population mean, variance, covariance and correlation, respectively.

The size of the population is m, which corresponds to the number of elements in the vector. A vector of

all ones is denoted by 1. For an m-vector ‖1‖2 = 1 · 1 = m. Note, the sample mean uses the same formula,

while the sample variance and covariance divide by m− 1, rather than m (sample indicates that only some

fraction of population is used in the calculation).

Vectors may be used for describing the motion of an object through space over time. Let u(t) be the

location of an object (e.g., golf ball) in three dimensional space R3 at time t,

u(t) = [x(t), y(t), z(t)]

To describe the motion, let v(t) be the velocity at time t, and a be the constant acceleration, then according

to Newton’s Second Law of Motion,

u(t) = u(0) + v(0) t+
1

2
a t2

The time varying function u(t) over time will show the trajectory of the golf ball.

2.3.5 Vector Operations in ScalaTion

Vector operations are implemented by multiple classes, such as the VectorD class.

1 @param dim the dimension/size of the vector

2 @param v the 1D array used to store vector elements

3

4 class VectorD (val dim: Int ,

5 private [mathstat] var v: Array [Double] = null)

6 extends IndexedSeq [Double]

7 with PartiallyOrdered [VectorD]

52

8 with Cloneable [VectorD]

9 with DefaultSerializable:

VectorD includes methods for size, indices, set, copy, filter, select, concatenate, vector arithmetic, power,

square, reciprocal, abs, sum, mean variance, rank, cumulate, normalize, dot, norm, max, min, mag, argmax,

argmin, indexOf, indexWhere, count, contains, sort and swap.

Table 2.1: Vector Arithmetic Operations

op vector op vector vector op scalar vector element op scalar

+ def + (b: VectorD): VectorD def + (s: Double): VectorD def + (s: (Int, Double)): VectorD

+= def += (b: VectorD): VectorD def += (s: Double): VectorD -

- def - (b: VectorD): VectorD def - (s: Double): VectorD def - (s: (Int, Double)): VectorD

-= def -= (b: VectorD): VectorD def -= (s: Double): VectorD -

* def * (b: VectorD): VectorD def * (s: Double): VectorD def * (s: (Int, Double)): VectorD

*= def *= (b: VectorD): VectorD def *= (s: Double): VectorD -

/ def / (b: VectorD): VectorD def / (s: Double): VectorD def / (s: (Int, Double)): VectorD

/= def /= (b: VectorD): VectorD def /= (s: Double): VectorD -

53

2.4 Vector Calculus

Data science uses optimization to fit parameters in models, where for example a quality of fit measure (e.g.,

sum of squared errors) is minimized. Typically, gradients are involved. In some cases, the gradient of the

measure can be set to zero allowing the optimal parameters to be determined by matrix factorization. For

complex models, this may not work, so an optimization algorithm that moves in the direction opposite to

the gradient can be applied.

2.4.1 Gradient Vector

Consider the following function f : R2 → R of vector u = [x, y],

f(u) = (x− 2)2 + (y − 3)2

For example, the functional value at the point [3, 2], f([3, 2]) = 1 + 1 = 2 and at the point [1, 1], f([1, 1]) =

1 + 4 = 5. The following contour curves illustrate the how the elevation of the function increases with

distance from the point [2, 3].

−3 −2 −1 1 2 3 4 5

−3

−2

−1

1

2

3

4

5

x

y

Figure 2.1: Contour Curves for Function f : elevation = 1, 2, 3, 4 and 5

The gradient of function f consists of a vector formed from the two partial derivatives.

grad f = ∇f =

[
∂f

∂x
,
∂f

∂y

]
The gradient evaluated at point/vector u ∈ R2 is

∇f(u) =

[
∂f

∂x
(u),

∂f

∂y
(u)

]
The gradient indicates the direction of steepest increase/ascent. For example, the gradient at the point [3, 2],

∇f([3, 2]) = [2,−2] (in blue), while at [1, 1], ∇f([1, 1]) = [−2,−4] (in purple).

54

A gradient’s norm indicates the magnitude of the rate of change (or steepness). When the elevation

changes are fixed (here they differ by one), the closeness of the contours curves also indicates steepness.

Notice that the gradient vector at point [x, y] is orthogonal to the contour curve intersecting that point.

By setting the gradient equal to zero, in this case

∂f

∂x
= 2(x− 2)

∂f

∂y
= 2(y − 3)

one may find the vector that minimizes function f , namely u = [2, 3] where f = 0. For more complex

functions, repeatedly moving in the opposite direction to the gradient, may lead to finding a minimal value.

In general, the gradient (or gradient vector) of function f : Rn → R is

∇f =
∂f

∂x
=

[
∂f

∂x0
, . . . ,

∂f

∂xn−1

]
(2.8)

or evaluated at point/vector x ∈ Rn is

∇f(x) =
∂f

∂x
(x) =

[
∂f

∂x0
(x), . . . ,

∂f

∂xn−1
(x)

]
(2.9)

In data science, it is often convenient to take the gradient of a dot product of two functions of x, in which

case the following product rule can be applied.

∇(f(x) · g(x)) = ∇f(x) · g(x) + f(x) · ∇g(x) (2.10)

2.4.2 Jacobian Matrix

The Jacobian Matrix is an extension of the gradient vector to the case where the value of the function is

multi-dimensional, i.e., f = [f0, f1, . . . , fm−1]. In general, the Jacobian of function f : Rn → Rm of vector

x ∈ Rn is

Jf (x) =

[
∂fi
∂xj

]
0≤i<m,0≤j<n

= (2.11)

∇f0(x)

∇f1(x)

. . .

∇fm−1(x)

This follows the numerator layout where the functions correspond to rows (the opposite is called the denom-

inator layout which is the transpose of the numerator layout).

Consider the following function f : R2 → R2 that maps vectors in R2 into other vectors in R2.

f(x) = [(x0 − 2)2 + (x1 − 3)2, (2x0 − 6)2 + (3x1 − 6)2]

The Jacobian of the function, Jf (x), is

55

∂f0

∂x0
,
∂f0

∂x1

∂f1

∂x0
,
∂f1

∂x1

Taking the partial derivatives gives the following Jacobian matrix.[

2x0 − 4, 2x1 − 6)

4x0 − 12, 6x1 − 12

]

2.4.3 Hessian Matrix

While the gradient is a vector of first partial derivatives, the Hessian is a symmetric matrix of second partial

derivatives. The Hessian Matrix of a scalar-valued function f : Rn → R of vector x ∈ Rn is

Hf (x) =

[
∂2f

∂xi∂xj

]
0≤i<n,0≤j<n

(2.12)

Consider the following function f : R2 → R that maps vectors in R2 into scalars in R.

f(x) = (2x0 − 6)2 + (3x1 − 6)2

The Hessian of the function, Hf (x), is
∂2f

∂x2
0

,
∂2f

∂x0∂x1

∂2f

∂x1∂x0
,
∂2f

∂x2
1

Taking the second partial derivatives gives the following Hessian matrix.[

4, 0

0, 6

]
Consider a differentiable function of n variables, f : Rn → R. The points at which its gradient vector ∇f

is zero are referred to as critical points. In particular, they may be local minima, local maxima or saddle

points/inconclusive, depending on whether the Hessian matrix H is positive definite, negative definite, or

otherwise. A symmetric matrix A is positive definite if x
ᵀ
Ax > 0 for all x 6= 0 (alternatively, all of A’s

eigenvalues are positive). Note: a positive/negative semi-definite Hessian matrix may or may not indicate

an optimal (minimal/maximal) point.

56

2.5 Matrix

A matrix may be viewed as a collection of vectors, one for each row in the matrix. Matrices may be used to

represent linear transformations

f : Rn → Rm (2.13)

that map vectors in Rn to vectors in Rm. For example, in ScalaTion an m-by-n matrix A with m = 3

rows and n = 2 columns may be created as follows:

1 val a = MatrixD ((3, 2), 1, 2,

2 3, 4,

3 5, 6)

to produce matrix A. 1 2

3 4

5 6

Matrix A will transform u vectors in R2 into v vectors in R3.

Au = v (2.14)

For example,

A

[
1

2

]
=

 5

11

17

ScalaTion supports retrieval of row vectors, column vectors and matrix elements. In particular, the

following access operations are supported.

A = a = matrix

ai = a(i) = row vector i

a:j = a(?, j) = column vector j

aij = a(i, j) = the element at row i and column j

Ai:k,j:l = a(i to k, j to l) = row and column matrix slice

Note, i to k does not include k. Common operations on matrices are supported as well.

2.5.1 Matrix Operation in ScalaTion

Matrix operations in ScalaTion are implemented in the MatrixD class for dense matrices.

1 @param dim the first (row) dimension of the matrix

2 @param dim2 the second (column)dimension of the matrix

3 @param v the 2D array used to store matrix elements

4

5 class MatrixD (val dim: Int ,

6 val dim2: Int ,

7 private [mathstat] var v: Array [Array [Double]] = null):

57

Matrix Addition and Subtraction

Matrix addition val c = a + b

cij = aij + bij (2.15)

and matrix subtraction val c = a - b are supported.

Matrix Multiplication

A frequently used operation in data science is matrix multiplication val c = a * b.

cij =

n−1∑
k=0

aikbkj = ai · b:j (2.16)

Mathematically, this is written as C = AB. The ij element in matrix C is the vector dot product of the ith

row of A with the jth column of B.

Matrix Transpose

The transpose of matrix A, written A
ᵀ

(val t = a.transpose or val t = a.T), simply exchanges the roles

of rows and columns.

1 def transpose: MatrixD =

2 val a = Array.ofDim [Double] (dim2 , dim)

3 for j <- indices do

4 val v_j = v(j)

5 var i = 0

6 cfor (i < dim2 , i += 1) { a(i)(j) = v_j(i) }

7 end for

8 new MatrixD (dim2 , dim , a)

9 end transpose

Matrix Determinant

The determinant of square (m = n) matrix A, written |A| (val d = a.det), indicates whether a matrix is

singular or not (and hence invertible), based on whether the determinant is zero or not.

Trace of a Matrix

The trace of matrix A ∈ Rn×n is simply the sum of its diagonal elements.

tr(A) =

n−1∑
i=0

aii (2.17)

In ScalaTion, the trace is computed using the trace method (e.g., a.trace).

58

Matrix Dot Product

ScalaTion provides several types of dot products on both vectors and matrices, two of which are shown

below. The first method computes the usual dot product between two vectors. Note, the parameter y is

generalized to take any vector-like data type.

1 def dot (y: IndexedSeq [Double]): Double =

2 var sum = 0.0

3 for i <- v.indices do sum += v(i) * y(i)

4 sum

5 end dot

When relevant a n-vector (e.g., x ∈ Rn) may be viewed as an n-by-1 matrix (column vector), in which case

x
ᵀ

would be viewed as an 1-by-n matrix (row vector). Consequently, dot product (and outer product) can

be defined in terms of matrix multiplication and transpose operations.

x · y = x
ᵀ

y dot (inner) product (2.18)

x⊗ y = xy
ᵀ

outer product (2.19)

The second method takes the dot product two matrices. The second method extends the notion of

matrices and is an efficient way to compute A
ᵀ
B = A ·B = a.transpose * b = a dot b.

1 def dot (y: MatrixD): MatrixD =

2 if dim2 != y.dim then

3 flaw ("dot", s"matrix dot matrix - incompatible cross dimensions:

4 dim2 = $dim2 , y.dim = ${y.dim}")

5

6 val a = Array.ofDim [Double] (dim , y.dim)

7 for ii <- 0 until dim by TSZ do

8 for jj <- 0 until y.dim2 by TSZ do

9 for kk <- 0 until dim2 by TSZ do

10 val k2 = math.min (kk + TSZ , dim2)

11

12 for i <- ii until math.min (ii + TSZ , dim) do

13 val v_i = v(i); val a_i = a(i)

14 for j <- jj until math.min (jj + TSZ , y.dim2) do

15 val y_j = y.v(j)

16 var sum = 0.0

17 var k = kk

18 cfor (k < k2 , k += 1) { sum += v_i(k) * y_j(k) }

19 a_i(j) += sum

20 end for

21 end for

22

23 end for

24 end for

25 end for

26 new MatrixD (dim , y.dim , a)

27 end dot

59

2.6 Matrix Factorization

Many problems in data science involve matrix factorization to for example solve linear systems of equations

or perform Ordinary Least Squares (OLS) estimation of parameters. ScalaTion supports several factorization

techniques, including the techniques shown in Table 2.2

Table 2.2: Matrix Factorization Techniques

Factorization Factors Factor 1 Factor 2 Class

LU A = LU lower left triangular upper right triangular Fac LU

Cholesky A = LL
ᵀ

lower left triangular its transpose Fac Cholesky

QR A = QR orthogonal upper right triangular Fac QR

SVD A = UΣV
ᵀ

orthogonal diagonal, orthogonal Fac SVD

Eigen A = QΛQ−1 eigenvectors diagonal, inverse eigen Fac Eigen

These algorithms are faster or more numerically stable than algorithms for matrix inversion. See the Pre-

diction chapter to see how matrix factorization is used in Ordinary Least Squares estimation.

2.6.1 Eigenvalues and Eigenvectors

Consider the following matrix A and two vectors x =
[

1
0

]
and z =

[
0
1

]
.[

2 0

0 3

]
Multiplying A and x yields

[
2
0

]
, while multiplying A and z yields

[
0
3

]
. Thus, letting λ0 = 2 and λ1 = 3, we

see that Ax = λ0x and Az = λ1z. In general, a matrix An×n of rank r will have r non-zero eigenvalues λi

with corresponding eigenvector x(i) such that

Ax(i) = λix
(i) (2.20)

In other words, there will be r unit eigenvectors, for which multiplying by the matrix simply rescales the

eigenvector x(i) by its eigenvalue λi. The same will happen for any non-zero vector in alignment with one of

the r unit eigenvectors.

Given an eigenvalue λi, an eigenvector may be found by noticing that

Ax(i) − λix(i) = [A− λi] x(i) = 0 (2.21)

Any vector in the nullspace of the matrix A− λiI is an eigenvector corresponding to λi. Note, if the above

equation is transposed, it is called a left eigenvalue problem (see the section on Markov Chains).

In low dimensions, the eigenvalues may be found as roots of the characteristic polynomial/equation

derived from taking the determinant of A−λiI. Software like ScalaTion, however, use iterative algorithms

that convert a matrix into Hessenburg and tridiagonal forms.

60

2.7 Internal Representation

The current internal representation used for storing the elements in a dense matrix is Array [Array [Double]]

in row major order (row-by-row). Depending on usage, operations may be more efficient using column ma-

jor order (column-by-column). Also, using a one dimensional array Array [Double] mapping (i, j) to the

kth location may be more efficient. Furthermore, having operations access through sub-matrices (blocks)

may improve performance because of caching efficiency or improved performance for parallel and distributed

versions.

The mathstat package provides several classes implementing multiple types of vectors and matrices as

shown in Table 2.3 including VectorD and MatrixD.

Table 2.3: Types of Vectors and Matrices: Implementing Classes

trait VectorD MatrixD

dense VectorD MatrixD

sparse SparseVectorD SparseMatrixD

compressed RleVectorD RleMatrixD

tridiagonal - SymTriMatrixD

bidiagonal - BidMatrixD

The suffix ‘D’ indicates the base element type is Double. There are also implementations for Complex ‘C’,

Int ‘I’, Long ‘L’, Rational ‘Q’, Real ‘R’, String ‘S’, and TimeNum ‘T’.

Note, ScalaTion 2.0 currently only supports dense vectors and matrices. See older versions for the

other types of vectors and matrices.

ScalaTion supports many operations involving matrices and vectors, including the following show in

Table 2.5.

Table 2.4: Types of Vector and Matrix Products

Product Method Example in Math

vector dot def dot (y: VectorD): Double x dot y x · y
vector element-wise def * (y: VectorD): VectorD x * y x y

vector outer def outer (y: VectorD): MatrixD x outer y x⊗ y

matrix mult def * (y: MatrixD): MatrixD x * y X Y

matrix mdot def dot (y: MatrixD): MatrixD x dot y X
ᵀ
Y

matrix vector def * (y: VectorD): VectorD x * y X y

matrix vector def * (y: VectorD): MatrixD x * y X diag(y)

61

2.8 Tensor

Loosely speaking, a tensor is a generalization of scalar, vector and matrix. The order of the tensor indicates

the number dimensions. In this text, tensors are treated as hyper-matrices and issues such as basis inde-

pendence, contravariant and covariant vectors/tensors, and the rules for index notation involving super and

subscripts are ignored [111]. To examine the relationship between order 2 tensors and matrices more deeply,

see the last exercise.

For data science, input into a model may be a vector (e.g., simple regression, univariate time series), a

matrix (e.g., multiple linear regression, neural networks), a tensor with three dimensions (e.g., monochro-

matic/greyscale images), and a tensor with four dimensions (e.g., color images).

Table 2.5: Tensors of Different Orders

Order Analog/Name Example

zeroth scalar FICA score

first vector customer financial record

second matrix collection of financial records

third tensor collection of grayscale images

fourth tensor4 collection color images

2.8.1 Three Dimensional Tensors

In ScalaTion, tensors with three dimensions are supported by the TensorD class. The default names for

the dimensions [111] were chosen to follow a common convention (row, column, sheet). In data science, the

first index usually indicates which instance, e.g., ith element of a vector, ith row of a matrix, ith row of a

tensor.

1 @param dim size of the 1st level/dimension (row) of the tensor (height)

2 @param dim2 size of the 2nd level/dimension (column) of the tensor (width)

3 @param dim3 size of the 3rd level/dimension (sheet) of the tensor (depth)

4

5 class TensorD (val dim: Int , val dim2: Int , val dim3: Int ,

6 private [mathstat] var v: Array [Array [Array [Double]]] = null)

7 extends Error with Serializable

A tensor T is stored in a triple array [tijk]. Below is an example of a 2-by-2-by-2 tensor, T = [T::0|T::1][
t000 t010 | t001 t011

t100 t110 | t101 t111

]
where each sheet T::k is a 2-by-2 matrix.

Note, ScalaTion allows the default names for the dimensions to be changed, so they are more sug-

gestive given the application, e.g., (row, column, channel) for one color image or (sheet, row, column) for

spreadsheets.

Ragged order 3 tensors RTensorD are also supported which allow the middle dimension to vary (be

ragged).

62

2.8.2 Four Dimensional Tensors

In ScalaTion, tensors with four dimensions are supported by the Tensor4D class. The default names for

the dimensions [111] were chosen to follow a common convention (row, column, sheet, channel).

1 @param dim size of the 1st level/dimension (row) of the tensor (height)

2 @param dim2 size of the 2nd level/dimension (column) of the tensor (width)

3 @param dim3 size of the 3rd level/dimension (sheet) of the tensor (depth)

4 @param dim3 size of the 4rd level/dimension (channel) of the tensor (spectra)

5

6 class Tensor4D (val dim: Int , val dim2: Int , val dim3: Int ,, dim4: Int ,

7 private [mathstat] var v: Array [Array [Array [Array [Double]]]] = null)

8 extends Error with Serializable

Such a tensor T is stored in a quad array [tijkl].

Ragged order 4 tensors RTensor4D are also supported which allow the middle two dimensions to vary (be

ragged).

63

2.9 Exercises

1. Draw two 2-dimensional non-zero vectors, x and y, whose dot product x · y is zero.

2. A vector can be transformed into a unit vector in the same direction by dividing by its norm,
x

‖x‖
.

Let, y = 2x and show that the dot of the corresponding unit vectors equals one. This means that their

Cosine Similarity equals one.

cosxy = cos(θ) =
x · y
‖x‖‖y‖

where θ is the angle between the vectors

When would the Cosine Similarity be -1? When would it be 0?

3. Correlation ρxy vs. Cosine Similarity cosxy. What does it mean when the correlation (cosine similarity)

is 1, 0, -1, respectively. In general, does ρxy = cosxy? What about in special cases?

4. Given the matrix X and the vector y, solve for the vector b in the equation y = Xb using matrix

inversion and LU factorization.

1 import scalation.mathstat .{MatrixD , VectorD , Fac_LU}

2 val x = MatrixD ((2, 2), 1, 3,

3 2, 1)

4 val y = VectorD (1, 7)

5 println ("using inverse: b = Xˆ-1 y = " + x.inverse * y)

6 println ("using LU fact: Lb = Uy = " + { val lu = new Fac_LU (x); lu.factor ().solve

(y) })

Modify the code to show the inverse matrix X−1 and the factorization into the L and U matrices.

5. If Q is an orthogonal matrix, then Q
ᵀ
Q becomes what type of matrix? What about QQ

ᵀ
? Illustrate

with an example 3-by-3 matrix. What is the inverse of Q?

6. Show that the Hessian matrix of a scalar-valued function f : Rn → R is the transpose of the Jacobian

of the gradient, i.e.,

Hf (x) = [J∇f(x)]
ᵀ

7. Critical points for a function f : Rn → R occur when ∇f(x) = 0. How can the Hessian Matrix can be

used to decide whether a particular critical point is a local minimum or maximum?

8. Define three functions, f1(x, y), f2(x, y) and f3(x, y), that have critical points (zero gradient) at the

point [2, 3] such that this point is (a) a minimal point, (b) a maximal point, (c) a saddle point,

respectively. Compute the Hessian matrix at this point for each function and use it to explain the type

of critical point. Plot the three surfaces in 3D.

Hint: see https://www.math.usm.edu/lambers/mat280/spr10/lecture8.pdf

9. Determine the eigenvalues for the matrix A given in the section on eigenvalues and eigenvectors, by

setting the determinant of A− λI equal to zero.

64

https://www.math.usm.edu/lambers/mat280/spr10/lecture8.pdf

[
2− λ 0

0 3− λ

]

to obtain the following characteristics polynomial.

(2− λ)(3− λ)− 0 = 0

Solve for all roots of this polynomial to determine the eigenvalues.

10. A vector space V over field K (e.g., R or C) is a set of objects, e.g., vectors x,y, and z, and two

operations, addition and scalar multiplication,

x,y ∈ V =⇒ x + y ∈ V (2.22)

x ∈ V and a ∈ K =⇒ ax ∈ V (2.23)

satisfying the following conditions/axioms

(x + y) + z = x + (y + z)

x + y = y + x

∃0 ∈ V s.t. x + 0 = x

∃ − x ∈ V s.t. x + (−x) = 0

(ab)x = a(bx)

a(x + y) = ax + ay

(a+ b)x = ax + bx

∃1 ∈ K s.t. 1x = x

Give names to these axioms and illustrate them with examples.

11. A normed vector space V over field K is a vector space with a function defined that gives the length

(norm) of a vector,

x ∈ V =⇒ ‖x‖ ∈ R+

satisfying the following conditions/axioms

‖ax‖ = |a| ‖x‖

‖x‖ > 0 unless x = 0

‖x + y‖ ≤ ‖x‖+ ‖y‖

A norm induced metric called distance can be defined,

65

d(x,y) = ‖x− y‖

The `p-norm is defined as follows:

‖x‖p =

(
n−1∑
i=0

|xi|p
) 1
p

Norms and distances are very useful in data science, for example, loss functions used to judge/optimize

models are often defined in terms of norms or distances.

Show that the last axiom called the triangle inequality hold for `2-norms.

Hint: ‖x‖22 is the sum of the elements in x squared.

12. An inner product space H over field K is a vector space with one more operation, inner product,

x,y ∈ H =⇒ 〈x,y〉 ∈ K

satisfying the following conditions/axioms

〈x,y〉 = 〈y,x〉∗

〈ax + by, z〉 = a 〈x, z〉+ b 〈y, z〉

〈x,x〉 > 0 unless x = 0

Note, the complex conjugate negates the imaginary part of a complex number, e.g., (c+ di)∗ = c− di

Show that an n-dimensional Euclidean vector space using the definition of dot product given in this

chapter is an inner product space over R.

13. Explain the meaning of the following statement, “a tensor of order 2 for a given coordinate system can

be represented by a matrix.”

Hint: see “Tensors: A Brief Introduction” [32]

66

2.10 Further Reading

1. Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares [21]

2. Matrix Computations [58]

3. Tensors and Hypermatrices [111]

67

68

Chapter 3

Probability

Probability is used to measure the likelihood of certain events occurring, such as flipping a coin and getting a

head, rolling a pair of dice and getting a sum of 7, or getting a full house in five card draw. Given a random

experiment, the sample space Ω is the set of all possible outcomes.

3.1 Probability Measure

Definition: A probability measure P can be defined axiomatically as follows:

P (A) ≥ 0 for any event A ⊆ Ω

P (Ω) = 1

P (∪Ai) =
∑

P (Ai) for a countable collection of disjoint events

(3.1)

Technically speaking, an event is a measurable subset of Ω (see [41] for a measure-theoretic definition).

Letting F be the set of all possible events, one may define a probability space as follows:

Definition: A probability space is defined as a triple (Ω,F , P).

Given an event A ∈ F , the probability of its occurrence is restricted to the unit interval, P (A) ∈ [0, 1].

Thus, P may be viewed as a function that maps events to the unit interval.

P : F → [0, 1] (3.2)

3.1.1 Joint Probability

Given two events A and B, the joint probability of their co-occurrence is denoted by

P (AB) = P (A ∩B) ∈ [0, min(P (A), P (B))] (3.3)

If events A and B are independent, simply take the product of the individual probabilities,

P (AB) = P (A)P (B) (3.4)

69

3.1.2 Conditional Probability

The conditional probability of the occurrence of event A, given it is known that event B has occurred/will

occur is

P (A|B) =
P (AB)

P (B)
(3.5)

If events A and B are independent, the conditional probability reduces to

P (A|B) =
P (AB)

P (B)
=

P (A)P (B)

P (B)
= P (A) (3.6)

In other words, the occurrence of event B has no effect on the probability of event A occurring.

Bayes Theorem

An important theorem involving conditional probability is Bayes Theorem.

P (A|B) =
P (B|A)P (A)

P (B)
(3.7)

When determining conditional probability A|B is difficult, one may try going the other direction and first

determine B|A.

Example

Consider flipping two coins. What is the Sample/Outcome Space Ω?

Ω = {[T, T], [T,H], [H,T], [H,H]} = {ω1, ω2, ω3, ω4}

The size of the outcome space is 4 and since the event space F contains all subsets of Ω, its size is 24 = 16.

Define the following two events:

• event A = first coin showing heads and

• event B = at least one head was rolled.

What is the probability that event A occurred, given that you know that event B occurred? If fair coins are

used, the probability of a head (or tail) is 1/2 and the probabilities reduce to the ratios of set sizes.

P (A|B) =
P (AB)

P (B)
=
|A ∩B|
|B|

=
|{ω3, ω4} ∩ {ω2, ω3, ω4}|

|{ω2, ω3, ω4}|
= 2/3

This simplification can be done whenever all outcomes are equi-probable.

70

3.2 Random Variable

Rather than just looking at individual events, e.g., E1 or E2, one is often more interested in the probability

that random variables take on certain values.

Definition: A random variable y is a function that maps outcomes in the sample space Ω into a set/domain

of numeric values Dy.

y : Ω→ Dy (3.8)

Some commonly used domains are real numbers R, integers Z, natural numbers N, or subsets thereof. An

example of a mapping from outcomes to numeric values is tail → 0, head → 1. In other cases such as the

roll of one dice, the map is the identity function.

One may think of a random variable y (blue font) as taking on values from a given domain Dy. With a

random variable, its value is uncertain, i.e., its value is only known probabilistically.

For A ⊆ Dy one can measure the probability of the random variable y taking on a value from the set

A. This is denoted by

P (y ∈ A) (3.9)

This really means the probability of event E which maps to set A

E = y−1(A) (3.10)

P (E) (3.11)

where y−1(A) is the inverse image of A.

3.2.1 Discrete Random Variable

A discrete random variable is defined on finite or countably infinite domains. For example, the probability

of rolling a natural in dice (sum of 7 or 11 with two dice) is given by

P (y ∈ {7, 11}) = 6/36 + 2/36 = 8/36 = 2/9

3.2.2 Continuous Random Variable

A continuous random variable is defined on uncountably infinite domains. For example, the probability of

my tee shot on a par-3 golf hole ending up within 10 meters of the hole is 0.1 or 10 percent.

P (y ∈ [0, 10]) = 0.1

71

3.3 Probability Distribution

A random variable y is characterized by how its probability is distributed over its domain Dy. This can be

captured by functions that map Dy to R+.

3.3.1 Cumulative Distribution Function

The most straightforward way to do this is to examine the probability measure for a random variable in

terms of a Cumulative Distribution Function (CDF).

Fy : Dy → [0, 1] (3.12)

It measures the amount probability or mass accumulated over the domain up to and including the point y.

The color highlighted symbol y is the random variable, while y simply represents a value.

Fy(y) = P (y ≤ y) (3.13)

To illustrate the concept, let x1 and x2 be the number on dice 1 and dice 2, respectively. Let y = x1 + x2,

then Fy(6) = P (y ≤ 6) = 5/12. The entire CDF for the discrete random variable y (roll of two dice), Fy(y)

is

{(2, 1/36), (3, 3/36), (4, 6/36), (5, 10/36), (6, 15/36), (7, 21/36), (8, 26/36), (9, 30/36), (10, 33/36), (11, 35/36), (12, 36/36)}

As another example, the CDF for a continuous random variable y that is defined to be uniformly distributed

on the interval [0, 2] is

Fy(y) =
y

2
on [0, 2]

When random variable y follows this CDF, we may say that y is distributed as Uniform (0, 2), symbolically,

y ∼ Uniform (0, 2).

3.3.2 Probability Mass Function

While the CDF indicates accumulated probability or mass (totaling 1), examining probability or mass locally

can be more informative. In case the random variable is discrete (i.e., Dy is discrete), a probability mass

function (pmf) may be defined.

py : Dy → [0, 1] (3.14)

This function indicates the amount of mass/probability at point yi ∈ Dy,

py(yi) = Fy(yi)− Fy(yi−1) (3.15)

It can be calculated as the first difference of the CDF, i.e., the amount of accumulated mass at point yi

minus the amount of accumulated mass at the previous point yi−1.

For one dice x1, the pmf is

{(1, 1/6), (2, 1/6), (3, 1/6), (4, 1/6), (5, 1/6), (6, 1/6)}

72

A second dice x2 will have the same pmf. Both random variables follow the Discrete Uniform Distribution,

Randi (1, 6).

px(x) =
1

6
1{1≤x≤6} (3.16)

where 1{c} is the indicator function (if c then 1 else 0).

If the two random variables are added y = x1 + x2, the pmf for the random variable y (roll of two dice),

py(y) is

{(2, 1/36), (3, 2/36), (4, 3/36), (5, 4/36), (6, 5/36), (7, 6/36), (8, 5/36), (9, 4/36), (10, 3/36), (11, 2/36), (12, 1/36)}

The random variable y follows the Discrete Triangular Distribution (that peaks in the middle) and not the

flat Discrete Uniform Distribution.

py(y) =
min(y − 1, 13− y)

36
1{2≤y≤12} (3.17)

Using the absolute value, this may be written as follows:

py(y) =
6− |7− y|

36
for y ∈ {2, . . . , 12} (3.18)

3.3.3 Probability Density Function

Suppose y is defined on the continuous domain, e.g., Dy = [0, 2], and that mass/probability is uniformly

spread amongst all the points in the domain. In such situations, it is not productive to consider the mass at

one particular point. Rather one would like to consider the mass in a small interval and scale it by dividing

by the length of the interval. In the limit this is the derivative which gives the density. For a continuous

random variable, if the function Fy is differentiable, a probability density function (pdf) may be defined.

fy : Dy → R+ (3.19)

It is calculated as the first derivative of the CDF, i.e.,

fy(y) =
dFy(y)

dy
(3.20)

For example, the pdf for a uniformly distributed random variable y on [0, 2] is

fy(y) =
d

dy

y

2
=

1

2
on [0, 2]

The pdf for the Uniform Distribution is shown in the figure below.

73

0 0.5 1 1.5 2

0.45

0.5

0.55

0.6

y

f y
(y

)

pdf for Uniform Distribution

Random variates of this type may be generated using ScalaTion’s Uniform (0, 2) class within the

scalation.random package.

1 val rvg = Uniform (0, 2)

2 val yi = rvg.gen

For another example, the pdf for an exponentially distributed random variable y on [0,∞) with rate

parameter λ is

fy(y) = λe−λy on [0,∞)

The pdf for the Exponential (λ = 1) Distribution is shown in the figure below.

0 1 2 3 4

0

0.2

0.4

0.6

0.8

1

y

f y
(y

)

pdf for Exponential Distribution

Going the other direction, the CDF Fy(y) can be computed by summing the pmf py(y)

74

Fy(y) =
∑
xi≤y

py(xi) (3.21)

or integrating the pdf fy(y).

Fy(y) =

∫ y

−∞
fy(x)dx (3.22)

75

3.4 Empirical Distribution

An empirical distribution may be used to describe a dataset probabilistically. Consider a dataset (X,y)

where X ∈ Rm×n is the data matrix collected about the predictor variables and y ∈ Rm is the data vector

collected about the response variable. In other words, the dataset consists of m instances of an n-dimensional

predictor vector xi and a response value yi.

The joint empirical probability mass function (epmf) may be defined on the basis of a given dataset

(X,y).

pdata(x, y) =
ν(x, y)

m
=

1

m

m−1∑
i=0

1{xi=x,yi=y} (3.23)

where ν(x, y) is the frequency count and 1{c} is the indicator function (if c then 1 else 0).

The corresponding Empirical Cumulative Distribution Function (ECDF) may be defined as follows:

Fdata(x, y) =
1

m

m−1∑
i=0

1{xi≤x,yi≤y} (3.24)

76

3.5 Expectation

Using the definition of a CDF, one can determine the expected value (or mean) for random variable y using

a Riemann-Stieltjes integral.

E [y] =

∫
Dy

y dFy(y) (3.25)

The mean specifies the center of mass, e.g., a two-meters rod with the mass evenly distributed throughout,

would have a center of mass at 1 meter. Although it will not affect the center of mass calculation, since the

total probability is 1, unit mass is assumed (one kilogram). The center of mass is the balance point in the

middle of the bar.

3.5.1 Continuous Case

When y is a continuous random variable, we may write the mean as follows:

E [y] =

∫
Dy

y fy(y)dy (3.26)

The mean of y ∼ Uniform (0, 2) is

E [y] =

∫ 2

0

y
1

2
dy = 1.

3.5.2 Discrete Case

When y is a discrete random variable, we may write

E [y] =
∑
y∈Dy

y py(y) (3.27)

The mean for rolling two dice is E [y] = 7. One way to interpret this is to imagine winning y dollars by

playing a game, e.g., two dollars for rolling a 2 and twelve dollars for rolling a 12, etc. The expected earnings

when playing the game once is seven dollars. Also, by the law of large numbers, the average earnings for

playing the game n times will converge to seven dollars as n gets large.

3.5.3 Variance

The variance of random variable y is given by

V [y] = E
[
(y − E [y])2

]
(3.28)

The variance specifies how the mass spreads out from the center of mass. For example, the variance of y ∼
Uniform (0, 2) is

V [y] = E
[
(y − 1)2

]
=

∫ 2

0

(y − 1)2 1

2
dy =

1

3

77

That is, the variance of the one kilogram, two-meter rod is 1
3 kilogram meter2. Again, for probability to

be viewed as mass, unit mass (one kilogram) must be used, so the answer may also be given as 1
3 meter2

Similarly to interpreting the mean as the center of mass, the variance corresponds to the moment of inertia.

The standard deviation is simply the square root of variance.

SD [y] =
√

V [y] (3.29)

For the two-meter rod, the standard deviation is 1√
3

= 0.57735. The percentage of mass within one

standard deviation unit of the center of mass is then 58%. Many distributions, such as the Normal (Gaussian)

distribution concentrate mass closer to the center. For example, the Standard Normal Distribution has the

following pdf.

fy(y) =
1√
2π

e−y
2/2 (3.30)

The mean for this distribution is 0, while the variance is 1. The percentage of mass within one standard

deviation unit of the center of mass is 68%. The pdf for the Normal (µ = 0, σ2 = 1) Distribution is shown

in the figure below.

−3 −2 −1 0 1 2 3

0

0.1

0.2

0.3

0.4

y

f y
(y

)

pdf for Standard Normal Distribution

Note, the uncentered variance (or mean square) of the random variable y is simply E
[
y2
]
.

3.5.4 Covariance

The covariance of two random variable x and y is given by

C [x, y] = E [(x− E [x])(y − E [y])] (3.31)

The covariance specifies whether the two random variables have similar tendencies. If the random variables

are independent, the covariance will be zero, while similar tendencies show up as positive covariance and

dissimilar tendencies as negative covariance. Correlation normalizes covariance to the domain [−1, 1]. Co-

variance can be extended to more than two random variables. Let z be a vector of k random variables, then

a covariance matrix is produced.

78

C [z] =
[
C [zi, zj]

]
0≤i,j<k (3.32)

79

3.6 Algebra of Random Variables

When random variables x1 and x2 are added to create a new random variable y,

y = x1 + x2

how is y described in terms of mean, variance and probability distribution? Also, what happens when a

random variable is multiplied a constant?

y = ax

3.6.1 Expectation is a Linear Operator

The expectation/mean of the sum is simply the sum of the means.

E [y] = E [x1] + E [x2] (3.33)

The expectation of a random variable multiplied by a constant, is the constant multiplied by the random

variable’s expectation.

E [ay] = aE [y] (3.34)

The last two equations imply that expectation is a linear operator.

3.6.2 Variance is not a Linear Operator

The variance of the sum is the sum of variances plus twice the covariance.

V [y] = V [x1] + V [x2] + 2C [x1, x2] (3.35)

When the random variable are independent, the covariance is zero, so the variance of sum is just the sum of

variances.

V [y] = V [x1] + V [x2] (3.36)

The variance of a random variable multiplied by a constant, is the constant squared multiplied by the random

variable’s variance.

V [ay] = a2V [y] (3.37)

See the exercises for derivations.

3.6.3 Convolution of Probability Distributions

Determination the new probability distribution of the sum of two random variables is more difficult.

80

Convolution: Discrete Case

Assuming the random variables are independent and discrete, the pmf of the sum py is the convolution of

two pmfs px1 and px2 .

py = px1 ∗ px2 (3.38)

py(y) =
∑
x∈Dx

px1(x) px2(y − x) (3.39)

For example, letting x1, x2 ∼ Bernoulli(p), i.e., px1(x) = px(1− p)1−x on Dx = {0, 1}, gives

py(0) =
∑
x∈Dx

px1
(x) px2

(0− x) = p2

py(1) =
∑
x∈Dx

px1(x) px2(1− x) = 2p(1− p)

py(2) =
∑
x∈Dx

px1(x) px2(2− x) = (1− p)2

which indicates that y ∼ Binomial(p, 2). The pmf for the Binomial(p, n) distribution is

py(y) =

(
n

y

)
py (1− p)n−y (3.40)

Consider the sum of two dice, y = x+ z, where x, z ∼ DiscreteUniform(1, 6).

1 2 3 4 5 6

2

4

6

x

z

Joint Probability for Two Dice

As the joint pmf pxz(xi, zj) = px(xi)pz(zj) = 1/36 is constant over all points, the convolution sum for a

particular value of y corresponds to the downward diagonal sum where the dice sum to that value, e.g.,

py(3) = 2/36, py(7) = 6/36.

81

Convolution: Continuous Case

Now, assuming the random variables are independent and continuous, the pdf of the sum fy is the convolution

of two pdfs fx1
and fx2

.

fy = fx1 ∗ fx2 (3.41)

fy(y) =

∫
Dx

fx1
(x) fx2

(y − x) dx (3.42)

For example, letting x1, x2 ∼ Uniform(0, 1), i.e., fx1
(x) = 1 on Dx = [0, 1], gives

for y ∈ [0, 1] fy(y) =

∫
[0,y]

fx1
(x) fx2

(y − x)dx = y

for y ∈ [1, 2] fy(y) =

∫
[0,2−y]

fx1
(x) fx2

(y − x)dx = 2− y

which indicates that y ∼ Triangular(0, 1, 2).

3.6.4 Central Limit Theorem

When several random variables are added (or averaged), interesting phenomena occurs, e.g., consider the

distribution of y as the sum of m random variables.

y =

m−1∑
i=0

xi

When xi ∼ Uniform(0, 1) with mean 1
2 and variance 1

12 , then for m large enough y will follow a Normal

distribution

y ∼ Normal(µ, σ2)

where µ = m
2 and σ2 = m

12 . The pdf for the Normal Distribution is

fy(y) =
1√
2πσ

e−
1
2 (y−µσ)2 (3.43)

For most distributions, summed random variables will be approximately distributed as Normal, as in-

dicated by the Central Limit Theorem (CLT); for proofs see [47, 11]. Suppose xi ∼ F with mean µx and

variance σ2
x < ∞, then the sum of m independent and identically distributed (iid) random variables is

distributed as follows:

y =

m−1∑
i=0

xi ∼ N(mµx,mσ
2
x) as m→∞ (3.44)

This is one simple form of the CLT. See the exercises of a visual illustration of the CLT.

Similarly, the sum of m independent and identically distributed random variables (with mean µx and

variance σx
2) divided by m will also be Normally distributed for sufficiently large m.

82

y =
1

m

m−1∑
i=0

xi

The expectation of y = 1
mmµx = µx, while variance is σ2

x/m, so

y ∼ Normal(µx, σ
2
x/m)

As, E [y] = µx, y can serve as an unbiased estimator of µx. This can be transformed to the Standard Normal

Distribution with the following transformation.

z =
y − µx
σx/
√
m
∼ Normal(0, 1)

The Normal distribution is also referred to as the Gaussian distribution. See the exercises for related

distributions: Chi-square, Student’s t and F .

83

3.7 Median, Mode and Quantiles

As stated, the mean is the expected value, a probability weighted sum/integral of the values in the domain of

the random variable. Other ways of characterizing a distribution are based more directly on the probability.

3.7.1 Median

Moving along the distribution, the place at which half of the mass is below you and half is above you is the

median.

P (y ≤ median) ≥ 1

2
and P (y ≥ median) ≥ 1

2
(3.45)

Given equally likely values (1, 2, 3), the median is 2. Given equally likely values (1, 2, 3, 4), there are two

common interpretations for the median: The smallest value satisfying the above equation (i.e., 2) or the

average of the values satisfying the equation (i.e., 2.5) The median for two dice (with the numbers summed)

which follow the Triangular distribution is 7.

3.7.2 Quantile

The median is also referred to as the half quantile.

Q [y] = F−1
y (

1

2
) (3.46)

More generally, the p ∈ [0, 1] quantile is given by

pQ [y] = F−1
y (p) (3.47)

where F−1
y is the inverse CDF (iCDF). For example, recall the CDF for Uniform (0, 2) is

p = Fy(y) =
y

2
on [0, 2]

Taking the inverse yields the iCDF.

F−1
y (p) = 2p on [0, 1]

Consequently, the median Q [y] = F−1
y (1

2) = 1.

3.7.3 Mode

Similarly, one may be interested in the mode, which is the average of the points of maximal probability mass.

M [y] = argmax
y∈Dy

py(y) (3.48)

The mode for rolling two dice is y = 7. For continuous random variables, it is the average of points of

maximal probability density.

M [y] = argmax
y∈Dy

fy(y) (3.49)

For the two-meter rod, the mean, median and mode are all equal to 1.

84

3.8 Joint, Marginal and Conditional Distributions

Knowledge of one random variable may be useful in narrowing down the possibilities for another random

variable. Therefore, it is important to understand how probability is distributed in multiple dimensions.

There are three main concepts: joint, marginal and conditional.

In general, the joint CDF for two random variables x and y is

Fxy(x, y) = P (x ≤ x, y ≤ y) (3.50)

3.8.1 Discrete Case: Joint and Marginal Mass

In the discrete case, the joint pmf for two random variables x and y is

pxy(xi, yj) = Fxy(xi, yj)− [Fxy(xi−1, yj) + Fxy(xi, yj−1)− Fxy(xi−1, yj−1)] (3.51)

See the exercises to check this formula for the matrix shown below.

Imagine nine weights placed in a 3-by-3 grid with the number indicating the relative mass.

1 val mat = MatrixD ((3, 3), 1, 2, 3,

2 4, 5, 6,

3 7, 8, 9)

Dividing the matrix by 45 or calling toProbability in the scalation.mathstat.Probability object yields

a probability matrix representing a joint probability mass function (pmf), pxy(xi, yj),

1 MatrixD (0.0222222 , 0.0444444 , 0.0666667 ,

2 0.0888889 , 0.111111 , 0.133333 ,

3 0.155556 , 0.177778 , 0.200000)

The marginal pmfs are computed as follows:

px(xi) =
∑
yj∈Dy

pxy(xi, yj) sum out y (3.52)

py(yj) =
∑
xi∈Dx

pxy(xi, yj) sum out x (3.53)

Carrying out the summations or calling margProbX (pxy) for px(xi) and margProbY (pxy) for py(yj) gives,

1 Marginal X: px = VectorD (0.13333333333333333 , 0.33333333333333337 , 0.5333333333333334)

2 Marginal Y: py = VectorD (0.26666666666666666 , 0.33333333333333337 , 0.4)

Scaling back by multiplying by 45 produces,

1 45* Marginal X: px = VectorI(6, 15, 24)

2 45* Marginal Y: py = VectorI (12, 15, 18)

It is now easy to see that px is based on row sums, while py is based on column sums.

85

3.8.2 Continuous Case: Joint and Marginal Density

In the continuous case, the joint pdf for two random variables x and y is

fxy(x, y) =
∂2Fxy
∂x∂y

(x, y) (3.54)

Consider the following joint pdf that specifies the distribution of one kilogram of mass (or probability)

uniformly over a 2-by-3 meter plate.

fxy(x, y) =
1

6
on [0, 2]× [0, 3]

0 0.5 1 1.5 2

0

1

2

3

x

y

The joint CDF is then a double integral,

Fxy(x, y) =

∫ x

0

∫ y

0

1

6
dydx =

xy

6

There are two marginal pdfs that are single integrals: Think of the mass of the vertical red line being

collected into the thick red bar at the bottom. Collecting all such lines creates the red bar at the bottom

and its mass is distributed as follows:

fx(x) =

∫ 3

0

1

6
dy =

3

6
=

1

2
on [0, 2] integrate out y

Now think of the mass of the horizontal green line being collected into the thick green bar on the left.

Collecting all such lines creates the green bar on the left and its mass is distributed as follows:

fy(y) =

∫ 2

0

1

6
dx =

2

6
=

1

3
on [0, 3] integrate out x

For more details and examples, see Class 7 of [138].

86

3.8.3 Discrete Case: Conditional Mass

Conditional probability can be examined locally. Given two discrete random variables x and y, the conditional

mass function of x given y is defined as follows:

px|y(xi, yj) = P (x = xi|y = yj) =
pxy(xi, yj)

py(yj)
(3.55)

where pxy(xi, yj) is the joint mass function. Again, the marginal mass functions are

px(xi) =
∑
yj∈Dy

pxy(xi, yj)

py(yj) =
∑
xi∈Dx

pxy(xi, yj)

Consider the following example: Roll two dice. Let x be the value on the first dice and y be the sum of

the two dice. Compute the conditional pmf for x given that it is known that y = 2.

px|y(xi, 2) = P (x = xi|y = 2) =
pxy(xi, 2)

py(2)
(3.56)

Try this problem for each possible value for y.

3.8.4 Continuous Case: Conditional Density

Similarly, for two continuous random variables x and y, the conditional density function of x given y is

defined as follows:

fx|y(x, y) =
fxy(x, y)

fy(y)
(3.57)

where fxy(x, y) is the joint density function. The marginal density functions are

fx(x) =

∫
y∈Dy

fxy(x, y)dy (3.58)

fy(y) =

∫
x∈Dx

fxy(x, y)dx (3.59)

The marginal density function in the x-dimension is the probability mass projected onto the x-axis from all

other dimensions, e.g., for a bivariate distribution with mass distributed in the first xy quadrant, all the

mass will fall onto the x-axis.

Consider the example below where the random variable x indicates how far down the center-line of a

straight golf hole the golf ball was driven in units of 100 yards. The random variable y indicates how far left

(positive) or right (negative) the golf ball ends up from the center of the fairway. Let us call these random

variable distance and dispersion. The golfer teed the ball up at location [0, 0]. For simplicity, assume the

probability is uniformly distributed within the triangle.

87

0 0.5 1 1.5 2 2.5 3

−1

−0.5

0

0.5

1

x

y

As the area of the triangle is 3, the joint density function is

fxy(x, y) =
1

3
on x ∈ [0, 3], y ∈ [−x/3, x/3]

The distribution (density) of the driving distance down the center-line is given the marginal density for the

random variable x

fx(x) =

∫ x/3

−x/3

1

3
dy =

y

3

∣∣∣∣x/3
−x/3

=
2x

9

Therefore, the conditional density of dispersion y given distance x is given by

fy|x(x, y) =
fxy(x, y)

fx(x)
=

1/3

2x/9
=

3

2x
(3.60)

3.8.5 Independence

The two random variables x and y are said to independent denoted x ⊥ y when the joint CDF (equivalently

pmf/pdf) can be factored into the product of its marginal CDFs (equivalently pmf/pdf).

Fxy(x, y) = Fx(x)Fy(y) (3.61)

For example, determine which of the following two joint density functions defined on [0, 1]2 signify indepen-

dence.

fxy(x, y) = 4xy

fxy(x, y) = 8xy − x− y

For the first joint density, the two marginal densities are the following:

fx(x) =

∫ 1

0

4xy dy =
4xy2

2

∣∣∣∣1
0

= 2x

88

fy(y) =

∫ 1

0

4xy dx =
4x2y

2

∣∣∣∣1
0

= 2y

The product of the marginal densities fx(x) fy(y) = 4xy is the joint density.

Compute the conditional density under the assumption that the random variables, x and y, are indepen-

dent.

fx|y(x, y) =
fxy(x, y)

fy(y)
(3.62)

As the joint density can be factored, fxy(x, y) = fx(x) fy(y), we obtain,

fx|y(x, y) =
fx(x) fy(y)

fy(y)
= fx(x) (3.63)

showing that the value of random variable y has no effect on x. See the exercises for a proof that independence

implies zero covariance (and therefore zero correlation).

3.8.6 Conditional Expectation

The value of one random variable may influence the expected value of another random variable The condi-

tional expectation of random variable x given random variable y is defined as follows:

E [x|y = y] =

∫
Dx

x dFx|y(x, y) (3.64)

When y is a discrete random variable, we may write

E [x|y = y] =
∑
x∈Dx

x px|y(x, y) (3.65)

When y is a continuous random variable, we may write

E [x|y = y] =

∫
Dx

x fx|y(x, y)dx (3.66)

Consider the previous example on the dispersion y of a golf ball conditioned on the driving distance y.

Compute the conditional mean and the conditional variance for y given x.

µy|x = E [y|x = x] =

∫ x/3

−x/3
y fy|x(x, y)dy

σ2
y|x = E

[
(y − µy|x)2|x = x

]
=

∫ x/3

−x/3
(y − µy|x)2 fy|x(x, y)dy

89

3.8.7 Conditional Independence

A wide class of modeling techniques are under the umbrella of probabilistic graphical models (e.g., Bayesian

Networks and Markov Networks). They work by factoring a joint probability based on conditional indepen-

dencies. Random variables x and y are conditionally independent given z, denoted

x ⊥ y | z

means that

Fx,y|z(x, y, z) = Fx|z(x, z)Fy|z(y, z)

90

3.9 Odds

Another way of looking a probability is odds. This is the ratio of probabilities of an event A occurring over

the event not occurring S −A.

odds(y ∈ A) =
P (y ∈ A)

P (y ∈ S −A)
=

P (y ∈ A)

1− P (y ∈ A)
(3.67)

For example, the odds of rolling a pair dice and getting natural is 8 to 28.

odds(y ∈ {7, 11}) =
8

28
=

2

7
= .2857

Of the 36 individual outcomes, eight will be a natural and 28 will not. Odds can be easily calculated from

probability.

odds(y ∈ {7, 11}) =
P (y ∈ {7, 11})

1− P (y ∈ {7, 11})
=

2/9

7/9
=

2

7
= .2857

Calculating probability from odds may be done as follows:

P (y ∈ {7, 11}) =
odds(y ∈ {7, 11})

1 + odds(y ∈ {7, 11})
=

2/7

9/7
=

2

9
= .2222

91

3.10 Example Problems

Understanding of some of techniques to be discussed requires some background in conditional probability.

1. Consider the probability of rolling a natural (i.e., 7 or 11) with two dice where the random variable y

is the sum of the dice.

P (y ∈ {7, 11}) = 1/6 + 1/18 = 2/9

If you knew you rolled a natural, what is the conditional probability that you rolled a 5 or 7?

P (y ∈ {5, 7} | y ∈ {7, 11}) =
P (y ∈ {5, 7}, y ∈ {7, 11})

P (y ∈ {7, 11})
=

1/6

2/9
= 3/4

This is the conditional probability of rolling a 5 or 7 given that you rolled a natural.

More generally, the conditional probability that y ∈ A given that x ∈ B is the joint probability divided

by the probability that x ∈ B.

P (y ∈ A |x ∈ B) =
P (y ∈ A, x ∈ B)

P (x ∈ B)

where

P (y ∈ A, x ∈ B) = P (x ∈ B | y ∈ A)P (y ∈ A)

Therefore, the conditional probability of y given x is

P (y ∈ A |x ∈ B) =
P (x ∈ B | y ∈ A)P (y ∈ A)

P (x ∈ B)

This is Bayes Theorem written using random variables, which provides an alternative way to compute

conditional probabilities, i.e., P (y ∈ {5, 7} | y ∈ {7, 11}) is

P (y ∈ {7, 11} | y ∈ {5, 7})P (y ∈ {5, 7})
P (y ∈ {7, 11})

=
(3/5) · (5/18)

2/9
= 3/4

2. To illustrate the usefulness of Bayes Theorem, consider the following problem from John Allen Paulos

that is hard to solve without it. Suppose you are given three coins, two fair and one counterfeit (always

lands heads). Randomly select one of the coins. Let x indicate whether the selected coin is fair (0) or

counterfeit (1). What is the probability that you selected the counterfeit coin?

P (x = 1) = 1/3

Obviously, the probability is 1/3, since the probability of picking any of the three coins is the same.

This is the prior probability.

Not satisfied with this level of uncertainty, you conduct experiments. In particular, you flip the selected

coin three times and get all heads. Let y indicate the number of heads rolled. Using Bayes Theorem,

we have,

92

P (x = 1 | y = 3) =
P (y = 3 |x = 1)P (x = 1)

P (y = 3)
=

1 · (1/3)

5/12
= 4/5

where P (y = 3) = (1/3)(1) + (2/3)(1/8) = 5/12. After conducting the experiments (collecting

evidence) the probability estimate may be improved. Now the posterior probability is 4/5.

93

3.11 Estimating Parameters from Samples

Given a model for predicting a response value for y from a feature/predictor vector x,

y = f(x; b) + ε

one needs to pick a functional form for f and collect a sample of data to estimate the parameters b. The

sample will consist of m instances (yi,xi) that form the response/output vector y and the data/input matrix

X.

y = f(X; b) + ε

There are multiple types of estimation procedures. The central ideas are to minimize error or maximize

the likelihood that the model would generate data like the sample. A common way to minimize error is to

minimize the Mean Squared Error (MSE). The error vector ε is the difference between the actual response

vector y and the predicted response vector ŷ.

ε = y − ŷ = y − f(x; b)

The mean squared error on the length (Euclidean norm) of the error vector ‖ε‖ is given by

E
[
‖ε‖2

]
= V [‖ε‖] + E [‖ε‖]2 (3.68)

where V [‖ε‖] is error variance and E [‖ε‖] is the error mean. If the model is unbiased the error mean will

be zero, in which case the goal is to minimize the error variance.

3.11.1 Sample Mean

Suppose the speeds of cars on an interstate highway are Normally distributed with a mean at the speed

limit of 70 mph (113 kph) and a standard deviation of 8 mph (13 kph), i.e., y ∼ N(µ, σ2) in which case the

model is

y = µ+ ε

where ε ∼ N(0, σ2). Create a sample of size m = 100 data points, using a Normal random variate generator.

The population values for the mean µ and standard deviation σ are typically unknown and need to be

estimated from the sample, hence the names sample mean µ̂ and sample standard deviation σ̂. Show the

generated sample, by plotting the data points and displaying a histogram.

1 @main def sampleStats (): Unit =

2

3 val (mu, sig) = (70.0 , 8.0) // pop. mean and std dev

4 val m = 100 // sample size

5 val rvg = Normal (mu , sig * sig) // Normal random variate

6 val sample = VectorD (for i <- 0 until m yield rvg.gen) // sample from Normal dist

7 val (mu_ , sig_) = (sample.mean , sample.stdev) // sample mean and std dev

8 println (s"(mu_ , sig_) = (mu,sig_)")

9 new Plot (null , sample)

10 new Histogram (sample)

11

12 end sampleStats

94

Imports: scalation.mathstat. , scalation.random. .

3.11.2 Confidence Interval

Now that you have an estimate for the mean, you begin to wonder if is correct or rather close enough.

Generally, an estimate is considered close enough if its confidence interval contains the population mean.

Collect an iid sample of values into a vector y. Then the sample mean is simply

µ̂ =
1 · y
m

=
1

m

m−1∑
i=0

yi

To create a confidence interval, we need to determine the variability or variance in the estimate µ̂.

V [µ̂] = V

[
1

m

m−1∑
i=0

yi

]
=

1

m2

m−1∑
i=0

V [yi] =
σ2

m

The difference between the estimate from the sample and the population mean is Normally distributed and

centered at zero (show that µ̂ is an unbiased estimator for µ, i.e., E [µ̂] = µ).

µ̂− µ ∼ N(0,
σ2

m
)

We would like to transform the difference so that the resulting expression follows a Standard Normal

distribution. This can be done by dividing by σ√
m

.

µ̂− µ
σ/
√
m
∼ N(0, 1)

Consequently, the probability that the expression is greater than z is given by the CDF of the Standard

Normal distribution, FN (z).

P

(
µ̂− µ
σ/
√
m
> z

)
= 1− FN (z)

One might consider that if z = 2, two standard deviation units, then the estimate is not close enough. The

same problem can exist on the negative side, so we should require∣∣∣∣ µ̂− µσ/
√
m

∣∣∣∣ ≤ 2

In other words,

|µ̂− µ| ≤ 2σ√
m

This condition implies that µ would likely be inside the following confidence interval.[
µ̂− 2σ√

m
, µ̂+

2σ√
m

]
In this case it is easy to compute values for the lower and upper bounds of the confidence interval. The

interval half width is simply 2·8
10 = 1.6, which is to be subtracted and added to the sample mean.

Use ScalaTion to determine the probability that µ is within such confidence intervals?

1 println (s"1 - F(2) = ${1 - normalCDF (2)}")

95

The probability is one minus twice this value. If 1.96 is used instead of 2, what is the probability, expressed

as a percentage.

Typically, the population standard deviation is unlikely to be known. It would need to estimated by

using the sample standard deviation, where the sample variance is

σ̂2 =
1

m− 1

m−1∑
i=0

(yi − µ̂)2 (3.69)

Note, this textbook uses θ̂ to indicate an estimator for parameter θ, regardless of whether it is a Maxi-

mum Likelihood (MLE) estimator. This substitution introduces more variability into the estimation of the

confidence interval and results in the Standard Normal distribution (z-distribution)[
µ̂− z∗σ√

m
, µ̂+

z∗σ√
m

]
(3.70)

being replace by the Student’s t distribution[
µ̂− t∗σ̂√

m
, µ̂+

t∗σ̂√
m

]
(3.71)

where z∗ and t∗ represent distances from zero, e,g., 1.96 or 2.09, that are large enough so that the analyst

is comfortable with the probability that they may be wrong.

The numerators for the interval half widths (ihw) are calculated by the following top-level functions in

Statistics.scala. The z sigma function is used for the z-distribution.

1 def z_sigma (sig: Double , p: Double = .95): Double =

2 val pp = 1.0 - (1.0 - p) / 2.0 // e.g., .95 --> .975 (two tails)

3 val z = random.Quantile.normalInv (pp)

4 z * sig

5 end z_sigma

The t sigma function is used for the t-distribution.

1 def t_sigma (sig: Double , df: Int , p: Double = .95): Double =

2 if df < 1 then { flaw ("interval", "must have at least 2 observations"); return 0.0 }

3 val pp = 1.0 - (1.0 - p) / 2.0 // e.g., .95 --> .975 (two tails)

4 val t = random.Quantile.studentTInv (pp , df)

5 t * sig

6 end t_sigma

Does the probability you determined in the last example problem make any sense. Seemingly, if you took

several samples, only a certain percentage of them would have the population mean within their confidence

interval.

1 @main def confidenceIntervalTest (): Unit =

2

3 val (mu, sig) = (70.0 , 8.0) // pop. mean and std dev

4 val m = 100 // sample size

5 val rm = sqrt (m)

6 val rvg = Normal (mu, sig * sig) // Normal random variate

7 var count_z , count_t = 0

8

9 for it <- 1 to 100 do // test several datasets

10 val y = VectorD (for i <- 0 until m yield rvg.gen) // sample from Normal dist

96

11 val (mu_ , sig_) = (y.mean , y.stdev) // sample mean and std dev

12

13 val ihw_z = z_sigma (sig_) / rm // interval half width: z

14 val ci_z = (mu_ - ihw_z , mu_ + ihw_z) // z-confidence interval

15 println (s"mu = muinciz =ci_z?")

16 if mu in ci_z then count_z += 1

17

18 val ihw_t = t_sigma (sig_ , m-1) / rm // interval half width: t

19 val ci_t = (mu_ - ihw_t , mu_ + ihw_t) // z-confidence interval

20 println (s"mu = muincit =ci_t?")

21 if mu in ci_t then count_t += 1

22 end for

23

24 println (s"mu inside countzprintln(s”muinsidecount_t % t-confidence intervals")

25

26 end confidenceIntervalTest

Imports: scalation. , scalation.mathstat. , scalation.random. .

Try various values for m starting with m = 20. Compute percentages for both the t-distribution and the

z-distribution. Given the default confidence level used by ScalaTion is 0.95 (or 95%) what would you

expect your percentages to be?

3.11.3 Estimation for Discrete Outcomes/Responses

Explain why the probability mass function (pmf) for flipping a coin n times with the experiment resulting in

the discrete random variable y = k heads is given by the Binomial Distribution having unknown parameter

p, the probability of getting a head for any particular coin flip,

pn(k) = P (y = k) =

(
n

k

)
pk(1− p)n−k

i.e., y ∼ Binomial(n, p).

Now suppose an experiment is run and y = k, a fixed number, e.g., n = 100 and k = 60. For various

values of p, plot the following function.

L(p) =

(
n

k

)
pk(1− p)n−k

What value of p maximizes the function L(p)? The function L(p) is called the Likelihood function and it is

used in Maximum Likelihood Estimation (MLE) [139].

The VectorD class provides methods for computing statistics on vectors.

97

3.12 Entropy

The entropy of a discrete random variable y with probability mass function (pmf) py(y) is the negative of

the expected value of the log of the probability.

H(y) = H(py) = − E [log2 py] = −
∑
y∈Dy

py(y) log2 py(y) (3.72)

The following single loop is used in ScalaTion to compute entropy.

1 def entropy (px: VectorD): Double =

2 var sum = 0.0

3 for p <- px if p > 0.0 do sum -= p * log2 (p)

4 sum

5 end entropy

For finite domains of size k = |Dy|, entropy H(y) ranges from 0 to log2(k). Low entropy (close to 0) means

that there is low uncertainty/risk in predicting an outcome of an experiment involving the random variable

y, while high entropy (close to log2 k) means that there is high uncertainty/risk in predicting an outcome of

such an experiment. For binary classification (k = 2), the upper bound on entropy is 1.

The entropy may be normalized by setting the base of the logarithm to the size of the domain k, in which

case, the entropy will be in the interval [0, 1].

Hk(y) = Hk(py) = − E [logk py] = −
∑
y∈Dy

py(y) logk py(y)

A random variable y ∼ Bernoulli(p) may be used to model the flip of a single coin that has a probability of

success/head (1) of p. Its pmf is given by the following formula.

p(y) = py(1− p)1−y

The pmf py can be captured in a probability vector py

H(y) = H(py) = H(py) = H([p, 1− p]) = p log2 p+ (1− p) log2 1− p

The figure below plots the entropy H([p, 1− p]) as probability of a head p ranges from 0 to 1.

98

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

y

f y
(y

)

Entropy for Bernoulli pmf

A random variable y = z1 + z2 where z1, z2 are distributed as Bernoulli(p) may be used to model the

sum of flipping two coins.

H(y) = H(py) = H([p2, 2p(1− p), (1− p)2])

See the exercises for how to extend entropy to continuous random variables.

3.12.1 Positive Log Probability

Entropy can also be expressed in terms of positive log probability [57] (or plog).

plog(y) = − log2 py (3.73)

Then entropy is simply the expected values of the plog.

H(y) = E [plog(y)] (3.74)

The concept of plog can also be used in place of probability and offers several advantages: (1) multiplying

many small probabilities may lead to round off error or underflow; (2) independence leads to addition of

plog values rather than multiplication of probabilities; and (3) its relationship to log-likelihood in Maximum

Likelihood Estimation.

plog(x) =
∑
j

plog(xj) for independent random variables (3.75)

The greater the plog the less likely the occurrence, e.g., the plog of rolling snake eyes (1, 1) with two dice is

about 5.17, while probability of rolling 7 is 2.58. Note, probability 1 and .5 give plog of 0 and 1, respectively.

99

3.12.2 Joint Entropy

Entropy may be defined for multiple random variables as well. Given two discrete random variables, x, y,

with a joint pmf px,y(x, y) the joint entropy is defined as follows:

H(x, y) = H(px,y) = − E [log2 px,y] = −
∑
x∈Dx

∑
y∈Dy

px,y(x, y) log2 px,y(x, y) (3.76)

3.12.3 Conditional Entropy

Replacing the joint pmf, with the conditional pmf gives conditional entropy.

H(x|y) = H(px|y) = − E
[
log2 px|y

]
= −

∑
x∈Dx

∑
y∈Dy

px,y(x, y) log2 px|y(x, y) (3.77)

Suppose an experiment involves two random variables x and y. Initially, the overall entropy is given by the

joint entropy H(x, y). Now, partial evidence allows the value of y to be determined, so the overall entropy

should decrease by y’s entropy.

H(x|y) = H(x, y) − H(y) (3.78)

When there is no dependency between x and y (i.e., they are independent), H(x, y) = H(x) + H(y)), so

H(x|y) = H(x) (3.79)

At the other extreme, when there is full dependency (i.e., they value of x can be determined from the value

of y).

H(x|y) = 0 (3.80)

3.12.4 Relative Entropy

Relative entropy, also known as Kullback-Leibler (KL) divergence, measures the dissimilarity between two

probability distributions.

Discrete Random Variable

Given a discrete random variables, y, with two candidate probability mass functions (pmf)s py(y) and qy(y)

the relative entropy is defined as follows:

H(py||qy) = E
[
log2

py
qy

]
=

∑
y∈Dy

py(y) log2

py(y)

qy(y)
(3.81)

One way to look at relative entropy is that it measures the uncertainty that is introduced by replacing

the true/empirical distribution py with an approximate/model distribution qy. If the distributions are

identical, then the relative entropy is 0, i.e., H(py||py) = 0. The larger the value of H(py||qy) the greater

the dissimilarity between the distributions py and qy.

As an example, assume the true distribution for a coin is [.6, .4], but it is thought that the coin is fair

[.5, .5]. The relative entropy is computed as follows:

100

H(py||qy) = .6 log2 .6/.5 + .4 log2 .4/.5 = 0.029

Continuous Random Variable

Given a continuous random variables, y, with two candidate probability density functions (pdf)s fy(y) and

gy(y) the relative entropy is defined as follows:

H(fy||gy) = E
[
log2

fy
gy

]
=

∫
Dy

fy(y) log2

fy(y)

gy(y)
dy (3.82)

Maximum Likelihood Estimation

In this subsection, we examine the relationship between KL Divergence and Maximum Likelihood. Consider

the dissimlarity of an empirical distribution pdata(x, y) and a model generated distribution pmod(x, y,b).

H(pdata(x, y)||pmod(x, y,b)) = E
[
log

pdata(x, y)

pmod(x, y,b)

]
(3.83)

=

m−1∑
i=0

pdata(xi, yi) log
pdata(xi, yi)

pmod(xi, yi,b)
(3.84)

Note, that pdata(xi, yi) is unaffected by the choice of parameters b, so it represents a constant C.

H(pdata(x, y)||pmod(x, y,b)) = C −
m−1∑
i=0

pdata(xi, yi) log pmod(xi, yi,b) (3.85)

The probability for the ith data instance is 1
m , thus

H(pdata(x, y)||pmod(x, y,b)) = C − 1

m

m−1∑
i=0

log pmod(xi, yi,b) (3.86)

The second term is the negative log-likelihood (the Chapter on Generalized Linear Models for details).

3.12.5 Cross Entropy

Relative entropy can be adjusted to capture overall entropy by adding the entropy of py.

H(py × qy) = H(py) +H(py||qy) (3.87)

It is the sum of the entropy of the empirical distribution and the model distribution’s relative entropy to the

empirical distribution. It can be calculated using the following formula (see exercises for details):

H(py × qy) = −
∑
y∈Dy

py(y) log2 qy(y) (3.88)

Since cross entropy is more efficient to calculate than relative entropy, it is a good candidate as a loss function

for machine learning algorithms. The smaller the cross entropy, the more the model (e.g., Neural Network)

agrees with the empirical distribution (dataset). The formula looks like the one for ordinary entropy with

qy substituted in as the argument for the log function. Hence the name cross entropy.

101

3.12.6 Mutual Information

Recall that if x and y are independent, then for all x ∈ Dx and y ∈ Dy,

px,y(x, y) = px(x) py(y)

A possibly more interesting and practical question is to measure how close two random variables are to being

independent. One approach is to look at the covariance (or correlation) between x and y.

C [x, y] = E [(x− µx)(y − µy)] =
∑
x∈Dx

∑
y∈Dy

(x− µx)(y − µy)px,y(x, y)

If x and y are independent, then

C [x, y] =
∑
x∈Dx

∑
y∈Dy

[(x− µx)px(x)] [(y − µy)py(y)] = 0

An alternative is to look at the relative entropy of px,y and px py.

H(px,y||px py) = E
[
log2

px,y
px py

]
=

∑
x∈Dx

∑
y∈Dy

px,y(x, y) log2

px,y(x, y)

px(x) py(y)
(3.89)

The relative entropy (KL divergence) of the joint distribution to the product of the marginal distributions

is referred to as mutual information.

I(x; y) = H(px,y||px py) (3.90)

The following double loop is used in ScalaTion to compute mutual information.

1 def muInfo (pxy: MatrixD , px: VectorD , py: VectorD): Double =

2 var sum = 0.0

3 for i <- pxy.indices; j <- pxy.indices2 do

4 val p = pxy(i, j)

5 if p > 0.0 then sum += p * log2 (p / (px(i) * py(j)))

6 end for

7 sum

8 end muInfo

As with covariance (or correlation) mutual information will be zero when x and y are independent. While

independence implies zero covariance, independence is equivalent to zero mutual information. Mutual infor-

mation is symmetric and non-negative. See the exercises for additional comparisons between covariance/-

correlation and mutual information.

While mutual information measures the dependence between two random variables, relative entropy (KL

divergence) measures the dissimilarity of two distribution.

Mutual Information corresponds to Information Gain, i.e., the drop in entropy of one random variable

due to knowledge of the value of the other random variable.

I(x; y) = H(x) − H(x|y) = H(y) − H(y|x) (3.91)

The Probability object in the scalation.stat package provides methods to compute probabilities

from frequencies, compute joint, marginal, conditional and log probabilities, as well as entropy, normalized

entropy, relative entropy, cross entropy, and mutual information.

102

3.12.7 Probability Object

Class Methods:

1 object Probability:

2

3 def isProbability (px: VectorD): Boolean = px.min >= 0.0 && abs (px.sum - 1.0) < EPSILON

4 def isProbability (pxy: MatrixD): Boolean = pxy.mmin >= 0.0 && abs (pxy.sum - 1.0) <

EPSILON

5 def freq (x: VectorI , vc: Int , y: VectorI , k: Int): MatrixD =

6 def freq (x: VectorI , y: VectorI , k: Int , vl: Int): (Double , VectorI) =

7 def freq (x: VectorD , y: VectorI , k: Int , vl: Int , cont: Boolean ,

8 def count (x: VectorD , vl: Int , cont: Boolean , thres: Double): Int =

9 def toProbability (nu: VectorI): VectorD = nu.toDouble / nu.sum.toDouble

10 def toProbability (nu: VectorI , n: Int): VectorD = nu.toDouble / n.toDouble

11 def toProbability (nu: MatrixD): MatrixD = nu / nu.sum

12 def toProbability (nu: MatrixD , n: Int): MatrixD = nu / n.toDouble

13 def probY (y: VectorI , k: Int): VectorD = y.freq (k)._2

14 def jointProbXY (px: VectorD , py: VectorD): MatrixD = outer (px , py)

15 def margProbX (pxy: MatrixD): VectorD =

16 def margProbY (pxy: MatrixD): VectorD =

17 def condProbY_X (pxy: MatrixD , px_ : VectorD = null): MatrixD =

18 def condProbX_Y (pxy: MatrixD , py_ : VectorD = null): MatrixD =

19 inline def plog (p: Double): Double = - log2 (p)

20 def plog (px: VectorD): VectorD = px.map (plog (_))

21 def entropy (px: VectorD): Double =

22 def entropy (nu: VectorI): Double =

23 def entropy (px: VectorD , b: Int): Double =

24 def nentropy (px: VectorD): Double =

25 def rentropy (px: VectorD , qx: VectorD): Double =

26 def centropy (px: VectorD , qx: VectorD): Double =

27 def entropy (pxy: MatrixD): Double =

28 def entropy (pxy: MatrixD , px_y: MatrixD): Double =

29 def muInfo (pxy: MatrixD , px: VectorD , py: VectorD): Double =

30 def muInfo (pxy: MatrixD): Double = muInfo (pxy , margProbX (pxy), margProbY (pxy))

For example, the following freq method is used by Näıve Bayes Classifiers. It computes the Joint Frequency

Table (JFT) for all value combinations of vectors x and y by counting the number of cases where xi = v

and yi = c.

1 @param x the variable/feature vector

2 @param vc the number of distinct values in vector x (value count)

3 @param y the response/classification vector

4 @param k the maximum value of y + 1 (number of classes)

5

6 def freq (x: VectorI , vc: Int , y: VectorI , k: Int): MatrixD =

7 val jft = new MatrixD (vc, k)

8 for i <- x.indices do jft(x(i), y(i)) += 1

9 jft

10 end freq

103

3.13 Exercises

Several random number and random variate generators can be found in ScalaTion’s random package. Some

of the following exercises will utilize these generators.

1. Let the random variable h be the number heads when two coins are flipped. Determine the following

conditional probability: P (h = 2|h ≥ 1).

2. Prove Bayes Theorem.

P (A|B) =
P (B|A)P (A)

P (B)

3. Compute the mean and variance for the Bernoulli Distribution with success probability p.

py(y) = py (1− p)1−y for y ∈ {0, 1}

4. Use the Randi random variate generator to run experiments to check the pmf and CDF for rolling two

dice.

1 import scalation.mathstat._

2 import scalation.random.Randi

3

4 @main def diceTest (): Unit =

5 val dice = Randi (1, 6)

6 val x = VectorD.range (0, 13)

7 val freq = new VectorD (13)

8 for i <- 0 until 10000 do

9 val sum = dice.igen + dice.igen

10 freq(sum) += 1

11 end for

12 new Plot (x, freq)

13 end diceTest

5. Show that the variance may be written as follows:

V [y] = E
[
(y − E [y])2

]
= E

[
y2
]
− E [y]

2

6. Show that the covariance may be written as follows:

C [x, y] = E [(x− E [x])(y − E [y])] = E [xy]− E [x]E [y]

7. Show that the covariance of two independent, continuous random variables, x and y, is zero.

C [x, y] = E [(x− µx)(y − µy)] =

∫
Dy

∫
Dx

(x− µx)(y − µy)fxy(x, y)dxdy

where µx = E [x] and µy = E [y].

104

8. Derive the formula for the expectation of the sum of random variables.

E [x1 + x2] = E [x1] + E [x2]

9. Derive the formula for the variance of the sum of random variables.

V [x1 + x2] = V [x1] + V [x2] + 2C [x1, x2]

Hint: use V [x1 + x2] = E
[
(x1 + x2)2

]
− E [x1 + x2]

2

10. Use the Uniform random variate generator and the Histogram class to run experiments illustrating

the Central Limit Theorem (CLT).

1 import scalation.mathstat._

2 import scalation.random.Uniform

3

4 @main def cLTTest (): Unit =

5

6 val rg = Uniform ()

7 val x = VectorD (for i <- 0 until 100000 yield rg.gen + rg.gen + rg.gen + rg.gen)

8 new Histogram (x)

9

10 end cLTTest

Try with other distributions such as Exponential.

11. Chi-square distribution: Show that if z ∼ Normal(0, 1), then

z2 ∼ χ2
1

12. Student’s t distribution: Show that if z ∼ Normal(0, 1) and v ∼ χ2
k, then

z√
v/k

∼ tk

13. F distribution: Show that if u ∼ χ2
k1

and v ∼ χ2
k2

, then

u/k1

v/k2
∼ Fk1,k2

14. Run the confidenceIntervalTest main function (see the Confidence Interval section) for values of

m = 20 to 40, 60, 80 and 100. Report the confidence interval and the number cases when the true

values was inside the confidence interval for (a) the z-distribution and (b) the t-distribution. Explain.

15. Given three random variables such that x ⊥ y | z, show that

Fx|y,z(x, y, z) = Fx|z(x, z)

105

16. Show that formula for computing the joint probability mass function (pmf) for the 3-by-3 grid of

weights is correct. Hint: Add/subtract rectangular regions of the grid and make sure nothing is double

counted.

17. Show for k = 2 where pp = [p, 1 − p], that H(pp) = p log2(p) + (1 − p) log2(1 − p). Plot the entropy

H(pp) versus p.

1 val p = VectorD.range (1, 100) / 100.0

2 val h = p.map (p => -p * log2 (p) - (1-p) * log2 (1-p)

3 new Plot (p, h)

18. Plot the entropy H and normalized entropy Hk for the first 16 Binomial(p, n) distributions, i.e., for

the number of coins n = 1, . . . , 16. Try with p = .6 and p = .5.

19. Entropy can be defined for continuous random variables. Take the definition for discrete random

variables and replace the sum with an integral and the pmf with a pdf. Compute the entropy for

y ∼ Uniform(0, 1).

20. Using the summation formulas for entropy, relative entropy and cross entropy, show that cross entropy

is the sum of entropy and relative entropy.

21. Show that mutual information equals the sum of marginal entropies minus the joint entropy, i.e.,

I(x; y) = H(x) +H(x)−H(x, y)

22. Compare correlation and mutual information in terms of how well they measure dependence between

random variables x and y. Try various functional relationships: negative exponential, reciprocal,

constant, logarithmic, square root, linear, right-arm quadratic, symmetric quadratic, cubic, exponential

and trigonometric.

y = f(x) + ε

Other types of relationships are also possible. Try various constrained mathematical relations: circle,

ellipse and diamond.

f(x, y) + ε = c

What happens as the noise ε increases?

23. Consider an experiment involving the roll of two dice. Let x indicate the value of dice 1 and x2 indicate

of the value of dice 2. In order to examine dependency between random variables, define y = x + x2.

The joint pmf px,y can be recorded in a 6-by-11 matrix that can be computed from the following

feasible occurrence matrix (0 → cannot occur, 1 → can occur), since all the non-zero probabilities are

the same (equal likelihood).

1 // X - dice 1: 1, 2, 3, 4, 5, 6

2 // X2 - dice 2: 1, 2, 3, 4, 5, 6

3 // Y = X + X2: 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

4 val nuxy = MatrixD ((6, 11), 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0,

106

5 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0,

6 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0,

7 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0,

8 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0,

9 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1)

Use methods in the Probability object to compute the joint, marginal and conditional probability

distributions, as well as the joint, marginal, conditional and relative entropy, and mutual information.

Explore the independence between random variables x and y.

24. Convolution. The convolution operator may be applied to vectors as well as functions (including

mass and density functions). Consider two vectors c ∈ Rm and x ∈ Rn. Without loss of generality let

m ≤ n, then their convolution is defined as follows:

y = c ? x =

 yk =

m−1∑
j=0

cjxk−j

k=0,m+n−2

(3.92)

Compute the (’full’) convolution of c and x.

y = c ? x = [1, 2, 3, 4, 5] ? [1, 2, 3, 4, 5, 6, 7] (3.93)

Note, there are also ’same’ and ’valid’ versions of convolution operators.

25. Consider a distribution with density on the interval [0, 2]. Let the probability density function (pdf)

for this distribution be the following:

fy(y) =
y

2
on [0, 2]

(i) Draw/plot the pdf fy(y) vs. y for the interval [0, 2].

(ii) Determine the Cumulative Distribution Function (CDF), Fy(y).

(iii) Draw/plot the CDF Fy(y) vs y for the interval [0, 2].

(iv) Determine the expected value of the Random Variable (RV) y, i.e., E [y].

26. Take the limit of the difference quotient of monomial xn to show that

d

dx
xn = nxn−1

Recall the definition of derivative as the limit of the difference quotient.

d

dx
f(x) = lim

h→0

f(x+ h)− f(x)

h

Recall the notations due to Leibniz, Lagrange, and Euler.

d

dx
f(x) = f ′(x) = Dxf(x)

107

27. Take the integral and then the derivative of the monomial xn to show that

d

dx

∫
xndx = xn

108

3.14 Further Reading

1. Probability and Mathematical Statistics [163].

2. Entropy, Relative Entropy and Mutual Information [35].

109

3.15 Notational Conventions

With respect to random variables, vectors and matrices, the following notational conventions shown in Table

3.1 will be used in this book.

Table 3.1: Notational Conventions Followed

variable type case font color

scalar lower italics black

vector lower bold black

matrix upper italics black

tensor upper bold black

random scalar lower italics blue

random vector lower bold blue

Built on the Functional Programming features in Scala, ScalaTion support several function types:

1 type FunctionS2S = Double => Double // function of a scalar

2 type FunctionS2V = Double => VectorD // vector -valued function of a scalar

3

4 type FunctionV2S = VectorD => Double // function of a vector

5 type FunctionV2V = VectorD => VectorD // vector -valued function of a vector

6 type FunctionV2M = VectorD => MatrixD // matrix -valued function of a vector

7

8 type FunctionM2V = MatrixD => VectorD // vector -valued function of a matrix

9 type FunctionM2M = MatrixD => MatrixD // matrix -valued function of a matrix

These function types are defined in the scalation and scalation.mathstat packages. A scalar-valued

function type ends in ’S’, a vector-valued function type ends in ’V’, and a matrix-valued function type ends

in ’M’.

Mathematically, the scalar-valued functions are denoted by a symbol, e.g., f .

S2S function f : R→ R

V2S function f : Rn → R

Mathemtically, the vector-valued functions are denoted by a bold symbol, e.g., f .

S2V function f : R→ Rn

V2V function f : Rm → Rn

M2V function f : Rm×p → Rn

Mathemtically, the matrix-valued functions are denoted by a bold symbol, e.g., f .

110

V2M function f : Rp → Rm×n

M2M function f : Rp×q → Rm×n

111

3.16 Model

Models are about making predictions such as given certain properties of a car, predict the car’s mileage, given

recent performance of a stock index fund, forecast its future value, or given a person’s credit report, classify

them as either likely to repay or not likely to repay a loan. The thing that is being predicted, forecasted

or classified is referred to the response/output variable, call it y. In many cases, the “given something” is

either captured by other input/feature variables collected into a vector, call it x,

y = f(x; b) + ε (3.94)

or by previous values of y. Some functional form f is chosen to map input vector x into a predicted value

for response y. The last term indicates the difference between actual and predicted values, i.e., the residuals

ε. The function f is parameterized and often these parameters can be collected into a matrix b.

If values for the parameter vector b are set randomly, the model is unlikely to produce accurate pre-

dictions. The model needs to be trained by collecting a dataset, i.e., several (m) instances of (xi, yi), and

optimizing the parameter vector b to minimize some loss function, such as mean squared error (mse),

mse =
1

m
‖y − ŷ‖2 (3.95)

where y is the vector from all the response instances and ŷ = f(X; b) is the vector of predicted response

values and X is the matrix formed from all the input/feature vector instances.

Estimation Procedures

Although there are many types of parameter estimation procedures, this text only utilizes the three most

commonly used procedures [14].

Table 3.2: Estimation Procedures

Procedure Full Name Inventor

LSE Least Squares Estimation Gauss

MoM Method of Moments Pearson

MLE Maximum Likelihood Estimation Fisher

The method of moments develops equations the relate the moments of a distribution to the parameters of the

model, in order to create estimates for the parameters. Least Squares Estimation takes the sum of squared

errors and sets the parameter values to minimize this sum. It has three main varieties: Ordinary Least

Squares (OLS), Weighted Least Squares (WLS), and Generalized Least Squares (GLS). Finally, Maximum

Likelihood Estimation sets the parameter values so that the observed data is likely to occur. The easiest

way to think about this is to imagine that one wants to create a generative model (a model that generates

data). One would want to set the parameters of the model so it generates data that looks like the given

dataset.

Setting of parameters is done by solving a system of equations for the simpler models, or by using an

optimization algorithm for more complex models.

112

Quality of Fit (QoF)

After a model is trained, its Quality of Fit (QoF) should be evaluated. One way to perform the evaluation

is to train the model on the full dataset and test as well on the full dataset. For complex models with many

parameters, over-fitting will likely occur. Then its excellent evaluation is unlikely to be reproduced when the

model is applied in the real-world. To avoid overly optimistic evaluations due to over-fitting, it is common

to divide a dataset (X,y) into a training dataset and testing dataset where training is conducted on the

training dataset (Xr,yr) and evaluation is done on the test dataset (Xe,ye). The conventions used in this

book for the full, training and test datasets are shown in Table 3.3

Table 3.3: Convention for Datasets

Math Symbol Code Description

X x full data/input matrix

X x training data/input matrix (maybe full)

Xe x e test data/input matrix (maybe full)

y y full response/output vector

y y training response/output vector (maybe full)

ye y e test response/output vector (maybe full)

Note, when training and testing on the full dataset, the training and test dataset are actually the same, i.e.,

they are the full dataset. If a model has many parameters, the Quality of Fit (QoF) found from training

and testing on the full dataset should be suspect. See the section on cross-validation for more details.

In ScalaTion, the Model trait severs as base trait for all the modeling techniques in the modeling

package and its sub-packages classifying, clustering, fda, forecasting, and recommeneder.

Model Trait

Trait Methods:

1 trait Model:

2

3 def getFname: Array [String]

4 def train (x_ : MatrixD , y_ : VectorD): Unit

5 def test (x_ : MatrixD , y_ : VectorD): (VectorD , VectorD)

6 def predict (z: VectorD): Double | VectorD

7 def hparameter: HyperParameter

8 def parameter: VectorD | MatrixD

9 def report (ftVec: VectorD): String =

10 def report (ftMat: MatrixD): String =

The getFname method returns the predictor variable/feature names in the model. The train method

will use a training or full dataset to train the model, i.e., optimize its parameter vector b to minimize a

given loss function. After training, the quality of the model may be assessed using the test method. The

evaluation may be performed on a test or full dataset. Finally, information about the model may be extracted

113

by the following three methods: (1) hparameter showing the hyper-parameters, (2) parameter showing the

parameters, and (3) report showing the hyper-parameters, the parameter, and the Quality of Fit (QoF) of

the model. Note, hyper-parameters are used by some modeling techniques to influence either the result or

how the result is obtained.

Classes that implement (directly or indirectly) the Model trait should default x and x e to the full

data/input matrix x, and y and y e to the full response/output vector y that are passed into the class

constructor.

Implementations of the train method take a training data/input matrix x and a training respon-

se/output vector y and optimize the parameter vector b to, for example, minimize error or maximize

likelihood. Implementations of the test method take a test data/input matrix x e and the corresponding

test response/output vector y e to compute errors and evaluate the Quality of Fit (QoF). Note that with

cross-validation (to be explained later), there will be multiple training and test datasets created from one

full dataset. Implementations of the hparameter method simply return the hyper-parameter vector hparam,

while implementations of the parameter method simply return the optimized parameter vector b. (The

fname and technique parameters for Regression are the feature names and the solution/optimization

technique used to estimate the parameter vector, respectively.)

Associated with the Model trait is the FitM trait that provides QoF measures common to all types of

models. For prediction, Fit extends FitM with several additional QoF measures and they are explained on

the Prediction Chapter. Similarity, FitC extends FitM for classification models.

FitM Trait

Trait Methods:

1 trait FitM:

2

3 def sse_ : Double = sse

4 def rSq_ : Double = rSq // using mean

5 def rSq0_ : Double = rSq0 // using 0

6 def diagnose (y: VectorD , yp: VectorD , w: VectorD = null): VectorD =

7 def fit: VectorD

8 def help: String

9 def summary (x_ : MatrixD , fname: Array [String], b: VectorD , vifs: VectorD = null):

10 String

The diagnose method takes the actual response/output vector y and the predictions from the model yp

and calculates the basic QoF measures.

1 @param y the actual response/output vector to use (test/full)

2 @param yp the predicted response/output vector (test/full)

3 @param w the weights on the instances (defaults to null)

4

5 def diagnose (y: VectorD , yp: VectorD , w: VectorD = null): VectorD =

6 m = y.dim // size of response vector

7 if m < 2 then flaw ("diagnose", s"requires at least 2 responses to evaluate m = $m")

8 if yp.dim != m then flaw ("diagnose", s"yp.dim = ${yp.dim} != y.dim = $m")

9

114

10 val mu = y.mean // mean of y (may be zero)

11 val e = y - yp // residual/error vector

12 sse = e.normSq // sum of squares for error

13 if w == null then

14 sst = y.cnormSq // sum of squares total

15 ssr = sst - sse // sum of squares model

16 else

17 ssr = (w * (yp - (w * yp / w.sum).sum)~ˆ2).sum // regression sum of squares

18 sst = ssr + sse

19 end if

20

21 mse0 = sse / m // raw/MLE mean squared error

22 rmse = sqrt (mse0) // root mean squared error

23 mae = e.norm1 / m // mean absolute error

24 rSq = ssr / sst // Rˆ2 using mean

25 rSq0 = 1 - sse / y.normSq // Rˆ2 using 0

26 e // returns error vector

27 end diagnose

Note, ˜^ is the exponentiation operator provided in ScalaTion, where the first character is ˜ to give the

operator higher precedence than multiplication (*).

One of the measures is based on absolute errors, Mean Absolute Error (MAE), and is computed as the

`1 norm of the error vector divided by the number of elements in the response vector (m). The rest are

based on squared values. Various squared `2 norms may be taken to compute these quantities, i.e., sst =

y.cnormSq is the centered norm squared of y, while sse = e.normSq is the norm squared of e. Then ssr,

the sum of squares model/regression, is the difference. The idea being that one started with the variation in

the response, some of which can accounted for by the model, with the remaining part considered errors. As

models are less than perfect, what remains are better referred to as residuals, part of which a better model

could account for. The fraction of the variation accounted for by the model to the total variation is called

the coefficient of determination R2 = ssr/sst ≤ 1. A measure that parallel MAE is the Root Mean Squared

Error (RMSE). It is typically higher as a large squared term has more of an effect. Both are interpretable

as they are in the units of the response variable, e.g., imagine one hits a golf ball at 150 mph with an MAE

of 7 mph and an RMSE of 10 mph. Further explanations are given in the Prediction Chapter.

115

116

Chapter 4

Data Management

4.1 Introduction

Data Science relies on having large amounts of quality data. Collecting data and handling data quality issues

are of utmost importance. Without support from a system or framework, this can be very time-consuming

and error-prone. This chapter provides a quick overview of the support provided by ScalaTion for data

management.

In the era of big data, a variety of database management technologies have been proposed, including

those under the umbrella of Not-only-SQL (NoSQL). These technologies include the following:

• Key-value stores (e.g., Memcached). When the purpose the data store is very rapid lookup and not

advanced query capabilities, a key-value store may be ideal. They are often implemented as distributed

hash tables.

• Document-oriented databases (e.g., MongoDB). These databases are intended for storage and retrieval

of unstructured (e.g., text) and semi-structured (e.g., XML or JSON) data.

• Columnar databases (e.g., Vertica). Such databases are intended for structured data like traditional

relational databases, but to better facilitate data compression and analytic operations. Data is stored

in columns rather rows as in traditional relational databases.

• Graph databases (e.g., Neo4j). These make the implicit relationships (via foreign-key, primary-key

pairs) in relational databases explicit. A tuple in a relational database is mapped to a node in a graph

database, while an implicit relationship is mapped to edge in a graph database. The database then

consists of a collection directed graphs, each consisting of nodes and edges connecting the nodes. These

database are particularly suited to social networks.

The purpose of these database technologies is to provide enhanced performance over traditional, row-oriented

relational database and each of the above are best suited to particular types of data.

Data management capabilities provided by ScalaTion include Relational Databases, Columnar Databases

and Graph Databases. All include extensions making them suitable as a Time Series DataBase (TSDB).

Graph databases are discussed in the Appendix.

Preprocessing of data should be done before applying analytics techniques to ensure they are working on

quality data. ScalaTion provides a variety of preprocessing techniques, as discussed in the next chapter.

117

4.1.1 Analytics Databases

In data science, it is convenient to collect data from multiple sources and store the data in a database.

Analytics databases are organized to support efficient data analytics.

A database supporting data science should make it easy and efficient to view and select data to be feed

into models. The structures supported by the database should make it easy to extract data to create vectors,

matrices and tensors that are used by data science tools and packages.

Multiple systems, including ScalaTion’s TSDB, are built on top of columnar, main memory databases

in order to provide high performance. ScalaTion’s TSDB is a Time Series DataBase that has built-in

capabilities for handling time series data. It is able to store non-time series data as well. It provides multiple

Application Programming Interfaces (APIs) for convenient access to the data [?].

4.1.2 The Tabular Trait

A common interface in the form of a Scala trait is provided for both Relational and Columnar Relational

databases. A Tabular database will have a name, a schema or array of attribute/column names, a domain

or array of domains/data types, and a key (primary key).

1 @param name the name of the table

2 @param schema the attributes for the table

3 @param domain the domains/data -types for the attributes (’D’, ’I’, ’L’, ’S’, ’X’, ’T’)

4 @param key the attributes forming the primary key

5

6 trait Tabular [T <: Tabular [T]] (val name: String , val schema: Schema ,

7 val domain: Domain , val key: Schema)

8 extends Serializable:

For convenience, the following two Scala type definitions are utilized.

1 type Schema = Array [String]

2 type Domain = Array [Char]

Tabular structures are logically linked together via foreign keys. A foreign key is an attribute that

references a primary key in some table (typically another table). In ScalaTion, the foreign key specification

is added via the following method call after the Tabular structure is created.

1 def addForeignKey (fkey: String , refTab: T): Unit

ScalaTion supports the following domains/data-types: ’D’ouble, ’I’nt, ’L’ong, ’S’tring, and ’T’imeNum.

1 ’D’ - ‘Double ‘ - ‘VectorD ‘ - 64 bit double precision floating point number

2 ’I’ - ‘Int ‘ - ‘VectorI ‘ - 32 bit integer

3 ’L’ - ‘Long ‘ - ‘VectorL ‘ - 64 bit long integer

4 ’S’ - ‘String ‘ - ‘VectorS ‘ - variable length numeric string

5 ’T’ - ‘TimeNum ‘ - ‘VectorT ‘ - time numbers for date -time

These data types are generalized into a ValueType as a Scala union type.

1 type ValueType = (Double | Int | Long | String | TimeNum)

118

4.2 Relational Data Model

A relational database table may be built up as follows: A cell in the table holds an atomic value of type

ValueType. A tuple (or row) in the table is simply an array of ValueType. A relational Table consists of a

bag (or multi-set) of tuples. Each column in the Table is restricted to a particular domain. Note, uniqueness

of primary keys is enforced by creating a primary index.

1 type Tuple = Array [ValueType]

4.2.1 Data Definition Language

The Data Definition Language consists of a Table class constructor and associated apply methods in the

companion object. The following example illustrates the creation of four tables based on the example Bank

schema given in [74].

1 val customer = Table ("customer", "cname , street , ccity",

2 "S, S, S", "cname")

3 val branch = Table ("branch", "bname , assets , bcity",

4 "S, D, S", "bname")

5 val deposit = Table ("deposit", "accno , balance , cname , bname",

6 "I, D, S, S", "accno")

7 val loan = Table ("loan", "loanno , amount , cname , bname",

8 "I, D, S, S", "loanno")

4.2.2 Data Manipulation Language

As with many database systems, the Data Manipulation Language consists of methods for insertion, update

and deletion.

1 def add (t: Tuple): Table =

2 def update (atr: String , newVal: ValueType , matchVal: ValueType): Boolean =

3 def update (atr: String , func: ValueType => ValueType , matchVal: ValueType): Boolean =

4 def delete (predicate: Predicate): Boolean =

Using the operator += as an alias for the add method the following code may be used to populate the Bank

database.

1 customer += ("Peter", "Oak St", "Bogart")

2 += ("Paul", "Elm St", "Watkinsville")

3 += ("Mary", "Maple St", "Athens")

4 customer.show ()

5

6 branch += ("Alps", 20000000.0 , "Athens")

7 += ("Downtown", 30000000.0 , "Athens")

8 += ("Lake", 10000000.0 , "Bogart")

9 branch.show ()

10

11 deposit += (11, 2000.0 , "Peter", "Lake")

12 += (12, 1500.0 , "Paul", "Alps")

13 += (13, 2500.0 , "Paul", "Downtown")

14 += (14, 2500.0 , "Paul", "Lake")

15 += (15, 3000.0 , "Mary", "Alps")

16 += (16, 1000.0 , "Mary", "Downtown")

119

17 deposit.show ()

18

19 loan += (21, 2200.0 , "Peter", "Alps")

20 += (22, 2100.0 , "Peter", "Downtown")

21 += (23, 1500.0 , "Paul", "Alps")

22 += (24, 2500.0 , "Paul", "Downtown")

23 += (25, 3000.0 , "Mary", "Alps")

24 += (26, 1000.0 , "Mary", "Lake")

25 loan.show ()

4.2.3 Relational Algebra

Relational Algebra provides a set of operators for writing queries on tables, including extracting columns

(project), rows (select), performing set operations on tables (union, minus, intersect and Cartesian product).

Several forms of join operations for composing a new table from two existing tables are provided as well as

division, group-by and order-by operations.

Table 4.1: Relational Algebra Operators (Tables r and r2)

Operator Unicode Signature

rename ρ def ρ (newName: String): T = rename (newName)

project π def π (x: String): T = project (strim (x))

project π def π (cPos: IndexedSeq [Int]): T = project (cPos)

selproject σπ def σπ (a: String, apred: APredicate): T = selproject (a, apred)

select σ def σ (a: String, apred: APredicate): T = select (a, apred)

select σ def σ (predicate: Predicate): T = select (predicate)

select σ def σ (condition: String): T = select (condition)

select σ def σ (pkey: KeyType): T = select (pkey)

union ∪ def ∪ (r2: T): T = union (r2)

minus − def − (r2: T): T = minus (r2)

intersect ∩ def ∩ (r2: T): T = intersect (r2)

product × def × (r2: T): T = product (r2)

join ./ def ./ (predicate: Predicate2, r2: T): T = join (predicate, r2)

join ./ def ./ (condition: String, r2: T): T = join (condition, r2)

join ./ def ./ (x: String, y: String, r2: T): T = join (strim (x), strim (y), r2)

join ./ def ./ (fkey: (String, T)): T = join (fkey)

join ./ def ./ (r2: T): T = join (r2)

leftJoin n def n (x: Schema, y: Schema, r2: T): T = leftJoin (x, y, r2)

rightJoin o def o (x: Schema, y: Schema, r2: T): T = rightJoin (x, y, r2)

divide / def / (r2: T): T = divide (r2)

groupBy γ def γ (ag: String): T = groupBy (ag)

aggregate F def F (ag: String, f as: (AggFunction, String)*): T = aggregate (ag, f as : *)

orderBy ↑ def ↑ (x: String*): T = orderBy (x : *)

orderByDesc ↓ def ↓ (x: String*): T = orderByDesc (x : *)(true)

120

Fundamental Relational Algebra Operators

The following six relational algebra operators form the fundamental operators for ScalaTion’s table pack-

age and are shown in Table 4.1. They are fundamental in sense that rest of operators, although convenient,

do not increase the power of the query language.

1. Rename Operator. The rename operator renames table customer to client.

customer ρ (“client”)

1 customer ρ ("client")

2. Project Operator. The project operator will return the specified columns in table customer.

πstreet, ccity(customer)

1 customer π ("street , ccity")

3. Select Operator. The select operator will return the rows that match the predicate in table customer.

σccity == ‘Athens′(customer)

1 customer σ ("ccity == ’Athens ’")

4. Union Operator. The union operator will return the union of rows from deposit and loan. Duplicate

tuples may be eliminated by creating an index. For this operator the textbook syntax and ScalaTion

syntax are identical.

deposit ∪ loan

1 deposit ∪ loan

5. Minus Operator. The minus operator will return the rows from account (result of the union) that

are not in loan. For this operator the textbook syntax and ScalaTion syntax are identical.

account− loan

1 account - loan

6. Cartesian Product Operator. The product operator will return all combinations of rows in customer

with rows in deposit. For this operator the textbook syntax and ScalaTion syntax are identical.

customer × deposit

1 customer × deposit

121

Additional Relational Algebra Operators

The next eight operators, although not fundamental, are important operators in SacalaTion’s table

package and are shown in Table 4.1.

1. Join Operator. In order to combine information from two tables, join operators are preferred over

products, as they are much more efficient and only combine related rows. ScalaTion’s table package

supports natural-join, equi-join, theta-join, left outer join, and right outer join, as shown below. For

each tuple in the left table, the equi-join pairs it with all tuples in the right table that match it on

the given attributes (in this case customer.bname = deposit.bname). The natural-join is an equi-

join on the common attributes in the two tables, followed by projecting away any duplicate columns.

The theta-join generalizes an equi-join by allowing any comparison operator to be used (in this case

deposit1.balance < deposit2.balance). The symbol for semi-join is adopted for outer joins as it is a

Unicode symbol. The left join keeps all tuples from the left (null padding if need be), while the right

join keeps all tuples from the right table.

customer ./ deposit natural− join

customer ./cname== cname deposit equi− join

deposit ./balance< balance deposit theta− join

customer n deposit left outer join

customer o deposit right outer join

1 customer ./ deposit

2 customer ./ ("cname == cname", deposit)

3 deposit ./ ("balance < balance", deposit)

4 customer n deposit

5 customer o deposit

Additional forms of joins are also available in the Table class. Join is not fundamental as its result

can be made by combining product and select.

2. Divide Operator. For the query below, the divide operator will return the cnames where the cus-

tomers has a deposit account at all branches (of course it would make sense to first select on the

branches).

πcname, bname(deposit)/πbname(branch)

1 deposit.π ("cname , bname") / branch.π ("bname")

The divide operator requires the other attributes (in this case cname) in the left table to be paired up

with all the attribute values (in this case bname) in the right table.

3. Intersect Operator. The intersect operator will return the rows in account that are also in loan.

For this operator the textbook syntax and ScalaTion syntax are identical.

account ∩ loan

122

1 account ∩ loan

Intersection is not fundamental as its result can be made by successive minuses.

4. GroupBy Operator. The groupBy operator forms groups among the relation based on the equality

of attributes. The following example groups the tuples in the deposit table based on the value of the

bname attribute.

γbname(deposit)

1 deposit γ "bname"

5. Aggregate Operator. The aggregate operator returns values for the grouped-by attribute (e.g.,

bname) and applies aggregate operators on the specified columns (e.g., avg (balance)). Typically it is

called after the groupBy operator.

Fbname, count(accno), avg(balance)(deposit)

1 deposit F ("bname", (count , "accno"), (avg , "balance"))

6. OrderBy Operator. The orderBy operator effectively puts the rows into ascending order based on

the given attributes.

↑bname (deposit)

1 deposit ↑ "bname"

7. OrderByDesc Operator. The orderByDesc operator effectively puts the rows into descending order

based on the given attributes.

↓bname (deposit)

1 deposit ↓ "bname"

8. Select-Project Operator. The selproject is a combination operator added for convenience and

efficiency, especially for columnar relation databases (see the next section). As whole columns are

stored together, this operator only requires one column to be accessed.

1 customer σπ ("ccity", _ == ’Athens ’)

123

4.2.4 Example Queries

1. List the names of customers who live in the city of Athens.

1 val liveAthens = customer.σ ("ccity == ’Athens ’").π ("cname")

2 liveAthens.show ()

2. List the names of customers who live in Athens or bank (have deposits in branches located) in Athens.

1 val bankAthens = (deposit ./ branch).σ ("bcity == ’Athens ’").π ("cname")

2 bankAthens.show ()

3. List the names of customers who live and bank in the same city.

1 val sameCity = (customer ./ deposit ./ branch).σ ("ccity == bcity").π ("cname")

2 sameCity.create_index ()

3 sameCity.show ()

4. List the names and account numbers of customers with the largest balance.

1 val largest = deposit.π ("cname , accno") - (deposit ./ ("balance < balance",

deposit)).π ("cname , accno")

2 largest.show ()

5. List the names of customers who are silver club members (have loans where they have deposits).

1 val silver = (loan.π ("cname , bname") ∩ deposit.π ("cname , bname")).π ("cname")

2 silver.create_index ()

3 silver.show ()

6. List the names of customers who are gold club members (have loans only where they have deposits).

1 val gold = loan.π ("cname") - (loan.π ("cname , bname") - deposit.π ("cname , bname")

).π ("cname")

2 gold.create_index ()

3 gold.show ()

7. List the names of branches located in Athens.

1 val inAthens = branch.σ ("bcity == ’Athens ’").π ("bname")

2 inAthens.show ()

8. List the names of customers who have deposits at all branches located in Athens.

1 val allAthens = deposit.π ("cname , bname") / inAthens

2 allAthens.create_index ()

3 allAthens.show ()

9. List the branch names and their average balances.

1 val avgBalance = deposit.γ ("bname").aggregate ("bname", (count , "accno"), (avg , "

balance"))

2 avgBalance.show ()

124

4.2.5 Persistence

Modern databases do much of the processing in main-memory due to its large size and high speed. Although

using MRAM, main-memories may be persistent, typically they are volatile, meaning if the power is lost,

so is the data. It is therefore essential to provide efficient mechanisms for making and maintaining the

persistence of data.

Traditional database management systems achieve this by having a persistence data store in non-volatile

storage (e.g., Hard-Disk Drives (HDD) or Solid-State Devices (SSD)) and a large database cache in main-

memory. Complex page management algorithms are used to ensure persistence and transactional correctness

(see the next subsection).

A simple way to provide persistence is to design the database management system to operate in main-

memory and then provide load and save methods that utilize built-in serialization to save to or load from

persistent storage. This is what ScalaTion does.

The load method will read a table with a given name into main-memory using serialization.

1 @param name the name of the table to load

2

3 def load (name: String): Table =

4 val ois = new ObjectInputStream (new FileInputStream (STORE_DIR + name + SER))

5 val tab = ois.readObject.asInstanceOf [Table]

6 ois.close ()

7 tab

8 end load

The save method will write the entire contents of this table into a file using serialization.

1 def save (): Unit =

2 val oos = new ObjectOutputStream (new FileOutputStream (STORE_DIR + name + SER))

3 oos.writeObject (this)

4 oos.close ()

5 end save

For small databases, this approach is fine, but as database become large, greater efficiency must be

sought. One cannot save a whole table ever time there is a change. See the exercises for alternatives.

4.2.6 Transactions

The idea of a transaction is to bundle a sequence of operations into a meaningful action that one wants to

succeed, such as transferring money from one bank account to another.

Making the action a transaction has the main benefit of making it atomic, the action either completes

successfully (called a commit) or is completely undone having no effect on the database state (called a

rollback). The third option, a partially completed action in this case would lead to a bank customer losing

their money.

Making a transaction atomic can be achieved by maintaining a log. Operations can be written to the log

and then only saved once the transaction commits. If a transaction cannot commit, it must be rolled back.

There must also be a recover procedure to handles the situation when volatile storage is lost. For this to

function, committed log records must be flushed to persistent storage.

A second important advantage of making an action a transaction is to protect it from other transactions,

so it can think of itself as if it is running in isolation. Rather than worrying about how other transactions

125

may corrupt the action, this worry is turned over to database management system to handle it. One

form of potential interference involves two transactions running concurrently and accessing the same back

accounts. It one transaction accesses all the accounts first, there will be no corruption. Such an execution

of two transactions is called a serial execution (one transaction executes at a time). Unfortunately, modern

high-performance database management systems could not operate at the slow speed this would dictate.

Transaction must be run concurrently, not serially. The correction condition caller serializability allows

transaction to run with their concurrency controlled by a protocol that ensures their effects on the database

are equivalent to one of their slow-running, serially-executing cousin schedules. In other words, the fast

running serializable schedule for a set of transactions must be equivalent to some serial execution of the

same set of transactions. See the exercise for more details on equivalence (e.g., conflict and view equivalence)

and various concurrency control protocols that can be used to ensure correctness with minimal impact on

performance.

4.2.7 Table Class

1 @param name the name of the table

2 @param schema the attributes for the table

3 @param domain the domains/data -types for the attributes (’D’, ’I’, ’L’, ’S’, ’X’, ’T’)

4 @param key the attributes forming the primary key

5

6 class Table (override val name: String , override val schema: Schema ,

7 override val domain: Domain , override val key: Schema)

8 extends Tabular [Table] (name , schema , domain , key)

9 with Serializable:

Internally, the Table class maintains a collection of tuples. Using a Bag allows for duplicates, if wanted.

Creating an index on the primary will efficiently eliminate any duplicates. Foreign key relationships are

specified in linkTypes. It also provides a groupMap used by the groupBy operator.

The Table class supports three types of indices:

1. Primary Index. A uniques index on the primary key (may be composite).

1 private [table] val index = IndexMap [KeyType , Tuple] ()

2. Secondary Unique Indices. A unique index on a single attribute (other than the primary key). For

example, a student id may be used as a primary for a Student table, while email may also be required

to be unique. Since there can be multiple such indices a Map is used to name each index.

1 private [table] val sindex = Map [String , IndexMap [ValueType , Tuple]] ()

3. Non-Unique Indices. When fast-lookup is required based on an attribute/column that is not required

to be unique (e.g., name) such an index may be used. Again, since there can be multiple such indices

a Map is used to name each index.

1 private [table] val mindex = Map [String , MIndexMap [ValueType , Tuple]] ()

The following methods may be used to create the various types of indices: primary unique index, secondary

unique index, or non-unique index, respectively.

126

1 def create_index (rebuild: Boolean = false): Unit =

2 def create_sindex (atr: String): Unit =

3 def create_mindex (atr: String): Unit =

The following factory method in the companion object provides a more convenient way to create a table.

The strim method splits a string into an array of strings based on a separation character and then trims

away any white-space.

1 def apply (name: String , schema: String , domain_ : String , key: String): Table =

2 new Table (name , strim (schema), strim (domain_).map (_.head), strim (key))

3 end apply

The following two classes extend the Table class in the direction of the Graph Data Model, see Appendix

C.

4.2.8 LTable Class

1 @param name_ the name of the linkable -table

2 @param schema_ the attributes for the linkable -table

3 @param domain_ the domains/data -types for attributes (’D’, ’I’, ’L’, ’S’, ’X’, ’T’)

4 @param key_ the attributes forming the primary key

5

6 case class LTable (name_ : String , schema_ : Schema , domain_ : Domain , key_ : Schema)

7 extends Table (name_ , schema_ , domain_ , key_)

8 with Serializable:

The LTable class (for Linked-Table) simply adds an explicit link from the foreign key to the primary key

that it references. For each tuple in a linked-table, add a link to the referenced table, so that the foreign key

is linked to the primary key. Caveat: LTable does not handle composite foreign keys. Although in general

primary keys may be composite, a foreign key is conceptualized as a column value and its associated link.

1 @param fkey the foreign key column

2 @param refTab the referenced table being linked to

3

4 def addLinks (fkey: String , refTab: Table): Unit =

The LTable class makes many-to-one relationships/associations explicit and improves the efficiency of

the most common form of join operation which is based on equating a foreign key (fkey) to a primary key

(pkey). Without an index, these are performed using a Nest-Loop Join algorithm. The existence of an index

on the primary key allows a much more efficient Indexed Join algorithm to be utilized. The direct linkage

provides for additional speed up of such join operations (see the exercises for a comparison). Note that the

linkage is only in one direction, so joining from the primary key table to the foreign key table would require

a non-unique index on the foreign key column, or resorting to a slow nested loop join.

Note, the link and foreign key value are in some sense redundant. Removing the foreign key column is

possible, but may force the need for an additional join for some queries, so the database designer may wish

to keep the foreign key column. ScalaTion leaves this issue up to the database designer.

The next class moves further in the direction of the Graph Data Model.

4.2.9 VTable Class

1 @param name_ the name of the vertex -table

2 @param schema_ the attributes for the vertex -table

127

3 @param domain_ the domains/data -types for attributes (’D’, ’I’, ’L’, ’S’, ’X’, ’T’)

4 @param key_ the attributes forming the primary key

5

6 case class VTable (name_ : String , schema_ : Schema , domain_ : Domain , key_ : Schema)

7 extends Table (name_ , schema_ , domain_ , key_)

8 with Serializable:

The VTable class (for Vertex-Table) supports many-to-many relationships with efficient navigation in

both directions. Supporting this is much more completed than what is needed for LTable, but provides for

index-free adjacency, similar to what is provided by Graph Database systems.

The VTable model is graph-like in that it elevates tuples into vertices as first-class citizens of the data

model. However, edges are embedded inside of vertices and are there to establish adjacency. Edges do not

have labels, attributes or properties. Although this simplifies the data model and makes it more relation-like,

it is not set up to naturally support finding for example shortest paths.

The Vertex class extends the notion of Tuple into values stored in the tuple part, along with foreign

keys links captured as outgoing edges.

1 @param tuple the tuple part of a vertex

2

3 case class Vertex (tuple: Tuple):

4

5 val edge = Map [String , Set [Vertex]] ()

6

7 end Vertex

For data models where edges become first-class citizens, see the Appendix on Graph Data Models.

128

4.3 Columnar Relational Data Model

Of the NoSQL database management systems, columnar databases are closest to traditional relational

databases. Rather than tuples/rows taking center stage, columns/vectors take center stage.

A columnar database is made up of the following components:

• Element - a value from a given Domain or Datatype (e.g., Int, Long, Double, Rational, Real, Complex,

String, TimeNum)

• Column/Vector - a collection of values from the same Datatype (e.g., forming VectorI, VectorL,

VectorD, VectorQ, VectorR, VectorC, VectorS, VectorT)

• Columnar Relation - a heterogeneous collection of columns/vectors put into a table-like structure.

• Columnar Database - a collection of columnar relations.

Table 4.2 shows the first 10 rows (out of 392) for the well-known Auto MPG dataset (see https://

archive.ics.uci.edu/ml/datasets/Auto+MPG).

Table 4.2: Example Columnar Relation: First 10 Rows of Auto MPG Dataset

mpg cylinders displacement horsepower weight acceleration model year origin car name

Double Int Double Double Double Double Int Int String

18.0 8 307.0 130.0 3504.0 12.0 70 1 ”chevrolet chevelle”

15.0 8 350.0 165.0 3693.0 11.5 70 1 ”buick skylark 320”

18.0 8 318.0 150.0 3436.0 11.0 70 1 ”plymouth satellite”

16.0 8 304.0 150.0 3433.0 12.0 70 1 ”amc rebel sst”

17.0 8 302.0 140.0 3449.0 10.5 70 1 ”ford torino”

15.0 8 429.0 198.0 4341.0 10.0 70 1 ”ford galaxie 500”

14.0 8 454.0 220.0 4354.0 9.0 70 1 ”chevrolet impala”

14.0 8 440.0 215.0 4312.0 8.5 70 1 ”plymouth fury iii”

14.0 8 455.0 225.0 4425.0 10.0 70 1 ”pontiac catalina”

15.0 8 390.0 190.0 3850.0 8.5 70 1 ”amc ambassador dpl”

Since each column is stored as a vector, they can be readily compressed. Due to the high repetition in the

cylinders column it can be effectively compressed using Run Length Encoding (RLE) compression. In

addition, a column can be efficiently extracted since it already stored as a vector in the database. These

vectors can be used in aggregate operators or passed into analytic models.

Data files in various formats (e.g., comma separated values (csv)) can be loaded into the database.

1 val auto_mpg = Relation ("auto_mpg", "auto_mpg.csv")

It is easy to create a Multiple Linear Regression model for this dataset. Simply pick the response column,

in this case mpg and the predictor columns, in this case all other columns besides car name. The connection

between car name and mpg is coincidental. The response column/variable goes into a vector.

1 val y = auto_mpg.toVectorD (0)

The predictor columns/variables goes into a matrix.

129

https://archive.ics.uci.edu/ml/datasets/Auto+MPG
https://archive.ics.uci.edu/ml/datasets/Auto+MPG

1 val x = auto_mpg.toMatrixD (1 to 7))

Then the matrix x and vector y can be passed into a Regression model constructor.

1 val rg = new Regression (x, y)

See the next chapter for how to train a model, evaluate the quality of fit and make predictions.

The first API is a Columnar Relational Algebra that includes the standard operators of relational algebra

plus those common to column-oriented databases. It consists of the Table trait and two implementing classes:

Relation and MM Relation. Persistence for Relation is provided by the save method, while MM Relation

utilizes memory-mapped files.

4.3.1 Data Definition Language

A Relation object is created by invoking a constructor or factory apply function. For example, the following

six Relations may be useful in a traffic forecasting study.

1 val sensor = Relation ("sensor",

2 Seq ("sensorId", "model", "latitude", "longitude", "roadId"),

3 Seq (), 0, "ISDDI")

4 val road = Relation ("road",

5 Seq ("roadId", "rdName", "lat1", "long1", "lat2", "long2"),

6 Seq (), 0, "ISDDDD")

7 val mroad = Relation ("mroad",

8 Seq ("roadId", "rdName", "lanes", "lat1", "long1", "lat2", "long2"),

9 Seq (), 0, "ISIDDDD")

10 val traffic = Relation ("traffic",

11 Seq ("time", "sensorId", "count" "speed"),

12 Seq (), Seq (0, 1), "TIID")

13 val wsensor = Relation ("wsensor",

14 Seq ("sensorId", "model", "latitude", "longitude"),

15 Seq (), 0, "ISDD")

16 val weather = Relation ("weather",

17 Seq ("time", "sensorId", "precipitation" "wind"),

18 Seq (), Seq (0, 1), "TIDD")

The name of the first relation is “sensor” and it stores information about traffic sensors.

• The first argument is the name of the relation (name).

• The second argument is the sequence of attribute/column names (colName).

• The third argument is the sequence of data, currently empty (col),

• The fourth argument is the column number for the primary key (key),

• The fifth argument, “ISDDI”, indicates the domains (domain) for the attributes (Integer, String,

Double, Double, Integer).

• The sixth and optional argument can be used to define foreign keys (fKeys).

• The seventh and optional argument indicates whether to enter that relation is the system Catalog.

130

The second relation road stores the Id, name, beginning and ending latitude-longitude coordinates.

The third relation mroad is for multi-lane roads.

The fourth relation traffic stores the data collected from traffic sensors. The primary key in this case

is composite, Seq (0, 1), as both the time and the sensorId are required for unique identification.

The fifth relation wsensor stores information about weather sensors.

Finally, the sixth relation weather stores data collected from the weather sensors.

4.3.2 Data Manipulation Language

There are several ways to populate the Relations. A row/tuple can be added one at a time using def

add (tuple: Row). Population may also occur during relation construction (via a constructor or apply

method). There are factory apply functions that take a file or URL as input.

For example to populate the sensor relation with information about Austin, Texas’ traffic sensors stored

in the file austin traffic sensors.csv the following line of code may be used.

1 val sensor = Relation (‘‘sensor", ‘‘austin_traffic_sensors.csv")

Data files are stored in subdirectories of ScalaTion’s data directory.

4.3.3 Columnar Relational Algebra

Table 4.3 shows the thirteen operators supported (the first six are considered fundamental). Operator

names as well as Unicode symbols may be used interchangeably (e.g., r union s or r ∪ s compute the union

of relations r and s). Note, the extended projection operator eproject (Π) provides a convenient mechanism

for applying aggregate functions. It is often called after the groupBy operator, in which case multiple rows

will be returned. Multiple columns may be specified in eproject as well. There are also several varieties of

join operators. As an alternative to using the Unicode symbol when they are Greek letters, the letter may

be written out in English (pi, sigma, rho, gamma, epi, omega, zeta, unzeta).

The subsections below present the columnar relational algebra operators, first showing the textbook

notation followed by the syntax in ScalaTion’s column db package. To make the examples complex more

concise, let r = road, s = sensor, t = traffic, q = mroad, v = wsensor and w = weather.

Select Operator

The select operator will return the rows that match the predicate, in this case rdName == “I285”.

σrdName==“I285”(r)

r.σ(“rdName”, == “I285”)

Project Operator

The project operator will return the specified columns, in this case rdName, lat1, long1.

πrdName,lat1,long1(r)

r.π(“rdName”, “lat1”, “long1”)

131

Union Operator

The union operator will return the rows from r and s with no duplicates. For this operator the textbook

syntax and column db syntax are identical.

r ∪ s

Minus Operator

The minus operator will return the rows from r that are not in s. For this operator the textbook syntax and

column db syntax are identical.

r − s

Cartesian Product Operator

The product operator will return all combinations of rows in r with rows in s. For this operator the textbook

syntax and column db syntax are identical.

r × s

Rename Operator

The rename operator renames relation r’s name to r2.

r.ρ(“r2”)

The above six operators form the fundamental operators for SacalaTion’s column db package and are

shown as the first group in Table 4.3.

Table 4.3: Columnar Relational Algebra (r = road, s = sensor, t = traffic, q = mroad, w = weather)

Operator Unicode Example Return

select σ r.σ (“rdName”, == “I285”) rows of r where rdName == “I285”

project π r.π (“rdName”, “lat1”, “long1”) the rdName, lat1, and long1 columns of r

union ∪ r ∪ q rows that are in r or q

minus - r − q rows that are in r but not q

product × r × t concatenation of each row of r with those of t

rename ρ r.ρ(“r2”) a copy of r with new name r2

join ./ r ./ s rows in natural join of r and s

intersect ∩ r ∩ q rows that are in r and q

groupBy γ t.γ (“sensorId”) rows of t grouped by sensorId

eproject Π t.Π (avg, “acount”, “count”)(“sensorId”) the average of the count column of t

orderBy ω t.ω (“sensorId”) rows of t ordered by sensorId

compress ζ t.ζ (“count”) compress the count column of t

uncompress Z t.Z (“count”) uncompress the count column of t

132

The next seven operators, although not fundamental, are important operators in SacalaTion’s column db

package and are shown as the second group in Table 4.3.

Join Operators

In order to combine information from two relations, join operators are preferred over products, as they are

much more efficiently and only combine related rows. ScalaTion’s column db package supports natural-

join, equi-join, general theta join, left outer join, and right outer join, as shown below.

r ./ s natural− join

r ./ (“roadId”, “roadId”, s) equi− join

r ./ [Int](s, (“roadId”, “roadId”, ==)) theta join

t n (“time”, “time”, w) left outer join

t o (“time”, “time”, w) right outer join

Intersect Operator

The intersect operator will return the rows in r that are also in s. For this operator the textbook syntax

and column db syntax are identical.

r ∩ s

GroupBy Operator

The groupBy operator forms groups among the relation based on the equality of attributes. The following

example groups traffic data based in the value of the “sensorId” attribute.

t.γ(“sensorId”)

Extended Projection Operator

The extended projection operator eproject applies aggregate operators on aggregation columns (first argu-

ments) and regular project on the other columns (second arguments). Typically it is called after the groupBy

operator.

t.γ(“sensorId”).Π(avg, “acount”, “count”)(“sensorId”)

OrderBy Operator

The orderBy operator effectively puts the rows into ascending (descending) order based on the given at-

tributes.

t.ω(“sensorId”)

133

Compress Operator

The compress operator will compress the given columns of the relation.

t.ζ(“count”)

Uncompress Operator

The uncompress operator will uncompress the given columns of the relation.

t.Z(“count”)

4.3.4 Example Queries

Several example queries for the traffic study are given below.

1. Retrieve the automobile mileage data for cars with 8 cylinders.

auto mpg.select (“cylinders”, == 8)

Note, select and σ may be use interchangeably

2. Retrieve the automobile mileage data for cars with 8 cylinders, returning the car name and mpg.

auto mpg.select (“cylinders”, == 8).project (“car name”, “mpg”)

Note, project and π may be use interchangeably

3. Retrieve traffic data within a 100 kilometer-grid from the center of Austin, Texas. The latitude-

longitude coordinates for Austin, Texas are (30.266667, -97.733333).

val austin = latLong2UTMxy (LatitudeLongitude (30.266667, -97.733333))

val alat = (austin. 1 - 100000, austin. 1 + 100000)

val along = (austin. 2 - 100000, austin. 2 + 100000)

traffic ./ sensor.σ [Double] (“latitude”, ∈ alat).σ [Double] (“longitude” ∈ along)

4.3.5 Relation Class

Class Methods:

1 @param name the name of the relation

2 @param colName the names of columns

3 @param col the Scala Vector of columns making up the columnar relation

4 @param key the column number for the primary key (< 0 => no primary key)

5 @param domain an optional string indicating domains for columns (e.g., ’SD’ = ’String ’

, ’Double ’)

6 @param fKeys an optional sequence of foreign keys

7 - Seq (column name , ref table name , ref column position)

8 @param enter whether to enter the newly created relation into the ‘Catalog ‘

9

134

10 class Relation (val name: String , val colName: Seq [String], var col: Vector [Vec] =

null ,

11 val key: Int = 0, val domain: String = null ,

12 var fKeys: Seq [(String , String , Int)] = null , enter: Boolean = true)

13 extends Table with Error with Serializable

135

4.4 SQL-Like Language

The SQL-Like API in ScalaTion provides many of the language constructs of SQL in a functional style.

4.4.1 Relation Creation

A RelationSQL object is created by invoking a constructor or factory apply function. For example, the

following six RelationSQLs may be useful in a traffic forecasting study.

1 val sensor = RelationSQL ("sensor",

2 Seq ("sensorId", "model", "latitude", "longitude", "roadId"),

3 null , 0, "ISDDI")

4 val road = RelationSQL ("road",

5 Seq ("roadId", "rdName", "lat1", "long1", "lat2", "long2"),

6 null , 0, "ISDDDD")

7 val mroad = RelationSQL ("mroad",

8 Seq ("roadId", "rdName", "lanes", "lat1", "long1", "lat2", "

long2"),

9 null , 0, "ISIDDDD")

10 val traffic = RelationSQL ("traffic",

11 Seq ("time", "sensorId", "count", "speed"),

12 null , 0, "TIID")

13 val wsensor = RelationSQL ("wsensor",

14 Seq ("sensorId", "model", "latitude", "longitude"),

15 null , 0, "ISDD")

16 val weather = RelationSQL ("weather",

17 Seq ("time", "sensorId", "precipitation", "wind"),

18 null , 0, "TIDD")

4.4.2 Sample Queries

The ScalaTion columnar database provides a functional SQL-like query language.

1. Retrieve the vehicle traffic counts over time from all sensors on the road with Id = 101.

1 (traffic join sensor).where [Int] ("roadId", _ == 101)

2 .select ("sensorId", "time", "count")

In SQL, this would be written as follows:

1 select sensorId , time , count

2 from traffic natural join sensor

3 where roadId == 101

2. Retrieve the vehicle traffic counts averaged over time from all sensors on the road with Id = 101.

1 (traffic join sensor).where [Int] ("roadId", _ == 101)

2 .groupBy ("sensorId")

3 .eselect ((avg , "acount", "count"))("sensorId")

136

4.4.3 RelationSQL Class

Class Methods:

1 @param name the name of the relation

2 @param colName the names of columns

3 @param col the Scala Vector of columns making up the columnar relation

4 @param key the column number for the primary key (< 0 => no primary key)

5 @param domain an optional string indicating domains for columns (e.g., ’SD’ = ’String ’

, ’Double ’)

6 @param fKeys an optional sequence of foreign keys - Seq (column name , ref table name ,

ref column position)

7

8 class RelationSQL (name: String , colName: Seq [String], col: Vector [Vec],

9 key: Int = 0, domain: String = null , fKeys: Seq [(String , String , Int

)] = null)

10 extends Tabular with Serializable

11

12 def repr: Relation = r

13 def this (r: Relation) = this (r.name , r.colName , r.col , r.key , r.domain , r.fKeys)

14 def select (cName: String *): RelationSQL =

15 def eselect (aggCol: AggColumn *)(cName: String *): RelationSQL =

16 def join (r2: RelationSQL): RelationSQL =

17 def join (cName1: String , cName2: String , r2: RelationSQL): RelationSQL =

18 def join (cName1: Seq [String], cName2: Seq [String], r2: RelationSQL): RelationSQL =

19 def where [T: ClassTag] (cName: String , p: T => Boolean): RelationSQL =

20 def where2 [T: ClassTag] (p: Predicate [T]*): RelationSQL =

21 def groupBy (cName: String *): RelationSQL =

22 def orderBy (cName: String *): RelationSQL =

23 def orderByDesc (cName: String *): RelationSQL =

24 def union (r2: RelationSQL): RelationSQL =

25 def intersect (r2: RelationSQL): RelationSQL =

26 def intersect2 (r2: RelationSQL): RelationSQL =

27 def minus (r2: RelationSQL): RelationSQL =

28 def minus2 (r2: RelationSQL): RelationSQL =

29 def stack (cName1: String , cName2: String): RelationSQL =

30 def insert (rows: Row*)

31 def materialize ()

32 def exists: Boolean = r.exists

1 def toMatrixD (colPos: Seq [Int], kind: MatrixKind = DENSE): MatrixD =

2 def toMatrixDD (colPos: Seq [Int], colPosV: Int , kind: MatrixKind = DENSE): (MatrixD ,

VectorD) =

3 def toMatrixDI (colPos: Seq [Int], colPosV: Int , kind: MatrixKind = DENSE): (MatrixD ,

VectorI) =

4 def toMatrixI (colPos: Seq [Int], kind: MatrixKind = DENSE): MatrixI =

5 def toMatrixI2 (colPos: Seq [Int] = null , kind: MatrixKind = DENSE): MatrixI =

6 def toMatrixII (colPos: Seq [Int], colPosV: Int , kind: MatrixKind = DENSE): (MatrixI ,

VectorI) =

7 def toVectorD (colPos: Int = 0): VectorD = r.toVectorD (colPos)

8 def toVectorD (colName: String): VectorD = r.toVectorD (colName)

9 def toVectorI (colPos: Int = 0): VectorI = r.toVectorI (colPos)

10 def toVectorI (colName: String): VectorI = r.toVectorI (colName)

11 def toVectorL (colPos: Int = 0): VectorL = r.toVectorL (colPos)

137

12 def toVectorL (colName: String): VectorL = r.toVectorL (colName)

13 def toVectorS (colPos: Int = 0): VectorS = r.toVectorS (colPos)

14 def toVectorS (colName: String): VectorS = r.toVectorS (colName)

15 def toVectorT (colPos: Int = 0): VectorT = r.toVectorT (colPos)

16 def toVectorT (colName: String): VectorT = r.toVectorT (colName)

17 def show (limit: Int = Int.MaxValue) r.show (limit)

18 def save () r.save ()

19 def generateIndex (reset: Boolean = false) r.generateIndex (reset)

138

4.5 Exercises

1. Use Scala 3 to complete the implementation of the following ScalaTion data models: Table, LTable,

and VTable in the scalation.table package. A group will work on one the data models. See Appendix

C for two more data models: GTable and PGraph.

• Test all the operators.

• Test all types of unique indices (IndexMap). Use the import scheme shown in the beginning of

Table.scala.

Table 4.4: Types of Indices (for Unique, Non-Unique Indices)

IndexMap MIndexMap Description

LinHashMap LinHashMultiMap ScalaTion’s Linear Hash Map

HashMap HashMultiMap Scala’s Hash Map

JHashMap JHashMultiMap Java’s Hash Map

BpTreeMap BpTreeMultiMap ScalaTion’s B+Tree Map

TreeMap TreeMultiMap Scala’s Tree Map

JTreeMap JTreeMultiMap Java’s Tree Map

• Test all types of non-unique indices (MIndexMap). Use the import scheme shown in the beginning

of Table.scala.

• Add use of indexing to speed up as many operations as possible.

• Speed up joins by using Unique Indices and Non-Unique Indices.

• Use index-free adjacency when possible for further speed-up.

• Make the save operation efficient, by only serializing tuples/vertices that have changed since the

last load. One way to approach this would be to maintain a map in persistent storage,

1 Map [KeyType , [TimeNum , Tuple]]

where the key for a tuple/vertex may be used to check the timestamp of a tuple/vertex. Unless

the timestamp of the volatile tuple/vertex is larger, there is no need to save it. Further speed

improvement may be obtained by switching from Java’s text-based serialization to Kryo’s binary

serialization.

2. Conflict vs. View Equivalence. TBD.

3. Comparison of Concurrency Control Protocols. TBD.

4. Create the sensor schema using the RelationSQL class in the columnar db package.

5. Populate the sensor database with sample data. See

https://data.austintexas.gov/Transportation-and-Mobility/Traffic-Count-Study-Area/cqdh-farx

6. Retrieve the sensors that are on I35.

139

https://data.austintexas.gov/Transportation-and-Mobility/Traffic-Count-Study-Area/cqdh-farx

7. Retrieve traffic data within a 100 kilometer-grid from the center of Austin, Texas. The latitude-

longitude coordinates for Austin, Texas are (30.266667, -97.733333).

8. Consider the following schema:

1 val student = Table ("student", "sid , sname , street , city , dept , level",

2 "I, S, S, S, S, I", "sid")

3 val professor = Table ("professor", "pid , pname , street , city , dept",

4 "I, S, S, S, S", "pid")

5 val course = Table ("course", "cid , cname , hours , dept , pid",

6 "I, X, I, S, I", "cid")

7 val takes = Table ("takes", "sid , cid",

8 "I, I", "sid , cid")

Formulate a relation algebra expression to list the names of the professors of courses taken by Peter.

140

Chapter 5

Data Preprocessing

5.1 Basic Operations

Using the ScalaTion TSDB, data scientists may write queries that extract data from one or more columnar

relations. These data are used to create vectors and matrices that may be passed to various analytics

techniques. Before the vectors and matrices are created the data need to be preprocessed to improve data

quality and transform the data into a form more suitable for analytics.

5.1.1 Remove Identifiers

Any column that is unique (e.g., a primary key) with arbitrary values should be removed before applying a

modeling/analytics technique. For example, an employee ID in a Neural Network analysis to predict salary

could result in a perfect fit. Upon knowing the employee ID, the salary is a known. As the ID itself (e.g.,

ID = 1234567) is arbitrary, such a model has little value.

5.1.2 Convert String Columns to Numeric Columns

In ScalaTion, columns with strings (VectorS) should be converted to integers. For displaying final results,

however, is often useful to convert the integers back to the original strings. The capabilities are provided by

the map2Int function in the VectorS class (see the section on RegressionCat).

5.1.3 Identify Missing Values

Missing Values are common is real datasets. For some datasets, a question mark character ‘?’ is used to

indicate that a value is missing. In Comma Separated Value (CSV) files, repeated commas may indicate

missing values, e.g., 10.1, 11.2,,,9.8. If zero or negative numbers are not valid for the application, these may

be used to indicate missing values.

5.1.4 Preliminary Feature Selection

Before selecting a modeling/analytics technique, certain columns may be thrown away. Examples include

columns with too many missing values or columns with near zero variance. Further discuss on this topic can

be found in the section on Exploratory Data Analysis (EDA).

141

5.2 Methods for Outlier Detection

Data points that are considered outliers may happen because of errors or highly unusual occurrences. For

example, suppose a dataset records the times for members of a football team to run a 100-yard dash and

one of the recorded values is 3.2 seconds. This is an outlier. Some analytics techniques are less sensitive to

outliers, e.g., `1 Regression, while others, e.g., `2 Regression, are more sensitive. Detection of outliers suffers

from the obvious problems of being too strict (in which case good data may be thrown away) or too lenient

(in which case outliers are passed to an analytics technique). One may choose to handle outliers separately,

or turn them into missing values, so that both outliers and missing values may be handled together.

5.2.1 Based on Standard Deviation

If measured values for a random variable xj are approximately Normally distributed and are several standard

deviation units away form the center (µxj), they are rare events. Depending on the situation, this may be

important information to examine, but may often indicate incorrect measurement. Table 5.1 shows how

unlikely it is to obtain data points in distant tails of a Normal distribution. The standard way to detect

outliers using the standard deviation method is to examine points beyond three standard deviation (σxj)

units for being outliers. This is also called the z-score method as xj needs to be transformed to zj that

follows the Standard Normal distribution.

zj =
xj − µxj
σxj

(5.1)

Table 5.1: Probabilities/Percentiles for the Standard Normal Distribution

± distance percent inside percent in tails outside per 10,000

0.67448 50.00 50.00 5000

1.00000 68.27 31.73 3173

1.50000 86.64 13.36 1336

1.95996 95.00 5.00 500

2.00000 95.45 4.55 455

2.50000 98.76 1.24 124

2.57500 99.00 1.00 100

2.70000 99.31 0.69 69

3.00000 99.73 0.27 27

3.50000 99.95 0.05 5

142

−4 −2 0 2 4

0

0.1

0.2

0.3

0.4

z

f z
j
(z

)

pdf for Standard Normal Distribution

5.2.2 Based on InterQuartile Range

The InterQuartile Range (IQR) shown in green for the Standard Normal distribution is 1.34896 (±0.67448).

It includes the second (.25Q [xj]) and third (.75Qxj) quartiles, i.e., the middle two out of four quartiles. The

IQR gives a basic distance or yardstick for measuring when points are too far away from the median. A data

point xj should be examined as an outlier when the following rule is true.

xj /∈ [.25Q [xj]− δ · IQR, .75Q [xj] + δ · IQR] (5.2)

For the Normal distribution case, when the scale factor δ = 1.5, it corresponds to 2.69792 standard deviation

units and at 2.0 it corresponds to 3.3724 standard deviation units (see the exercises). The advantage of

this method over the previous one, is that it can work when the data points are not approximately Normal.

This includes the cases where the distribution is not symmetric (a problematic situation for the previous

method). A weakness of the IQR method occurs when data are concentrated near the median, resulting in

an IQR that is in some sense too small to be useful.

Use of Box-Plots provides visual support for looking for outliers. The IQR is shown as a box with whiskers

extending in both directions, extending δ ·IQR units beyond the box, with indications of locations of extreme

data points beyond the whiskers.

5.2.3 Based on Quantiles/Percentiles

A simple method for detecting outliers is to assume that the most extreme 1% of data points are outliers

(they may well not be). This would include the 0.5% smallest and 0.5% largest data points. Under the

Normality assumption this would correspond to 2.575 standard deviation units. Given that this method

does not look for how far points are from a mean or median, it should not be used as the sole evidence that

a data point is an outlier.

In the Outlier.scala file, ScalaTion currently provides the following techniques for outlier detection:

• Standard Deviation Method: data points too many standard deviation units (typically 2.5 to 3.5,

defaults to 2.7) away from the mean, DistanceOutlier;

143

• InterQuartile Range Method: data points a scale factor/expansion multiplier (typically 1.5 to 2.0,

defaults to 1.5) times the IQR beyond the middle two quartiles, QuartileXOutlier; and

• Quantiles/Percentile Method: data points in the extreme percentages (typically 0.7 to 10 percent,

defaults to 0.7), i.e., having the smallest or largest values, QuantileOutlier.

Note: These defaults put these three outlier detection methods in alignment when data points are approx-

imately Normally distributed.

The following function will turn outliers in missing values, by reassigning the outliers to noDouble,

ScalaTion’s indicator of a missing value of type Double.

DistanceOutlier.rmOutlier (traffic.column (“speed”))

An alternative to eliminating outliers during data preprocessing, is to eliminate them during modeling

by looking for extreme residuals. In addition to looking at the magnitude of a residual εi, some argue only

to remove data points that also have high influence on the model’s parameters/coefficients, using techniques

such as DFFITS, Cook’s Distance, or DFBETAS [34].

144

5.3 Imputation Techniques

The two main ways to handle missing values are (1) throw them away, or (2) use imputation to replace them

with reasonable guesses. When there is a gap in time series data, imputation may be used for short gaps,

but is unlikely to be useful for long gaps. This is especially true when imputation techniques are simple. The

alternative could be to use an advanced modeling technique like SARIMA for imputation, but then results

of a modeling study using SARIMA are likely to be biased. Imputation implementations are based on the

Imputation trait in the scalation.modeling package.

5.3.1 Imputation Trait

Trait Methods:

1 trait Imputation

2

3 def setMissVal (missVal_ : Double) { missVal = missVal_ }

4 def setDist (dist_ : Int) { dist = dist_ }

5 def imputeAt (x: VectorD , i: Int): Double

6 def impute (x: VectorD , i: Int = 0): (Int , Double) = findMissing (x, i)

7 def imputeAll (x: VectorD): VectorD =

8 def impute (x: MatrixD): MatrixD =

9 def imputeCol (c: Vec , i: Int = 0): (Int , Any) =

ScalaTion currently supports the following imputation techniques:

1. object ImputeRegression extends Imputation: Use SimpleRegression on the instance index to

estimate the next missing value.

2. object ImputeForward extends Imputation: Use the previous value and slope to estimate the next

missing value.

3. object ImputeBackward extends Imputation: Use the subsequent value and slope to estimate the

previous missing value.

4. object ImputeMean extends Imputation: Use the filtered mean to estimate the next missing value.

5. object ImputeMovingAvg extends Imputation: Use the moving-average of the last ’dist’ values to

estimate the next missing value.

6. object ImputeNormal extends Imputation: Use the median of three Normally distributed, based

on filtered mean and variance, random values to estimate the next missing value.

7. object ImputeNormalWin extends Imputation: Same as ImputeNormal except mean and variance

are recomputed over a sliding window.

145

5.4 Align Multiple Time Series

When the data include multiple time series, there are likely to be time alignment problems. The frequency

and/or phase may not be in agreement. For example, traffic count data may be recorded every 15 minutes

and phased on the hour, while weather precipitation data may be collected every 30 minutes and phased to

10 minutes past the hour.

ScalaTion supports the following alignments techniques: (1) approximate left outer join and (2) dy-

namic time warping. The first operator will perform a left outer join between two relations based on their

time (TimeNum) columns. Rather than the usual matching based on equality, approximately equal times are

considered sufficient for alignment. For example, to align traffic data with the weather data, the following

approximate left outer join may be used.

traffic n (0.01)(“time”, “time”,weather) approximate left outer join

The second operator ...

146

5.5 Creating Vectors and Matrices

Once the data have been preprocessed, columns may be projected out to create a matrix that may be passed

to analytics/modeling techniques.

val mat = π“time”,“count” (traffic).toMatrixD

This matrix may then be passed into multiple modeling techniques: (1) a Multiple Linear Regression, (2) a

Auto-Regressive, Integrated, Moving-Average (ARIMA) model.

val model1 = Regression (mat)

val model2 = ARIMA (mat)

By default in ScalaTion the rightmost columns are the response/output variables. As many of the

modeling techniques have a single response variable, it will be assumed to in the last column. There are also

constructors and factory apply functions that take explicit vector and matrix parameters, e.g., a matrix of

predictor variables and a response vector.

147

5.6 Exercises

1. Assume random variable xj is distributed N(µ, σ).

(a) Show that when the scale factor δ = 1.5, the InterQuartile Range method corresponds to the

Standard Deviation method at 2.69792 standard deviation units.

(b) Show that when the scale factor δ = 2.0, the InterQuartile Range method corresponds to the

Standard Deviation method at 3.3724 standard deviation units.

(c) What should the scale factor δ need to be to correspond to 3 standard deviation units?

2. Randomly generate 10,000 data points from the Standard Normal distribution. Count how many of

these data points are considered as outliers for

(a) the Standard Deviation method set at 3.3724 standard deviation units, and

(b) the InterQuartile Range method with δ = 2.0.

(c) the Quantile/Percentile method set at what? percent.

3. Load the auto mpg.csv dataset into an auto mpg relation. Perform the preprocessing steps above to

create a cleaned-up relation auto mpg2 and produce a data matrix called auto mat from this relation.

Print out the correlation matrix for auto mat. Which columns have the highest correlation? To predict

the miles per gallon mpg which columns are likely to be the best predictors.

4. Find a dataset at the UCI Machine Learning Repository and carry out the same steps

https://archive.ics.uci.edu/ml/index.php.

148

h

Part II

Modeling

149

Chapter 6

Prediction

As the name predictive analytics indicates, the purpose of techniques that fall in this category is to develop

models to predict outcomes. For example, the distance a golf ball travels y when hit by a driver depends

on several factors or inputs x such as club head speed, barometric pressure, and smash factor (how square

the impact is). The models can be developed using a combination of data (e.g., from experiments) and

knowledge (e.g., Newton’s Second Law). The modeling techniques discussed in this technical report tend

to emphasize the use of data more than knowledge, while those in the simulation modeling technical report

emphasize knowledge.

Abstractly, a predictive model can generally be formulated using a prediction function f as follows:

y = f(x, t; b) + ε (6.1)

where

• y is an response/output scalar,

• x is an predictor/input vector,

• t is a scalar representing time,

• b is the vector of parameters of the function, and

• ε represents remaining residuals/errors.

Both the response y and residuals/errors ε are treated as random variables, while the predictor/feature

variables x may be treated as either random or deterministic depending on context. Depending on the goals

of the study as well as whether the data are the product of controlled/designed experiments, the random or

deterministic view may be more suitable.

The parameters b can be adjusted so that the predictive model matches the available data. Note,

in the definition of a function, the arguments appear before the “;”, while the parameters appear after.

The residuals/errors are typically additive as shown above, but may also be multiplicative. Of course, the

formulation could be generalized by turning the output/response into a vector y and the parameters into a

matrix B.

When a model is time-independent or time can be treated as just another dimension within the x vectors,

prediction functions can be represented as follows:

151

y = f(x; b) + ε (6.2)

Another way to look at such models, is that we are trying to estimate the conditional expectation of y given

x.

y = E [y|x] + ε

ε = y − f(x; b)

Given a dataset (m instances of data), each instance contributes to an overall residual/error vector ε.

One of the simpler ways to estimate the parameters b is to minimize the size of the residual/error vector,

e.g., its Euclidean norm. The square of this norm is the sum of squared errors (sse)

sse = ‖ε‖2 = ε · ε (6.3)

This corresponds to minimizing the raw mean square error (mse = sse/m). See the section on Generalized

Linear Models for further development along these lines.

In ScalaTion, data are passed to the train function to train the model/fit the parameters b. In the

case of prediction, the predict function is used to predict values for the scalar response y.

A key question to address is the possible functional forms that f may take, such as the importance of

time, the linearity of the function, the domains for y and x, etc. We consider several cases in the subsections

below.

152

6.1 Predictor

In ScalaTion, the Predictor trait provides a common framework for several predictor classes such as

SimpleRegression or Regression. All of the modeling techniques discussed in this chapter extend the

Predictor trait. They also extend the Fit trait to enable Quality of Fit (QoF) evaluation. (Unlike classes,

traits support multiple inheritance).

Many modeling techniques utilize several predictor/input variables to predict a value for a response/out-

put variable, e.g., given values for [x0, x1, x2] predict a value for y. The datasets fed into such modeling

techniques will collect multiple instances of the predictor variables into a matrix x and multiple instances of

the response variable into a vector y. The Predictor trait takes datasets of this form.

6.1.1 Predictor Trait

Trait Methods:

1 @param x the input/data m-by-n matrix

2 (augment with a first column of ones to include intercept in model)

3 @param y the response/output m-vector

4 @param fname the feature/variable names (if null , use x_j)

5 @param hparam the hyper -parameters for the model

6

7 trait Predictor (x: MatrixD , y: VectorD , protected var fname: Array [String],

8 hparam: HyperParameter)

9 extends Model:

10

11 def getX: MatrixD = x

12 def getY: VectorD = y

13 def getFname: Array [String] = fname

14 def numTerms: Int = getX.dim2

15 def train (x_ : MatrixD = x, y_ : VectorD = y): Unit

16 def train2 (x_ : MatrixD = x, y_ : VectorD = y): Unit =

17 def test (x_ : MatrixD = x, y_ : VectorD = y): (VectorD , VectorD)

18 def trainNtest (x_ : MatrixD = x, y_ : VectorD = y)

19 (xx: MatrixD = x, yy: VectorD = y): (VectorD , VectorD) =

20 def predict (z: VectorD): Double = b dot z

21 def predict (x_ : MatrixD): VectorD =

22 def hparameter: HyperParameter = hparam

23 def parameter: VectorD = b

24 def residual: VectorD = e

25

26 def buildModel (x_cols: MatrixD): Predictor = null

27 def selectFeatures (tech: SelectionTech , idx_q: Int = QoF.rSqBar.ordinal ,

28 cross: Boolean = true): (LinkedHashSet [Int], MatrixD) =

29 def forwardSel (cols: LinkedHashSet [Int], idx_q: Int = QoF.rSqBar.ordinal): BestStep =

30 def forwardSelAll (idx_q: Int = QoF.rSqBar.ordinal , cross: Boolean = true):

31 (LinkedHashSet [Int], MatrixD) =

32 def importance (cols: Array [Int], rSq: MatrixD): Array [(Int , Double)] =

33 def backwardElim (cols: LinkedHashSet [Int], idx_q: Int = QoF.rSqBar.ordinal ,

34 first: Int = 1): BestStep =

35 def backwardElimAll (idx_q: Int = QoF.rSqBar.ordinal , first: Int = 1,

36 cross: Boolean = true): (LinkedHashSet [Int], MatrixD) =

153

37 def stepRegressionAll (idx_q: Int = QoF.rSqBar.ordinal , cross: Boolean = true):

38 (LinkedHashSet [Int], MatrixD) =

39

40 def vif (skip: Int = 1): VectorD =

41 inline def testIndices (n_test: Int , rando: Boolean): IndexedSeq [Int] =

42 def validate (rando: Boolean = true , ratio: Double = 0.2)

43 (idx : IndexedSeq [Int] =

44 testIndices ((ratio * y.dim).toInt , rando)): VectorD =

45 def crossValidate (k: Int = 5, rando: Boolean = true): Array [Statistic] =

The Predictor trait extends the Model trait (see the end of the Probability chapter) and has the following

methods:

1. The getX method returns the actual data/input matrix used by the model. Some complex models

expand the columns in an initial data matrix to add for example quadratic or cross terms.

2. The getY method returns the actual response/output vector used by the model. Some complex models

transform the initial response vector.

3. The getFname method returns the names of predictor variable/features, both given and extended.

4. The numTerms method returns the number of terms in the model.

5. The train method takes the dataset passed into the model (either the full dataset or a training-data)

and optimizes the model parameters b.

6. The train2 method takes the dataset passed into the model (either the full dataset or a training

dataset) and optimizes the model parameters b. It also optimizes the hyper-parameters.

7. The test method evaluates the Quality of Fit (QoF) either on the full dataset or a designated test-data

using the diagnose method.

8. The trainNtest method trains on the training-set and evaluates on the test-set.

9. The predict method take a data vector (e.g., a new data instance) and predicts its response. Another

predict method takes a matrix as input (with each row being an instance) and makes predictions for

each row.

10. The hparameter method returns the hyper-parameters for the model. Many simple models have none,

but more sophisticated modeling techniques such as RidgeRegression and LassoRegression have

them (e.g., a shrinkage hyper-parameter).

11. The parameter method returns the estimated parameters for the model.

12. The residual method returns the difference between the actual and predicted response vectors. The

residual indicates what the model has left to explain/account for (e.g., an ideal model will only leave

the noise in the data unaccounted for).

13. The buildModel method build a sub-model that is restricted to given columns of the data matrix.

This method of called by the following feature selection methods.

154

14. The selectFeatures methods makes it easy to switch between forward, backward and stepwise feature

selection.

15. The forwardSel method is used for forward selection of variables/features for inclusion into the model.

At each step the variable that increases the predictive power of the model the most is selected. This

method is called repeatedly in forwardSelAll to find “best” combination of features. Not guaranteed

to find the optimal combination.

16. The importance method is used to indicate the relative importance of the features/variables.

17. The bakwardElim method is used for backward elimination of variables/features from the model. At

each step the variable that contributes the least to the predictor power of the model is eliminated. This

method is called repeatedly in bakwardElimAll to find “best” combination of features. Not guaranteed

to find the optimal combination.

18. The stepRegressionAll method decides to add or remove a variable/feature based on whichever leads

to the greater improvement. It continues until there is no further improvement. A swap operation may

yield a better combination of features.

19. The vif method returns the Variance Inflation Factors (VIFs) for each of the columns in the data/input

matrix. High VIF scores may indicate multi-collinearity.

20. The testIndices method returns the indices of the test-set.

21. The validate method divides a dataset into a training-set and a test-set, trains on one and tests on

the other to determine out-of-sample Quality of Fit (QoF).

22. The crossValidate method implements k-fold cross-validation, where a dataset is divided into a

training-set and a test-set. The training-set is used by the train method, while the test-set is used by

the test method. The crossValidate method is similar to validate, but more extensive in that it

repeats this process k times and makes sure all the data ends up in one of the k test-sets.

155

6.2 Quality of Fit for Prediction

The related Fit trait provides a common framework for computing Quality of Fit (QoF) measures. The

dataset for many models comes in the form of an m-by-n data matrix X and an m response vector y. After

the parameters b (an n vector) have been fit/estimated, the error vector ε may be calculated. The basic

QoF measures involve taking either `1 (Manhattan) or `2 (Euclidean) norms of the error vector as indicated

in Table 6.1.

Table 6.1: Quality of Fit

error/residual absolute `1 norm squared `2 norm

sum sum of absolute errors sae = ‖ε‖1 sum of squared errors sse = ‖ε‖22
mean mean absolute error mae0 = sae/m mean squared error mse0 = sse/m

unbiased mean mean absolute error mae = sae/df mean squared error mse = sse/df

Typically, if a model has m instances/rows in the dataset and n parameters to fit, the error vector will live

in an m− n dimensional space (ignoring issues related to the rank the data matrix). Note, if n = m, there

may be a unique solution for the parameter vector b, in which case ε = 0, i.e., the error vector lives in a

0-dimensional space. The Degrees of Freedom (for error) is the dimensionality of the space that the error

vector lives in, namely, df = m− n.

6.2.1 Fit Trait

Trait Methods:

1 @param dfm the degrees of freedom for model/regression

2 @param df the degrees of freedom for error

3

4 trait Fit (private var dfm: Double , private var df: Double)

5 extends FitM:

6

7 def resetDF (df_update: (Double , Double)): Unit =

8 def mse_ : Double = mse

9 override def diagnose (y: VectorD , yp: VectorD , w: VectorD = null): VectorD =

10 def ll (ms: Double = mse0 , s2: Double = sig2e , m2: Int = m): Double =

11 def fit: VectorD = VectorD (rSq , rSqBar , sst , sse , mse0 , rmse , mae ,

12 dfm , df, fStat , aic , bic , mape , smape , mase)

13 def help: String = Fit.help

14 def summary (x_ : MatrixD , fname: Array [String], b: VectorD , vifs: VectorD = null):

15 String =

For modeling, a user chooses one the of classes (directly or indirectly) extending the trait Predictor

(e.g., Regression) to instantiate an object. Next the train method would be typically called, followed

by the test method, which computes the residual/error vector and calls the diagnose method. Then the

156

fitMap method would be called to return quality of fit statistics computed by the diagnose method. The

quality of fit measures computed by the diagnose method in the Fit class are shown below.

1 @param y the actual response/output vector to use (test/full)

2 @param yp the predicted response/output vector (test/full)

3 @param w the weights on the instances (defaults to null)

4

5 override def diagnose (y: VectorD , yp: VectorD , w: VectorD = null): VectorD =

6 val e = super.diagnose (y, yp, w)

7

8 if dfm <= 0 || df <= 0 then

9 flaw ("diagnose", s"degrees of freedom dfm = dfmanddf =df must be > 0")

10 if dfm == 0 then dfm = 1 // must have at least 1 DoF

11 // b_0 or b_0 + b_1x_1 or b_1x_1

12 msr = ssr / dfm // mean of squares for model

13 mse = sse / df // mean of squares for error

14

15 rse = sqrt (mse) // residual standard error

16 rSqBar = 1 - (1-rSq) * r_df // adjusted R-squared

17 fStat = msr / mse // F statistic (quality of fit)

18 p_fS = 1.0 - fisherCDF (fStat , dfm.toInt , df.toInt) // p-value for fStat

19 if p_fS.isNaN then p_fS = 0.0 // NaN => error by fisherCDF

20 if sig2e == -1.0 then sig2e = e.variance_

21

22 val ln_m = log (m) // natural log of m (ln(m))

23 aic = ll() + 2 * (dfm + 1) // Akaike Information Criterion

24 // +1 on dfm accounts for sig2e

25 bic = aic + (dfm + 1) * (ln_m - 2) // Bayesian Info. Criterion

26 mape = 100 * (e.abs / y.abs).sum / m // mean abs. percentage error

27 smape = 200 * (e.abs / (y.abs + yp.abs)).sum / m // symmetric MAPE

28 mase = Fit.mase (y, yp) // mean absolute scaled error

29 fit

30 end diagnose

One may look at the sum of squared errors (sse) as an indicator of model quality.

sse = ε · ε (6.4)

In particular, sse can be compared to the sum of squares total (sst), which measures the total variability of

the response y,

sst = ‖y − µy‖2 = y · y −mµ2
y = y · y − 1

m

[∑
yi
]2

(6.5)

while the sum of squares regression (ssr = sst− sse) measures the variability captured by the model, so the

coefficient of determination measures the fraction of the variability captured by the model.

R2 =
ssr

sst
= 1− sse

sst
≤ 1 (6.6)

Values for R2 would be non-negative, unless the proposed model is so bad (worse than the Null Model that

simply predicts the mean) that the proposed model actually adds variability.

157

6.3 Null Model

The NullModel class implements the simplest type of predictive modeling technique. If all else fails it may

be reasonable to simply guess that y will take on its expected value or mean.

y = E [y] + ε (6.7)

This could happen if the predictors x are not relevant, not collected in a useful range or the relationship is

too complex for the modeling techniques you have applied.

6.3.1 Model Equation

Ignoring the predictor variables x gives the following simple model equation.

y = b0 + ε (6.8)

This intercept-only model is just a constant term plus the error/residual term.

6.3.2 Training

The training dataset in this case only consists of a response vector y. The error vector in this case is

ε = y − ŷ = y − b01 (6.9)

For Least Squares Estimation (LSE), the loss function L(b) can be set to half the sum of squared errors.

L(b) =
1

2
sse =

1

2
‖ε‖2 =

1

2
ε · ε (6.10)

Substituting for ε gives

L(b) =
1

2
y − b01 · y − b01 (6.11)

6.3.3 Optimization - Derivative

A function can be optimized using Calculus by taking the first derivative and setting it equal to zero. If the

second derivative is positive (negative) it will be minimal (maximal).

In particular, the derivative product rule (for dot products) may be used.

(f · g)′ = f ′ · g + f · g′

(f · f)′ = 2 f ′ · f

Dividing by 1
2 gives,

1

2
(f · f)′ = f ′ · f (6.12)

Taking the derivative w.r.t. b0,
dL
db0

, using the derivative product rule and setting it equal to zero yields the

following equation.

158

dL
db0

= −1 · (y − b01) = 0

Therefore, the optimal value for the parameter b0 is

b0 =
1 · y
1 · 1

=
1 · y
m

= µy (6.13)

This shows that the optimal value for the parameter is the mean of the response vector.

In ScalaTion this requires just one line of code inside the train method.

1 def train (x_null: MatrixD = null , y_ : VectorD = y): Unit =

2 b = VectorD (y_.mean) // parameter vector [b0]

3 end train

After values for the model parameters are determined, it it important to assess the Quality of Fit (QoF).

The test method will compute the residual/error vector ε and then call the diagnose method.

1 def test (x_null: MatrixD = null , y_ : VectorD = y): (VectorD , VectorD) =

2 val yp = VectorD.fill (y_.dim)(b(0)) // y predicted for (test/full)

3 (yp , diagnose (y_, yp)) // return predictions and QoF

4 end test

The coefficient of determination R2 for the null regression model is always 0, i.e., none of variance in the

random variable y is explained by the model. A more sophisticated model should only be used if it is better

than the null model, that is when its R2 is strictly greater than zero. Also, a model can have a negative R2

if its predictions are worse than guessing the mean.

Finally, the predict method is simply.

1 def predict (z: VectorD): Double = b(0)

6.3.4 Example Calculation

For the training data shown below, the optimal value for the intercept parameter b0 = µy = 11
4 = 2.75. The

table below shows the values of x, y, ŷ, ε, and ε2. for the Null Model,

y = 2.75 + ε (6.14)

Table 6.2: Null Model: Example Training Data

x y ŷ ε ε2

1 1 11
4 − 7

4
49
16

2 3 11
4

1
4

1
16

3 3 11
4

1
4

1
16

4 4 11
4

5
4

25
16

10 11 11 0 19
4 = 4.75

The sum of squared errors (sse) is given in the lower, right corner of the table. The sum of squares total for

this dataset is 4.75, so

159

R2 = 1− sse

sst
= 1− 4.75

4.75
= 0

The plot below illustrates how the Null Model attempts to fit the four given data points.

0 1 2 3 4

1

2

3

4

x

y

Null Model Line vs. Data Points

6.3.5 NullModel Class

Class Methods:

1 @param y the response/output vector

2

3 class NullModel (y: VectorD)

4 extends Predictor (MatrixD.one (y.dim), y, Array ("one"), null)

5 with Fit (dfm = 1, df = y.dim)

6 with NoSubModels:

7

8 def train (x_null: MatrixD = null , y_ : VectorD = y): Unit =

9 def test (x_null: MatrixD = null , y_ : VectorD = y): (VectorD , VectorD) =

10 override def predict (z: VectorD): Double = b(0)

11 override def predict (x_ : MatrixD): VectorD = VectorD.fill (x_.dim)(b(0))

12 override def summary (x_ : MatrixD = getX , fname_ : Array [String] = fname ,

13 b_ : VectorD = b, vifs: VectorD = vif ()): String =

6.3.6 Exercises

1. Determine the value of the second derivative of the loss function

d2L
db0

2 = ?

at the critical point b0 = µy. What kind of critical point is this?

160

2. Let the response vector y be

1 val y = VectorD (1, 3, 3, 4)

and execute the NullModel.

For context, assume the corresponding predictor vector y is

1 val x = VectorD (1, 2, 3, 4)

Draw an xy plot of the data points. Give the value for the parameter vector b. Show the error distance

for each point in the plot. Compare the sum of squared errors sse with the sum of squares total sst.

What is the value for the coefficient of determination R2?

3. Using ScalaTion, analyze the NullModel for the following response vector y.

1 val y = VectorD (2.0, 3.0, 5.0, 4.0, 6.0) // response vector y

2 println (s"y = $y")

3

4 val mod = new NullModel (y) // create a null model

5 mod.trainNtest ()() // train and test the model

6

7 val z = VectorD (5.0) // predict y for one point

8 val yp = mod.predict (z) // yp (y-predicted or y-hat)

9 println (s"predict (z) =\yp")

4. Execute the NullModel on the Auto MPG dataset. See scalation.modeling.Example AutoMPG. What

is the quality of the fit (e.g., R2 or rSq)? Is this value expected? Is is possible for a model to perform

worse than this?

161

6.4 Simpler Regression

The SimplerRegression class supports simpler linear regression. In this case, the predictor vector x consists

of a single variable x0, i.e., x = [x0] and there is only a single parameter that is the coefficient for x0 in the

model.

6.4.1 Model Equation

The goal is to fit the parameter vector b = [b0] in the following model/regression equation,

y = b · x + ε = b0x0 + ε (6.15)

where ε represents the residuals/errors (the part not explained by the model).

6.4.2 Training

A dataset may be collected for providing an estimate for parameter b0. Given m data points, stored in an

m-dimensional vector x0 and m response values, stored in an m-dimensional vector y, we may obtain the

following vector equation.

y = b0x0 + ε (6.16)

One way to find a value for parameter b0 is to minimize the norm of residual/error vector ε.

minb0‖ε‖ (6.17)

Since ε = y − b0x0, we may solve the following optimization problem:

minb0‖y − b0x0‖ (6.18)

This is equivalent to minimizing half the dot product (1
2‖ε‖

2 = 1
2ε · ε = 1

2sse). Thus the loss function is

L(b) =
1

2
y − b0x0 · y − b0x0 (6.19)

6.4.3 Optimization - Derivative

Again, a function can be optimized using Calculus by taking the first derivative and setting it equal to zero.

If the second derivative is positive (negative) it will be minimal (maximal). Taking the derivative w.r.t. b0,
dL
db0

, using the derivative product rule (for dot products) gives

1

2
(f · f)′ = f ′ · f

and setting it equal to zero yields the following equation.

dL
db0

= −x0 · (y − b0x0) = 0 (6.20)

Therefore, the optimal value for the parameter b0 is

b0 =
x0 · y
x0 · x0

(6.21)

162

6.4.4 Example Calculation

Consider the following data points {(1, 1), (2, 3), (3, 3), (3, 4)} and solve for the parameter (slope) b0.

b0 =
[1, 2, 3, 4] · [1, 3, 3, 4]

[1, 2, 3, 4] · [1, 2, 3, 4]
=

32

30
=

16

15

Using this optimal value for the parameter b0 =
16

15
, we may obtain predicted values for each of the x-values.

ŷ = ŷ = predict(x0) = b0x0 = [1.067, 2.133, 3.200, 4.267]

Therefore, the error/residual vector is

ε = y − ŷ = [1, 3, 3, 4] − [1.067, 2.133, 3.200, 4.267] = [−0.067, 0.867,−0.2,−0.267]

The table below shows the values of x, y, ŷ, ε, and ε2. for the Simpler Regression Model,

y =

[
16

15

]
· [x] + ε =

16

15
x+ ε

Table 6.3: Simpler Regression Model: Example Training Data

x y ŷ ε ε2

1 1 16
15 − 1

15
1

225

2 3 32
15

13
15

169
225

3 3 48
15 − 3

15
9

225

4 4 64
15 − 4

15
16
225

10 11 160
15

5
15

13
15 = 0.867

The sum of squared errors (sse) is given in the lower, right corner of the table. The sum of squares total for

this dataset is 4.75, so

R2 = 1− sse

sst
= 1− 0.867

4.75
= 0.813

The plot below illustrates how the Simpler Regression Model attempts to fit the four given data points.

163

0 1 2 3 4

0

1

2

3

4

x

y

Simpler Regression Model Line vs. Data Points

Note, that this model has no intercept. This makes the solution for the parameter very easy, but may

make the model less accurate. This is remedied in the next section. Since no intercept really means the

intercept is zero, the regression line will go through the origin. This is referred to as Regression Through

the Origin (RTO) and should only be applied when the data scientist has reason to believe it makes sense.

6.4.5 SimplerRegression Class

Class Methods:

1 @param x the data/input matrix (only use the first column)

2 @param y the response/output vector

3 @param fname_ the feature/variable names (only use the first name)

4

5 class SimplerRegression (x: MatrixD , y: VectorD , fname_ : Array [String] = null)

6 extends Predictor (x, y, if fname_ == null then null else fname_.slice (0, 1),

7 null)

8 with Fit (dfm = 1, df = x.dim - 1)

9 with NoSubModels:

10

11 def train (x_ : MatrixD = x, y_ : VectorD = y): Unit =

12 def test (x_ : MatrixD = x, y_ : VectorD = y): (VectorD , VectorD) =

13 override def summary (x_ : MatrixD = getX , fname_ : Array [String] = fname ,

14 b_ : VectorD = b, vifs: VectorD = vif ()): String =

6.4.6 Exercises

1. For x0 = [1, 2, 3, 4] and y = [1, 3, 3, 4], try various values for the parameter b0. Plot the sum of squared

errors (sse) vs. b0. Note, the code must be completed before it is complied and run.

164

1 import scalation.mathstat._

2

3 @main def simplerRegression_exer_1 (): Unit =

4

5 val x0 = VectorD (1, 2, 3, 4)

6 val y = VectorD (1, 3, 3, 4)

7 val b0 = VectorD.range (0, 50) / 25.0

8 val sse = new VectorD (b0.dim)

9 for i <- b0.indices do

10 val e = ?

11 sse(i) = e dot e

12 end for

13 new Plot (b0 , sse , lines = true)

14

15 end simplerRegression_exer_1

Where do you think the minimum occurs?

Note, to run your code you may use my scalation outside of ScalaTion. Make sure its lib di-

rectory has the ScalaTion’s j̇ar file. Create a file called SimplerRegression exer 1.scala in your

src/main/scala directory. In your project’s base directory, type sbt. Within sbt type compile and

then run.

2. From the X matrix and y vector, plot the set of data points {(xi1, yi) | 0 ≤ i < m} and draw the line

that is nearest to these points. What is the slope of this line. Pass the X matrix and y vector as

arguments to the SimplerRegression class to obtain the b = [b0] vector.

1 // 4 data points: x0

2 val x = MatrixD ((4, 1), 1, // x 4-by -1 matrix

3 2,

4 3,

5 4)

6 val y = VectorD (1, 3, 3, 4) // y vector

7

8 val mod = new SimplerRegression (x, y) // create a simpler regression

9 mod.trainNtest ()() // train and test the model

10

11 val yp = mod.predict (x)

12 new Plot (x(?, 0), y, yp, lines = true) // black for y and red for yp

An alternative to using the above constructor new SimplerRegression is to use a factory method

SimplerRegression. Substitute in the following lines of code to do this.

1 val x = VectorD (1, 2, 3, 4)

2 val rg = SimplerRegression (x, y, null)

3 new Plot (x, y, yp, lines = true)

3. From the X matrix and y vector, plot the set of data points {(xi1, yi) | 0 ≤ i < m} and draw the line

that is nearest to these points and intersects the origin [0, 0]. What is the slope of this line? Pass the

X matrix and y vector as arguments to the SimplerRegression class to obtain the b = [b0] vector.

1 // 5 data points: x0

2 val x = MatrixD ((5, 1), 0, // x 5-by -1 matrix

3 1,

165

4 2,

5 3,

6 4)

7 val y = VectorD (2, 3, 5, 4, 6) // y vector

8

9 val mod = new SimplerRegression (x, y) // create a simpler regression

model

10 mod.trainNtest ()() // train and test the model

11

12 val z = VectorD (5) // predict y for one point

13 val yp = rg.predict (z) // y-predicted

14 println (s"predict (z) =yp")

4. Execute the SimplerRegression on the Auto MPG dataset. See scalation.modeling.Example AutoMPG.

What is the quality of the fit (e.g., R2 or rSq)? Is this value expected? What does it say about this

model? Try using different columns for the predictor variable.

5. Compute the second derivative of the loss function w.r.t. b0,
d2L
db0

2 . Under what conditions will it be

positive?

166

6.5 Simple Regression

The SimpleRegression class supports simple linear regression. It combines the benefits of the last two mod-

eling techniques: the intercept model NullModel and the slope model SimplerRegression. It is guaranteed

to be at least as good as the better of these two modeling techniques. In this case, the predictor vector

x ∈ R2 consists of the constant one and a single variable x1, i.e., [1, x1], so there are now two parameters

b = [b0, b1] ∈ R2 in the model.

6.5.1 Model Equation

The goal is to fit the parameter vector b in the model/regression equation,

y = b · x + ε = [b0, b1] · [1, x1] + ε = b0 + b1x1 + ε (6.22)

where ε represents the residuals (the part not explained by the model).

6.5.2 Training

The model is trained on a dataset consisting of m data points/vectors, stored row-wise in an m-by-2 matrix

X ∈ Rm×2 and m response values, stored in an m dimensional vector y ∈ Rm.

y = Xb + ε (6.23)

The parameter vector b may be determined by solving the following optimization problem:

minb‖ε‖ (6.24)

Substituting ε = y − ŷ = y − Xb yields

minb‖y − Xb‖

Using the fact that the matrix X consists of two column vectors 1 and x1, it can be rewritten,

min[b0,b1]‖y − [1 x1]

[
b0
b1

]
‖

min[b0,b1]‖y − (b01 + b1x1)‖ (6.25)

This is equivalent to minimizing the dot product (‖ε‖2 = ε · ε = sse)

(y − (b01 + b1x1)) · (y − (b01 + b1x1)) (6.26)

Since x0 is just 1, for simplicity we drop the subscript on x1. Thus the loss function 1
2sse is

L(b) =
1

2
y − (b01 + b1x) · y − (b01 + b1x) (6.27)

167

6.5.3 Optimization - Gradient

A function of several variables can be optimized using Vector Calculus by setting its gradient (see the Linear

Algebra Chapter) equal to zero and solving the resulting system of equations. When the system of equations

are linear, matrix factorization may be used, otherwise techniques from Nonlinear Optimization may be

needed.

Taking the gradient of the loss function L gives

∇L =

[
∂L
∂b0

,
∂L
∂b1

]
(6.28)

The goal is to find the value of the parameter vector b that yields a zero gradient (flat response surface).

Setting the gradient equal to zero (0 = [0, 0]) yields two equations.

∇L(b) =

[
∂L
∂b0

(b),
∂L
∂b1

(b)

]
= 0 (6.29)

The gradient (the two partial derivatives) may be determined using the derivative product rule for dot

products.

1

2
(f · f)′ = f ′ · f

Partial Derivative w.r.t. b0

The first equation results from setting
∂

∂b0
of L to zero.

−1 · (y − (b01 + b1x)) = 0

1 · y − 1 · (b01 + b1x) = 0

b01 · 1 = 1 · y − b11 · x

Since 1 · 1 = m, b0 may be expressed as

b0 =
1 · y − b11 · x

m
(6.30)

Partial Derivative w.r.t. b1

Similarly, the second equation results from setting
∂

∂b1
of L to zero.

−x · (y − (b01 + b1x)) = 0

x · y − x · (b01 + b1x) = 0

b01 · x + b1x · x = x · y

Multiplying by both sides by m produces

mb01 · x +mb1x · x = mx · y (6.31)

Substituting for mb0 = 1 · y − b11 · x yields

[1 · y − b11 · x]1 · x + mb1x · x = mx · y
b1[mx · x− (1 · x)2] = mx · y − (1 · x)(1 · y)

168

Solving for b1 gives

b1 =
mx · y − (1 · x)(1 · y)

mx · x− (1 · x)2
(6.32)

The b0 parameter gives the intercept, while the b1 parameter gives the slope of the line that best fits the data

points.

6.5.4 Example Calculation

Consider again the problem from the last section where the data points are {(1, 1), (2, 3), (3, 3), (3, 4)} and

solve for the two parameters, (intercept) b0 and (slope) b1.

b1 =
4[1, 2, 3, 4] · [1, 3, 3, 4]− (1 · [1, 2, 3, 4])(1 · [1, 3, 3, 4])

4[1, 2, 3, 4] · [1, 2, 3, 4]− (1 · [1, 2, 3, 4])2
=

128− 110

120− 100
=

18

20
= 0.9

b0 =
1 · [1, 3, 3, 4]− 0.9(1 · [1, 2, 3, 4])

4
=

11− 0.9 ∗ 10

4
= 0.5

Table ?? below shows the values of x, y, ŷ, ε, and ε2 for the Simple Regression Model,

y = [0.5, 0.9] · [1, x] + ε = 0.5 + 0.9x+ ε

Table 6.4: Simple Regression Model: Example Training Data

x y ŷ ε ε2

1 1 1.4 -0.4 0.16

2 3 2.3 0.7 0.49

3 3 3.2 -0.2 0.04

4 4 4.1 -0.1 0.01

10 11 11 0 0.7

For which models (NullModel, SimplerRegression and SimpleRegression), did the redidual/error vector

ε sum to zero?

The sum of squared errors (sse) is given in the lower, right corner of the table. The sum of squares total

for this dataset is 4.75, so the Coefficient of Determination,

R2 = 1− sse

sst
= 1− 0.7

4.75
= 0.853

The plot below illustrates how the Simple Regression Model (SimpleRegression) attempts to fit the

four given data points.

169

0 1 2 3 4

1

2

3

4

x

y

Simple Regression Model Line vs. Data Points

Concise Formulas for the Parameters

More concise and intuitive formulas for the parameters b0 and b1 may be derived.

• Using the definition for mean from Chapter 3 for µx and µy, it can be shown that the expression for

b0 shortens to

b0 = µy − b1µx (6.33)

Draw a line through the following two points [0, b0] (the intercept) and [µx, µy] (the center of mass).

How does this line compare to the regression line.

• Now, using the definitions for covariance σx,y and variance σ2
x from Chapter 3, it can be shown that

the expression for b1 shortens to

b1 =
σx,y
σ2
x

(6.34)

If the slope of the regression line is simply the ratio of the covariance to the variance, what would the

slope be if y = x. It may also be written as follows:

b1 =
Sxy
Sxx

(6.35)

where Sxy =
∑
i(xi − µx)(yi − µy) and Sxx =

∑
i(xi − µx)2.

Table 6.5 extends the previous table to facilitate computing the parameters vector b using the concise

formulas.

170

Table 6.5: Simple Regression Model: Expanded Table with Centering µx = 2.5, µy = 2.75

x x− µx y y − µx ŷ ε ε2

1 -1.5 1 -1.75 1.4 -0.4 0.16

2 -0.5 3 0.25 2.3 0.7 0.49

3 0.5 3 0.25 3.2 -0.2 0.04

4 1.5 4 1.25 4.1 -0.1 0.01

10 0 11 0 11 0 0.7

Sxx =
∑
i

(xi − µx)2 = 1.52 + 0.52 + 0.52 + 1.52 = 5

Syy =
∑
i

(yi − µy)2 = 1.752 + 0.252 + 0.252 + 1.252 = 4.75

Sxy =
∑
i

(xi − µx)(yi − µy) = (−1.5 · −1.75) + (−0.5 · 0.25) + (0.5 · 0.25) + (1.5 · 1.25) = 4.5

Therefore,

b1 =
Sxy
Sxx

=
4.5

5
= 0.9

b0 = µy − b1µx = 2.75− 0.9 · 2.5 = 2.75− 2.25 = 0.5 (6.36)

Furthermore, it facilitates computing sst = Syy = 4.75.

6.5.5 Exploratory Data Analysis

As discussed in Chapter 1, Exploratory Data Analysis (EDA) should be performed after preprocessing the

dataset. Once the response variable y is selected, a null model should be created to see in a plot where the

data points lie compared to the mean. The code below shows how to do this for the AutoMPG dataset.

1 import Example_AutoMPG .{xy, x, y, x_fname}

2

3 banner ("Null Model")

4 val nm = new NullModel (y)

5 nm.trainNtest ()() // train and test the model

6 val yp = nm.predict (x)

7 new Plot (null , y, yp, "EDA: y and yp (red) vs. t", lines = true)

Next the relationships between the predictor variable xj (the columns in input/data matrix X) should

be compared. If two of the predictor variables are highly correlated, their individual effects on the response

variable y may be indistinguishable. The correlations between the predictor variable, may be seen by

examining the correlation matrix. Including the response variable in a combined data matrix xy allows one

to see how each predictor variable is correlated with the response.

1 banner ("Correlation Matrix for Columns of xy")

2 println (s"x_fname = ${stringOf (x_fname)}")

171

3 println (s"y_name = MPG")

4 println (s"xy.corr = ${xy.corr}")

Although Simple Regression may be too simple for many problems/datasets, it should be used in Ex-

ploratory Data Analysis (EDA). A simple regression model should be created for each predictor variable xj .

The data points and the best fitting line should be plotted with y on the vertical axis and xj on the hori-

zontal axis. The data scientist should look for patterns/tendencies of y versus xj , such as linear, quadratic,

logarithmic, or exponential patterns. When there is no relationship, the points will appear to be randomly

and uniformly positioned in the plane.

1 for j <- x.indices2 do

2 banner (s"Plot response y vs. predictor variable ${x_fname(j)}")

3 val xj = x(?, j)

4 val mod = SimpleRegression (xj, y, Array ("one", x_fname(j)))

5 mod.trainNtest ()() // train and test model

6 val yp = mod.predict (mod.getX)

7 new Plot (xj , y, yp , s"EDA: y and yp (red) vs. ${x_fname(j)}", lines = true)

8 end for

The Figure below shows four possible patterns: Linear (blue), Quadratic (purple), Inverse (green), Inverse-

Square (black). Each curve depicts a function 1 + xp, for p = −2,−1, 1, 2.

0.5 1 1.5 2 2.5 3 3.5
0

5

10

x

y

Finding a Pattern: Linear (blue), Quadratic (purple), Inverse (green), Inverse-Square (black)

To look for quadratic patterns, the following code regresses on the square of each predictor variable (i.e.,

x2
j).

1 for j <- x.indices2 do

2 banner (s"Plot response y vs. predictor variable ${x_fname(j)}")

3 val xj = x(?, j)

4 val mod = SimpleRegression.quadratic (xj, y, Array ("one", x_fname(j) + "ˆ2"))

5 mod.trainNtest ()() // train and test model

6 val yp = mod.predict (mod.getX)

7 new Plot (xj , y, yp , s"EDA: y and yp (red) vs. ${x_fname(j)}", lines = false)

8 end for

172

To determine the effect of having linear and quadratic terms (both xj and x2
j) the Regression class that

supports Multiple Linear Regression or the SymbolicRegression object may be used. Generally, one could

include both terms if there is sufficient improvement over just using one term. If one term is chosen, use

the linear term unless the quadratic term is sufficiently better (see the section on Symbolic Regression for a

more detailed discussion).

Plotting

The Plot and PlotM classes in the mathstat package can be used for plotting data and results. Both use

ZoomablePanel in the scala2d package to support zooming and dragging. The mouse wheel controls the

amount of zooming (scroll value where up is negative and down is positive), while mouse dragging repositions

the objects in the panel (drawing canvas).

1 @param x the x vector of data values (horizontal), use null to use y s index

2 @param y the y vector of data values (primary vertical , black)

3 @param z the z vector of data values (secondary vertical , red) to compare with y

4 @param _title the title of the plot

5 @param lines flag for generating a line plot

6

7 class Plot (x: VectorD , y: VectorD , z: VectorD = null , _title: String = "Plot y vs. x",

8 lines: Boolean = false)

9 extends VizFrame (_title , null):

1 @param x_ the x vector of data values (horizontal)

2 @param y_ the y matrix of data values where y(i) is the i-th vector (vertical)

3 @param label the label/legend/key for each curve in the plot

4 @param _title the title of the plot

5 @param lines flag for generating a line plot

6

7 class PlotM (x_ : VectorD , y_ : MatrixD , var label: Array [String] = null ,

8 _title: String = "PlotM y_i vs. x for each i", lines: Boolean = false)

9 extends VizFrame (_title , null):

6.5.6 SimpleRegression Class

Class Methods:

1 @param x the data/input matrix augmented with a first column of ones

2 (only use the first two columns [1, x1])

3 @param y the response/output vector

4 @param fname_ the feature/variable names (only use the first two names)

5

6 class SimpleRegression (x: MatrixD , y: VectorD , fname_ : Array [String] = null)

7 extends Predictor (x, y, if fname_ == null then null else fname_.slice (0, 2),

8 null)

9 with Fit (dfm = 1, df = x.dim - 2)

10 with NoSubModels:

11

12 def train (x_ : MatrixD = x, y_ : VectorD = y): Unit =

13 def test (x_ : MatrixD = x, y_ : VectorD = y): (VectorD , VectorD) =

14 override def summary (x_ : MatrixD = getX , fname_ : Array [String] = fname ,

173

15 b_ : VectorD = b, vifs: VectorD = vif ()): String =

16 def confInterval (x_ : MatrixD = getX): VectorD =

6.5.7 Exercises

1. From the X matrix and y vector, plot the set of data points {(xi1, yi) | 0 ≤ i < m} and draw the line

that is nearest to these points (i.e., that minimize ‖ε‖). Using the formulas developed in this section,

what are the intercept and slope [b0, b1] of this line.

Also, pass the X matrix and y vector as arguments to the SimpleRegression class to obtain the b

vector.

1 // 4 data points: one x1

2 val x = MatrixD ((4, 2), 1, 1, // x 4-by -2 matrix

3 1, 2,

4 1, 3,

5 1, 4)

6 val y = VectorD (1, 3, 3, 4) // y vector

7

8 val mod = new SimpleRegression (x, y) // create a simple regression

model

9 mod.trainNtest ()() // train and test the model

10

11 val yp = mod.predict (x)

12 new Plot (x(?, 1), y, yp, "plot y and yp vs. x", lines = true)

2. For more complex models, setting the gradient to zero and solving a system of simultaneous equation

may not work, in which case more general optimization techniques may be applied. Two simple

optimization techniques are grid search and gradient descent.

For grid search, in a spreadsheet set up a 5-by-5 grid around the optimal point for b, found in the

previous problem. Compute values for the loss function L = 1
2sse for each point in the grid. Plot h

versus b0 across the optimal point. Do the same for b1. Make a 3D plot of the surface h as a function

b0 and b1.

For gradient descent, pick a starting point b0, compute the gradient ∇L and move −η∇L from b0

where η is the learning rate (e.g., 0.1). Repeat for a few iterations. What is happening to the value of

the loss function L = 1
2see.

∇L = [−1 · (y − (b01 + b1x)),−x · (y − (b01 + b1x))]

Substituting ε = y − (b01 + b1x), ∇L may be written as

[−1 · ε,−x · ε]

3. From the X matrix and y vector, plot the set of data points {(xi1, yi) | 0 ≤ i < m} and draw the line

that is nearest to these points. What are the intercept and slope of this line. Pass the X matrix and

y vector as arguments to the SimpleRegression class to obtain the b vector.

174

1 // 5 data points: one x1

2 val x = MatrixD ((5, 2), 1, 0, // x 5-by -2 matrix

3 1, 1,

4 1, 2,

5 1, 3,

6 1, 4)

7 val y = VectorD (2, 3, 5, 4, 6) // y vector

8

9 val mod = new SimpleRegression (x, y) // create a simple regression

10 mod.trainNtest ()() // train and test the model

11

12 val yp = mod.predict (x)

13 new Plot (x(?, 1), y, yp, "plot y and yp vs. x", lines = true)

4. Execute SimpleRegression on the Auto MPG dataset. See scalation.modeling.Example AutoMPG.

What is the quality of the fit (e.g., R2 or rSq)? Is this value expected? Try using different columns for

the predictor variable. Plot y and yp vs. xj for each feature/predictor variable. How do the results

relate to information given in the correlation matrix?

5. Let errors εi have E [εi] = 0 and V [εi] = σ2, and be independent of each other. Show that the variances

for the parameters b0 and b1 are as follows:

V [b1] =
σ2

Sxx

Hint: V [b1] = V
[
Sxy
Sxx

]
= S−2

xx V [Sxy].

V [b0] =

[
1

m
+

µ2
x

Sxx

]
σ2

Hint: V [b0] = V [µy]− µ2
xV [b1]

6. Further assume that εi ∼ N(0, σ2). Show that the confidence intervals for the parameters b0 and b1

are as follows:

[
b1 ± t∗

s√
Sxx

]

Hint: Let the error variance estimator be s2 =
sse

m− 2
= mse.

b0 ± t∗s
√

1

m
+

µ2
x

Sxx

7. For the following simple dataset,

1 val x = VectorD (1, 2, 3, 4, 5)

2 val y = VectorD (1, 3, 3, 5, 4)

3 val ox = MatrixD.one (x.dim) :ˆ+ x

175

estimate the error variance s2 =
sse

m− 2
= mse. Take its square root to obtain the residual standard

error s. Use these to compute 95% confidence intervals for the parameters: b0 and b1.

8. Consider the above simple dataset, but where the y values are reversed so the slope is negative and

the fit line is away from the origin,

1 val x = VectorD (1, 2, 3, 4, 5)

2 val y = VectorD (4, 5, 3, 3, 1)

3 val ox = MatrixD.one (x.dim) :ˆ+ x

Compare the SimplerRegression model with the SimpleRegression model. Examine the QoF mea-

sures for each model and make an argument for which model to pick. Also compute R2
0 (R2 relative

to 0)

R2
0 = 1− ‖y − ŷ‖2

‖y‖2
(6.37)

Recall the previous definition for R2.

R2 = 1− ‖y − ŷ‖2

‖y − µy‖2
(6.38)

For Regression Through the Origin (RTO) some software packages use R2
0 in place of R2. See

[43] for a deeper discussion of the issues involved, including when it is appropriate to not include an

intercept b0 in the model. ScalaTion provides functions for both in the FitM trait: def rSq (the

default) and def rSq0 .

176

6.6 Regression

The Regression class supports multiple linear regression where multiple input/predictor variables are used

to predict a value for the response/output variable. When the response variable has non-zero correlations

with multiple predictor variables, this technique tends to be effective, efficient and leads to explainable

models. It should be applied typically in combination with more complex modeling techniques. In this case,

the predictor vector x is multi-dimensional [1, x1, ...xk] ∈ Rn, so the parameter vector b = [b0, b1, . . . , bk] has

the same dimension as x, while response y is a scalar.

x0

x1

x2

y

β

b0

b1

b2

Figure 6.1: Multiple Linear Regression

The intercept can be provided by fixing x0 to one, making b0 the intercept. Alternatively, x0 can be used

as a regular input variable by introducing another parameter β for the intercept. In Neural Networks, β is

referred to as bias and bj is referred to as the edge weight connecting input vertex/node j to the output

node as shown in Figure 6.1. Note, if a activation function fa is added to the model, the Multiple Linear

Regression model becomes a Perceptron model.

6.6.1 Model Equation

The goal is to fit the parameter vector b in the model/regression equation,

y = b · x + ε = b0 + b1x1 + ...+ bkxk + ε (6.39)

where ε represents the residuals (the part not explained by the model).

6.6.2 Training

Using several data samples as a training set (X,y), the Regression class in ScalaTion can be used to

estimate the parameter vector b. Each sample pairs an x input vector with a y response value. The x vectors

are placed into a data/input matrix X ∈ Rm×n row-by-row with a column of ones as the first column in X.

The individual response values taken together form the response vector y ∈ Rm.

The training diagram shown in Figure 6.2 illustrates how the ith instance/row flows through the diagram

computing the predicted response ŷ = b · x and the error ε = y − ŷ.

177

(X,y)

x0

x1

x2

ŷ

b · x

y

ε = y − ŷ

b0

b1

b2

yi

xi0

xi1

xi2

Figure 6.2: Training Diagram for Regression

The matrix-vector product Xb provides an estimate for the response vector ŷ.

y = Xb + ε (6.40)

The goal is to minimize the distance between y and its estimate ŷ. i.e., minimize the norm of residual/error

vector.

minb‖ε‖ (6.41)

Substituting ε = y − ŷ = y − Xb yields

minb‖y − Xb‖ (6.42)

This is equivalent to minimizing half the dot product of the error vector with itself (1
2‖ε‖

2 = 1
2ε · ε = 1

2sse)

Thus, the loss function is

L(b) =
1

2
y − Xb · y − Xb (6.43)

6.6.3 Optimization - Gradient

The gradient of the loss function∇L with respect to the parameter vector b is the vector of partial derivatives.

∇L =

[
∂L
∂b0

,
∂L
∂b1

, . . .
∂L
∂bk

]
(6.44)

Again using the product rule for dot products

1

2
(f · f)′ = f ′ · f (6.45)

yields the jth partial derivative.

178

∂L
∂bj

= −x:j · (y − Xb) = − x
ᵀ

:j(y − Xb) (6.46)

Notice that the parameter bj is only multiplied by column x:j in the matrix-vector product Xb. The dot

product is equivalent a transpose operation followed by matrix multiplication. The gradient is formed by

collecting all these partial derivatives together.

∇L = −X
ᵀ

(y − Xb) (6.47)

Now, setting the gradient equal to the zero vector 0 ∈ Rn yields

−X
ᵀ

(y − Xb) = 0

−X
ᵀ

y + (X
ᵀ

X)b = 0

A more detailed derivation of this equation is given in section 3.4 of “Matrix Calculus: Derivation and Simple

Application” [82]. Moving the term involving b to the left side, results in the Normal Equations.

(X
ᵀ

X)b = X
ᵀ

y (6.48)

Note: equivalent to minimizing the distance between y and Xb is minimizing the sum of the squared

residuals/errors (Least Squares method).

ScalaTion provides five techniques for solving for the parameter vector b based on the Normal Equa-

tions: Matrix Inversion, LU Factorization, Cholesky Factorization, QR Factorization and SVD Factorization.

6.6.4 Matrix Inversion Technique

Starting with the Normal Equations

(X
ᵀ

X)b = X
ᵀ

y

a simple technique is Matrix Inversion, which involves computing the inverse of X
ᵀ
X and using it to multiply

both sides of the Normal Equations.

b = (X
ᵀ

X)−1X
ᵀ

y (6.49)

where (X
ᵀ
X)−1 is an n-by-n matrix, X

ᵀ
is an n-by-m matrix and y is an m-vector. When X is full rank,

the expression above involving the X matrix may be referred to as the pseudo-inverse X+.

X+ = (X
ᵀ

X)−1X
ᵀ

When X is not full rank, Singular Value Decomposition may be applied to compute X+. Using the pseudo-

inverse, the parameter vector b may be solved for as follows:

b = X+y (6.50)

The pseudo-inverse can be computed by first multiplying X by its transpose. Gaussian Elimination can be

used to compute the inverse of this, which can be then multiplied by the transpose of X. In ScalaTion,

the computation for the pseudo-inverse (x pinv) looks similar to the math.

179

1 val x_pinv = (x.T * x).inverse * x.T

Most of the factorization classes/objects implement matrix inversion, including Fac Inv, Fac LU, Fac Cholesky,

and Fac QR. The default Fac LU combines reasonable speed and robustness.

1 def inverse: MatrixD = Fac_LU.inverse (this)()

For efficiency, the code in Regression does not calculate x pinv, rather is directly solves for the parameters

b.

1 val b = fac.solve (x.T * y)

The Hat Matrix

Starting the solution to the Normal Equations that takes the inverse for determining the optimal parameter

vector b,

b = (X
ᵀ

X)−1X
ᵀ

y (6.51)

One can substitute the rhs into the prediction equation for ŷ = Xb

ŷ = X(X
ᵀ

X)−1X
ᵀ

y = Hy (6.52)

where H = X(X
ᵀ
X)−1X

ᵀ
is the hat matrix (puts a hat on y). The hat matrix may be viewed as a projection

matrix.

6.6.5 LU Factorization Technique

Lower, Upper Factorization (Decomposition) works like Matrix Inversion, except that is just reduces the

matrix to zeroes below the diagonal, so it tends to be faster and less prone to numerical instability. First

the product X
ᵀ
X, an n-by-n matrix, is factored

X
ᵀ

X = LU

where L is a lower left triangular n-by-n matrix and U is an upper right triangular n-by-n matrix. Then the

normal equations may be rewritten

LUb = X
ᵀ

y

Letting w = Ub allows the problem to solved in two steps. The first is solved by forward substitution to

determine the vector w.

Lw = X
ᵀ

y

Finally, the parameter vector b is determined by backward substitution.

Ub = w

180

Example Calculation

Consider the example where the input/data matrix X and output/response vector y are as follows:

X =

1 1

1 2

1 3

1 4

 , y =

1

3

3

4

Putting these values into the Normal Equations (X

ᵀ
X)b = X

ᵀ
y yields

[
4 10 11

10 30 32

]
Multiply the first row by -2.5 and add it to the second row,

[
4 10 11

0 5 4.5

]

This results in the following optimal parameter vector b = [.5, .9]. Note, the product of L and U gives X
ᵀ
X.

[
1 0

2.5 1

][
4 10

0 5

]
=

[
4 10

10 30

]

6.6.6 Cholesky Factorization Technique

A faster and slightly more stable technique is to use Cholesky Factorization. Since the product X
ᵀ
X is a

positive definite, symmetric matrix, it may factored using Cholesky Factorization into

X
ᵀ

X = LL
ᵀ

where L is a lower triangular n-by-n matrix. Then the normal equations may be rewritten

LL
ᵀ

b = X
ᵀ

y

Letting w = L
ᵀ
b, we may solve for w using forward substitution

Lw = X
ᵀ

y

and then solve for b using backward substitution.

L
ᵀ

b = w

As an example, the product of L and its transpose L
ᵀ

gives X
ᵀ
X.

[
2 0

5
√

5

][
2 5

0
√

5

]
=

[
4 10

10 30

]

181

Therefore, w can be determined by forward substitution and b by backward substitution.

[
2 0

5
√

5

]
w =

[
11

32

]
,

[
2 5

0
√

5

]
b = w

6.6.7 QR Factorization Technique

A slightly slower, but even more robust technique is to use QR Factorization. Using this technique, the

m-by-n X matrix can be factored directly, which increases the stability of the technique.

X = QR

where Q is an orthogonal m-by-n matrix and R matrix is a right upper triangular n-by-n matrix. Starting

again with the Normal Equations,

(X
ᵀ

X)b = X
ᵀ

y

simply substitute QR for X.

(QR)
ᵀ

QRb = (QR)
ᵀ

y

Taking the transpose gives

R
ᵀ

Q
ᵀ

QRb = R
ᵀ

Q
ᵀ

y

and using the fact that Q
ᵀ
Q = I, we obtain the following:

R
ᵀ

Rb = R
ᵀ

Q
ᵀ

y

Multiply both sides by (R
ᵀ
)−1 yields

Rb = Q
ᵀ

y

Since R is an upper triangular matrix, the parameter vector b can be determined by backward substitution.

Alternatively, the pseudo-inverse may be computed as follows:

X+ = R−1Q
ᵀ

ScalaTion uses Householder Orthogonalization (alternately Modified Gram-Schmidt Orthogonalization)

to factor X into the product of Q and R.

6.6.8 Use of Factorization in Regression

By default, ScalaTion uses QR Factorization for matrix factorization. The other techniques may be

selected by changing the hyper-parameter (algorithm), setting it to Cholesky, SVD, LU or Inverse. For

more information see http://see.stanford.edu/materials/lsoeldsee263/05-ls.pdf.

Based on the selected algorithm, the appropriate type of matrix factorization is performed. The first

part of the code below constructs and returns a factorization object.

182

http://see.stanford.edu/materials/lsoeldsee263/05-ls.pdf

1 private def solver (x_ : MatrixD): Factorization =

2 algorithm match

3 case "Fac_Cholesky" => new Fac_Cholesky (x_.T * x_) // Cholesky Factorization

4 case "Fac_LU" => new Fac_LU (x_.T * x_) // LU Factorization

5 case "Fac_Inverse" => new Fac_Inverse (x_.T * x_) // Inverse Factorization

6 case "Fac_SVD" => new Fac_SVD (x_) // Singular Value Decomp.

7 case _ => new Fac_QR (x_) // QR Factorization

8 end match

9 end solver

The train method below computes parameter/coefficient vector b by calling the solve method provided

by the factorization classes.

1 def train (x_ : MatrixD = x, y_ : VectorD = y): Unit =

2 val fac = solver (x_)

3 fac.factor () // factor the matrix

4

5 b = fac match // RECORD the parameters

6 case fac: Fac_QR => fac.solve (y_)

7 case fac: Fac_SVD => fac.solve (y_)

8 case _ => fac.solve (x_.T * y_)

9

10 if b(0).isNaN then flaw ("train", s"parameter b = $b")

11 debug ("train", s"$fac estimates parameter b = $b")

12 end train

After training, the test method does two things: First, the residual/error vector ε is computed. Second,

several quality of fit measures are computed by calling the diagnose method.

1 def test (x_ : MatrixD = x, y_ : VectorD = y): (VectorD , VectorD) =

2 val yp = predict (x_) // make predictions

3 e = y_ - yp // RECORD the residuals/errors

4 (yp , diagnose (y_, yp)) // return predictions and QoF

5 end test

To see how the train and test methods work in a Regression model see the Collinearity Test and Texas

Temperatures examples in subsequent subsections.

6.6.9 Model Assessment

The quality of fit measures includes the coefficient of determination R2 as well as several others.

183

Degrees of Freedom

Given m instances, k variables and n parameters in a regression model,

Table 6.6: Degrees of Freedom: Part 1

Instances m number of data points

Variables k number of non-redundant predictor variables

Parameters n number of parameters

the prediction vector ŷ is a projection of the response vector y ∈ Rm onto Rk, the space (hyperplane)

spanned by the vectors x1, . . .xk. Since ε = y − ŷ, one might think that the residual/error ε ∈ Rm−k. As∑
i εi = 0 when an intercept parameter b0 is included in the model (n = k + 1), this constraint reduces the

dimensionality of the space by one, so ε ∈ Rm−n.

Therefore, the Degrees of Freedom (DoF) captured by the regression model is dfr and left for error is df

are indicated in the table below.

Table 6.7: Degrees of Freedom: Part 2

dfr k degrees of freedom regression/model

df m− n degrees of freedom residuals/error

As an example, the equation ŷ = 2x1 + x2 + .5 defines a dfr = 2 dimensional hyperplane (or ordinary plane)

as shown in Figure 6.3.

−4 −2 0 2 4 −5

0

5−10

0

10

x1

x2

y

Figure 6.3: Hyperplane: ŷ = 2x1 + x2 + .5

It is important to remember that if the model has an intercept, k = n− 1, otherwise k = n.

Note, for more complex or regularized models, effective Degrees of Freedom (eDoF) may be used, see the

exercises in the section of Ridge Regression.

184

Adjusted Coefficient of Determination R̄2

The ratio of total Degrees of Freedom to Degrees of Freedom for error is

rdf =
dfr + df

df

SimplerRegression is at one extreme of model complexity, where df = m−1 and dfr = 1, so rdf = m/(m−1)

is close to one. For a more complicated model, say with n = m/2, rdf will be close to 2. This ratio can be

used to adjust the Coefficient of Determination R2 to reduce it with increasing number of parameters. This

is called the Adjusted Coefficient of Determination R̄2

R̄2 = 1− rdf (1−R2)

Suppose m = 121, n = 21 and R2 = 0.9, as an exercise, show that rdf = 1.2 and R̄2 = 0.88.

Dividing sse and ssr by their respective Degrees of Freedom gives the mean square error and regression,

respectively

mse = sse / df

msr = ssr / dfr

The mean square error mse follows a Chi-square distribution with df Degrees of Freedom, while the mean

square regression msr follows a Chi-square distribution with dfr Degrees of Freedom. Consequently, the

ratio

msr

mse
∼ Fdfr,df (6.53)

that is, it follows an F -distribution with (dfr, df) Degrees of Freedom. If this number exceeds the critical

value, one can claim that the parameter vector b is not zero, implying the model is useful. More general

quality of fit measures useful for comparing models are the Akaike Information Criterion (AIC) and Bayesian

Information Criterion (BIC).

In ScalaTion the several Quality of Fit (QoF) measures are computed by the diagnose method in the

Fit class, as described in section 1 of this chapter.

1 def diagnose (y: VectorD , yp: VectorD , w: VectorD = null)

It looks at different ways to measure the difference between the actual y and predicted yp values for the

response. The differences are optionally weighted by the vector w. Weighting is not applied when w is null.

6.6.10 Model Validation

Data are needed to two purposes: First, the characteristics or patterns of the data need to be investigated

to select an appropriate modeling technique, features for a model and finally to estimate the parameters

and probabilities used by the model. Data Scientists assisted by tools do the first part of this process, while

the latter part is called training. Hence the train method is part of all modeling techniques provided by

ScalaTion. Second, data are needed to test the quality of the trained model.

One approach would be to train the model using all the available data. This makes sense, since the more

data used for training, the better the model. In this case, the testing data would need to be same as the

training leading to whole dataset evaluation (in-sample).

185

Now the difficult issue is how to guard against over-fitting. With enough flexibility and parameters to

fit, modeling techniques can push quality measures like R2 to perfection (R2 = 1) by fitting the signal and

the noise in the data. Doing so tends to make a model worse in practice than a simple model that just

captures the signal. That is where quality measures like R̄2 (or AIC) come into play, but computations of

R̄2 require determination of Degrees of Freedom (df), which may be difficult for some modeling techniques.

Furthermore, the amount of penalty introduced by such quality measures is somewhat arbitrary.

Would not it be better to measure quality in way in which models fitting noise are downgraded because

they perform more poorly on data they have not seen? Is it really a test, if the model has already seen

the data? The answers to these questions are obvious, but the solution of the underlying problem is a bit

tricky. The first thought would be to divide a dataset in half, but then only half of the data are available

for training. Also, picking a different half may result in substantially different quality measures.

This leads to two guiding principles: First, the majority of the data should be used for training. Second,

multiple testing should be done. In general, conducting real-world tests of a model can be difficult. There

are, however, strategies that attempt to approximate such testing. Two simple and commonly used strategies

are the following: Leave-One-Out and Cross-Validation. In both cases, a dataset is divided into a training

set and a test set.

Leave-One-Out

When fitting the parameters b the more data available in the training set, in all likelihood, the better the

fit. The Leave-One-Out strategy takes this to the extreme, by splitting the dataset into a training set of

size m − 1 and test set of size 1 (e.g., row t in data matrix X). From this, a test error can be computed

yt − b · xt. This can be repeated by iteratively letting t range from the first to the last row of data matrix

X. For certain predictive analytics techniques such as Multiple Linear Regression, there are efficient ways

to compute the test sse based on the leverage each point in the training set has [85].

k-Fold Cross-Validation

A more generally applicable strategy is called cross-validation, where a dataset is divided into k test sets.

For each test set, the corresponding training set is all the instances not chosen for that test set. A simple

way to do this is to let the first test dataset be first m/k rows of matrix X, the second be the second m/k

rows, etc.

1 val tsize = m / k // test set size

2 for l <- 0 until k do

3 x_e = x(l * tsize until ((l+1) * tsize) // l-th test set

4 x_ = x.not(l * tsize until ((l+1) * tsize)) // l-th training set

5 end for

The model is trained k times using each of the training sets. The corresponding test set is then used to

estimate the test sse (or other quality measure such as mse). These are more meaningful out-of-sample

results. From each of these samples, a mean, standard deviation and confidence interval may be computed

for the test sse.

Due to patterns that may exist in the dataset, it is more robust to randomly select each of the test sets.

The row indices may be permuted for random selection that ensures that all data instances show up exactly

in one test set.

186

Typically, training QoF (in-sample) measures such as R2 will be better than testing QoF (out-of-sample)

measures such as R2
cv. Adjusted measures such as R̄2 are intending to more closely follow R2

cv than R2.

ScalaTion support cross-validation via is crossValidate method.

1 @param k the number of cross -validation iterations/folds (defaults to 5x).

2 @param rando flag indicating whether to use randomized or simple cross -validation

3

4 def crossValidate (k: Int = 5, rando: Boolean = true): Array [Statistic] =

It also supports a simpler strategy that only tests once, via its validate method defined in the Predictor

trait. It utilizes the Test-n-Train Split TnT Split from the mathstat package.

1 @param rando flag indicating whether to use randomized or simple validation

2 @param ratio the ratio of the TESTING set to the full dataset (e.g., 70-30, 80 -20)

3 @param idx the prescribed TESTING set indices

4

5 def validate (rando: Boolean = true , ratio: Double = 0.2)

6 (idx : IndexedSeq [Int] =

7 testIndices (rando , (ratio * y.dim).toInt)): VectorD =

8 val (x_e , x_ , y_e , y_) = TnT_Split (x, y, idx) // Test -n-Train Split

9

10 train (x_ , y_)

11 val qof = test (x_e , y_e)._2

12 if qof(QoF.sst.ordinal) <= 0.0 then

13 flaw ("validate", "chosen testing set has no variability")

14 end if

15 println (FitM.fitMap (qof , QoF.values.map (_.toString)))

16 qof

17 end validate

6.6.11 Collinearity

Consider the matrix-vector equation used for estimating the parameters b via the minimization of ‖ε‖.

y = Xb + ε

The parameter/coefficient vector b = [b0, b1, . . . , bk] may be viewed as weights on the column vectors in the

data/predictor matrix X.

y = b01 + b1x:1 + . . . + bkx:k + ε

A question arises when two of these column vectors are nearly the same (or more generally nearly parallel

or anti-parallel). They will affect and may obfuscate each others’ parameter values.

First, we will examine ways of detecting such problems and then give some remedies. A simple check is to

compute the correlation matrix for the column vectors in matrix X. High (positive or negative) correlation

indicates collinearity.

Example Problem

Consider the following data/input matrix X and response vector y. This is the same example used for

SimpleRegression with new variable x2 added (i.e., y = b0 + b1x1 + b2x2 + ε). The collinearityTest

main function allows one to see the effects of increasing the collinearity of features/variables x1 and x2.

187

1 package <your -package >

2

3 import scalation.modeling.Regression

4 import scalation.mathstat .{MatrixD , VectorD}

5

6 @main def collinearityTest (): Unit =

7

8 // one x1 x2

9 val x = MatrixD ((4, 3), 1, 1, 1, // input/data matrix

10 1, 2, 2,

11 1, 3, 3,

12 1, 4, 0) // change 0 by adding .5 until it’s 4

13

14 val y = VectorD (1, 3, 3, 4) // output/response vector

15

16 val v = x(?, 0 until 2)

17 banner (s"Test without column x2")

18 println (s"v = $v")

19 var mod = new Regression (v, y)

20 mod.trainNtest ()()

21 println (mod.summary ())

22

23 for i <- 0 to 8 do

24 banner (s"Test Increasing Collinearity: x_32 = ${x(3, 2)}")

25 println (s"x = $x")

26 println (s"x.corr = ${x.corr}")

27 mod = new Regression (x, y)

28 mod.trainNtest ()()

29 println (mod.summary ())

30 x(3, 2) += 0.5

31 end for

32

33 end collinearityTest

Try changing the value of element x32 from 0 to 4 by .5 and observe what happens to the correlation

matrix. What effect do these changes have on the parameter vector b = [b0, b1, b2] and how do the first two

parameters compare to the regression where the last column of X is removed giving the parameter vector

b = [b0, b1].

The corr method is provided by the scalation.mathstat.MatrixD class. For this method, if either

column vector has zero variance, when the column vectors are the same, it returns 1.0, otherwise -0.0

(indicating undefined).

Note, perfect collinearity produces a singular matrix, in which case many factorization algorithms will

give NaN (Not-a-Number) for much of their output. In this case, Fac SVD (Singular Value Decomposition)

should be used. This can be done by changing the following hyper-parameter provided by the Regression

object, before instantiating the Regression class.

1 Regression.hp("factorization") = "Fac_SVD"

2 val mod = new Regression (x, y)

188

Multi-Collinearity

Even if no particular entry in the correlation matrix is high, a column in the matrix may still be nearly

a linear combination of other columns. This is the problem of multi-collinearity. This can be checked by

computing the Variance Inflation Factor (VIF) function (or vif in ScalaTion). For a particular parameter

bj for the variable/predictor xj , the function is evaluated as follows:

vif(bj) =
1

1−R2(xj)
(6.54)

where R2(xj) is R2 for the regression of variable xj onto the rest of the predictors. It measures how well the

variable xj (or its column vector x:j) can be predicted by all xl for l 6= j. Values above 20 (R2(xj) = 0.95)

are considered by some to be problematic. In particular, the value for parameter bj may be suspect, since

its variance is inflated by vif(bj).

σ̂2(bj) =
mse

k σ̂2(xj)
· vif(bj) (6.55)

See the exercises for details. Both corr and vif may be tested in ScalaTion using RegressionTest4.

One remedy to reduce collinearity/multi-collinearity is to eliminate the variable with the highest corr/vif

value. Another is to use regularized regression such as RidgeRegression or LassoRegression.

6.6.12 Feature Selection

There may be predictor variables (features) in the model that contribute little in terms of their contributions

to the model’s ability to make predictions. The improvement to R2 may be small and may make R̄2 or other

quality of fit measures worse. An easy way to get a basic understanding is to compute the correlation of

each predictor variable x:j (jth column of matrix X) with the response vector y. A more intuitive way to

do this would be to plot the response vector y versus each predictor variable x:j . See the exercises for an

example.

Ideally, one would like pick a subset of the k variables that would optimize a selected quality measure.

Unfortunately, there are 2k possible subsets to test. Two simple techniques (greedy algorithms) for selecting

features are forward selection and backward elimination. A combination of these two is provided by stepwise

regression.

Forward Selection

The forewordSel method, coded in the Predictor trait, performs forward selection by adding the most

predictive variable to the existing model, returning the variable to be added and a reference to the new

model with the added variable/feature.

1 @param cols the columns of matrix x currently included in the existing model

2 @param idx_q index of Quality of Fit (QoF) to use for comparing quality

3

4 def forwardSel (cols: LinkedHashSet [Int], idx_q: Int = QoF.rSqBar.ordinal): BestStep =

The BestStep is used to record the best improvement step found so far.

1 @param col the column/variable to ADD/REMOVE for this step

2 @param qof the Quality of Fit (QoF) for this step

3 @param mod the model including selected features/variables for this step

189

4

5 case class BestStep (col: Int = -1, qof: VectorD = null , mod: Predictor = null)

Selecting the most predictive variable to add boils down to comparing on the basis of a Quality of Fit

(QoF) measure. The default is the Adjusted Coefficient of Determination R̄2. The optional argument idx q

indicates which QoF measure to use (defaults to QoF.rSqBar.ordinal). To start with a minimal model, set

cols = Set (0) for an intercept-only model. The method will consider every variable/column x.indices2

not already in cols and pick the best one for inclusion.

1 for j <- x.indices2 if ! (cols contains j) do

To find the best model, the forwardSel method should be called repeatedly while the quality of fit measure

is sufficiently improving. This process is automated in the forwardSelAll method.

1 @param idx_q index of Quality of Fit (QoF) to use for comparing quality

2 @param cross whether to include the cross -validation QoF measure

3

4 def forwardSelAll (idx_q: Int = QoF.rSqBar.ordinal , cross: Boolean = true):

5 (LinkedHashSet [Int], MatrixD) =

The forwardSelAll method takes the QoF measure to use as the selection criterion and whether to apply

cross-validation as inputs and returns the best collection of features/columns to include in the model as well

as the QoF measures for all steps.

To see how R2, R̄2, sMAPE, and R2
cv change with the number of features/parameters added to the model

by forwardSelAll method, run the following test code from the scalation modeling module.

sbt> runMain scalation.modeling.regressionTest5

sMAPE, symmetric Mean Absolute Percentage Error, is explained in detail in the Time Series/Temporal

Models Chapter.

Backward Elimination

The backwardElim method, coded in the Predictor trait, performs backward elimination by removing the

least predictive variable from the existing model, returning the variable to eliminate, the new parameter

vector and a reference to the new model with the removed variable/feature.

1 @param cols the columns of matrix x currently included in the existing model

2 @param idx_q index of Quality of Fit (QoF) to use for comparing quality

3 @param first first variable to consider for elimination

4 (default (1) assume intercept x_0 will be in any model)

5

6 def backwardElim (cols: LinkedHashSet [Int], idx_q: Int = QoF.rSqBar.ordinal ,

7 first: Int = 1): BestStep =

To start with a maximal model, set cols = Set (0, 1, ..., k) for a full model. As with forwardSel,

the idx q optional argument allows one to choose from among the QoF measures. The last parameter first

provides immunity from elimination for any variable/parameter that is less than first (e.g., to ensure that

models include an intercept b0, set first to one). The method will consider every variable/column from

first until x.dim2 in cols and pick the worst one for elimination.

1 for j <- first until x.dim2 if cols contains j do

190

To find the best model, the backwardElim method should be called repeatedly until the quality of fit measure

sufficiently decreases. This process is automated in the backwardElimAll method.

1 @param idx_q index of Quality of Fit (QoF) to use for comparing quality

2 @param first first variable to consider for elimination

3 @param cross whether to include the cross -validation QoF measure

4

5 def backwardElimAll (idx_q: Int = QoF.rSqBar.ordinal , first: Int = 1,

6 cross: Boolean = true):

7 (LinkedHashSet [Int], MatrixD) =

The backwardElimAll method takes the QoF measure to use as the selection criterion, the index of the first

variable to consider for elimination, and whether to apply cross-validation as inputs and returns the best

collection of features/columns to include in the model as well as the QoF measures for all steps.

Some studies have indicated that backward elimination can outperform forward selection, but it is difficult

to say in general.

More advanced feature selection techniques include using genetic algorithms to find near optimal subsets

of variables as well as techniques that select variables as part of the parameter estimation process, e.g.,

LassoRegression.

Stepwise Regression

An improvement over Forward Selection and Backward Elimination is possible with Stepwise Regression.

It starts with either no variables or the intercept in the model and adds one variable that improves the

selection criterion the most. It then adds the second best variable for step two. After the second step, it

determines whether it is better to add or remove a variable. It continues in this fashion until no improvement

in the selection criterion is found at which point it terminates. Note, for Forward Selection and Backward

Elimination it may instructive to continue all the way to the end (all variables for forward/no variables for

backward).

Stepwise regression may lead to coincidental relationships being included in the model, particularly if a t-

test is the basis of inclusion or a penalty-free QoF measure such as R2 is used. Typically, this approach is used

when there a penalty for having extra variables/parameters, e.g., R2 adjusted R̄2, R2 cross-validation R2
cv or

Akaike Information Criterion (AIC). See the section on Maximum Likelihood Estimation for a definition of

AIC. Alternatives to Stepwise Regression include Lasso Regression (`1 regularization) and to a lesser extent

Ridge Regression (`2 regularization).

ScalaTion provides the stepRegressionAll method for Stepwise Regression. At each step it calls

forwardSel and backwardElim and chooses the one yielding better improvement.

1 @param idx_q index of Quality of Fit (QoF) to use for comparing quality

2 @param cross whether to include the cross -validation QoF measure

3

4 def stepRegressionAll (idx_q: Int = QoF.rSqBar.ordinal , cross: Boolean = true):

5 (LinkedHashSet [Int], MatrixD) =

An option for further improvement is to add a swapping operation, which finds the best variable to remove

and replace with a variable not in the model. Unfortunately, this may lead to a quadratic number of steps in

the worst-case (as opposed to linear for forward, backward and stepwise without swapping). See the exercises

for more details.

191

Categorical Variables/Features

For Regression, the variables/features have so far been treated as continuous or ordinal. However, some

variables may be categorical in nature, where there is no ordering of the values for a categorical variable.

Although one can encode “English”, “French”, “Spanish” as 0, 1, and 2, it may lead to problems such

as concluding the average of “English” and “Spanish” is ‘French”.

In such cases, it may be useful to replace a categorical variable with multiple dummy variables. Typically,

a categorical variable (column in the data matrix) taking on k distinct values is replaced with with k − 1

dummy variables (columns in the data matrix). For details on how to do this effectively, see the section on

RegressionCat.

6.6.13 Regression Problem: Texas Temperatures

Solving a regression problem in ScalaTion simply involves creating a data/input matrix X ∈ Rm×n and a

response/output vector y ∈ Rm and then creating a Regression object upon which the trainNtest method

is called. The trainNtest method conveniently calls the train, test and report methods internally.

The Texas Temperature dataset below from http://www.stat.ufl.edu/~winner/cases/txtemp.ppt is

used to illustrate how to use ScalaTion for a regression problem. The purpose of the model is to predict

average January high temperatures for 16 Texas county weather stations based on their Latitude, Elevation

and Longitude.

1 // 16 data points: one x1 x2 x3 y

2 // Lat Elev Long Temp County

3 val xy = MatrixD ((16, 5), 1.0, 29.767 , 41.0, 95.367 , 56.0, // Harris

4 1.0, 32.850 , 440.0 , 96.850 , 48.0, // Dallas

5 1.0, 26.933 , 25.0, 97.800 , 60.0, // Kennedy

6 1.0, 31.950 , 2851.0 , 102.183 , 46.0, // Midland

7 1.0, 34.800 , 3840.0 , 102.467 , 38.0, // Deaf Smith

8 1.0, 33.450 , 1461.0 , 99.633 , 46.0, // Knox

9 1.0, 28.700 , 815.0 , 100.483 , 53.0, // Maverick

10 1.0, 32.450 , 2380.0 , 100.533 , 46.0, // Nolan

11 1.0, 31.800 , 3918.0 , 106.400 , 44.0, // El Paso

12 1.0, 34.850 , 2040.0 , 100.217 , 41.0, // Collington

13 1.0, 30.867 , 3000.0 , 102.900 , 47.0, // Pecos

14 1.0, 36.350 , 3693.0 , 102.083 , 36.0, // Sherman

15 1.0, 30.300 , 597.0 , 97.700 , 52.0, // Travis

16 1.0, 26.900 , 315.0 , 99.283 , 60.0, // Zapata

17 1.0, 28.450 , 459.0 , 99.217 , 56.0, // Lasalle

18 1.0, 25.900 , 19.0, 97.433 , 62.0) // Cameron

19

20 banner ("Texas Temperatures Regression")

21 val mod = Regression (xy)() // create a regression model

22 mod.trainNtest ()() // train and test the model

23 println (mod.summary ()) // parameter/coefficient statistics

The trainNtest Method

The trainNtest method defined in the Predictor trait does several things: trains the model on x and y ,

tests the model on xx and yy, produces a report about training and testing, and optionally plots y-actual

and y-predicted.

192

http://www.stat.ufl.edu/~winner/cases/txtemp.ppt

1 @param x_ the training/full data/input matrix (defaults to full x)

2 @param y_ the training/full response/output vector (defaults to full y)

3 @param xx the testing/full data/input matrix (defaults to full x)

4 @param yy the testing/full response/output vector (defaults to full y)

5

6 def trainNtest (x_ : MatrixD = x, y_ : VectorD = y)

7 (xx: MatrixD = x, yy: VectorD = y): (VectorD , VectorD) =

8 train (x_ , y_)

9 debug ("trainNTest", s"b = $b")

10 val (yp, qof) = test (xx, yy)

11 println (report (qof))

12 if DO_PLOT then

13 val lim = min (yy.dim , LIMIT)

14 val (qyy , qyp) = (yy(0 until lim), yp(0 until lim)) // slice to LIMIT

15 val (ryy , ryp) = orderByY (qyy , qyp) // order by yy

16 new Plot (null , ryy , ryp , s"$modelName: y actual , predicted")

17 end if

18 (yp , qof)

19 end trainNtest

The report Method

The report method returns the following basic information: (1) the name of the modeling technique nm, (2)

the values of the hyper-parameters hp (used for controlling the model/optimizer), (3) the feature/predictor

variable names fn, (4) the values of the parameters b, and (5) several Quality of Fit measures qof.

REPORT

--

modelName mn = Regression

--

hparameter hp = HyperParameter(factorization -> (Fac_QR,Fac_QR))

--

features fn = Array(x0, x1, x2, x3)

--

parameter b = VectorD(151.298,-1.99323,-0.000955478,-0.384710)

--

fitMap qof = LinkedHashMap(

rSq -> 0.991921, rSqBar -> 0.989902, sst -> 941.937500, sse -> 7.609494,

mse0 -> 0.475593, rmse -> 0.689633, mae -> 0.531353, dfm -> 3.000000,

df -> 12.000000, fStat -> 491.138015, aic -> -8.757481, bic -> -5.667126,

mape -> 1.095990, smape -> 1.094779, mase -> 0.066419)

The plot below shows the results from running the ScalaTion Regression Model in terms of actual (y) vs.

predicted (yp) response vectors.

193

0 5 10 15

40

50

60

index

y
,
y
p

Regression Model: y(*) vs yp(+)

The summary Method

More details about the parameters/coefficients including standard errors, t-values, p-values, and Variance

Inflation Factors (VIFs) are shown by the summary method.

1 println (mod.summary ())

For the Texas Temperatures dataset it provides the following information: The Estimate is the value assigned

to the parameter for the given Var. The Std. Error, t-value, p-value and VIF are also given.

fname = Array(x0 = intercept, x1 = Lat, x2 = Elev, x3 = Long)

SUMMARY

Parameters/Coefficients:

Var Estimate Std. Error t value Pr(>|t|) VIF

--

x0 151.297616 25.133361 6.019792 0.000060 NA

x1 -1.993228 0.136390 -14.614194 0.000000 4.228079

x2 -0.000955 0.000568 -1.683440 0.118102 16.481808

x3 -0.384710 0.228584 -1.683018 0.118185 9.432463

Residual standard error: 0.796319 on 12.0 degrees of freedom

Multiple R-squared: 0.991921, Adjusted R-squared: 0.989902

F-statistic: 491.1380151109529 on 3.0 and 12.0 DF, p-value: 8.089084957418891E-13

--

Given the following assumptions: (1) ε ∼ D(0, σI) for some distribution D and (2) for each column j, ε and

xj are independent, the covariance matrix of the parameter vector b is

C [b] = σ2(X
ᵀ

X)−1 (6.56)

See [159] for a derivation. Using σ̂2 as an estimate for σ2,

194

σ̂2 =
ε · ε
df

= mse (6.57)

the standard deviation (or standard error) of the jth parameter/coefficient may be given as the square root

of the jth diagonal element of the covariance matrix.

σ̂bj = σ̂
√

(XᵀX)−1
jj (6.58)

The corresponding t-value is simply the parameter value divided by its standard error, which indicates how

many standard deviation units it is away from zero. The farther way from zero the more significant (or more

important to the model) the parameter is.

t(bj) =
bj
σ̂bj

(6.59)

When the error distribution is Normal, then t(bj) follows the Student’s t Distribution. For example, the pdf

for the Student’s t Distribution with df = ν = 2 Degrees of Freedom is shown in the figure below (the t

Distribution approaches the Normal Distribution as ν increases).

fy(y) =
Γ(ν+1

2)
√
νπΓ(ν2)

(
1 +

y2

ν

)− ν+1
2

=
Γ(3/2)√
2πΓ(1)

(
1 +

y2

2

)−3/2

=
1

2
√

2

(
1 +

y2

2

)−3/2

(6.60)

−3 −2 −1 0 1 2 3

0

0.1

0.2

0.3

0.4

y

f y
(y

)

pdf for Student’s t Distribution (blue) vs. Normal (green)

The corresponding p-value P (|y| > t) measures how significant the t-value is, e.g.,

Fy(−1.683018) = 0.0590926

P (|y| > −1.683018) = 2Fy(−1.683018)) = 0.118185 for ν = df = 12

Typically, the t-value is only considered significant if is in the tails of the Student’s t distribution. The

farther out in the tails, the less likely for the parameter to be non-zero (and hence be part of the model)

simply by chance. The p-value measures the risk (chance of being wrong) in including parameter bj and

therefore variable xj in the model.

195

The predict Method

Finally, a given new data vector z, the predict method may be used to predict its response value.

1 val z = VectorD (1.0, 30.0, 1000.0 , 100.0)

2 println (s"predict (z) ={mod.predict (z)}")

Feature Selection

Feature selection (or Variable Selection) may be carried out by using either forwrardSel or backwardElim.

These methods add or remove one variable at a time. To iteratively add or remove, the following methods

may be called.

1 mod.forwardSelAll (cross = false)

2 mod.backwardElimAll (cross = false)

3 mod.stepRegressionAll (cross = false)

The default criterion for choosing which variable to add/remove is Adjusted R2. It may be changed via the

idx q parameter to the methods (see the Fit trait for the possible values for this parameter). Note: The

cross-validation is turned off (cross = false) due to the small size of the dataset.

The source code for the Texas Temperatures example is a test case in Regression.scala.

6.6.14 Regression Class

Class Methods:

1 @param x the data/input m-by-n matrix

2 (augment with a first column of ones to include intercept in model)

3 @param y the response/output m-vector

4 @param fname_ the feature/variable names (defaults to null)

5 @param hparam the hyper -parameters (defaults to Regression.hp)

6

7 class Regression (x: MatrixD , y: VectorD , fname_ : Array [String] = null ,

8 hparam: HyperParameter = Regression.hp)

9 extends Predictor (x, y, fname_ , hparam)

10 with Fit (dfm = x.dim2 - 1, df = x.dim - x.dim2):

11

12 def train (x_ : MatrixD = x, y_ : VectorD = y): Unit =

13 def test (x_ : MatrixD = x, y_ : VectorD = y): (VectorD , VectorD) =

14 override def summary (x_ : MatrixD = getX , fname_ : Array [String] = fname ,

15 b_ : VectorD = b, vifs: VectorD = vif ()): String =

16 override def predict (x_ : MatrixD): VectorD = x_ * b

17 override def buildModel (x_cols: MatrixD): Regression =

6.6.15 Exercises

1. For Exercise 1 from the last section, compute A = X
ᵀ
X and z = X

ᵀ
y. Now solve the following linear

systems of equations for b.

196

Ab = z

2. Gradient descent can be used for Multiple Linear Regression as well. For gradient descent, pick a

starting point b0, compute the gradient of the loss function ∇L and move −η∇L from b0 where η is

the learning rate. Write a Scala program that repeats this for several iterations for the above data.

What is happening to the value of the loss function L.

∇L = −X
ᵀ

(y −Xb)

Substituting ε = y − Xb, allows ∇L to be written as

−X
ᵀ

ε

Starting with data matrix x, response vector y and parameter vector b, in ScalaTion, the calculations

become

1 val yp = x * b // y predicted

2 val e = y - yp // error

3 val g = x.T * e // - gradient

4 b += g * eta // update parameter b

5 val h = 0.5 * (e dot e) // half the sum of squared errors

Unless the dataset is normalized, finding an appropriate learning rate eta may be difficult. See the

MatrixTransform object for details. Do this for the Blood Pressure Example BPressure dataset. Try

using another dataset.

3. Consider the relationships between the predictor variables and the response variable in the AutoMPG

dataset. This is a well know dataset that is available at multiple websites including the UCI Machine

Learning Repository http://archive.ics.uci.edu/ml/datasets/Auto+MPG. The response variable

is the miles per gallon (mpg: continuous) while the predictor variables are cylinders: multi-valued

discrete, displacement: continuous, horsepower: continuous, weight: continuous, acceleration:

continuous, model year: multi-valued discrete, origin: multi-valued discrete, and car name: string

(unique for each instance). Since the car name is unique and obviously not causal, this variable is

eliminated, leaving seven predictor variables. First compute the correlations between mpg (vector y)

and the seven predictor variables (each column vector x:j in matrix X).

1 val correlation = y corr x_j

and then plot mpg versus each of the predictor variables. The source code for this example is at

http://www.cs.uga.edu/~jam/scalation_2.0/src/main/scala/scalation/modeling/Example_AutoMPG.

scala .

Alternatively, a .csv file containing the AutoMPG dataset may be read into a relation called auto tab

from which data matrix x and response vector y may be produced. If the dataset has missing values,

they may be replaced using a spreadsheet or using the techniques discusses in the Data Preprocessing

Chapter.

197

http://archive.ics.uci.edu/ml/datasets/Auto+MPG
http://www.cs.uga.edu/~jam/scalation_2.0/src/main/scala/scalation/modeling/Example_AutoMPG.scala
http://www.cs.uga.edu/~jam/scalation_2.0/src/main/scala/scalation/modeling/Example_AutoMPG.scala

1 val auto_tab = Relation (BASE_DIR + "auto -mpg.csv", "auto_mpg", null , -1)

2 val (x, y) = auto_tab.toMatrixDD (1 to 6, 0)

3 println (s"x = x”)println(s”y =y"

4. Apply Regression analysis on the AutoMPG dataset. Compare with results of applying the NullModel,

SimplerRegression and SimpleRegression. Try using SimplerRegression and SimpleRegression

with different predictor variables for these models. How does their R2 values compare to the correlation

analysis done in the previous exercise?

5. Examine the collinearity and multi-collinearity of the column vectors in the AutoMPG dataset.

6. For the AutoMPG dataset, repeatedly call the backwardElim method to remove the predictor variable

that contributes the least to the model. Show how the various quality of fit (QoF) measures change as

variables are eliminated. Do the same for the forwardSel method. Using R̄2, select the best models

from the forward and backward approaches. Are they the same?

7. Compare model assessment and model validation. Compute sse, mse and R2 for the full and best

AutoMPG models trained on the entire data set. Compare this with the results of Leave-One-Out,

5-fold Cross-Validation and 10-fold Cross-Validation.

8. The variance of the estimate of parameter bj may be estimated as follows:

σ̂2(bj) =
mse

k σ̂2(xj)
· vif(bj)

Derive this formula. The standard error is the square root of this value. Use the estimate for bj and

its standard error to compute a t-value and p-value for the estimate. Run the AutoMPG model and

explain these values produced by the summary method.

9. Singular Value Decomposition Technique. In cases where the rank of the data/input matrix X

is not full or its multi-collinearity is high, a useful technique to solve for the parameters of the model is

Singular Value Decomposition (SVD). Based on the derivation given in http://www.ime.unicamp.br/

~marianar/MI602/material%20extra/svd-regression-analysis.pdf, we start with the equation

estimating y as the product of the data matrix X and the parameter vector b.

y = Xb

We then perform a singular value decomposition on the m-by-n matrix X

X = UΣV
ᵀ

where in the full-rank case, U is anm-by-n orthogonal matrix, Σ is an n-by-n diagonal matrix of singular

values, and V
ᵀ

is an n-by-n orthogonal matrix The r = rank(A) equals the number of nonzero singular

values in Σ, so in general, U is m-by-r, Σ is r-by-r, and V
ᵀ

is r-by-n. The singular values are the

square roots of the nonzero eigenvalues of X
ᵀ
X. Substituting for X yields

y = UΣV
ᵀ

b

198

http://www.ime.unicamp.br/~marianar/MI602/material%20extra/svd-regression-analysis.pdf
http://www.ime.unicamp.br/~marianar/MI602/material%20extra/svd-regression-analysis.pdf

Defining d = ΣV
ᵀ
b, we may write

y = Ud

This can be viewed as a estimating equation where X is replaced with U and b is replaced with d.

Consequently, a least squares solution for the alternate parameter vector d is given by

d = (U
ᵀ

U)−1U
ᵀ

y

Since U
ᵀ
U = I, this reduces to

d = U
ᵀ

y

If rank(A) = n (full-rank), then the conventional parameters b may be obtained as follows:

b = V Σ−1d

where Σ−1 is a diagonal matrix where elements on the main diagonal are the reciprocals of the singular

values.

10. Improve Stepwise Regression. Write ScalaTion code to improve the stepRegressionAll method

by implementing the swapping operation. Then redo exercise 6 using all three: Forward Selection,

Backward Elimination, and Stepwise Regression with all four criteria: R2, R̄2, R2
cv, and AIC. Plot the

curve for each criterion, determine the best number of variables and what these variables are. Compare

the four criteria.

As part of a larger project compare this form of feature selection with that provided by Ridge Regression

and Lasso Regression. See the next two sections.

Now add features including quadratic terms, cubic terms, and dummy variables to the model using

SymbolicRegression.quadratic, SymbolicRegression.cubic, and RegressionCat. See the subse-

quent sections.

In addition to the AutoMPG dataset, use the Concrete dataset and three more datasets from UCI

Machine Learning Repository. The UCI datasets should have more instances (m) and variables (n)

than the first two datasets. The testing should also be done in R or Python.

11. Regression as Projection. Consider the following six vectors/points in 3D space where the response

variable y is modeled as a linear function of predictor variables x1 and x2.

1 // x1 x2 y

2 val xy = MatrixD ((6, 3), 1, 1, 2.8,

3 1, 2, 4.2,

4 1, 3, 4.8,

5 2, 1, 5.3,

6 2, 2, 5.5

7 2, 3, 6.5)

199

0
0.5 1

1.5 2 0

20

5

x1

x2

y

Consider a regression model equation with no intercept.

y = b0x1 + b1x2 + ε

Determine the plane (response surface) that these six points are projected onto.

ŷ = b0x1 + b1x2

For this problem, the number of instances m = 6 and the number of parameters/predictor variables

n = 2. Determine the number of Degrees of Freedom for the model dfm and the number of Degrees of

Freedom for the residuals/errors df .

12. Given a data matrix X ∈ Rm×2 and response vector y ∈ Rm where X = [1,x], compute X
ᵀ
X and

X
ᵀ
y. Use these to set up an augmented matrix and then apply LU Factorization to make it upper

triangular. Solve for the parameters b0 and b1 symbolically. Simply to reproduce formulas for b0 and

b1 for Simple Regression.

13. Recall that ŷ = Hy where the hat matrix is X(X
ᵀ
X)−1X

ᵀ
. The leverage of point i is defined to be

hii.

hii = x
ᵀ

i (X
ᵀ

X)−1xi (6.61)

The main diagonal of the hat matrix gives the leverage for each of the points. Points with high leverage

are those above a threshold such as

hii ≥
2 tr(H)

m
(6.62)

Note, that the trace tr(H) = rank(H) = rank(X) will equal n when X has full rank. List the high

leverage points for the Example AutoMPG dataset.

200

14. Points that are influential in determining values for model coefficients/parameters combine high lever-

age with large residuals. Measures of influence include Cook’s Distance, DFFITS, and DFBETAS

[34] and see http://home.iitk.ac.in/~shalab/regression/Chapter6-Regression-Diagnostic%

20for%20Leverage%20and%20Influence.pdf. These measures can also be useful in detecting po-

tential outliers. Compute these measures for the Example AutoMPG dataset.

15. The best two predictor variables for AutoMPG are weight and modelyear and with the weight given

in units of 1000 pounds, the prediction equation for the Regression model (with intercept) is

ŷ = − 14.3473− 6.63208x1 + 0.757318x2

The corresponding hyperplane is show in Figure 6.4

0
2

4
6 70

75

800

20

40

x1

x2

y

Figure 6.4: Hyperplane: ŷ = −14.3473− 6.63208x1 + 0.757318x2

Make a plot of the hyperplane for the second best combination of features. Compare the QoF of these

two models and explain how the feature combinations affect the response variable (mpg).

16. State and explain the conditions required for the Ordinary Least Squares (OLS) estimate of parameter

vector b for multiple linear regression to be B.L.U.E. See the Gauss-Markov Theorem. B.L.U.E. stands

for Best Linear Unbiased Estimator.

6.6.16 Further Reading

1. Introduction to Linear Regression Analysis, 5th Edition [127]

2. Regression: Linear Models in Statistics [18]

201

http://home.iitk.ac.in/~shalab/regression/Chapter6-Regression-Diagnostic%20for%20Leverage%20and%20Influence.pdf
http://home.iitk.ac.in/~shalab/regression/Chapter6-Regression-Diagnostic%20for%20Leverage%20and%20Influence.pdf

6.7 Ridge Regression

The RidgeRegression class supports multiple linear ridge regression. As with Regression, the predictor

variables x are multi-dimensional [x1, . . . , xk], as are the parameters b = [b1, . . . , bk]. Ridge regression adds

a penalty based on the `2 norm of the parameters b to reduce the chance of them taking on large values

that may lead to less robust models.

The penalty holds down the values of the parameters and this may result in several advantages: (1)

better out-of-sample (e.g., cross-validation) quality of fit, (2) reduced impact of multi-collinearity, (3) turn

singular matrices, non-singular, and to a limited extent (4) eliminate features/predictor variables from the

model.

The penalty is not to be included on the intercept parameter b0, as this would shift predictions in a way

that would adversely affect the quality of the model. See the exercise on scale invariance.

6.7.1 Model Equation

Centering of the data allows the intercept to be removed from the model. The combined centering on both

the predictor variables and the response variable takes care of the intercept, so it is not included in the

model. Thus, the goal is to fit the parameter vector b in the model/regression equation,

y = b · x + ε = b1x1 + · · ·+ bkxk + ε (6.63)

where ε represents the residuals (the part not explained by the model).

6.7.2 Training

Centering the dataset (X,y) has the following effects: First, when the X matrix is centered, the intercept

b0 = µy. Second, when y is centered, µy becomes zero, implying b0 = 0. To rescale back to the original

response values, µy can be added back during prediction. Therefore, both the data/input matrix X and the

response/output vector y should be centered (zero mean).

X(c) = X − µx subtract predictor column means (6.64)

y(c) = y − µy subtract response mean (6.65)

The regularization of the model adds an `2-penalty on the parameters b. The objective function to

minimize is now the loss function L(b) = 1
2sse plus the `2-penalty.

fobj = L(b) +
1

2
λ ‖b‖2 =

1

2
ε · ε +

1

2
λb · b (6.66)

where λ is the shrinkage parameter. A large value for λ will drive the parameters b toward zero, while a

small value can help stabilize the model (e.g., for nearly singular matrices or high multi-collinearity).

fobj =
1

2
(y −Xb) · (y −Xb) +

1

2
λb · b (6.67)

202

6.7.3 Optimization

Fortunately, the quadratic nature of the penalty function allows it to be combined easily with the quadratic

error terms, so that matrix factorization can still be used for finding optimal values for parameters.

Taking the gradient of the objective function fobj with respect to b and then setting it equal to zero

yields

−X
ᵀ

(y − Xb) + λb = 0 (6.68)

Recall the first term of the gradient was derived in the Regression section. See the exercises below for

deriving the last term of the gradient. Multiplying out gives,

−Xᵀ
y + (X

ᵀ
X)b + λb = 0

(X
ᵀ
X)b + λb = X

ᵀ
y

Since λb = λIb where I is the n-by-n identity matrix, we may write

(X
ᵀ

X + λI)b = X
ᵀ

y (6.69)

Matrix factorization may now be used to solve for the parameters b in the modified Normal Equations. For

example, use of matrix inversion yields,

b = (X
ᵀ

X + λI)−1X
ᵀ

y (6.70)

For Cholesky factorization, one may compute X
ᵀ
X and simply add λ to each of the diagonal elements (i.e,

along the ridge). QR and SVD factorizations require similar, but slightly more complicated, modifications.

Note, use of SVD can improve the efficiency of searching for an optimal value for λ [71, 196].

6.7.4 Centering

Before creating a RidgeRegression model, the X data matrix and the y response vector should be centered.

This is accomplished by subtracting the means (vector of column means for X and a mean value for y).

1 val mu_x = x.mean // column -wise mean of x

2 val mu_y = y.mean // mean of y

3 val x_c = x - mu_x // centered x (column -wise)

4 val y_c = y - mu_y // centered y

The centered matrix x c and center vector y c are then passed into the RidgeRegression constructor.

1 val mod = new RidgeRegression (x_c , y_c)

2 mod.trainNtest ()

Now, when making predictions, the new data vector z needs to be centered by subtracting mu x. Then the

predict method is called, after which the mean of y is added.

1 val z_c = z - mu_x // center z first

2 yp = mod.predict (z_c) + mu_y // predict z_c and add y’s mean

3 println (s"predict (z) =yp")

203

6.7.5 The λ Hyper-parameter

The value for λ can be user specified (typically a small value) or chosen by a method like findLambda. It

finds a roughly optimal value for the shrinkage parameter λ based on the cross-validated sum of squared

errors sse cv. The search starts with the low default value for λ and then doubles it with each iteration,

returning the minimizing λ and its corresponding cross-validated sse. A more precise search could be used

to provide a better value for λ.

1 def findLambda: (Double , Double) =

2 var l = lambda // start with a small default value

3 var l_best = l

4 var sse = Double.MaxValue

5 for i <- 0 to 20 do

6 RidgeRegression.hp("lambda") = l

7 val mod = new RidgeRegression (x, y)

8 val stats = mod.crossValidate ()

9 val sse2 = stats(QoF.sse.ordinal).mean

10 banner (s"RidgeRegession with lambda = $mod.lambda_} has sse = $sse2")

11 if sse2 < sse then { sse = sse2; l_best = l }

12 l *= 2

13 end for

14 (l_best , sse) // best lambda and its sse_cv

15 end findLambda

6.7.6 Comparing RidgeRegression with Regression

This subsection compares the results of RidgeRegression with those of Regression by examining the

estimated parameter vectors, the quality of fit, predictions made, and comparing the summary information.

1 // 5 data points: x_0 x_1

2 val x = MatrixD ((5, 2), 36.0, 66.0, // 5-by -2 matrix data matrix

3 37.0, 68.0,

4 47.0, 64.0,

5 32.0, 53.0,

6 1.0, 101.0)

7 val y = VectorD (745.0 , 895.0 , 442.0, 440.0, 1598.0) // 5-dim response vector

First, create a Regression model with an intercept and produce a summary.

1 banner ("Regression")

2 val ox = VectorD.one (y.dim) +ˆ: x // prepend column of all 1’s

3 val rg = new Regression (ox , y) // create a Regression model

4 rg.trainNtest ()() // train and test the model

Second, create a RidgeRegression model using the centered data

1 banner ("RidgeRegression")

2 val mu_x = x.mean // column -wise mean of x

3 val mu_y = y.mean // mean of y

4 val x_c = x - mu_x // centered x (column -wise)

5 val y_c = y - mu_y // centered y

6 val mod = new RidgeRegression (x_c , y_c) // create a Ridge Regression

7 mod.trainNtest ()() // train and test the model

Third, predict a value for new input vector z using each model.

204

1 banner ("Make Predictions")

2 val z = VectorD (20.0 , 80.0) // new instance to predict

3 val _1z = VectorD .++ (1.0, z) // prepend 1 to z

4 val z_c = z - mu_x // center z

5 println (s"rg.predict (z) ={rg.predict (_1z)}") // predict using _1z

6 println (s"mod.predict (z) ={mod.predict (z_c) + mu_y}") // predict using z_c and add

y’s mean

The summary information for Regression is shown below.

1 println (rg.summary ())

SUMMARY

Parameters/Coefficients:

Var Estimate Std. Error t value Pr(>|t|) VIF

--

x0 -281.426985 835.349154 -0.336897 0.768262 NA

x1 -7.611030 8.722908 -0.872534 0.474922 3.653976

x2 19.010291 8.423716 2.256758 0.152633 3.653976

Residual standard error: 159.206002 on 2.0 degrees of freedom

Multiple R-squared: 0.943907, Adjusted R-squared: 0.887815

F-statistic: 16.827632701228243 on 2.0 and 2.0 DF, p-value: 0.05609269703717268

--

The summary information for RidgeRegression is shown below.

1 println (mod.summary ())

SUMMARY

Parameters/Coefficients:

Var Estimate Std. Error t value Pr(>|t|) VIF

--

x0 -7.611271 8.722908 -0.872561 0.474910 NA

x1 19.009947 8.423716 2.256717 0.152638 3.653976

Residual standard error: 159.206002 on 2.0 degrees of freedom

Multiple R-squared: 0.943907, Adjusted R-squared: 0.887815

F-statistic: 16.827632684676626 on 2.0 and 2.0 DF, p-value: 0.056092697089250576

--

Notice there is very little difference between the two models. Try increasing the value of the shrinkage

hyper-parameter λ beyond its default value of 0.01. This example can be run as follows:

$ sbt

sbt> runMain scalation.modeling.ridgeRegressionTest

Automatic Centering

ScalaTion provides factory methods, apply and center, in the RigdgeRgression companion object that

center the data for the user.

205

1 // val mod = RidgeRegression (xy, fname) // apply takes a combined matrix xy

2 val mod = RidgeRegression.center (x, y, fname) // center takes a matrix x and

vector y

3 mod.trainNTest ()()

4 val yp = mod.predict (z - x.mean) + y.mean

The user must still center any vectors passed into the predict method and add back the response mean at

the end, e.g., pass z - x.mean and add back y.mean.

Note, care should be taken regarding x.mean and y.mean when preforming validation or crossValidation.

The means for the full, training and testing sets may differ.

6.7.7 RidgeRegression Class

Class Methods:

1 @param x the centered data/input m-by-n matrix NOT augmented with a column of 1s

2 @param y the centered response/output m-vector

3 @param fname_ the feature/variable names (defaults to null)

4 @param hparam the shrinkage hyper -parameter , lambda (0 => OLS) in the penalty term

5 ’lambda * b dot b’

6

7 class RidgeRegression (x: MatrixD , y: VectorD , fname_ : Array [String] = null ,

8 hparam: HyperParameter = RidgeRegression.hp)

9 extends Predictor (x, y, fname_ , hparam)

10 with Fit (dfm = x.dim2 , df = x.dim - x.dim2 - 1):

11

12 def lambda_ : Double = lambda

13 def train (x_ : MatrixD = x, y_ : VectorD = y): Unit =

14 def test (x_ : MatrixD = x, y_ : VectorD = y): (VectorD , VectorD) =

15 def findLambda: (Double , Double) =

16 override def predict (x_ : MatrixD): VectorD = x_ * b

17 override def summary (x_ : MatrixD = getX , fname_ : Array [String] = fname ,

18 b_ : VectorD = b, vifs: VectorD = vif ()): String =

19 override def buildModel (x_cols: MatrixD): RidgeRegression =

6.7.8 Exercises

1. Based on the example given in this section, try increasing the value of the hyper-parameter λ and

examine its effect on the parameter vector b, the quality of fit and predictions made.

1 import RidgeRegression.hp

2

3 println (s"hp = $hp")

4 val hp2 = hp.updateReturn ("lambda", 1.0)

5 println (s"hp2 = $hp2")

Alternatively,

1 hp("lambda") = 1.0

206

See the HyperParameter class in the scalation.modeling package for details.

2. For the AutoMPG dataset, use the findLambda method find a value for λ that roughly minimizes

out-of-sample sse cv based on using the crossValidate method. Plot sse cv vs. λ.

3. Why is it important to center (zero mean) both the data matrix X and the response vector y? What

is scale invariance and how does it relate to centering the data?

4. The Degrees of Freedom (DoF) used in ScalaTion’s RidgeRegression class is approximate. As the

shrinkage parameter λ increases the effective DoF (eDoF) should be used instead. A general definition

of effective DoF is the trace tr of the hat matrix H = X(X
ᵀ
X + λI)−1X

ᵀ

df eff
m = tr(H)

Read [86] and explain the difference between DoF and effective DoF (eDoF) for Ridge Regression.

5. A matrix that is close to singularity is said to be ill-conditioned. The condition number κ of a matrix

A (e.g., A = X
ᵀ
X) is defined as follows:

κ = ‖A‖ ‖A−1‖ ≥ 1

When κ becomes large the matrix is considered to be ill-conditioned. In such cases, it is recommended

to use QR or SVD Factorization for Least-Squares Regression [39]. Compute the condition number for

of X
ᵀ
X for various datasets.

6. For the last term of the gradient of the objective function, show that

∂

∂bj

λ

2
b · b =

λ

2

∑
i

b2i = λbj

Put these together to show that ∇λ
2

b · b = λb

7. For over-parameterized (or under-determined) regression where the n > m, (number of parameters >

number of instances) it is common to seek a min-norm solution.

minb{‖b‖22 | y = Xb}

Use http://people.csail.mit.edu/bkph/articles/Pseudo_Inverse.pdf to derive a solution for

the parameters b.

b = X
ᵀ

(XX
ᵀ

)−1y

Compare the use of regression and ridge regression of such problems.

8. Compare different algorithms for finding a suitable value for the shrinkage parameter λ.

Hint: see Lecture Notes on Ridge Regression - https://arxiv.org/pdf/1509.09169.pdf - [196].

207

http://people.csail.mit.edu/bkph/articles/Pseudo_Inverse.pdf
https://arxiv.org/pdf/1509.09169.pdf

6.8 Lasso Regression

The LassoRegression class supports multiple linear regression using the Least absolute shrinkage and

selection operator (Lasso) that constrains the values of the b parameters and effectively sets those with low

impact to zero (thereby deselecting such variables/features). Rather than using an `2-penalty (Euclidean

norm) like RidgeRegression, it uses and an `1-penalty (Manhattan norm). In RidgeRegression when bj

approaches zero, b2j becomes very small and has little effect on the penalty. For LassoRegression, the

effect based on |bj | will be larger, so it is more likely to set parameters to zero. See section 6.2.2 in [85]

for a more detailed explanation on how LassoRegression can eliminate a variable/feature by setting its

parameter/coefficient to zero.

6.8.1 Model Equation

As with Regression, the goal is to fit the parameter vector b ∈ Rn (k = n − 1) in the model/regression

equation,

y = b · x + ε = b0 + b1x1 + ...+ bkxk + ε (6.71)

where ε represents the residuals (the part not explained by the model). See the exercise that considers

whether to include the intercept b0 in the shrinkage.

6.8.2 Training

The regularization of the model adds an `1-penalty on the parameters b. The objective function to minimize

is now the loss function L(b) = 1
2sse plus the penalty.

fobj =
1

2
sse + λ ‖b‖1 =

1

2
‖ε‖22 + λ ‖b‖1 (6.72)

where λ is the shrinkage parameter. Substituting ε = y −Xb yields,

fobj =
1

2
‖y −Xb‖22 + λ ‖b‖1 (6.73)

Replacing the norms with dot products gives,

fobj =
1

2
(y −Xb) · (y −Xb) + λ1 · |b| (6.74)

Although similar to the `2-penalty used in Ridge Regression, it may often be more effective. Still, the

`1-penalty for Lasso has a disadvantage that the absolute values in the `1 norm make the objective function

non-differentiable.

λ1 · |b| = λ

k∑
j=0

|bj | (6.75)

Therefore, the straightforward strategy of setting the gradient equal to zero to develop appropriate modified

Normal Equations that allow the parameters to be determined by matrix factorization will no longer works.

Instead, the objective function needs to be minimized using a search based optimization algorithm.

208

6.8.3 Optimization Strategies

There are multiple optimization algorithms that can be applied for parameter estimation in Lasso Regression.

Coordinate Descent

Coordinate Descent attempts to optimize one variable/feature at a time (repeated one dimensional optimiza-

tion). For normalized data the following algorithm has been shown to work: https://xavierbourretsicotte.

github.io/lasso_implementation.html.

Alternating Direction Method of Multipliers

ScalaTion uses the Alternating Direction Method of Multipliers (ADMM) [22] algorithm to optimize the b

parameter vector. The algorithm for using ADMM for Lasso Regression is outlined in section 6.4 of Boyd [22]

(https://stanford.edu/~boyd/papers/pdf/admm_distr_stats.pdf). Optimization problems in ADMM

form separate the objective function into two parts f and g.

min f(b) + g(z) subject to b− z = 0 (6.76)

For Lasso Regression, the f function will capture the loss function (1
2 sse), while the g function will capture

the `1 regularization, i.e.,

f(b) =
1

2
‖y −Xb‖22 , g(z) = λ ‖z‖1 (6.77)

Introducing z allows the functions to be separated, while the constraint keeps z and b close. Therefore, the

iterative step in the ADMM optimization algorithm becomes

b = (X
ᵀ
X + ρI)−1(X

ᵀ
y + ρ(z− u))

z = Sλ/ρ(b + u)

u = u + b− z

where u is the vector of Lagrange multipliers and Sλ is the soft thresholding function.

Sλ(ζ) = sign(ζ) (|ζ| − λ)+ (6.78)

Note (a)+ = max(a, 0).

The details of ADMM for Lasso Regression are left as an exercise. In addtion to Boyd, see [73] and see

scalation.optimization.LassoAdmm for coding details.

6.8.4 The λ Hyper-parameter

The shrinkage parameter λ can be tuned to control feature selection. The larger the value of λ, the more

features (predictor variables) whose parameters/coefficients will be set to zero. The findLambda method

may be used to find a value lambda that improves the cross-validated sum of squared errors sse cv.

1 def findLambda: (Double , Double) =

2 var l = lambda

3 var l_best = l

4 var sse = Double.MaxValue

5 for i <- 0 to 20 do

209

https://xavierbourretsicotte.github.io/lasso_implementation.html
https://xavierbourretsicotte.github.io/lasso_implementation.html
https://stanford.edu/~boyd/papers/pdf/admm_distr_stats.pdf

6 LassoRegression.hp("lambda") = l

7 val mod = new LassoRegression (x, y)

8 val stats = mod.crossValidate ()

9 val sse2 = stats(QoF.sse.ordinal).mean

10 banner (s"LassoRegession with lambda = $mod.lambda_} has sse = $sse2")

11 if sse2 < sse then

12 sse = sse2; l_best = l

13 end if

14 Fit.showQofStatTable (stats)

15 l *= 2

16 end for

17 (l_best , sse)

18 end findLambda

As the default value for the shrinkage/penalty parameter λ is very small, the optimal solution will be

close to the Ordinary Least Squares (OLS) solution shown in green at b = [b1, b2] = [3, 1] in Figure 6.5.

Increasing the penalty parameter will pull the optimal b towards the origin. At any given point in the plane,

the objective function is the sum of the loss function L(b) and the penalty function p(b). The contours in

blue show points of equal height for the penalty function, while those in black show the same for the loss

function. Suppose for some λ the point [2, 0] is this penalized optimum. This would mean that moving

toward the origin would be non-productive, as the increase in the loss would exceed the drop in the penalty.

On the other hand, moving toward [3, 1] would be non-productive as the increase in the penalty would exceed

the drop in the loss. Notice in this case, that the penalty has pulled the b1 parameter to zero (an example of

feature selection). Ridge regression will be less likely to pull a parameter to zero, as its contours are circles

rather than diamonds. Lasso regression’s contours have sharp points on the axis which thereby increase the

chance of intersecting a loss contour on an axis.

−2 −1 1 2 3 4

−2

−1

1

2

b1

b2

Figure 6.5: Contour Curves for Lasso Regression

210

6.8.5 Regularized and Robust Regression

Regularized and Robust Regression are useful in many cases including high-dimensional data, correlated

data, non-normal data and data with outliers [70]. These techniques work by adding a `1 and/or `2-penalty

terms to shrink the parameters and/or changing from an `2 to `1 loss function. Modeling techniques include

Ridge, Lasso, Elastic Nets, Least Absolute Deviation (LAD) and Adaptive LAD [70].

6.8.6 LassoRegression Class

Class Methods:

1 @param x the data/input m-by-n matrix

2 @param y the response/output m-vector

3 @param fname_ the feature/variable names (defaults to null)

4 @param hparam the shrinkage hyper -parameter , lambda (0 => OLS) in the penalty term

5 ’lambda * b dot b’

6

7 class LassoRegression (x: MatrixD , y: VectorD , fname_ : Array [String] = null ,

8 hparam: HyperParameter = LassoRegression.hp)

9 extends Predictor (x, y, fname_ , hparam)

10 with Fit (dfm = x.dim2 - 1, df = x.dim - x.dim2):

11

12 def lambda_ : Double = lambda

13 def findLambda: (Double , Double) =

14 def train (x_ : MatrixD = x, y_ : VectorD = y): Unit =

15 def test (x_ : MatrixD = x, y_ : VectorD = y): (VectorD , VectorD) =

16 override def summary (x_ : MatrixD = getX , fname_ : Array [String] = fname ,

17 b_ : VectorD = b, vifs: VectorD = vif ()): String =

18 override def buildModel (x_cols: MatrixD): LassoRegression =

6.8.7 Exercises

1. Compare the results of LassoRegression with those of Regression and RidgeRegression. Examine

the parameter vectors, quality of fit and predictions made.

1 // 5 data points: one x_0 x_1

2 val x = MatrixD ((5, 3), 1.0, 36.0, 66.0, // 5-by -3 matrix

3 1.0, 37.0, 68.0,

4 1.0, 47.0, 64.0,

5 1.0, 32.0, 53.0,

6 1.0, 1.0, 101.0)

7 val y = VectorD (745.0 , 895.0 , 442.0, 440.0, 1598.0)

8 val z = VectorD (1.0, 20.0, 80.0)

9

10 // Create a LassoRegression model

11

12 val lrg = new LassoRegression (x, y)

13

14 // Predict a value for new input vector z using each model.

211

2. Based on the last exercise, try increasing the value of the hyper-parameter λ and examine its effect on

the parameter vector b, the quality of fit and predictions made.

1 import LassoRegression.hp

2

3 println (s"hp = $hp")

4 val hp2 = hp.updateReturn ("lambda", 1.0)

5 println (s"hp2 = $hp2")

3. Using the above dataset and the AutoMPG dataset, determine the effects of (a) centering the data

(µ = 0), (b) standardizing the data (µ = 0, σ = 1).

1 import MatrixTransforms._

2

3 val x_n = normalize (x, (mu_x , sig_x))

4 val y_n = y.standardize

4. Explain how the Coordinate Descent Optimization Algorithm works for Lasso Regression. See

https://xavierbourretsicotte.github.io/lasso_implementation.html.

5. Explain how the ADMM Optimization Algorithm works for Lasso Regression. See

https://stanford.edu/~boyd/papers/pdf/admm_distr_stats.pdf.

6. Compare LassoRegression the with Regression that uses forward selection or backward elimination

for feature selection. What are the advantages and disadvantages of each for feature selection.

7. Compare LassoRegression the with Regression on the AutoMPG dataset. Specifically, compare the

quality of fit measures as well as how well feature selection works.

8. Show that the contour curves for the Simple Regression loss function L(b0, b1) are ellipses. The general

equation of an ellipse centered at (h, k) is

A(x− h)2 +B(x− h)(y − k) + C(y − k)2 = 1

where A,B > 0 and B2 < 4AC.

9. Elastic Nets combine both `2 and `1 penalties to try to combine the best features of both RidgeRegression

and LassoRegression. Elastic Nets naturally includes two shrinkage parameters, λ1 and λ2. Is the

additional complexity worth the benefits?

10. Regularization using Lasso has the nice property of being able to force parameters/coefficients to zero,

but this may require a large shrinkage hyper-parameter λ that shrinks non-zero coefficients more than

desired. Newer regularization techniques reduce the shrinkage effect compared to Lasso, by having a

penalty profile that matches Lasso for small coefficients, but is below Lasso for large coefficient values.

Make of plot of the penalty profiles for Lasso, Smoothly Clipped Absolute Deviations (SCAD) and

Mimimax Concave Penalty (MCP).

212

https://xavierbourretsicotte.github.io/lasso_implementation.html
https://stanford.edu/~boyd/papers/pdf/admm_distr_stats.pdf

6.8.8 Further Reading

1. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers

[22]

2. The Application of Alternating Direction Method of Multipliers on `1-norms Problems [73]

3. Feature Selection Using LASSO [49]

213

6.9 Quadratic Regression

The quadratic method in the SymbolicRegression object adds quadratic terms into the model. It can

often be the case that the response variable y will have a nonlinear relationship with one more of the predictor

variable xj . The simplest such nonlinear relationship is a quadratic relationship. Looking at a plot of y vs.

xj , it may be evident that a bending curve will fit the data much better than a straight line. For example,

a particle under constant acceleration will have a position that changes quadratically with time.

When there is only one predictor variable x, the response y is modeled as a quadratic function of x

(forming a parabola).

y = b0 + b1x+ b2x
2 + ε (6.79)

The quadratic method achieves this simply by expanding the data matrix. From the dataset (initial

data matrix), all columns will have another column added that contains the values of the original column

squared. It is important that the initial data matrix has no intercept. The expansion will optionally

add an intercept column (column of all ones). Since 12 = 1, the ones columns and its square will be perfectly

collinear and make the matrix singular, if the user includes a ones column.

6.9.1 Model Equation

In two dimensions (2D) where x = [x1, x2], the quadratic model/regression equation is the following:

y = b · x′ + ε = b0 + b1x1 + b2x2 + b3x
2
1 + b4x

2
2 + ε (6.80)

where x′ = [1, x1, x2, x
2
1, x

2
2], b = [b0, b1, b2, b3, b4], and ε represents the residuals (the part not explained by

the model).

The number of terms (nt) in the model increases linearly with the dimensionality of the space (n)

according to the following formula:

nt = 2n+ 1 e.g., nt = 5 for n = 2 (6.81)

Each column in the initial data matrix is expanded into two in the expanded data matrix and an intercept

column is optionally added.

6.9.2 Comparison of quadratic and Regression

This subsection compares results and Quality of Fit of the quadratic method in the SymbolicRegression

object to the Regression class. Factors in choosing between the two include the accuracy of the model and

information provided in by the summary method (e.g., p-values and VIF).

1 // 8 data points: x y

2 val xy = MatrixD ((8, 2), 1, 2, // 8-by -2 combined matrix

3 2, 5,

4 3, 10,

5 4, 15,

6 5, 20,

7 6, 30,

8 7, 50,

9 8, 60)

214

10 val (x, y) = (xy.not(?, 1), xy(?, 1)) // x is first column , y is last column

11 val ox = VectorD.one (xy.dim) +ˆ: x // prepend a column of all ones

12

13 val rg = new Regression (ox , y) // create a regression model

14 rg.trainNtest ()() // train and test the model

15 println (rg.summary ()) // show summary

16

17 val qrg = SymbolicRegression.quadratic (x, y) // create a quadratic regression model

18 qrg.trainNtest ()() // train and test the model

19 println (qrg.summary ()) // show summary

Now compare their summary results. The summary results for the Regression model are shown below:

SUMMARY

Parameters/Coefficients:

Var Estimate Std. Error t value Pr(>|t|) VIF

--

x0 -13.285714 5.154583 -2.577457 0.041913 NA

x1 8.285714 1.020760 8.117205 0.000188 1.000000

Residual standard error: 6.615278 on 6.0 degrees of freedom

Multiple R-squared: 0.916538, Adjusted R-squared: 0.902628

F-statistic: 65.88900979325355 on 1.0 and 6.0 DF, p-value: 1.8767258045970792E-4

--

The summary results for the SymbolicRegression.quadratic model are given here:

SUMMARY

Parameters/Coefficients:

Var Estimate Std. Error t value Pr(>|t|) VIF

--

x0 4.035714 3.873763 1.041807 0.345231 NA

x1 -2.107143 1.975007 -1.066904 0.334798 21.250000

x2 1.154762 0.214220 5.390553 0.002965 21.250000

Residual standard error: 2.776603 on 5.0 degrees of freedom

Multiple R-squared: 0.987747, Adjusted R-squared: 0.982846

F-statistic: 201.53335392217406 on 2.0 and 5.0 DF, p-value: 4.872837579850131E-5

--

The summary results for the SymbolicRegression.quadratic model highlight a couple of important

issues:

1. moderately high Pr(>|t|) (p-values) and

2. borderline high VIF (Variance Inflation Factor) values.

Try eliminating x1 to see if these two improve without much of a drop in Adjusted R-squared R̄2. Note,

eliminating x1 makes the model non-hierarchical (see the exercises). Figure 6.6 shows the predictions (yp)

of the Regression and quadratic models.

215

1 2 3 4 5 6 7 8
−10

10

20

30

40

50

60

x

y

Figure 6.6: Actual y (red) vs. Regression yp (green) vs. quadratic yp (blue)

The quadratic method in the SymbolicRegression object creates a Regression object that uses mul-

tiple regression to fit a quadratic surface to the data.

6.9.3 SymbolicRegression.quadratic Method

Method:

1 @param x the initial data/input m-by -n matrix (before quadratic term expansion)

2 must not include an intercept column of all ones

3 @param y the response/output m-vector

4 @param fname the feature/variable names (defaults to null)

5 @param intercept whether to include the intercept term (column of ones) _1

6 (defaults to true)

7 @param cross whether to include 2-way cross/interaction terms x_i x_j

8 (defaults to false)

9 @param hparam the hyper -parameters (defaults to Regression.hp)

10

11 def quadratic (x: MatrixD , y: VectorD , fname: Array [String] = null ,

12 intercept: Boolean = true , cross: Boolean = false ,

13 hparam: HyperParameter = Regression.hp): Regression =

14 val mod = apply (x, y, fname , Set (1, 2), intercept , cross , false , hparam)

15 mod.modelName = "SymbolicRegression.quadratic" + (if cross then "X" else "")

16 mod

17 end quadratic

The apply method is defined in the SymbolicRegression object. The Set (1, 2) specifies that first

(Linear) and second (Quadratic) order terms will be included in the model. The intercept flag indicates

whether a column of ones will be added to the input/data matrix.

216

The next few modeling techniques described in subsequent sections support the development of low-order

multi-dimensional polynomial regression models. Higher order polynomial regression models are typically

restricted to one-dimensional problems (see the PolyRegression class).

6.9.4 Quadratic Regression with Cross Terms

The quadratic method provides the option of adding cross/interaction terms in addition to the quadratic

terms. The cross flag indicates whether cross terms will be added to the model. A cross term such as the

one based on the product x1x2 indicates a combined effect of two predictor variables on the response variable

y.

Model Equation

In two dimensions (2D) where x = [x1, x2], the quadratic cross model/regression equation is the following:

y = b · x′ + ε = b0 + b1x1 + b2x2 + b3x
2
1 + b4x

2
2 + b5x1x2 + ε (6.82)

where the components of the model equation are defined as follows:

x′ = [1, x1, x2, x
2
1, x

2
2, x1x2] expanded input vector

b = [b0, b1, b2, b3, b4, b5] parameter/coefficient vector

ε = y − b · x′ error/residual

The number of terms (nt) in the model increases quadratically with the dimensionality of the space (n)

according to the formula for triangular numbers shifted by (n→ n+ 1).

nt =

(
n+ 2

2

)
=

(n+ 2)(n+ 1)

2
e.g., nt = 6 for n = 2 (6.83)

This result may derived by summing the number of constant terms (1), linear terms (n), quadratic terms

(n), and cross terms
(
n
2

)
.

Such models generalize quadratic by introducing cross terms, e.g., x1x2. Adding cross terms makes the

number of terms increase quadratically rather than linearly with the dimensionality. Consequently, multi-

collinearity problems (check VIF scores) may be intensified and the need for feature selection, therefore,

increases.

6.9.5 Response Surface

One may think of a quadratic model as well as more complex models as approximating a response surface

in multiple dimensions.

y = f(x1, x2) + ε (6.84)

For example, a model with two predictor variables and one response variable may be displayed in three

dimensions. Such a response surface can also be shown in two dimensions using contour plots where a

contour/curve shows points of equal height. Figure 6.7 shows three types of contours that represent the

types of terms in quadratic regression (1) linear terms, (2) quadratic terms, and (3) cross terms. In the

217

figure, the first green line is for x1 + x2 = 4, the first blue curve is for x2
1 + x2

2 = 16, and the first red curve

is for x1x2 = 4.

1 2 3 4 5 6

1

2

3

4

5

6

x1

x2

Figure 6.7: quadratic Contours: x1 + x2 (green), x2
1 + x2

2 (blue), x1x2 (red)

A constant term simply moves the whole response surface up or down. The coefficients for each of terms can

rotate and stretch these curves.

The response surface for Quadratic Regression on AutoMPG based on the best combination of features,

weight and modelyear, is shown in 6.8.

0
2

4
6 70

75

80

50

x1

x2

y

Figure 6.8: Response Surface: ŷ = 355.139− 21.1463x1 − 8.50562x2 + 2.29950x2
1 + 0.0614339x2

2

218

6.9.6 Exercises

1. Enter the x, y dataset from the example given in this section and use it to create a quadratic model.

Show the expanded input/data matrix and the response vector using the following two print statements.

1 val qrg = new SymbolicRegression.quadratic (x, y)

2 println (s"expanded x = ${qrg.getX}")

3 println (s"y = ${qrg.getY}")

2. Perform Quadratic Regression on the Example BPressure dataset using the first two columns of its

data matrix x.

1 import Example_BPressure .{x01 => x, y}

3. Perform both forward selection and backward elimination to find out which of the terms have the most

impact on predicting the response. Which feature selection approach (forward selection or backward

elimination) finds a model with the highest R̄2?

4. Generate a dataset with data matrix x and response vector y using the following loop where noise =

new Normal (0, 10 * m * m).

1 for i <- x.indices do

2 x(i, 0) = i

3 y(i) = i*i + i + noise.gen

4 end for

Compare the results of Regression vs. quadratic. Compare the Quality of Fit and the parameter

values. What correspondence do the parameters have with the coefficients used to generate the data?

Plot y vs. x, yp and y vs. t for both Regression and quadratic. Also plot the residuals e vs. x for

both. Note, t is the index vector VectorD.range (0, m).

5. Generate a dataset with data matrix x and response vector y using the following loop where noise =

new Normal (0, 10 * s * s) and grid = 1 to s.

1 var k = 0

2 for i <- grid; j <- grid do

3 x(k) = VectorD (i, j)

4 y(k) = x(k, 0)~ˆ2 + 2 * x(k, 1) + noise.gen

5 k += 1

6 end for

Compare the results of Regression vs. quadratic. Try modifying the equation for the response and

see how the Quality of Fit changes.

6. The quadratic model as well as its more complex cousin cubic may have issues with having high

multi-collinearity or high VIF values. Although high VIF values may not be a problem for predic-

tion accuracy, they can make interpretation and inferencing difficult. For the problem given in this

section, rather than adding x2 to the existing Regression model, find a second order polynomial that

could be added without causing high VIF values. VIF values are the lowest when column vectors are

orthogonal. See the section on Polynomial Regression for more details.

7. Extrapolation far from the training data can be risky for many types of models. Show how having

higher order polynomial terms in the model can increase this risk.

219

8. A polynomial regression model is said to be hierarchical [143, 167, 127] if it contains all terms up to

xk, e.g., a model with x, x2, x3 is hierarchical, while a model with x, x3 is not. Show that hierarchical

models are invariant under linear transformations.

Hint: Consider the following two models where x is the distance on I-70 West in miles from the center

of Denver (junction with I-25) and y is the elevation in miles above sea level.

ŷ = b0 + b1x+ b2x
2

ŷ = b0 + b2x
2

The first model is hierarchical, while the second is not. A second study is conducted, but now the

distance z is from the junction of I-70 and I-76. A linear transformation can be used to resolve the

problem.

x = z + 7

Putting z into the second model (assuming the first study indicated a linear term is not needed) gives,

ŷ = b0 + b2(z + 7)2 = (b0 + 49b2) + 14b2z + b2z
2

but now the linear term is back in the model.

9. Perform quadratic and quadratic (with cross terms) regression on the Example BPressure dataset

using the first two columns of its data matrix x.

1 import Example_BPressure .{x01 => x, y}

10. Perform both forward selection and backward elimination to find out which of the terms have the most

impact on predicting the response. Which feature selection approach (forward selection or backward

elimination) finds a model with the highest R̄2?

11. Generate a dataset with data matrix x and response vector y using the following loop where noise =

new Normal (0, 10 * s * s) and grid = 1 to s.

1 var k = 0

2 for i <- grid; j <- grid do

3 x(k) = VectorD (i, j)

4 y(k) = x(k, 0)~ˆ2 + 2 * x(k, 1) + x(k, 0) * x(k, 1) + noise.gen

5 k += 1

6 end for

Compare the results of Regression, quadratic with cross = false, and quadratic with cross =

true.

12. Prove that the number of terms for a quadratic function f(x) in n dimensions is
(
n+2

2

)
, by decomposing

the function into its quadratic (both squared and cross), linear and constant terms,

f(x) = x
ᵀ

Ax + b
ᵀ

x + c

220

where A in an n-by-n matrix, b is an n-dimensional column vector and c is a scalar. Hint: A is

symmetric, but the main diagonal is not repeated, and we are looking for unique terms (e.g., x1x2 and

x2x1 are treated as the same). Note, when n = 1, A and b become scalars, yielding the usual quadratic

function ax2 + bx+ c.

221

6.10 Cubic Regression

The cubic method in the SymbolicRegression object adds cubic terms in addition to the quadratic terms

added by the quadratic method. Linear terms in a model allow for slopes and quadratic terms allow for

curvature. If the curvature changes substantially or there is an inflection point (curvature changes sign), then

cubic terms may be useful. For example, before the inflection point the curve/surface may be concave upward,

while after the point it may be concave downward, e.g., a car stops accelerating and starts decelerating.

When there is only one predictor variable x, the response y is modeled as a cubic function of x.

y = b0 + b1x+ b2x
2 + b3x

3 + ε (6.85)

6.10.1 Model Equation

In two dimensions (2D) where x = [x1, x2], the cubic regression equation is the following:

y = b · x′ + ε = b0 + b1x1 + b2x2 + b3x
2
1 + b4x

2
2 + b5x

3
1 + b6x

3
2 + ε (6.86)

where the components of the model equation are defined as follows:

x′ = [1, x1, x2, x
2
1, x

2
2, x

3
1, x

3
2] expanded input vector

b = [b0, b1, b2, b3, b4, b5, b6] parameter/coefficient vector

ε = y − b · x′ error/residual

The number of terms (nt) in the model still increases quadratically with the dimensionality of the space

(n) according to the formula for triangular numbers shifted by (n→ n+ 1) plus n for the cubic terms.

nt =

(
n+ 2

2

)
+ n =

(n+ 2)(n+ 1)

2
+ n e.g., nt = 8 for n = 2 (6.87)

When n = 10, the number of terms and corresponding parameters nt = 76, whereas for Regression,

quadratic and quadratic with cross terms and order 2, it would 11, 21 and 66, respectively. Issues related

to negative Degrees of Freedom, over-fitting and multi-collinearity will need careful attention.

6.10.2 Comparison of cubic, quadratic and Regression

This subsection compares the cubic method to the quadratic method and the Regression class.

1 // 8 data points: x y

2 val xy = MatrixD ((8, 2), 1, 2, // 8-by -2 combined matrix

3 2, 11,

4 3, 25,

5 4, 28,

6 5, 30,

7 6, 26,

8 7, 42,

9 8, 60)

10 val (x, y) = (xy.not(?, 1), xy(?, 1)) // x is first column , y is last column

11 val ox = VectorD.one (x.dim) +ˆ: x // prepend a column of all ones

12

222

13 val rg = new Regression (ox, y) // create a regression model

14 rg.trainNtest ()() // train and test the model

15 println (rg.summary ()) // show summary

16

17 val qrg = SymbolicRegression.quadratic (x, y) // create a quadratic regression model

18 qrg.trainNtest ()() // train and test the model

19 println (qrg.summary ()) // show summary

20

21 val crg = SymbolicRegression.cubic (x, y) // create a cubic regression model

22 crg.trainNtest ()() // train and test the model

23 println (crg.summary ()) // show summary

Figure 6.9 shows the predictions (yp) of the Regression, quadratic and cubic models.

1 2 3 4 5 6 7 8
−10

10

20

30

40

50

60

x

y

Figure 6.9: Actual y (red) vs. Regression (green) vs. quadratic (blue) vs. cubic (black)

Notice the quadratic curve follows the linear curve (line), while the cubic curve more closely follows the data.

6.10.3 SymbolicRegression.cubic Method

Class Methods:

1 @param x the initial data/input m-by -n matrix (before quadratic term expansion)

2 must not include an intercept column of all ones

3 @param y the response/output m-vector

4 @param fname the feature/variable names (defaults to null)

5 @param intercept whether to include the intercept term (column of ones) _1

6 (defaults to true)

7 @param cross whether to include 2-way cross/interaction terms x_i x_j

8 (defaults to false)

9 @param cross3 whether to include 3-way cross/interaction terms x_i x_j x_k

10 (defaults to false)

11 @param hparam the hyper -parameters (defaults to Regression.hp)

223

12

13 def cubic (x: MatrixD , y: VectorD , fname: Array [String] = null ,

14 intercept: Boolean = true , cross: Boolean = false , cross3: Boolean = false ,

15 hparam: HyperParameter = Regression.hp): Regression =

16 val mod = apply (x, y, fname , Set (1, 2, 3), intercept , cross , cross3 , hparam)

17 mod.modelName = "SymbolicRegression.cubic" + (if cross then "X" else "") +

18 (if cross3 then "X" else "")

19 mod

20 end cubic

The Set (1, 2, 3) specifies that first (Linear), second (Quadratic), and third (Cubic) order terms will

be included in the model. The intercept flag indicates whether a column of ones will be added to the

input/data matrix.

6.10.4 Cubic Regression with Cross Terms

The cubic method provides the option of adding 2-way cross/interaction terms (e.g., x2x1) controlled by

the cross flag and/or 3-way cross/interaction terms (e.g., x2
1x2) controlled by the cross3 flag.

Model Equation

In two dimensions (2D) where x = [x1, x2], the cubic model/regression equation with cross terms is the

following:

y = b · x′ + ε = b0 + b1x1 + b2x2 + b3x
2
1 + b4x

2
2 + b5x

3
1 + b6x

3
2 + b7x1x2 + ε (6.88)

and with cross3 terms is

y = b · x′ + ε = b0 + b1x1 + b2x2 + b3x
2
1 + b4x

2
2 + b5x

3
1 + b6x

3
2 + b7x1x2 + b8x

2
1x2 + b9x1x

2
2 + ε (6.89)

where the components of the model equation are defined as follows:

x′ = [1, x1, x2, x
2
1, x

2
2, x

3
1, x

3
2, x1x2, x

2
1x2, x1x

2
2] expanded input vector

b = [b0, b1, b2, b3, b4, b5, b6, b7, b8, b9] parameter/coefficient vector

ε = y − b · x′ error/residual

Naturally, the number of terms in the model increases cubically with the dimensionality of the space (n)

according to the formula for tetrahedral numbers shifted by (n→ n+ 1).

nt =

(
n+ 3

3

)
=

(n+ 3)(n+ 2)(n+ 1)

6
e.g., nt = 10 for n = 2 (6.90)

When n = 10, the number of terms and corresponding parameters nt = 286, whereas for Regression,

quadratic, quadratic with cross and cubic with both crosses and order 2, it would 11, 21, 66 and 76,

respectively. Issues related to negative Degrees of Freedom, over-fitting and multi-collinearity will need even

more careful attention.

224

If polynomials of higher degree are needed, ScalaTion provides a couple of means to deal with it. First,

when the data matrix consists of single column and x is one dimensional, the PolyRegression class may

be used. If one or two variables need higher degree terms, the caller may add these columns themselves as

additional columns in the data matrix input into the Regression class. The SymbolicRegression object

described in the next section allows the user to try many function forms.

Categorical Variables and Collinearity

Quadratic and Cubic Regression may fail producing Not-a-Number (NaN) results when a dataset contains

one or more categorical variables. For example, a variable like citizen “no”, “yes” is likely to be encoded 0,

1. If such a column is squared or cubed, the new column will be identical to the original column, so that

they will be perfectly collinear. One solution is not to expand such columns. If one must, then a different

encoding may be used, e.g., 1, 2. See the section on RegressionCat for more details.

6.10.5 Exercises

1. Generate and compare the model summaries produced by the three models (Regression, quadratic

and cubic) applied to the dataset given in this section.

2. An inflection point occurs when the second derivative changes sign. Find the inflection point in the

following cubic equation:

y = f(x) = x3 − 6x2 + 12x− 5

Plot the cubic function to illustrate. Explain why there are no inflection points for quadratic models.

3. Many laws in science involve quadratic and cubic terms as well as the inverses of these terms (e.g.,

inverse square laws). Find such a law and an open dataset to test the law.

4. Perform Cubic and Cubic with cross terms Regression on the Example BPressure dataset using the

first two columns of its data matrix x.

1 import Example_BPressure .{x01 => x, y}

5. Perform both forward selection and backward elimination to find out which of the terms have the most

impact on predicting the response. Which feature selection approach (forward selection or backward

elimination) finds a model with the highest R̄2?

6. Generate a dataset with data matrix x and response vector y using the following loop where noise =

new Normal (0, 10 * s * s) and grid = 1 to s.

1 var k = 0

2 for i <- grid; j <- grid do

3 x(k) = VectorD (i, j)

4 y(k) = x(k, 0)~ˆ2 + 2 * x(k, 1) + x(k, 0) * x(k, 1) + noise.gen

5 k += 1

6 end for

225

Compare the results of Regression, quadratic with cross = false, quadratic with cross = true,

cubic with cross = false, cubic with cross = true, cubic with cross = true, cross3 = true,

Try modifying the equation for the response and see how the Quality of Fit changes.

226

6.11 Symbolic Regression

The last two sections covered Quadratic and Cubic Regression, but there are many possible functional forms.

For example, in physics force often decreases with distance following a inverse square law. The Newton’s Law

of Universal Gravitation states that masses m1 and m2 with center of mass positions at p1 and p2 (with

distance r = ‖p2 − p1‖ will attract each other with force f ,

f = G
m1m2

r2
(6.91)

where the gravitational constant G = 6.67408 · 10−11m3kg−1s−2.

6.11.1 Sample Calculation

Let m1 be the mass of a man (100 kg), m2 be the mass of the Earth (5.97219 · 1024 kg), r be the distance

to the center of the Earth (sea-level) (6.371 · 106 m), then

f = 6.67408 · 10−11 100 · 5.97219 · 1024

(6.371 · 106)2
= 982 kg ·m/s2

(or newtons)

The Calc object in ScalaTion may be used to evaluate the following function, passing in 100 kilograms.

1 def f(x: Double): Double = 6.67408E-11 * 5.97219 E24 * x / 6.371E6~ˆ2

The calculation is performed by the following: runMain scalation.runCalc 100.

6.11.2 As a Data Science Problem

This can be recast a symbolic regression problem using the following renaming (m1 → x0,m2 → x1, r →
x2, f → y).

y = b0x0x1x
−2
2 + ε (6.92)

Given a four column dataset [x0, x1, x2, y] a Symbolic Regression could be run to estimate a more general

model that includes all possible terms with powers x−2
j , x−1

j , x1
j , x

2
j . It could also include cross (two-way

interaction) terms between all these terms. In this case, it is necessary to add cross3 (three-way interaction)

terms. An intercept would imply force with no masses involved, so it should be left out of the model.

It is easier to collect data where the Earth is used for mass 1 and mass 2 is for people at various distances

from the center of the Earth (m1 → x0, r → x1, f → y).

y = b0x0x
−2
1 + ε (6.93)

In this case the parameter b0 will correspond to GM , where G is the Gravitational Constant and M is the

Mass of the Earth. The following code provides simulated data and uses symbolic regression to determine

the Gravitational Constant.

1 val noise = Normal (0, 10) // random noise

2 val rad = Uniform (6370, 7000) // distance from center of Earth in km

3 val mas = Uniform (50, 150) // mass of person

4

5 val M = 5.97219 E24 // mass of Earth in kg

6 val G = 6.67408E-11 // gravitational const. mˆ3 kgˆ -1 sˆ-2

227

7

8 val xy = new MatrixD (100, 3) // simulated gravity data

9 for i <- xy.indices do

10 val m = mas.gen // unit of kilogram (kg)

11 val r = 1000 * rad.gen // unit of meter (m)

12 xy(i, 0) = m // mass of person

13 xy(i, 1) = r // radius/distance

14 xy(i, 2) = G * M * m / r~ˆ2 + noise.gen // force of gravity GM m/rˆ2

15 end for

16

17 val fname = Array ("mass", "radius")

18

19 println (s"xy = $xy")

20 val (x, y) = (xy.not (?, 2), xy(?, 2))

21

22 banner ("Newton ’s Universal Gravity Symbolic Regression")

23 val mod = SymbolicRegression (x, y, fname , null , false , false ,

24 terms = Array ((0, 1.0), (1, -2.0))) // add one custom term

25

26 mod.trainNtest ()() // train and test the model

27 println (mod.summary ()) // parameter/coefficient statistics

28 println (s"b =~ GM = ${G * m1}") // Gravitational Constant * Earth Mass

The statement val mod = SymbolicRegression (...) invokes the factory method called apply in the

SymbolicRegression object. The SymbolicRegression object provides methods for quadratic, cubic, and

more general symbolic regression.

6.11.3 SymbolicRegression Object

Object Methods:

1 object SymbolicRegression:

2

3 def apply (x: MatrixD , y: VectorD , fname: Array [String] = null , ...

4 def buildMatrix (x: MatrixD , fname: Array [String], ...

5 def rescale (x: MatrixD , y: VectorD , fname: Array [String] = null , ...

6 def crossNames (nm: Array [String]): Array [String] =

7 def crossNames3 (nm: Array [String]): Array [String] =

8 def quadratic (x: MatrixD , y: VectorD , fname: Array [String] = null , ...

9 def cubic (x: MatrixD , y: VectorD , fname: Array [String] = null , ...

10

11 end SymbolicRegression

The apply method is flexible enough to include many functional forms as terms in a model. Feature

selection can be used to eliminate many of the terms to produce a meaningful and interpretable model.

Note, unless measurements are precise and experiments are controlled, other terms besides the one given by

Newton’s of Universal Gravitation are likely to be selected.

1 @param x the initial data/input m-by -n matrix (before expansion)

2 must not include an intercept column of all ones

3 @param y the response/output m-vector

4 @param fname the feature/variable names (defaults to null)

228

5 @param powers the set of powers to raise matrix x to (defaults to null)

6 @param intercept whether to include the intercept term (column of ones) _1

7 (defaults to true)

8 @param cross whether to include 2-way cross/interaction terms x_i x_j

9 (defaults to true)

10 @param cross3 whether to include 3-way cross/interaction terms x_i x_j x_k

11 (defaults to false)

12 @param hparam the hyper -parameters (defaults to Regression.hp)

13 @param terms custom terms to add into the model , e.g.,

14 Array ((0, 1.0), (1, -2.0)) adds x0 x1ˆ(-2)

15

16 def apply (x: MatrixD , y: VectorD , fname: Array [String] = null ,

17 powers: Set [Double] = null , intercept: Boolean = true ,

18 cross: Boolean = true , cross3: Boolean = false ,

19 hparam: HyperParameter = Regression.hp,

20 terms: Array [Xj2p]*): Regression =

21 val fname_ = if fname != null then fname

22 else x.indices2.map ("x" + _).toArray

23

24 val (xx, f_name) = buildMatrix (x, fname_ , powers , intercept , cross , cross3 ,

25 terms :_*)

26 val mod = new Regression (xx, y, f_name , hparam)

27 mod.modelName = "SymbolicRegression" + (if cross then "X" else "") +

28 (if cross3 then "X" else "")

29 mod

30 end apply

where type Xj2p = (Int, Double) indicates raising column Xj to the p-th power.

6.11.4 Implementation of the apply Method

The apply method forms an expanded matrix and passes it to the Regression class. The following arguments

control what terms are added to a model:

1. The powers set takes each column in matrix X and raises it to the pth power for every p ∈ powers.

The expression Xp produces a matrix with all columns raised to the pth power. For example, Set (1,

2, 0.5) will add the original columns, quadratic columns, and square root columns.

2. The intercept flag indicates whether an intercept (column of ones) is to be added to the model.

Again, such a column must not be included in the original matrix.

3. The cross flag indicates whether two-way cross/interaction terms of the form xixj (for i 6= j) are to

be added to the model.

4. The cross3 flag indicates whether three-way cross/interaction terms of the form xixjxk (for i, j, k not

all the same) are to be added to the model.

5. The terms (repeated) array allows custom terms to add into the model. For example,

1 Array ((0, 1.0), (1, -2))

adds the term x0x
−2
1 to the model. As this argument is repeated (Array [Xj2p]*) due to the star (*),

additional custom terms may be added. The * makes the last argument a vararg.

229

Much of functionality to do this is supplied by the MatrixD class in the mathstat package. The operator

++^ concatenates two matrices column-wise, while operator x~^p returns a new matrix where each of the

columns in the original matrix is raised to the pth power. The crossAll method returns a new matrix

consisting of columns that multiply each column by every other column. The crossAll3 method returns a

new matrix consisting of columns that multiply each column by all combinations of two other columns.

buildMatrix Method

The bulk of the work is done by the buildMatrix method that creates the input data matrix, column by

column.

1 def buildMatrix (x: MatrixD , fname: Array [String],

2 powers: Set [Double], intercept: Boolean ,

3 cross: Boolean , cross3: Boolean ,

4 terms: Array [Xj2p]*): (MatrixD , Array [String]) =

5 val _1 = VectorD.one (x.dim) // one vector

6 var xx = new MatrixD (x.dim , 0) // start empty

7 var fname_ = Array [String] ()

8

9 if powers != null then

10 if powers contains 1 then

11 xx = xx ++ˆ x // add linear terms x

12 fname_ = fname

13 end if

14 for p <- powers if p != 1 do

15 xx = xx ++ˆ x~ˆp // add other power xˆp terms

16 fname_ ++= fname.map ((n) => s"$nˆ$p.toInt}")

17 end for

18 end if

19

20 if terms != null then

21 debug ("buildMatrix", s"add customer terms = $stringOf (terms)}")

22 var z = _1.copy

23 var s = ""

24 for t <- terms do

25 for (j, p) <- t do // x_j to the p-th power

26 z *= x(?, j)~ˆp

27 s = s + s"x$jˆ$p.toInt}"

28 end for

29 xx = xx :ˆ+ z // add custom term/column t

30 fname_ = fname_ :+ s

31 end for

32 end if

33

34 if cross then

35 xx = xx ++ˆ x.crossAll // add 2-way cross x_i x_j

36 fname_ ++= crossNames (fname)

37 end if

38

39 if cross3 then

40 xx = xx ++ˆ x.crossAll3 // add 3-way cross x_i x_j x_k

41 fname_ ++= crossNames3 (fname)

42 end if

43

230

44 if intercept then

45 xx = _1 +ˆ: xx // add intercept term (_1)

46 fname_ = Array ("one") ++ fname_

47 end if

48

49 (xx , fname_) // return expanded matrix

50 end buildMatrix

6.11.5 Regularization

Due to fact that symbolic regression may introduce many terms into the model and have high multi-

collinearity, regularization becomes even more important.

Symbolic Ridge Regression

Symbolic Ridge Regression can be beneficial in dealing with multi-collinearity. The SymRidgeRegression

object supports the same methods that SymbolicRegression does, except buildMatrix that it reuses.

1 object SymRidgeRegression:

2

3 @param x the initial data/input m-by-n matrix (before expansion)

4 must not include an intercept column of all ones

5 @param y the response/output m-vector

6 @param fname the feature/variable names (defaults to null)

7 @param powers the set of powers to raise matrix x to (defaults to null)

8 @param cross whether to include 2-way cross/interaction terms x_i x_j

9 (defaults to true)

10 @param cross3 whether to include 3-way cross/interaction terms x_i x_j x_k

11 (defaults to false)

12 @param hparam the hyper -parameters (defaults to RidgeRegression.hp)

13 @param terms custom terms to add into the model , e.g.,

14 Array ((0, 1.0), (1, -2.0)) adds x0 x1ˆ(-2)

15

16 def apply (x: MatrixD , y: VectorD , fname: Array [String] = null ,

17 powers: Set [Double] = null , cross: Boolean = true , cross3: Boolean = false ,

18 hparam: HyperParameter = RidgeRegression.hp,

19 terms: Array [Xj2p]*): RidgeRegression =

20 val fname_ = if fname != null then fname

21 else x.indices2.map ("x" + _).toArray // default names

22

23 val (xx, f_name) = SymbolicRegression.buildMatrix (x, fname_ , powers ,

24 false , cross , cross3 , terms :_*)

25 // val mod = new RidgeRegression (xx, y, f_name , hparam) // user centers

26 val mod = RidgeRegression.center (xx, y, f_name , hparam) // auto. centers

27 mod.modelName = "SymRidgeRegression" + (if cross then "X" else "") +

28 (if cross3 then "XX" else "")

29 mod

30 end apply

It requires the data to be centered and has no intercept (see exercises).

231

Symbolic Lasso Regression

Other forms of regularization can be useful as well. Symbolic Lasso Regression can be beneficial in dealing

with multi-collinearity and more importantly by setting some parameters/coefficients bj to zero, thereby

eliminating the jth term. This is particularly important for symbolic regression as the number of possible

terms can become very large.

1 object SymLassoRegression:

2

3 @param x the initial data/input m-by -n matrix (before expansion)

4 must not include an intercept column of all ones

5 @param y the response/output m-vector

6 @param fname the feature/variable names (defaults to null)

7 @param intercept whether to include the intercept term (column of ones) _1 (defaults to

true)

8 @param powers the set of powers to raise matrix x to (defaults to null)

9 @param cross whether to include 2-way cross/interaction terms x_i x_j (defaults to

true)

10 @param cross3 whether to include 3-way cross/interaction terms x_i x_j x_k (defaults

to false)

11 @param hparam the hyper -parameters (defaults to LassoRegression.hp)

12 @param terms custom terms to add into the model , e.g., Array ((0, 1.0), (1, -2.0))

13 adds x0 x1ˆ(-2)

14

15 def apply (x: MatrixD , y: VectorD , fname: Array [String] = null ,

16 powers: Set [Double] = null , intercept: Boolean = true ,

17 cross: Boolean = true , cross3: Boolean = false ,

18 hparam: HyperParameter = LassoRegression.hp,

19 terms: Array [Xj2p]*): LassoRegression =

20 val fname_ = if fname != null then fname

21 else x.indices2.map ("x" + _).toArray // default names

22

23 val (xx, f_name) = SymbolicRegression.buildMatrix (x, fname_ , powers , intercept ,

24 cross , cross3 , terms :_*)

25 val mod = new LassoRegression (xx, y, f_name , hparam)

26 mod.modelName = "SymLassoRegression" + (if cross then "X" else "") +

27 (if cross3 then "XX" else "")

28 mod

29 end apply

6.11.6 Exercises

1. Exploratory Data Analysis Revisited. For each predictor variable xj in the Example AutoMPG

dataset, determine the best power to raise that column to. Plot y and yp versus xj for SimpleRegression.

Compare this to the plot of y and yp versus xj for SymbolicRegression using the best power.

2. Combine all the best powers together to form a model matrix with the same number of columns as

the original AutoMPG matrix and compare SymbolicRegression with Regression on the original

matrix.

3. Use forward, backward and stepwise regression to look for a better (than the last exercise) combination

of features for the AutoMPG dataset.

232

4. Redo the last exercise using SymRidgeRegression. Note any differences.

5. Redo the last exercise using SymLassoRegression. Note any differences.

6. When there are for example quadratic terms added to the expanded matrix, explain why it will not

work to simply center (by subtracting the column means) the original data matrix X.

7. Compare the effectiveness of the following two search strategies that are used in Symbolic Regression:

(a) Genetic Algorithms and (b) FFX Algorithm.

8. Present a review of a paper that discusses how Symbolic Regression has been used to reproduce a

theory in a scientific discipline.

233

6.12 Transformed Regression

The TranRegression class supports transformed multiple linear regression and hence, the predictor vector

x is multi-dimensional [1, x1, ...xk]. In certain cases, the relationship between the response scalar y and the

predictor vector x is not linear. There are many possible functional relationships that could apply [144], but

five obvious choices are the following:

1. The response grows exponentially versus a linear combination of the predictor variable.

2. The response grows quadratically versus a linear combination of the predictor variable.

3. The response grows as the square root of a linear combination of the predictor variable.

4. The response grows logarithmically versus a linear combination of the predictor variable.

5. The response grows inversely (as the reciprocal) versus a linear combination of the predictor variable.

The capability can be easily implemented by introducing a transform (transformation function) into Regression.

The transformation function and its inverse are passed into the TranRegression class which extends the

Regression class.

ft : R→ R transformation function (6.94)

fa : R→ R activation function (6.95)

The transform ft (tran) and its inverse transform fa = f−1
t (itran) for the five cases are as follows:

(log, exp), (log1p, expm1), (sqrt, sq), (sq, sqrt), (exp, log), (recip, recip)

The second pair is the first pair shifted by one (log1p(x) = log(1 + x) and expm1(x) = exp(x)− 1) to better

handle cases where x is very small. These and other common functions can be found in the scala.math

package or the scalation package defined in CommonFunctions.scala.

Transformed Regression models extend the reach of linear models while maintaining their simplicity and

highly efficient parameter estimation techniques. Beyond these models lay Generalized Linear Models and

Nonlinear Models.

6.12.1 Model Equation

The goal then is to fit the parameter vector b in the transformed model/regression equation

ft(y) = b · x + ε = b0 + b1x1 + ... bkxk + ε (6.96)

where ε represents the residuals (the part not explained by the model) and ft (tran) is the function (defaults

to log) used to transform the response y. For example, for a log transformation, the equation becomes the

following:

log(y) = b · x + ε = b0 + b1x1 + ... bkxk + ε (6.97)

The transform ft (tran) is implemented in the TranRegression class by transforming y and passing it to

the Regression superclass (multiple linear regression).

234

1 Regression (x, y.map (tran), fname_ , hparam)

The inverse transform fa (itran) is then applied in the overridden predict method.

1 override def predict (z: VectorD): Double = itran (b dot z)

6.12.2 Training

Using several data samples as a training set (X,y), a loss function L(b) can be minimized to find an optimal

solution for the parameter vector b.

The training diagram shown in Figure 6.10 illustrates how the ith instance/row flows through the diagram

computing the transformed response z = ft(y), the predicted transformed response ẑ = b · x and the

transformed error e = z − ẑ.

(X,y)

x0

x1

x2

ẑ

b · x

z

e = z − ẑ

b0

b1

b2

ft(yi)

xi0

xi1

xi2

Figure 6.10: Training Diagram for Transformed Regression

Note, the actual (untransformed) error is ε = y − ŷ = fa(z)− fa(ẑ).

The loss function is based on the transformed errors,

L(b) =
1

2
‖e‖2 =

1

2
‖z− ẑ‖2 =

1

2
‖ft(y)−Xb‖2 (6.98)

where the transformed error vector e = z− ẑ, z = ft(y), and ẑ = Xb. Note, ft : Rm → Rm is the vectorized

version of ft. See the exercises for a loss function based the actual (untransformed) errors.

Taking the gradient of the loss function and setting it to zero,

∇L(b) = X
ᵀ

[ft(y)−Xb] = 0 (6.99)

yields the Normal Equations for Transformed Regression.

(X
ᵀ

X)b = X
ᵀ

ft(y) (6.100)

235

6.12.3 Square Root Transformation

The square root transformation takes the square root of the response variable and regresses it onto a linear

model.

ft(y) =
√
y = b · x + ε (6.101)

As an example in 1D, the TranRegression class is compared to the quadratic method and the Regression

class.

y = b0 + b1x+ ε regression

y = b0 + b1x+ b2x
2 + ε quadratic regression

√
y = b0 + b1x+ ε sqrt transformed regression

The ScalaTion code shown below compares these three models. To run this code, be sure to add the

appropriate package statement, depending on where this code is placed.

1 import scala.math.sqrt

2 import scalation._

3 import scalation.mathstat._

4 import scalation.modeling._

5

6 @main def tranRegressionTest (): Unit =

7

8 // 8 data points: x y

9 val xy = MatrixD ((8, 2), 1, 2, // 8-by -2 combined matrix

10 2, 5,

11 3, 10,

12 4, 15,

13 5, 20,

14 6, 30,

15 7, 50,

16 8, 60)

17 val x_fname = Array ("x") // names of features for x

18 val ox_fname = Array ("_1", "x") // names of features for ox

19

20 println ("model: y = b0 + b1*x1 + b2*x1ˆ2")

21 println (s"xy = $xy")

22

23 val oxy = VectorD.one (xy.dim) +ˆ: xy // combined matrix: ones column

24 val (ox, y) = (oxy.not(?, 2), oxy(?, 2)) // (data matrix , response column)

25 val x = xy.not(?, 1) // data matrix with no _1 column

26

27 banner ("Regression")

28 val reg = Regression (oxy , ox_fname)() // create a Regression model

29 reg.trainNtest ()() // train and test the model

30 println (reg.summary ()) // parameter/coefficient stats

31 val yp = reg.predict (ox) // y predicted for Regression

32

33 banner ("Quadrastic Regression")

34 val qrg = SymbolicRegression.quadratic (x, y, x_fname) // create a Quadratic Regression

35 qrg.trainNtest ()() // train and test the model

236

36 println (qrg.summary ()) // parameter/coefficient stats

37 val yp2 = qrg.predict (qrg.getX) // y predicted for Quadratic

38

39 banner ("Transformed Regression")

40 val mod = new TranRegression (ox, y, ox_fname , Regression.hp ,

41 sqrt , sq) // sqrt Transformed Regression

42 mod.trainNtest ()() // train and test the model

43 println (mod.summary ()) // parameter/coefficient stats

44 val yp3 = mod.predict (ox) // y predicted for Transformed

45

46 val mat = MatrixD (y, yp, yp2 , yp3)

47 println (s"mat = $mat")

48 new PlotM (null , mat , null , "y vs. yp vs. yp2 vs. yp3", true)

49

50 end tranRegressionTest

Figure 6.11 shows the predictions (yp) of the Regression, quadratic and TranRegression models.

1 2 3 4 5 6 7 8
−10

10

20

30

40

50

60

x

y

Figure 6.11: Actual y (red) vs. Regression (green) vs. quadratic (blue) vs. TranRegression (black)

Notice that the sqrt transformed regression model closely follows the quadratic regression model, yet has one

fewer parameter. The square root transformation can model quadratic effects and stabilize error variance,

but it makes interpretation of coefficients less direct. See the exercises for a comparison.

6.12.4 Log Transformation

The log transformation takes the logarithm (defaults to ln, the natural log) of the response variable and

regresses it onto a linear model.

ft(y) = log(y) = b · x + ε (6.102)

Imagine a system where the rate of change of the response variable y with the predictor variable x (e.g.,

time) is proportional to its current value y and is y0 when x = 0.

237

dy

dx
= gy

This differential equation can be solved by direct integration to obtain∫
dy

y
=

∫
g dx

As the integral of
1

y
is ln(y), integrating both sides gives

ln(y) = gx+ C

Solving for the constant gives C = ln(y0), and then taking the exp function of both sides produces (ignoring

noise/error)

ln(y) = gx+ ln(y0)

y = y0e
gx

When the growth factor g is positive, the system exhibits exponential growth, while when it is negative, it

exhibits exponential decay. So far we have ignored noise. For previous modeling techniques, we have assumed

that noise is additive and typically normally distributed. For phenomena exhibiting exponential growth or

decay, this may not be the case. When the error is multiplicative, we may collect it into the exponent.

y = y0e
gx+ε

Now applying a log transformation, will yield

log(y) = log(y0) + gx+ ε = b0 + b1x+ ε

An alternative to using TranRegression is to use Exponential Regression ExpRegression, a form of

Nonlinear Regression Model (see the exercises for a comparison).

6.12.5 Reciprocal Transformation

The reciprocal (or inverse) transformation takes the reciprocal of the response variable and regresses it onto

a linear model.

ft(y) = y−1 = b · x + ε (6.103)

It may be the case that rates, such as Miles-Per-Gallon (MPG), are inversely related to other quantities.

This can be tested using the AutoMPG dataset as follows:

1 import scala.math._

2 import scalation.mathstat._

3 import scalation.modeling._

4 import scalation.modeling.Example_AutoMPG._

5 import scalation.modeling.TranRegression._

6

7 val f = (recip , recip , "recip")

8 // val f = (log , exp , "log")

238

9 // val f = (sqrt , sq, "sqrt")

10 // val f = (sq, sqrt , "sq")

11 // val f = (exp , log , "exp")

12 // TranRegression.setLambda (0.2); val f = (box_cox , cox_box , "box_cox ")

13

14 banner (s"TranRegression with $f._3} transform")

15 val mod = TranRegression (ox , y, ox_fname , Regression.hp , f._1, f._2)

16 mod.trainNTest ()()

17 println (mod.summary ())

18

19 val (cols , rSq) = mod.forwardSelAll () // Rˆ2, Rˆ2 bar , Rˆ2 cv

20 val k = cols.size

21 println (s"k = $k, n = $ox.dim2}")

22 new PlotM (null , rSq.T , Array ("Rˆ2", "Rˆ2 bar", "Rˆ2 cv"),

23 s"Rˆ2 vs n for TranRegression $f._3}", lines = true)

24 println (s"rSq = $rSq")

Be sure to try all the commented out transformations as well as various values for λ for the Box-Cox

transformation (see the next subsection).

6.12.6 Box-Cox Transformation

As should be apparent from the last section, there are many transformations that could be applied. In order

to provide a more systematic approach for transforming the response variable, Box-Cox transformations were

developed. These transformations may be used to (1) improve prediction accuracy, (2) stabilize variance

(reduce heteroscedasticity), and (3) improve normality.

Consider the following family of transformation functions.

ft(y) =
yλ − 1

λ
(6.104)

where λ 6= 0 determines the power function on y, e.g., 0.5 for sqrt and 2.0 for sq. The following simplified

version of the form given by Box and Cox may be used as well.

ft(y) = yλ (6.105)

The inverse transform is fa(y) = y1/λ. When λ = 0, the log transformation is used. See the exercises for a

more detailed treatment.

One way to find suitable values for λ (lambda) is to perform grid search over the interval [−3, 3], possibly

as large as [−5, 5].

1 TranRegression (x, y, lambda)

Box-Cox transformations are provided in the class’ companion object.

Note, although the focus has been on transforming the response variable, the predictor variables could

be transformed as well.

6.12.7 Quality of Fit

For a fair comparison with other modeling techniques, the Quality of Fit (QoF) or overall diagnostics are

based on the original response values, as provided by the usual test method. It may be useful to study the

Quality of Fit for the transformed response vector y.map (tran) as well via the test0 method.

239

6.12.8 TranRegression Class

Class Methods:

1 @param x the data/input matrix

2 @param y the response/output vector

3 @param fname_ the feature/variable names (defaults to null)

4 @param hparam the hyper -parameters (defaults to Regression.hp)

5 @param tran the transformation function (defaults to log)

6 @param itran the inverse transformation function to rescale predictions

7 to original y scale (defaults to exp)

8

9 class TranRegression (x: MatrixD , y: VectorD , fname_ : Array [String] = null ,

10 hparam: HyperParameter = Regression.hp,

11 tran: FunctionS2S = log , itran: FunctionS2S = exp)

12 extends Regression (x, y.map (tran), fname_ , hparam):

13

14 def test0 (x_ : MatrixD = x, y_ : VectorD = getY): (VectorD , VectorD) =

15 override def test (x_ : MatrixD = x, y_ : VectorD = y): (VectorD , VectorD) =

16 override def trainNtest (x_ : MatrixD = x, y_ : VectorD = getY)

17 override def predict (z: VectorD): Double = itran (b dot z)

18 override def predict (x_ : MatrixD): VectorD = (x_ * b).map (itran)

19 override def validate (rando: Boolean = true , ratio: Double = 0.2)

20 (idx : IndexedSeq [Int] =

21 testIndices ((ratio * y.dim).toInt , rando)): VectorD =

22 override def buildModel (x_cols: MatrixD): Regression =

6.12.9 Exercises

1. Use the following code to generate a dataset. You will need to import from scalation.math.sq and

scalation.random.

1 val cap = 30

2 val rng = 0 until cap

3 val (m, n) = (cap * cap , 3)

4 val err = Normal (0, cap)

5 val x = new MatrixD (m, n)

6 val y = new VectorD (m)

7 for i <- rng; j <- rng do x(cap * i + j) = VectorD (1, i, j)

8 for k <- y.indices do y(k) = sq (10 + 2 * x(k, 1) + err.gen)

As an alternative, try

1 for k <- y.indices do y(k) = sq (10 + 2 * x(k, 1) + 0.3 * x(k, 2) + err.gen)

Notice that it uses a linear model inside and takes the square for the response variable y. Use

Regression to create a predictive model. Ideally, the model should approximately recapture the

equations used to generate the data. What correspondence do the parameters b have to these equa-

tions? Next, examine the relationship between the response y and predicted response yp, as well as

the residuals (or remaining error) from the model.

240

1 val reg = new Regression (x, y)

2 reg.trainNtest ()()

3 println (reg.summary ())

4

5 val yp = reg.predict (x)

6 val e = y - yp

7

8 new Plot (null , y, yp, "Original Regression y and yp vs. t")

9 new Plot (null , e, null , "Original e vs. t")

Are there discernible patterns in the residuals?

2. Transform the response y to a transformed response y2 that is the square root of the former.

1 val y2 = y.map (sqrt)

Redo the regression as before, but now using the transformed response y2, i.e., new Regression (x,

y2). Compute and plot the corresponding y2 versus yp2 and then e2 vectors. What do the residuals

look like now? How can predictions be made on the original scale?

3. Now transform yp2 to yp3 in order the match the actual response y, by using the inverse transformation

function sq. Now, compute and plot the corresponding y versus yp3 and then e3 vectors. How well

does yp3 predict the original response y? Compute the Coefficient of Determination R2. What is the

difference between the residuals e2 and e3? Finally, use PlotM to compare Regression vs. Transformed

Regression.

1 val ys2 = MatrixD (y2, yp2)

2 val ys3 = MatrixD (y, yp3 , yp)

3 new PlotM (null , ys2.T , null , "Transformed")

4 new PlotM (null , ys3.T , null , "Tran -back")

4. The TranRegression class provides direct support for making transformations. Compare the quality

of fit resulting from Regression versus TranRegression.

1 banner ("Regression")

2 val rg = new Regression (x, y)

3 rg.trainNTest ()()

4 println (rg.summary ())

5

6 banner ("TranRegression")

7 val trg = new TranRegression (x, y, null , null , sqrt , sq)

8 trg.trainNTest ()()

9 println (rg.summary ())

5. Extend the previous exercise to include quadratic regression in the comparison.

6. Compare SimpleRegression, TranRegression and ExpRegression on the beer foam dataset www.tf.

uni-kiel.de/matwis/amat/iss/kap_2/articles/beer_article.pdf. The last two are similar, but

TranRegression assumes multiplicative noise, while ExpRegression assumes additive noise, so they

produce different predictions. Plot and compare the three predictions.

241

www.tf.uni-kiel.de/matwis/amat/iss/kap_2/articles/beer_article.pdf
www.tf.uni-kiel.de/matwis/amat/iss/kap_2/articles/beer_article.pdf

1 val x1 = VectorD (0, 15, 30, 45, 60, 75, 90, 105, 120, 150, 180,

2 210, 240, 300, 360)

3 val y = VectorD (14.0, 12.1, 10.9, 10.0, 9.3, 8.6, 8.0, 7.5,

4 7.0, 6.2, 5.5, 4.5, 3.5, 2.0, 0.9)

5 val _1 = VectorD.one (x1.dim)

6 val x = MatrixD (_1, x1)

7. Compare the following loss function based on actual (untransformed) errors ε with the one based on

transformed errors e.

L(b) =
1

2
‖ε‖2 =

1

2
‖y − ŷ‖2 =

1

2
‖y − fa(Xb)‖2

8. A general form of transformation functions [164] was given by Tukey in 1957.

ft(y) = yλ λ 6= 0 (6.106)

ft(y) = log y λ = 0 (6.107)

and was refined by Box and Cox in 1964.

ft(y) =
yλ − 1

λ
λ 6= 0 (6.108)

ft(y) = log y λ = 0 (6.109)

Show the former equations have a discontinuity at λ = 0, while the latter do not. Hint: Take the limit

as λ→ 0 and use L’Hospital’s Rule.

9. Explain the advantage of the following transformation for λ 6= 0 proposed by Bickel and Doksum in

1981.

ft(y) =
|y|λsign(y)− 1

λ
(6.110)

242

6.13 Regression with Categorical Variables

An ANalysis of COVAriance (ANCOVA) model may be developed using the RegressionCat class. This

type of model comes into play when input variables are mixed, i.e., some are (i) continuous/ordinal, while

others are (ii) categorical/binary. The main difference between the two types of variables is type (i) variables

define the notion of less than (<), while variables of type (ii) do not. Also, the expected value means much

less for type (ii) variables, e.g., what is the expected value of English, French and Spanish? If we encode a

language variable xj as 0, 1 or 2 for English, French and Spanish, respectively, and half of a group speaks

English with the rest speaking Spanish, then the expected value would be French. Worse, if the encoding

changes, so does the expected value.

6.13.1 Handling Categorical Variables

Binary Variables

In the binary case, when a variable xj may take on only two distinct values, e.g., Red or Black, then it may

simply be encoded as 0 for Red and 1 for Black. Therefore, a single zero-one, encoded/dummy variable xj ,

can be used to distinguish the two cases. For example, when xj ∈ {Red,Black}, it would be replaced by

one encoded/dummy variable, xj0 as shown in Table 6.11.

Table 6.8: Encoding of a Binary Variable

xj encoded xj dummy xj0

Red 0 0

Black 1 1

Categorical Variables

For the more general categorical case, when the number distinct values for a variable xj is greater than two,

simply encoding the jth column may not be ideal. Instead multiple dummy variables should be used. The

number of dummy variables required is one less than the number of distinct values ndv. In one hot encoding,

the number of dummy variables may be equal to the ndv, however, this will produce a singular expanded

data matrix X, i.e., perfect multi-collinearity (see the exercises).

First, the categorical variable xj may be encoded using integer values as follows:

encoded xj = 0, 1, . . . , ndv − 1

Next, for categorical variable xj , create ndv − 1 dummy variables {xjk|k = 0, . . . , ndv − 2} and use the

following loop to set the value for each dummy variable.

1 for k <- 0 until n_dv - 1 do x_jk = is (x_j == k+1)

where 1{c} is the indicator function that returns 1 when the condition c evaluates to true and 0 otherwise

(the is function in ScalaTion). In this way, xj ∈ {English, French,German, Spanish} would be replaced

by three dummy variables, xj0, xj1 and xj2, as shown in Table 6.11.

243

Table 6.9: Conventional Dummy Encoding of a Categorical Variable

xj encoded xj dummy xj0, xj1, xj2

English 0 0, 0, 0

French 1 1, 0, 0

German 2 0, 1, 0

Spanish 3 0, 0, 1

Unfortunately, for the conventional encoding of a categorical variable, a dummy variable column will

be identical to its square, which will result in singular matrix for quadratic regression. One solution is

to exclude dummy variables in the column expansion done by quadratic. Alternatively, a more robust

encoding such as the one given in Table 6.10 may be used.

Table 6.10: Robust Dummy Encoding of a Categorical Variable

xj encoded xj dummy xj0, xj1, xj2

English 0 1, 1, 1

French 1 2, 1, 1

German 2 1, 2, 1

Spanish 3 1, 1, 2

map2Int Method

Conversion from strings to an integer encoding can be accomplished using the map2Int method in the

VectorS class within the scalation.mathstat package. It converts a VectorS into a VectorI by mapping

each distinct value in VectorS into a distinct numeric integer value, returning the new vector and the

bidirectional mapping, e.g., VectorS ("A", "B", "C", "A", "D") will be mapped to VectorI (0, 1, 2,

0, 3). Use the from method in BiMap to recover the original string.

1 def map2Int: (VectorI , BiMap [String , Int]) =

2 val map = new BiMap [String , Int] ()

3 var count = 0

4 for i <- indices if ! (map contains (v(i))) do

5 map += v(i) -> count

6 count += 1

7 end for

8 val vec = VectorI (for i <- indices yield map(v(i)))

9 (vec , map)

10 end map2Int

The vector of encoded integers vec can be made into a matrix using MatrixI (vec). To produce the

dummy variable columns the dummyVars function within the RegressionCat companion object may be

called. See the first exercise for an example.

Multi-column expansion may done by the caller in cases where there are few categorical variables, by

expanding the input data matrix before passing it to the Regression class. The expansion occurs automati-

244

cally when the RegressionCat class is called. This class performs the expansion and then delegates to the

work to the Regression class.

Before continuing the discussion of the RegressionCat class, a restricted form is briefly discussed.

6.13.2 ANOVA

An ANalysis Of VAriance (ANOVA) model may be developed using the ANOVA1 class. This type of model

comes into play when all input/predictor variables are categorical/binary. One-way Analysis of Variance

allows only one binary/categorical treatment variable and is framed in ScalaTion using General Linear

Model notation and supports the use of one binary/categorical treatment variable t. For example, the

treatment variable t could indicate the type of fertilizer applied to a field.

The ANOVA1 class in ScalaTion only supports one categorical variable, so in general, x consists of ndv−1

dummy variables dk for k ∈ {1, ndv − 1}

y = b · x + ε = b0 + b1d1 + . . . + bldl + ε (6.111)

where l = ndv−1 and ε represents the residuals (the part not explained by the model). The dummy variables

are binary and are used to determine the level/type of a categorical variable. See http://psych.colorado.

edu/~carey/Courses/PSYC5741/handouts/GLM%20Theory.pdf.

In ScalaTion, the ANOVA1 class is implemented using regular multiple linear regression. A data/input

matrix X is built from columns corresponding to levels/types for the treatment vector t. As with multiple

linear regression, the y vector holds the response values. Multi-way Analysis of Variance may be performed

using the more general RegressionCat class.

6.13.3 RegressionCat Implementation

When there is only one categorical/binary variable, x consists of the usual k = n−1 continuous variables xj .

Assuming there is a single categorical variable, call it t, it will need to be expanded into ndv − 1 additional

dummy variables.

t expands to d = [d0, . . . , dl] where l = ndv − 2

Therefore, the regression equation becomes the following:

y = b · x + ε = b0 + b1x1 + . . . + bkxk + bk+1d0 + . . . + bk+ldl + ε (6.112)

The dummy variables are binary (or shifted binary) and are used to determine the level of a categorical

variable. See http://www.ams.sunysb.edu/~zhu/ams57213/Team3.pptx.

In general, there may be multiple categorical variables and an expansion will be done for each such

variable. Then the data for continuous variable are collected into matrix X and the values for the categorical

variables are collected into matrix T .

In ScalaTion, RegressionCat is implemented using regular multiple linear regression. An augmented

data/input matrix X is build from X corresponding to the continuous variables with additional columns

corresponding to the multiple levels for columns in the treatment matrix T . As with multiple linear regression,

the y vector holds the response values.

245

http://psych.colorado.edu/~carey/Courses/PSYC5741/handouts/GLM%20Theory.pdf
http://psych.colorado.edu/~carey/Courses/PSYC5741/handouts/GLM%20Theory.pdf
http://www.ams.sunysb.edu/~zhu/ams57213/Team3.pptx

6.13.4 RegressionCat Class

Class Methods:

1 @param x_ the data/input matrix of continuous variables

2 @param t the treatment/categorical variable matrix

3 @param y the response/output vector

4 @param fname_ the feature/variable names (defaults to null)

5 @param hparam the hyper -parameters (defaults to Regression.hp)

6

7 class RegressionCat (x_ : MatrixD , t: MatrixI , y: VectorD ,

8 fname_ : Array [String] = null ,

9 hparam: HyperParameter = Regression.hp)

10 extends Regression (x_ ++ˆ RegressionCat.dummyVars (t), y, fname_ , hparam)

11 with ExpandableVariable:

12

13 def expand (zt: VectorD , nCat: Int = t.dim2): VectorD =

14 def predict_ex (zt: VectorD): Double = predict (expand (zt))

6.13.5 Exercises

1. Mapping Strings to Integers. Use the map2Int method in the VectorS class within ScalaTion’s

scalation.mathstat package to convert the given strings into encoded integers. Turn this vector into

a matrix and pass it into the dummyVars function to produce the dummy variable columns. Print out

the values xe, xm and xd.

1 val x1 = VectorS ("English", "French", "German", "Spanish")

2 val (xe, map) = x1.map2Int // map strings to integers

3 val xm = MatrixI (xe) // form a matrix from vector

4 val xd = RegressionCat.dummyVars (xm) // make dummy variable columns

Add code to recover the string values from the encoded integers using the returned map.

2. Compare the results of using the RegressionCat class versus the Regression class for the following

dataset.

1 // 6 data points: one x_1 x_2

2 val x = MatrixD ((6, 3), 1.0, 36.0, 66.0, // 6-by -3 matrix

3 1.0, 37.0, 68.0,

4 1.0, 47.0, 64.0,

5 1.0, 32.0, 53.0,

6 1.0, 42.0, 83.0,

7 1.0, 1.0, 101.0)

8 val t = MatrixI ((6, 1), 1, 1, 2, 2, 3, 3) // treatments levels

9 val y = VectorD (745.0 , 895.0 , 442.0, 440.0, 643.0, 1598.0) // response vector

10 val z = VectorD (1.0, 20.0, 80.0, 2) // new instance

11

12 println (s"x = $x")

13 println (s"t = $t")

14 println (s"y = $y")

246

15

16 val xt = x ++ˆ t // combine x and t

17

18 banner ("Regression Model")

19 val reg = new Regression (xt, y) // treated as ordinal

20 println (s"xt = $xt")

21 reg.trainNtest ()() // train and test the model

22 println (reg.summary ()) // parameter statistics

23 val yp = reg.predict (z)

24 println (s"predict ($z) = $yp")

25

26 banner ("RegressionCat Model")

27 val mod = new RegressionCat (x, t, y) // treated as categorical

28 println (s"xt = $mod.getX}")

29 mod.trainNtest ()() // train and test the model

30 println (mod.summary ()) // parameter statistics

31 val ze = VectorD (1.0, 20.0, 80.0, 2, 1) // expanded vector

32 assert (ze == mod.expand (z))

33

34 println (s"predict ($ze) = $mod.predict (ze)}")

35 println (s"predict_ex ($z) = $mod.predict_ex (z)}")

3. Test the RegressionCat class on the AutoMPG dataset using the RegressionCat.apply function.

1 val mod = RegressionCat (oxr , y, 6, oxr_fname)

The apply method creates a RegressionCat object from a single data matrix, splitting it into regular

and categorical matrices based on the value of nCat.

1 @param x the data/input matrix of continuous variables

2 @param y the response/output vector

3 @param nCat the index at which the categorical variables start

4 @param fname the feature/variable names

5 @param hparam the hyper -parameters

6

7 def apply (xt: MatrixD , y: VectorD , nCat: Int , fname: Array [String] = null ,

8 hparam: HyperParameter = Regression.hp): RegressionCat =

9 val x = xt(?, 0 until nCat)

10 val t: MatrixI = xt(?, nCat until xt.dim2)

11 new RegressionCat (x, t, y, fname , hparam)

12 end apply

4. There is problem called, “too many dummy variables”. What is this problem and when does it become

significant?

5. To reduce the number of dummy variables and thereby the number of columns in a data matrix, de-

pending on the application, it may make sense to combine or fuse similar levels. Suppose a dataset has

state as categorical variable with 50 possible values. Rather than converting this into 49 new dummy

variable columns, consider a way of grouping based on (1) proximity/geography or (2) similarity/com-

mon characteristics.

6. For each string (or word) One-Hot Encoding will introduce a column for each distinct string. The

column that is hot (1) directly indicates what the string is, (e.g., [0, 1, 0, 0] represents French).

247

Table 6.11: One-Hot Encoding of a Categorical Variable

xj encoded xj xj0, xj1, xj2, xj3

English 0 1, 0, 0 0

French 1 0, 1, 0 0

German 2 0, 0, 1 0

Spanish 3 0, 0, 1 1

Although this scheme is simple, consider the following equation.

xj0 + xj1 + xj2 + xj3 = 1

Is this a problem? Explain.

248

6.14 Weighted Least Squares Regression

The RegressionWLS class supports weighted multiple linear regression. In this case, the predictor vector x

is multi-dimensional [1, x1, ...xk].

6.14.1 Model Equation

As before the model/regression equation is

y = b · x + ε = b0 + b1x1 + . . . + bkxk + ε (6.113)

where ε represents the residuals (the part not explained by the model). Under multiple linear regression, the

parameter vector b is estimated using matrix factorization with the Normal Equations.

(X
ᵀ

X)b = X
ᵀ

y

Let us look at the error vector ε = y − Xb in more detail. A basic assumption is that ε ∼ N(0, σ2I).

i.e., each error is Normally distributed with mean 0 and variance σ2. If this is violated substantially, the

estimate for the parameters b may be less accurate than desired. One way this can happen is that the

variance changes εi ∼ N(0, σ2
i). This is called heteroscedasticity (or heteroskedasticity) and it would imply

that certain instances (data points) would have greater influence b than they should. The problem can be

corrected by weighting each instance by the inverse of its residual/error variance.

wi =
1

σ2
i

(6.114)

This begs the question on how to estimate the residual/error variance σ2
i .

6.14.2 Root Absolute Deviation

There are many ways to try estimate the residual/error variance. One way by performing unweighted

regression of y onto X to obtain the error vector ε. It is used to compute a Root Absolute Deviation (RAD)

vector r.

r =
√
|ε| (6.115)

In ScalaTion, RAD is computed by the rad method.

1 @param x the input/data m-by-n matrix

2 @param y the response/output m-vector

3

4 def rad (x: MatrixD , y: VectorD): VectorD =

5 val ols_y = new Regression (x, y) // run OLS on original data

6 ols_y.train () // train the model on y

7 val e = y - ols_y.predict (x) // deviation/error vector

8 e.map ((ei) => sqrt (abs (ei))) // root absolute deviations (RAD’s)

9 end rad

A simple approach would be to make the weight wi inversely proportional to ri.

wi =
1

ri

249

More commonly, a second unweighted regression is performed, regressing r onto X to obtain the predictions

r̂. The predicted RAD’s may be more smooth and less likely to be zero. See Exercise 1 for a comparison or

the two methods setWeights0 (uses ri) and setWeights (uses r̂i).

wi =
1

r̂i
(6.116)

See [127] for additional discussion concerning how to set weights. These weights can be used to build a

diagonal weight matrix W that factors into the Normal Equations

X
ᵀ

WXb = X
ᵀ

Wy (6.117)

In ScalaTion, this is accomplished by computing a weight vector w and taking its square root ω =
√

w.

The data matrix X is then re-weighted by pre-multiplying it by ω (rtW in the code), as if it is a diagonal

matrix rtW *∼: x. The response vector y is re-weighted using vector multiplication rtW * y. The re-

weighted matrix and vector are passed into the Regression class, which solves for the parameter vector

b.

In summary, Weighted Least-Squares (WLS) is accomplished by re-weighting and then using Ordinary

Least Squares (OLS). See http://en.wikipedia.org/wiki/Least_squares#Weighted_least_squares.

6.14.3 RegressionWLS Class

Class Methods:

1 @param x the data/input m-by-n matrix

2 (augment with a first column of ones to include intercept in model)

3 @param y the response/output m vector

4 @param fname_ the feature/variable names (defaults to null)

5 @param w the weight vector (if null , compute in companion object)

6 @param hparam the hyper -parameters (defaults to Regression.hp)

7

8 class RegressionWLS (x: MatrixD , y: VectorD , fname_ : Array [String] = null ,

9 private var w: VectorD = null ,

10 hparam: HyperParameter = Regression.hp)

11 extends Regression ({ setWeights (x, y, w); reweightX (x, w) },

12 reweightY (y, w), fname_ , hparam):

13 def weights: VectorD = w

14 override def diagnose (y: VectorD , yp_ : VectorD , w_ : VectorD = w): VectorD =

15 override def train (x_ : MatrixD = getX , y_ : VectorD = getY): Unit = super.train (x_ ,

y_)

16 override def test (x_ : MatrixD = x, y_ : VectorD = y): (VectorD , VectorD) =

17 override def trainNtest (x_ : MatrixD = getX , y_ : VectorD = getY)

18 override def validate (rando: Boolean = true , ratio: Double = 0.2)

19 (idx : IndexedSeq [Int] =

20 testIndices ((ratio * y.dim).toInt , rando)): VectorD =

250

http://en.wikipedia.org/wiki/Least_squares#Weighted_least_squares

6.14.4 Exercises

1. The setWeights0 method used actual RAD’s rather than predicted RAD’s used by the setWeights

method. Compare the two methods of setting the weights on the following dataset.

1 // 5 data points: one x_1 x_2

2 val x = MatrixD ((5, 3), 1.0, 36.0, 66.0, // 5-by -3 matrix

3 1.0, 37.0, 68.0,

4 1.0, 47.0, 64.0,

5 1.0, 32.0, 53.0,

6 1.0, 1.0, 101.0)

7 val y = VectorD (745.0 , 895.0 , 442.0, 440.0, 1598.0)

8 val z = VectorD (1.0, 20.0, 80.0)

Try the two methods on other datasets and discuss the advantages and disadvantages.

2. Explain why ri or r̂i can serve as replacements for the residual/error variance σ2
i .

3. As Weighted Least Squares (WLS) reduces the contribution of instances with large (predicted) resid-

uals, one might expect MSE, RMSE, and R2 to be worse, but MAE to be better than for Ordinary

Least Squares (OLS). Check this on multiple datasets.

4. Show that re-weighting the data matrix X and the response vector y and solving for the parameter

vector b in the standard Normal Equations (X
ᵀ
X)b = X

ᵀ
y gives the same result as not re-weighting

and solving for the parameter vector b in the Weighted Normal Equations X
ᵀ
WXb = X

ᵀ
Wy.

5. Given an error vector ε, what does its covariance matrix C [ε] represent? How can it be estimated?

What are its diagonal elements?

6. When the non-diagonal elements are non-zero, it may be useful to consider using Generalized Least

Squares (GLS). What are the trade-offs of using this more complex technique?

251

6.15 Polynomial Regression

The PolyRegression class supports polynomial regression. In this case, x is formed from powers of a single

parameter t, [1, t, t2, . . . , tk].

6.15.1 Model Equation

The goal is to fit the parameter vector b in the model/regression equation

y = b · x + ε = b0 + b1t + b2t
2 + . . . + bkt

k + ε (6.118)

where ε represents the residuals (the part not explained by the model). Such models are useful when there

is a nonlinear relationship between a response and a predictor variable, e.g., y may vary quadratically with

t.

A training set now consists of two vectors, one for the m-vector t and one for the m-vector y. An easy

way to implement polynomial regression is to expand each t value into an x vector to form a data/input

matrix X and pass it to the Regression class (multiple linear regression). The columns of data matrix X

represent powers of the vector t.

X =
[
1, t, t2, . . . , tk

]
(6.119)

In ScalaTion the vector t is expanded into a matrix X before calling Regression. The number of

columns in matrix X is the order k plus 1 for the intercept.

1 val x = new MatrixD (t.dim , 1 + k)

2 for i <- t.indices do x(i) = expand (t(i))

3 val mod = new Regression (x, y)

The expand method in the PolyRegression class calls the forms function in the PolyRegression object

that takes a 1-vector and computes the values for all of its polynomial forms/terms, returning them as a

vector.

1 @param v the 1-vector (e.g., i-th row of t) for creating forms/terms

2 @param k number of features/predictor variables (not counting intercept) = 1

3 @param nt the number of terms

4

5 def forms (v: VectorD , k: Int , nt: Int): VectorD =

6 val t = v(0)

7 VectorD (for j <- 0 until nt yield t~ˆj)

8 end forms

The code t~^j takes t to the jth power.

Although ScalaTion support using polynomials with high orders, there is a danger in coincidental

fits and wild extrapolations. Figure 6.12 shows the curves for various polynomials: quadratic, cubic and

quartic functions.

252

1 2 3 4 5 6 7 8

10

20

30

40

50

x

y

Figure 6.12: quadratic (blue), cubic (green), quartic (purple)

6.15.2 PolyRegression Class

Class Methods:

1 @param t the initial data/input m-by -1 matrix: t_i expands to

2 x_i = [1, t_i , t_iˆ2, ... t_iˆk]

3 @param y the response/ouput vector

4 @param ord the order (k) of the polynomial (max degree)

5 @param fname_ the feature/variable names (defaults to null)

6 @param hparam the hyper -parameters (defaults to PolyRegression.hp)

7

8 class PolyRegression (t: MatrixD , y: VectorD , ord: Int , fname_ : Array [String] = null ,

9 hparam: HyperParameter = PolyRegression.hp)

10 extends Regression (PolyRegression.allForms (t, ord), y, fname_ , hparam):

11

12 def expand (z: VectorD): VectorD = PolyRegression.forms (z, n0, nt)

13 def predict (z: Double): Double = predict_ex (VectorD (z))

14 def predict_ex (z: VectorD): Double = predict (expand (z))

Unfortunately, when the order of the polynomial k get moderately large, the multi-collinearity problem

can become severe. In such cases it is better to use orthogonal polynomials rather than regular polynomials

[169]. This is done in ScalaTion by using the PolyORegression class.

6.15.3 PolyORegression Class

Class Methods:

1 @param t the initial data/input m-by -1 matrix: t_i expands to

2 x_i = [1, t_i , t_iˆ2, ... t_iˆk]

3 @param y the response/ouput vector

4 @param ord the order (k) of the polynomial (max degree)

253

5 @param fname_ the feature/variable names (defaults to null)

6 @param hparam the hyper -parameter (defaults to PolyRegression.hp

7

8 class PolyORegression (t: MatrixD , y: VectorD , ord: Int , fname_ : Array [String] = null ,

9 hparam: HyperParameter = PolyRegression.hp)

10 extends Regression (PolyRegression.allForms (t, ord), y, fname_ , hparam):

11

12 def expand (z: VectorD): VectorD = PolyORegression.forms (z, n0, nt)

13 def orthoVector (v: VectorD): VectorD =

14 def predict (z: Double): Double = predict_ex (VectorD (z))

15 def predict_ex (z: VectorD): Double = predict (orthoVector (expand (z)))

6.15.4 Exercises

1. Generate two vectors t and y as follows.

1 val noise = Normal (0.0, 100.0)

2 val t = VectorD.range (0, 100)

3 val y = new VectorD (t.dim)

4 for i <- 0 until 100 do y(i) = 10.0 - 10.0 * i + i~ˆ2 + i * noise.gen

Test new PolyRegression (t, y, order) for various orders and factorization techniques, e.g., reset

hyper-parameter hp.

1 val hp = new HyperParameter; hp += ("factorization", "Fac_Cholesky", "Fac_Cholesky"

)

2 hp("factorization") = "Fac_QR"

Test for multi-collinearity using the correlation matrix and vif.

2. Test new PolyORegression (t, y, order) for various orders and factorization techniques. It will

use orthogonal polynomials to be used instead of simple polynomials. Again, test for multi-collinearity

using the correlation matrix and vif.

3. Work day traffic data has two peaks, one for the morning rush and one for the late afternoon rush.

What polynomial function of time could match these characteristics. Collect traffic data and use

PolyRegression to model the data. Use the lowest order polynomial that provides a reasonable fit.

254

6.16 Trigonometric Regression

The TrigRegression class supports trigonometric regression. In this case, x is formed from trigonometric

functions of a single parameter t, [1, sin(ωt), cos(ωt), . . . , sin(kωt), cos(kωt)].

A periodic function can be expressed as linear combination of trigonometric functions (sine and cosine

functions) of increasing frequencies. Consequently, if the data points have a periodic nature, a trigonometric

regression model may be superior to alternatives.

6.16.1 Model Equation

The goal is to fit the parameter vector b in the model/regression equation

y = b · x + ε = b0 + b1sin(ωt) + b2cos(ωt) + . . . , b2k−1sin(kωt) + b2kcos(kωt) + ε (6.120)

where ω is the base angular displacement in radians (e.g., π) and ε represents the residuals (the part not

explained by the model).

A training set now consists of two vectors, one for the m-vector t and one for the m-vector y. As was done

for polynomial regression, an easy way to implement trigonometric regression is to expand each t value into

an x vector to form a data/input matrix X and pass it to the Regression class (multiple linear regression).

The columns of data matrix X represent sines and cosines at at multiple harmonic frequencies of the vector

t.

X = [1, sin(ωt), cos(ωt), sin(2ωt), cos(2ωt), . . . , sin(kωt), cos(kωt)] (6.121)

For a model with k harmonics (maximum multiplier of ωt), the data matrix can be formed as follows:

1 val x = new MatrixD (t.dim , 1 + 2 * k)

2 for i <- t.indices do x(i) = expand (t(i))

3 val mod = new Regression (x, y)

6.16.2 TrigRegression Class

Class Methods:

1 @param t the initial data/input m-by -1 matrix: t_i expands to x_i

2 @param y the response/ouput vector

3 @param ord the order (k), maximum multiplier in the trig function (kwt)

4 @param fname_ the feature/variable names (defaults to null)

5 @param hparam the hyper -parameters (defaults to Regression.hp)

6

7 class TrigRegression (t: MatrixD , y: VectorD , ord: Int , fname_ : Array [String] = null ,

8 hparam: HyperParameter = Regression.hp)

9 extends Regression (TrigRegression.allForms (t, ord), y, fname_ , hparam):

10

11 def expand (z: VectorD): VectorD = TrigRegression.forms (z, n0, nt, w)

12 def predict (z: Double): Double = predict_ex (VectorD (z))

13 def predict_ex (z: VectorD): Double = predict (expand (z))

255

6.16.3 Exercises

1. Create a noisy cubic function and test how well TrigRegression can fit the data for various values of

k (harmonics) generated from this function.

1 val noise = Normal (0.0, 10000.0)

2 val t = VectorD.range (0, 100)

3 val y = new VectorD (t.dim)

4 for i <- 0 until 100 do

5 val x = (i - 40) /2.0

6 y(i) = 1000.0 + x + x*x + x*x*x + noise.gen

7 end for

2. Make the noisy cubic function periodic and test how well TrigRegression can fit the data for various

values of k (harmonics) generated from this function.

1 val noise = Normal (0.0, 10.0)

2 val t = VectorD.range (0, 200)

3 val y = new VectorD (t.dim)

4 for i <- 0 until 5 do

5 for j <- 0 until 20 do

6 val x = j - 4

7 y(40*i+j) = 100.0 + x + x*x + x*x*x + noise.gen

8 end for

9 for j <- 0 until 20 do

10 val x = 16 - j

11 y(40*i+20+j) = 100.0 + x + x*x + x*x*x + noise.gen

12 end for

13 end for

3. Is the problem of multi-collinearity an issue for Trigonometric Regression?

4. How does Trigonometric Regression relate to Fourier Series?

256

Chapter 7

Classification

When the output/response y is defined on small domains (categorical response), e.g., y ∈ B or

y ∈ Zk = {0, 1, . . . , k − 1} (7.1)

the problem shifts from prediction to classification. This facilitates giving the response meaningful class

names, e.g., low-risk, medium-risk and high-risk. However, when the response is discrete, but unbounded

(e.g, Poisson Regression), or ordinal (e.g., the number of states voting for a particular political party) the

problem can be considered to be a prediction problem.

y = f(x; b) + ε (7.2)

As with Regression in continuous domains, some of the modeling techniques in this chapter will focus on

estimating the conditional expectation of y given x.

y = E [y|x] + ε (7.3)

ŷ = E [y|x] (7.4)

Others will focus on maximizing the conditional probability of y given x, i.e., finding the conditional mode.

ŷ = argmax P (y|x) = M [y|x] (7.5)

Rather than find a real number that is the best predictor, one of a set of distinct given values (e.g., 0

(false), 1 (true); negative (-1), positive (1); or low (0), medium (1), high (2)) is chosen. Abstractly, we can

label the classes C0, C1, . . . , Ck−1. In the case of classification, the train and test methods are still used,

but now the classify and predictI methods supplement the predict method.

Let us briefly contrast the two approaches based on the two equations (expectation vs. mode). For

simplicity, a selection (not classification) problem is used. Suppose that the goal is to select one of three

actors (y ∈ {0, 1, 2}) such that they have been successful in similar films, based on characteristics (features)

of the films (captured in variables x). From the data, the frequency of success for the actors in similar films

has been 20, 0 and 30, respectively. Consequently, the expected value is 1.2 and one might be tempted

to select actor 1 (the worst choice). Instead selecting the actor with maximum frequency (and therefore

probability) will produce the best choice (actor 2).

257

7.1 Classifier

The Classifier trait provides a common framework for several classifiers such as NaiveBayes.

7.1.1 Classifier Trait

Trait Methods:

1 @param x the input/data m-by-n matrix

2 @param y the response/output m-vector (class values)

3 @param fname the feature/variable names (if null , use x_j s)

4 @param k the number of classes (categorical response values)

5 @param cname the names/labels for each class

6 @param hparam the hyper -parameters for the model

7

8 trait Classifier (x: MatrixD , y: VectorI , protected var fname: Array [String],

9 k: Int = 2, protected var cname: Array [String] = null ,

10 hparam: HyperParameter)

11 extends Model:

12

13 def shift2zero (z: MatrixD): Unit =

14 def vc_fromData (z: MatrixD): VectorI =

15 def getX: MatrixD = x

16 def getY: VectorI = y

17 def getFname: Array [String] = fname

18 def numTerms: Int = getX.dim2

19 def train (x_ : MatrixD = x, y_ : VectorI = y): Unit =

20 def train (x_ : MatrixD , y_ : VectorD): Unit = train (x_ , y_.toInt)

21 def train2 (x_ : MatrixD = x, y_ : VectorI = y): Unit =

22 def test (x_ : MatrixD = x, y_ : VectorI = y): (VectorI , VectorD)

23 def test (x_ : MatrixD , y_ : VectorD): (VectorD , VectorD) =

24 def trainNtest (x_ : MatrixD = x, y_ : VectorI = y)

25 def predictI (z: VectorI): Int = p_y.argmax ()

26 def predictI (z: VectorD): Int = p_y.argmax ()

27 def predict (z: VectorD): Double = predictI (z.toInt)

28 def predictI (x_ : MatrixD): VectorI =

29 def lpredictI (z: VectorI): Int = ??? // only needed for some classifiers

30 def lpredictI (z: VectorD): Int = ??? // only needed for certain

classifiers

31 def classify (z: VectorI): (Int , String , Double) =

32 def classify (z: VectorD): (Int , String , Double) =

33 def lclassify (z: VectorI): (Int , String , Double) =

34 def hparameter: HyperParameter = hparam

35 def parameter: VectorD = p_y

36 def residual: VectorI = e

37 override def report (ftVec: VectorD): String =

38 def buildModel (x_cols: MatrixD): Classifier = null

39 def selectFeatures (tech: SelectionTech , idx_q: Int = QoF.rSqBar.ordinal , cross: Boolean

= true):

40 def forwardSel (cols: LinkedHashSet [Int], idx_q: Int = QoF.rSqBar.ordinal): BestStep =

41 def forwardSelAll (idx_q: Int = QoF.rSqBar.ordinal , cross: Boolean = true):

42 def backwardElim (cols: LinkedHashSet [Int], idx_q: Int = QoF.rSqBar.ordinal , first: Int

= 1): BestStep =

258

43 def backwardElimAll (idx_q: Int = QoF.rSqBar.ordinal , first: Int = 1, cross: Boolean =

true):

44 def stepRegressionAll (idx_q: Int = QoF.rSqBar.ordinal , cross: Boolean = true):

45 def vif (skip: Int = 1): VectorD =

46 inline def testIndices (n_test: Int , rando: Boolean): IndexedSeq [Int] =

47 def validate (rando: Boolean = true , ratio: Double = 0.2)

48 (idx : IndexedSeq [Int] =

49 testIndices ((ratio * y.dim).toInt , rando)): VectorD =

50 def crossValidate (k: Int = 5, rando: Boolean = true): Array [Statistic] =

For modeling, a user chooses one the of classes extending the trait Classifier (e.g., DecisionTree ID3)

to instantiate an object. Next the train method would be typically called.

1 @param x_ the training/full data/input matrix (defaults to full x)

2 @param y_ the training/full response/output vector (defaults to full y)

3

4 def train (x_ : MatrixD = x, y_ : VectorI = y): Unit =

This implementation simply computes the class/prior frequencies (nu y) and probabilities (p y). This works

for a simple model such as NullModel, but needs to be be overridden for most models. The test method is

abstract and thus must be defined in all implementing classes.

1 @param x_ the testing/full data/input matrix (defaults to full x)

2 @param y_ the testing/full response/output vector (defaults to full y)

3

4 def test (x_ : MatrixD = x, y_ : VectorI = y): (VectorI , VectorD)

While the modeling techniques in the last chapter focused on minimizing errors, the focus in this chapter

will be on minimizing incorrect classifications. Generally, this is done by dividing a dataset up into a training

dataset and test dataset. A technique for utilizing one dataset to produce single training and test datasets

is called validation.

1 def validate (rando: Boolean = true , ratio: Double = 0.2)

2 (idx: IndexedSeq [Int] =

3 testIndices (rando , (ratio * y.dim).toInt)): VectorD =

4 val (x_e , x_ , y_e , y_) = TnT_Split (x, y, idx) // Test -n-Train Split

5

6 train (x_ , y_) // train model on training set

7 val qof = test (x_e , y_e)._2 // test on test -set and get QoF

8 if qof(QoF.sst.ordinal) <= 0.0 then // requires variation test -set

9 flaw ("validate", "chosen testing set has no variability")

10 end if

11 qof

12 end validate

Another technique for utilizing one dataset to produce multiple training and test datasets is called cross-

validation. As discussed in the Model Validation section in the Prediction chapter, k-fold cross-validation is

a useful general purpose strategy for examining the quality of a model. It performs k iterations of training

(train method) and testing (test method).

1 def crossValidate (k: Int = 5, rando: Boolean = true): Array [Statistic] =

2 if k < MIN_FOLDS then flaw ("crossValidate", s"k = $k must be at least $MIN_FOLDS")

3 val stats = FitC.qofStatTable // create table - QoF measures

259

4 val fullIdx = if rando then permGen.igen // permuted indices

5 else VectorI.range (0, y.dim) // ordered indices

6 val sz = y.dim / k // size of each fold

7 val ratio = 1.0 / k // fraction used for testing

8

9 for fold <- 0 until k do

10 banner (s"crossValidate: fold $fold: train -test sizes = (${y.dim - sz}, $sz)")

11 val idx = fullIdx (fold * sz until (fold +1) * sz).toMuIndexedSeq

12 val qof = validate (rando , ratio)(idx)

13 debug ("crossValidate", s"fold $fold: qof = $qof")

14 if qof(QoF.sst.ordinal) > 0.0 then

15 for q <- qof.indices do stats(q).tally (qof(q))

16 end if

17 end for

18 stats

19 end crossValidate

Setting rando to true is usually preferred, as it randomizes the instances selected for the test dataset,

so that patterns coincidental to the index are broken up.

Once a model/classifier has been sufficiently trained and tested, it is ready to be put into practice on

new data via the classify method.

1 @param z the data vector to classify

2

3 def classify (z: VectorI): (Int , String , Double) =

4 val best = predictI (z) // class with the highest probability

5 val prob = if p_yz != null then p_yz(best) // posterior probability

6 else if p_y != null then p_y(best) // prior probability

7 else NO_DOUBLE // nothing applicable

8 (best , cname(best), prob) // return best class , its name , prob

9 end classify

It calls the model specific predictI method and returns its value as well the corresponding class label

and its relative probability.

The Classifier trait also provides methods to determine the value count (vc) for the features/variables.

A method to shift values in a vector toward zero by subtracting the minimum value. It has base implementa-

tions for test methods. Finally, several methods for features selection are provided. ScalaTion currently

uses forward selection, backward elimination, and stepwise refinement algorithms for feature selection.

260

7.2 Quality of Fit for Classification

The FitC trait provides methods for computing Quality of Fit (QoF) measures for classifiers. Many are

derived from the so-called Confusion Matrix that keeps track of correct and incorrect classifications. In

ScalaTion when k = 2, the confusion matrix C is configured as follows:[
c00 = tn c01 = fp

c10 = fn c11 = tp

]
where tn and tp are true negatives and positives, respectively, and fn and fp are false negatives and positives,

respectively. The selected row is determined by the actual value y , while the selected column is determined

by the predicted value yp. The confusion matrix is computed using the confusion method.

1 @param y_ the actual class values/labels for full (y) or test (y_e) dataset

2 @param yp the precicted class values/labels

3

4 def confusion (y_ : VectorI , yp: VectorI): MatrixI =

5 cmat.setAll (0) // clear confusion matrix

6 for i <- y_.indices do cmat(y_(i), yp(i)) += 1 // increment counts

7 for i <- cmat.indices do rsum(i) = cmat(i).sum.toInt // compute row sums

8 for j <- cmat.indices2 do csum(j) = cmat(?, j).sum.toInt // compute column sums

9 tcmat += cmat

10 p_r_s () // precision , recall and specificity

11 cmat

12 end confusion

The first column indicates the prediction/classification is negative (no or 0), while the second column indicates

it is positive (yes or 1). The first letter (’f’ or ’t’) indicates whether the classification is correct (true) or not

(false). After calling the confusion method, the summary should be called. To see values for the basic QoF

measured from FitM the diagnose method may be called instead of tt confusion. The FitC trait includes

several methods for directly computing QoF measures as well.

7.2.1 FitC Trait

Trait Methods:

1 @param y the vector of actual class values/labels

2 @param k the number distinct class values/labels

3

4 trait FitC (y: VectorI , k: Int = 2)

5 extends FitM:

6

7 def clearConfusion (): Unit = tcmat.setAll (0)

8 def total_cmat (): MatrixI = { val t = tcmat.copy; tcmat.setAll (0); t }

9 override def diagnose (y_ : VectorD , yp: VectorD , w: VectorD = null): VectorD =

10 def diagnose (y_ : VectorI , yp: VectorI): VectorD =

11 def confusion (y_ : VectorI , yp: VectorI): MatrixI =

12 def contrast (yp: VectorI , y_ : VectorI = y): Unit =

13 def p_r_s (): Unit =

14 def pseudo_rSq: Double = 1.0 - sse / sst

15 def tn_fp_fn_tp (con: MatrixI = cmat): (Double , Double , Double , Double) =

16 def accuracy: Double = cmat.trace / cmat.sum.toDouble

261

17 def f1_measure (p: Double , r: Double): Double = 2.0 * p * r / (p + r)

18 def f1v: VectorD = (pv * rv * 2.0) / (pv + rv)

19 def kappa: Double =

20 def fit: VectorD =

21 def fitMicroMap: Map [String , VectorD] =

22 def help: String = FitC.help

23 def fitLabel_v: Seq [String] = FitC.fitLabel_v

24 def summary (x_ : MatrixD , fname: Array [String], b: VectorD , vifs: VectorD = null):

String =

262

7.3 Null Model

The NullModel class implements a simple Classifier suitable for discrete input data. Corresponding to the

Null Model in the Prediction chapter, one could imagine estimating probabilities for outcomes of a random

variable y. Given an instance, this random variable indicates the classification or decision to be made. For

example, it may be used for a decision on whether or not to grant a loan request. The model may be trained

by collecting a training dataset. Probabilities may be estimated from data stored in an m-dimensional

response/classification vector y within the training dataset. These probabilities are estimated based on the

frequency ν (nu in the code) with which each class value occurs.

ν(y = c) = |{i | yi = c}| = mc (7.6)

The right hand side is simply the size of the set containing the instance/row indices where yi = c for

c = 0, . . . , k − 1. The probability that random variable y equals c can be estimated by the number of

elements in the vector y where yi equals c divided by the total number of elements.

P (y = c) =
ν(y = c)

m
=

mc

m
(7.7)

Exercise 1 below is the well-known toy classification problem on whether to play tennis (y = 1) or not (y = 0)

based on weather conditions. Of the 14 days (m = 14), tennis was not played on 5 days and was played on

9 days, i.e.,

P (y = 0) =
5

14
and P (y = 1) =

9

14

This information, class frequencies and class probabilities, can be placed into a Class Frequency Vector

(CFV) as shown in Table 7.1 and

Table 7.1: Class Fequency Vector

y 0 1

5 9

a Class Probability Vector (CPV) as shown in Table 7.9.

Table 7.2: Class Probability Vector

y 0 1

5/14 9/14

Picking the maximum probability case, one should always predict that tennis will be played, i.e., ŷ = 1.

This modeling technique should outperform purely random guessing, since it factors in the relative

frequency with which tennis is played. As with the NullModel for prediction, more sophisticated modeling

techniques should perform better than this NullModel for classification. If they are unable to provide higher

accuracy, they are of questionable value.

263

7.3.1 NullModel Class

Class Methods:

1 @param y the response/output m-vector (class values)

2 @param k the number of distinct values/classes

3 @param cname_ the names for all classes

4

5 class NullModel (y: VectorI , k: Int = 2, cname_ : Array [String] = Array ("No", "Yes"))

6 extends Classifier (null , y, null , k, cname_ , null) // no x matrix , no hparam

7 with FitC (y, k):

8

9 def test (x_ : MatrixD = null , y_ : VectorI = y): (VectorI , VectorD) =

10 override def summary (x_ : MatrixD = null , fname_ : Array [String] = null ,

11 b_ : VectorD = py, vifs: VectorD = null): String =

The NullModel is so simple that is just uses the train method from Classifier.

Typically, one dataset is divided into a training dataset and testing dataset. For example, 80% may

be used for training (estimating probabilities) with the remaining 20% used for testing the accuracy of the

model. Furthermore, this is often done repeatedly as part of a cross-validation procedure.

7.3.2 Exercises

1. The NullModel classifier can be used to solve problems such as the one below. Given the Out-

look, Temperature, Humidity, and Wind determine whether it is more likely that someone will (1)

or will not (0) play tennis. The data set is widely available on the Web. If is also available in

scalation.modeling.classifying.Example PlayTennis. Use the NullModel for classification and

evaluate its effectiveness using cross-validation.

The Example PlayTennis object is used to test all integer based classifiers.

1 // The Example_PlayTennis object is the well -known classification problem on whether to

play tennis

2 // based on given weather conditions. Applications may need to slice xy.

3 // val x = xy(?, 0 until 4) // columns 0, 1, 2, 3

4 // val y = xy(?, 4) // column 4

5 // @see euclid.nmu.edu/~ mkowalcz/cs495f09/slides/lesson004.pdf

6

7 object Example_PlayTennis:

8

9 // dataset --

10 // x0: Outlook: Rain (0), Overcast (1), Sunny (2)

11 // x1: Temperature: Cold (0), Mild (1), Hot (2)

12 // x2: Humidity: Normal (0), High (1)

13 // x3: Wind: Weak (0), Strong (1)

14 // y: the response/classification decision

15 // variables/features: x0 x1 x2 x3 y // combined matrix

16 val xy = MatrixI ((14, 5), 2, 2, 1, 0, 0, // day 1

17 2, 2, 1, 1, 0, // day 2

18 1, 2, 1, 0, 1, // day 3

264

19 0, 1, 1, 0, 1, // day 4

20 0, 0, 0, 0, 1, // day 5

21 0, 0, 0, 1, 0, // day 6

22 1, 0, 0, 1, 1, // day 7

23 2, 1, 1, 0, 0, // day 8

24 2, 0, 0, 0, 1, // day 9

25 0, 1, 0, 0, 1, // day 10

26 2, 1, 0, 1, 1, // day 11

27 1, 1, 1, 1, 1, // day 12

28 1, 2, 0, 0, 1, // day 13

29 0, 1, 1, 1, 0) // day 14

30

31 val fn = Array ("Outlook", "Temp", "Humidity", "Wind") // feature names

32 val cn = Array ("No", "Yes") // class names for y

33 val k = cn.size // number of classes

34

35 val x = xy.not(?, 4) // columns 0, 1, 2, 3

36 val y = xy(?, 4) // column 4

37

38 end Example_PlayTennis

2. Build a NullModel classifier for the Breast Cancer problem (data in breast-cancer.arff file).

265

7.4 Näıve Bayes

The NaiveBayes class implements a Näıve Bayes (NB) Classifier suitable for discrete input data. A Bayesian

Classifier is a special case of a Bayesian Network where one of the random variables is distinguished as the

basis for making decisions, call it random variable y, the class variable. The NullModel ignores weather con-

ditions which are the whole point of the Example PlayTennis exercise. For Näıve Bayes, weather conditions

(or other data relevant to decision making) are captured in an n-dimensional vector of random variables.

x = [x0, . . . , xn−1], (7.8)

For the Example PlayTennis problem, n = 4 where x0 is Outlook, x1 is Temperature, x2 is Humidity,

and x3 is Wind. The decision should be conditioned on the weather, i.e., rather than computing P (y), we

should compute P (y|x). Bayesian classifiers are designed to find the class (value for random variable y) that

maximizes the conditional probability of y given x.

It may be complex and less robust to estimate P (y|x) directly. Often it is easier to examine the conditional

probability of x given y. This answers the question of how likely it is that the input data comes from a

certain class y. Flipping the perspective can be done using Bayes Theorem.

P (y|x) =
P (x|y)P (y)

P (x)
(7.9)

Since the denominator is the same for all y, it is sufficient to maximize the right hand side of the following

proportionality statement.

P (y|x) ∝ P (x|y)P (y) (7.10)

Notice that the right hand side is the joint probability of all the random variables.

P (x, y) = P (x|y)P (y) (7.11)

One could in principle represent the joint probability P (x, y) or the conditional probability P (x|y) in

a matrix. Unfortunately, with 30 binary random variables, the matrix would have over one billion rows

and exhibit issues with sparsity. Bayesian classifiers will factor the probability and use multiple matrices to

represent the probabilities.

7.4.1 Factoring the Probability

A Bayesian classifier is said to be näıve, when it is assumed that the xj ’s are sufficiently uncorrelated to

factor P (x| y) into the product of their conditional probabilities (independence rule).

P (x| y) =

n−1∏
j=0

P (xj |y) (7.12)

Research has shown that even though the assumption that given response/class variable y, the x-variables

are independent is often violated by a dataset, Näıve Bayes still tends to perform well [212]. Substituting

this factorization into the joint probability formula yields

266

P (x, y) = P (y)

n−1∏
j=0

P (xj |y) (7.13)

The classification problem then is to find the class value for y that maximizes this probability, i.e., let ŷ be

the argmax of the product of the class probability P (y) and all the conditional probabilities P (xj |y). The

argmax is the value in the domain Dy = {0, . . . , k − 1} that maximizes the probability.

ŷ = argmax
y∈{0,...,k−1}

P (y)

n−1∏
j=0

P (xj |y) (7.14)

7.4.2 Estimating Conditional Probabilities

For Integer-based classifiers xj ∈ {0, 1, ..., vcj − 1} where vcj is the value count for the jth variable/feature

(i.e., the number of distinct values). The Integer-based Näıve Bayes classifier is trained using an m-by-n

data matrix X and an m-dimensional classification vector y. Each data vector/row in the matrix is classified

into one of k classes numbered 0, 1, . . . , k − 1. The frequency or number of instances where column vector

x:j = h and vector y = c is as follows:

ν(x:j = h, y = c) = |{i |xij = h, yi = c}| (7.15)

The conditional probability for random variable xj given random variable y can be estimated as the ratio of

two frequencies.

P (xj = h | y = c) =
ν(x:j = h, y = c)

ν(y = c)
(7.16)

In other words, the conditional probability is the ratio of the joint frequency count for a given h and c divided

by the class frequency count for a given c. These frequency counts can be collected into

• Joint Frequency Matrices/Tables (JFTs) and

• a Class Frequency Vector (CFV).

From these, it is straightforward to compute

• Conditional Probability Matrices/Tables (CPTs) and

• a Class Probability Vector (CPV).

Example PlayTennis Problem

For the Example PlayTennis problem, Figure 7.1 shows the Tree for a Näıve Bayes Classifier. The edges

from classification variable y to the feature variables xj are shown in black.

267

Play

Outlook Temp Humidity Wind

Figure 7.1: Näıve Bayes Classifier: y = Play, x0 = Outlook, x1 = Temp, x2 = Humidity, x3 = Wind

Table 7.3: JFT for x 0

x0\y 0 1

0 2 3

1 0 4

2 3 2

For the this problem, the Joint Frequency Matrix/Table (JFT) for Outlook random variable x0 is shown in

Table 7.3.

ν(x 0 = h, y = c) for h ∈ {0, 1, 2}, c ∈ {0, 1}

The column sums in the above matrix are 5 and 9, respectively. The corresponding Conditional Probability

Matrix/Table (CPT) for random variable x0, i.e., P (x0 = h | y = c), is computed by dividing each entry in

the joint frequency matrix by its column sum.

Table 7.4: CPT for x 0

x0\y 0 1

0 2/5 3/9

1 0 4/9

2 3/5 2/9

Continuing with the Example PlayTennis problem, the Joint Frequency Matrix/Table for Wind random

variable x3 is shown in Table 7.5.

ν(x 3 = h, y = c) for h ∈ {0, 1}, c ∈ {0, 1}

As expected, the column sums in the above matrix are again 5 and 9, respectively. The corresponding

Conditional Probability Matrix/Table for random variable x0, i.e., P (x0 = h | y = c), is computed by dividing

each entry in the joint frequency matrix by its column sum as shown in table 7.6

268

Table 7.5: JFT for x 3

x3\y 0 1

0 2 6

1 3 3

Table 7.6: CPT for x 3

x3\y 0 1

0 2/5 6/9

1 3/5 3/9

Similar matrices/tables can be created for the other random variables: Temperature x1 and Humidity x2.

7.4.3 Laplace Smoothing

When there are several possible class values, a dataset may exhibit zero instances for a particular class. This

will result in a zero in the CFV vector and cause a divide-by-zero error when computing CPTs. One way to

avoid the divide-by-zero, is to add one (me = 1) fake instance for each class, guaranteeing no zeros in the

CFV vector. If m-estimates are used, the conditional probability is adjusted slightly as follows:

P (xj = h | y = c) =
ν(x:j = h, y = c) + me/vcj

ν(y = c) + me
(7.17)

where me is the parameter used for the m-estimate. The term added to the numerator, takes the one (or

me) instance(s) and adds uniform probability for each possible values for xj of which there are vcj of them.

Table 7.7 shows the result of adding 1/3 in the numerator and 1 in the denominator, (e.g., for h = 0 and c

= 0, (2 + 1/3)/(5 + 1) = 7/18).

Table 7.7: CPT for x 0 with me = 1

x0\y 0 1

0 7/18 10/30

1 1/18 13/30

2 10/18 7/30

Or in decimal,

Another problem is when a conditional probability in a CPT is zero. If any CPT has a zero element, the

corresponding product for the column (where the CPV and CPTs are multiplied) will be zero no matter how

high the other probabilities may be. This happens when the frequency count is zero in the corresponding

JFT (see element (1, 0) in Table 7.3). The question now is whether this is due to the combination of x0 = 1

269

Table 7.8: CPT for x 0 with me = 1 in decimal

x0\y 0 1

0 0.3889 0.3333

1 0.0556 0.4333

2 0.5556 0.2333

and y = 0 being highly unlikely, or that the dataset is not large enough to exhibit this combination. Laplace

smoothing guards against this problem as well.

Other values (including fractional values) may be used for me as well. ScalaTion uses a small value for

the default me to reduce the distortion of the CPTs.

7.4.4 Table Storage

The values within the class probability table and the conditional probability tables are assigned by the

train method. The Conditional Probability Tables (CPTs) require three dimensional storage that can be

accomplished with tensors/hyper-matrices, or arrays of matrices. In ScalaTion, ragged tensors RTensorD

are used for storing CPTs (p Xy).

1 private var p_Xy: RTensorD = null // Conditional Probability Tables (CPTs)

The dimensions are as follows: for each matrix, the number of rows is vcj , the value count for feature xj ,

and the number of columns is k, the number of class values; while the number of matrices is n, the number

of x-random variables (features).

For the Example PlayTennis problem, vc = [3, 3, 2, 2], k = 2, and n = 4.

Note that the alternative of storing the tables in a rectangular hyper-matrix or tensor would result in a

dimensionality of 4-by-3-by-2, but this would in general be wasteful of space. Each variable only needs space

for the values it allows, as indicated by the value counts vc = [3, 3, 2, 2]. The user may specify the optional vc

parameter in the constructor call. If the vc parameter is unspecified, then ScalaTion uses the vc fromData

method to determine the value counts from the training data. In some cases, the test data may include a

value unseen in the training data. Currently, ScalaTion requires the user to pass vc into the constructor

in such cases.

7.4.5 The train Method

The train method first calculates frequencies: The class frequency for each class value, e.g., (0 or 1) or label

(”no”, ”yes”) and a Joint Frequency Table (JFT) for each feature xj .

1 @param x_ the training/full data/input matrix (defaults to full x)

2 @param y_ the training/full response/output vector (defaults to full y)

3

4 override def train (x_ : MatrixD = x, y_ : VectorI = y): Unit =

5 super.train (x_, y_) // set class freq and prob

6 val nu_Xy = RTensorD.freq (x_ , vc, y, k) // JFT for each xj

7 p_Xy = cProb_Xy (x_ , y_ , nu_Xy) // CPT for each xj

8 end train

270

The freq method for computing Joint Frequency Tables (JFTs) is defined in the RTensorD object. The

cprob Xy method defined in the NaiveBayes class divides each JFT by class frequencies nu y to obtain the

corresponding CPT. Laplace smoothing adds me v(j) to the numerator and me to denominator.

1 @param x_ the integer -valued data vectors stored as rows of a matrix

2 @param y_ the class vector , where y(i) = class for row i of the matrix x, x(i)

3 @param nu_Xy the joint frequency of X and y for each feature xj and class value

4

5 def cProb_Xy (x_ : MatrixD , y_ : VectorI , nu_Xy: RTensorD): RTensorD =

6 val pXy = new RTensorD (x_.dim2 , vc , k)

7 for j <- x_.indices2; xj <- 0 until vc(j) do

8 pXy(j, xj) = (nu_Xy(j, xj) + me_v(j)) / (nu_y + me) // CPTs

9 end for

10 pXy

11 end cProb_Xy

7.4.6 The test Method

The test method calls predictI to produce a predicted integer value for each data point in x . These

predicted values yp are then passed into the diagnose method along with actual values y .

1 @param x_ the testing/full data/input matrix (defaults to full x)

2 @param y_ the testing/full response/output vector (defaults to full y)

3

4 def test (x_ : MatrixD = x, y_ : VectorI = y): (VectorI , VectorD) =

5 val yp = predictI (x_) // predicted classes

6 val qof = diagnose (y_.toDouble , yp.toDouble) // diagnose from y vs yp

7 (yp , qof)

8 end test

7.4.7 The predictI Method

A new instance can now be classified by simply matching its values with with those in the class probability

table and conditional probability tables and multiplying all the entries. This is done for all k class values

and the class with the highest product is chosen.

1 @param z the new vector to predict

2

3 override def predictI (z: VectorI): Int =

4 p_yz = p_y.copy // start with class probabilities

5 for j <- z.indices do p_yz *= p_Xy(j, z(j)) // multiply P(X_j = z_j | y = c)

6 p_yz.argmax () // return class with highest prob

7 end predictI

Note that the classify method defined in the Classifier trait calls predictI returning its value as well

as its class label and relative probability.

7.4.8 The lpredictI Method

In situations where there are many variables/features the product calculation may underflow, due to mul-

tiplying several small probabilities together. An alternative calculation would be to add the log of the

probabilities.

271

logP (z, y) = logP (y) +

n−1∑
j=0

logP (zj |y) (7.18)

The lpredict may be used in this situation.

1 @param z the new vector to predict

2

3 override def lpredictI (z: VectorI): Int =

4 p_yz = plog (p_y) // start with class plogs

5 for j <- z.indices do p_yz += plog (p_Xy(j, z(j))) // add plog P(X_j = z_j | y = c)

6 p_yz.argmin () // return class with lowest plog

7 end lpredictI

The plog function computes the positive log of the probability.

7.4.9 Feature Selection

When there are many possible variables or features available for inclusion into a model, support for feature

selection becomes useful. Suppose that x1 and x2 are not considered useful for classifying a day as to its

suitability for playing tennis. For z = [2, 1], i.e,. z0 = 2 and z3 = 1, the two relative probabilities are the

following:

Table 7.9: Joint Data-Class Probability

P 0 1

y 5/14 9/14

z0 3/5 2/9

z3 3/5 3/9

z, y 9/70 1/21

The two probabilities are approximately 0.129 for c = 0 (Do not Play) and 0.0476 for c = 1 (Play). The

higher probability is for c = 0.

To perform feature selection in a systematic way ScalaTion provides several methods for feature se-

lection including forward selection, backward elimination and stepwise refinement. (see the Classifier

trait).

7.4.10 NaiveBayes Class

Class Methods:

1 @param x the input/data m-by-n matrix

2 @param y the class vector , where y(i) = class for row i of matrix x

3 @param fname_ the names of the features/variables (defaults to null)

4 @param k the number of classes (defaults to 2)

5 @param cname_ the names of the classes

6 @param vc the value count (number of distinct values) for each feature

272

7 @param hparam the hyper -parameters

8

9 class NaiveBayes (x: MatrixD , y: VectorI , fname_ : Array [String] = null ,

10 k: Int = 2, cname_ : Array [String] = Array ("No", "Yes"),

11 protected var vc: VectorI = null ,

12 hparam: HyperParameter = NaiveBayes.hp)

13 extends Classifier (x, y, fname_ , k, cname_ , hparam)

14 with FitC (y, k):

15

16 def getCPTs: RTensorD = p_Xy

17 override def train (x_ : MatrixD = x, y_ : VectorI = y): Unit =

18 def cProb_Xy (x_ : MatrixD , y_ : VectorI , nu_Xy: RTensorD): RTensorD =

19 def test (x_ : MatrixD = x, y_ : VectorI = y): (VectorI , VectorD) =

20 override def predictI (z: VectorI): Int =

21 override def lpredictI (z: VectorI): Int =

22 override def summary (x_ : MatrixD = null , fname_ : Array [String] = null ,

23 b_ : VectorD = p_y , vifs: VectorD = null): String =

7.4.11 Exercises

1. With Laplace smoothing set at 1 fake instance, complete the Example PlayTennis problem given in this

section by creating CPTs for random variables x1 and x2 and then computing the relative probabilities

for z = [2, 2, 1, 1]. Hint: The relative probabilities are [0.03376, 0.004288]. What decision would the

classifier make?

2. Use ScalaTion’s integer-based NaiveBayes class to build a classifier for the Example PlayTennis

problem.

1 import scalation.modeling.classifying.Example_PlayTennis._

2 banner ("Play Tennis Example")

3 println (s"xy = $xy") // combined data matrix [x | y]

4

5 val mod = NaiveBayes (xy , fname)() // create a classifier

6 mod.trainNtest ()() // train and test the classifier

7 println ("CPTs = " + mod.getCPTs) // print conditional prob tables

8 println (mod.summary ()) // summary statistics

9

10 val z = VectorI (2, 2, 1, 1) // new data vector to classify

11 banner (s"Classify $z")

12 println (s"Use mod to classify ($z) = ${mod.classify (z)}")

3. Compare the confusion matrix, accuracy, precision and recall of NaiveBayes on the full dataset to that

of NullModel.

4. For the Example PlayTennis problem, compare the accuracy of NaiveBayes to that of NullModel

using

(a) 80-20% train-test split validation

(b) 5-fold cross-validation (cv).

273

1 println ("mod test accu = " + mod.validate ()()) // out -of -sample validation

2 FitM.showQofStatTable (mod.crossValidate ()) // 5-fold cross -validattion

Note: validate and crossValidate are better suited to larger datasets (the Example PlayTennis toy

dataset only has 14 instances).

5. Compare the confusion matrix, accuracy, precision and recall of RoundRegression on the full dataset

to that of NullModel.

6. Perform feature selection on the Example PlayTennis problem. Which feature/variable is removed

from the model, first, second and third. Explain the basis for the featureSelection method’s decision

to remove a feature.

7. Use the integer-based NaiveBayes class to build a classifier for the Breast Cancer problem (data in

breast-cancer.arff file). Compare its accuracy to that of NullModel.

274

7.5 Bayes Classifier

The BayesClassifier trait provides methods for more advanced Bayesian Classifiers, including calculations

of joint probabilities and Conditional Mutual Information (CMI). For data with small value counts, CMI

tends to be more useful than correlation for examining dependencies between random variables. More

information will be provided in the next section on TAN Bayes.

7.5.1 BayesClassifier Trait

Class Methods:

1 @param k the number of classes

2

3 trait BayesClassifier (k: Int = 2):

4

5 def jProbXY (x: VectorI , vcx: Int , y: VectorI): MatrixD =

6 def jProbXZY (x: VectorI , z: VectorI , vcxz: VectorI , y: VectorI): RTensorD =

7 def cmi (x: VectorI , z: VectorI , vcxz: VectorI , y: VectorI): Double =

8 def cmiMatrix (x: MatrixD , vc: VectorI , y: VectorI): MatrixD =

275

7.6 Tree Augmented Näıve Bayes

The TANBayes class implements a Tree Augmented Näıve (TAN) Bayes Classifier suitable for discrete input

data. Unlike Näıve Bayes, a TAN Bayes model can capture more, yet limited dependencies between vari-

ables/features. In general, xj can be dependent on the class y as well as one other variable xpj . Representing

the dependency pattern graphically, y becomes a root node of a Directed Acyclic Graph (DAG), where each

node/variable has at most two parents.

Starting with the joint probability defined in the section on Näıve Bayes,

P (x, y) = P (x|y)P (y)

we can obtain a better factored approximation (better than Näıve Bayes) by keeping the most important

dependencies amongst the random variables. Each feature xj , except a selected x-root, xr, will have one

x-parent xpj in addition to its y-parent, i.e.,

x−parent(xj) = xpj (7.19)

The dependency pattern among the x random variables forms a tree and this tree augments the Näıve Bayes

structure where each x random variable has y as its only parent.

P (x, y) = P (y)

n−1∏
j=0

P (xj |xpj , y) (7.20)

Now, each feature xj is conditioned on its x-parent xpj and the class variable y. More precisely, since the

root xr, has no x-parent, it can be factored out as special case.

P (x, y) = P (y)P (xr|y)
∏
j 6=r

P (xj |xpj , y) (7.21)

Figure 7.2 shows the DAG for a TAN Bayes Classifier. The edges from classification variable y to the feature

variables xj are shown in black, while edges between the feature variables forming the tree are shown in blue.

Play

Outlook

Temp Humidity

Wind

Figure 7.2: TAN Bayes Classifier: y = Play, x0 = Outlook, x1 = Temp, x2 = Humidity, x3 = Wind

276

As with Näıve Bayes, the goal is to find an optimal value for the random variable y that maximizes the

probability.

ŷ = argmax
y∈Dy

P (y)P (xr|y)

n−1∏
j=0

P (xj |xpj , y) (7.22)

7.6.1 Structure Learning

Näıve Bayes has a very simple structure that does not require any structural learning. TAN Bayes, on the

other hand, requires the tree structure among the x random variables/nodes to be learned. Various algorithms

can be used to select the best parent xpj for each xj . ScalaTion does this by constructing a maximum

spanning tree where the edge weights are Conditional Mutual Information (alternatively correlation).

The Mutual Information (MI) between two random variables x (e.g., xj) and z (e.g., xl) is

I(x; z) =
∑
x

∑
z

p(x, z) log
p(x, z)

p(x)p(z)
(7.23)

The Conditional Mutual Information (CMI) between two random variables x (e.g., xj and z (e.g., xl) given

a third random variable y is

I(x; z|y) =
∑
y

p(y)
∑
x

∑
z

p(x, z|y) log
p(x, z|y)

p(x|y)p(z|y)
(7.24)

It may also be expressed in terms of joint probabilities.

I(x; z|y) =
∑
y

∑
x

∑
z

p(x, z, y) log
p(y)p(x, z, y)

p(x, y)p(z, y)
(7.25)

The steps involved in the structure learning algorithm for TAN Bayes are the following:

1. Compute the CMI I(xj ;xl|y) for all combinations of random variables, j 6= l.

2. Build a complete undirected graph with a node for each xj random variable. The weight on undirected

edge {xj , xl} is its CMI value.

3. Apply a Maximum Spanning Tree algorithm (e.g., Prim or Kruskal) to the undirected graphs to cre-

ate a maximum spanning tree (those n − 1 edges that (a) connect all the nodes, (b) form a tree,

and (c) have maximum cumulative edge weights). Note, ScalaTion’s MinSpanningTree in the

scalation.graph db package can be used with parameter min = false.

4. Pick one of the random variables to be the root node xr.

5. To build the directed tree, start with root node xr and traverse from there giving each edge direction-

ality as you go outward from the root.

7.6.2 Conditional Probability Tables

For the Example PlayTennis problem limited to two variables, x0 and x3, suppose that structure learning

algorithm found the x-parents as shown in Table 7.10.

277

Table 7.10: Parent Table

xj xpj

x0 x3

x3 null

Table 7.11: Extended JFT for x 0

x0\x3, y 0, 0 0, 1 1, 0 1, 1

0 0 3 2 0

1 0 2 0 2

2 2 1 1 1

In this case, the only modification to the CPV and CPTs from the Näıve Bayes solution, is that the JFT

and CPT for x0 are extended. The extended Joint Frequency Table (JFT) for x0 is shown in Table 7.11.

The column sums are 2, 6, 3, 3, respectively. Again they must add up to same total of 14. Dividing each

element in the JFT by its column sum yields the extended Conditional Probability Table (CPT) shown in

Table 7.12

Table 7.12: Extended CPT for x 0

x0\x3, y 0, 0 0, 1 1, 0 1, 1

0 0 1/2 2/3 0

1 0 1/3 0 2/3

2 1 1/6 1/3 1/3

In general for TANBayes, the x-root will have a regular CPT, while all other x-variables will have an

extended CPT, i.e., the extended CPT for xj is calculated as follows:

P (xj = h |xp = l, y = c) =
ν(x:j = h, x p = l, y = c)

ν(x p = l, y = c)
(7.26)

7.6.3 Smoothing

The analog of Laplace smoothing used in Näıve Bayes is the following.

P (xj = h |xp = l, y = c) =
ν(x:j = h, x p = l, y = c) + me/vcj

ν(x p = l, y = c) + me
(7.27)

In Friedman’s paper [50], he suggests using the marginal distribution rather than uniform (as shown above),

which results in the following formula.

278

P (xj = h |xp = l, y = c) =
ν(x:j = h, x p = l, y = c) + me ∗mpj

ν(x p = l, y = c) + me
(7.28)

where

mpj =
ν(x:j)

m
(7.29)

7.6.4 The train Method

The train method computes class probabilities (CPV) and the extended Conditional Probability Tables

(CPTs) that are used as the basis for classification.

1 @param x_ the training/full data/input matrix (defaults to full x)

2 @param y_ the training/full response/output vector (defaults to full y)

3

4 override def train (x_ : MatrixD = x, y_ : VectorI = y): Unit =

5 super.train (x_, y_) // set class freq and prob

6 findParent (x_, y_)

7 val nu_Xy = freq_Xy (x_, y_, vc) // JFTs

8 val nu_Xyp = freq_Xyp (x_, y_, nu_y , nu_Xy) // extended JFTs

9 p_Xyp = cprob_Xyp (x_ , y_ , nu_y , nu_Xy , nu_Xyp) // extended CPTs

10 end train

7.6.5 The predictI Method

As with NaiveBayes, the predictI method (and thus classify) simply multiplies entries in the CPV and

CPTs (all except the root are extended). Again the class with the highest product is chosen.

1 @param z the new vector to predict

2

3 override def predictI (z: VectorI): Int =

4 p_yz = p_y.copy // start with class probabilities

5 for j <- z.indices do // P(X_j = z_j | X_p = z_p , y = c)

6 val p = parent(j) // parent of xj

7 val ecpt = p_Xyp(j) // get j-th extended CPT

8 if p > -1 then // xj has a parent

9 p_yz *= ecpt (z(j))(z(p)) // multiply in its (z(j), z(p)) row

10 else // xj does not have a parent

11 p_yz *= ecpt (z(j))(0) // multiply in its z(j) row

12 end if

13 end for

14 p_yz.argmax () // return class with highest prob

15 end predictI

7.6.6 TANBayes Class

Class Methods:

1 @param x the input/data m-by-n matrix

2 @param y the class vector , where y(i) = class for row i of matrix x

3 @param fname_ the names of the features/variables (defaults to null)

279

4 @param k the number of classes (defaults to 2)

5 @param cname_ the names of the classes

6 @param vc the value count (number of distinct values) for each feature

7 @param hparam the hyper -parameters

8

9 class TANBayes (x: MatrixD , y: VectorI , fname_ : Array [String] = null ,

10 k: Int = 2, cname_ : Array [String] = Array ("No", "Yes"),

11 private var vc: VectorI = null , hparam: HyperParameter = BayesClassifier

.hp)

12 extends Classifier (x, y, fname_ , k, cname_ , hparam)

13 with BayesClassifier (k, hparam)

14 with FitC (y, k):

15

16 override def train (x_ : MatrixD = x, y_ : VectorI = y): Unit =

17 def findParent (x_ : MatrixD , y_ : VectorI): Unit =

18 def freq_Xyp (x_ : MatrixD , y_ : VectorI , nu_y: VectorD , nu_Xy: Array [MatrixD]):

19 def cprob_Xyp (x_ : MatrixD , y_ : VectorI , nu_y: VectorD , nu_Xy: Array [MatrixD],

20 def test (x_ : MatrixD = x, y_ : VectorI = y): (VectorI , VectorD) =

21 override def predictI (z: VectorI): Int =

22 override def lpredictI (z: VectorI): Int =

23 def printCPTs (): Unit =

24 override def summary (x_ : MatrixD = null , fname_ : Array [String] = null ,

25 b_ : VectorD = p_y , vifs: VectorD = null): String =

7.6.7 Exercises

1. Use the Integer-based TANBayes to build classifiers for (a) the Example PlayTennis problem and (b)

the Breast Cancer problem (data in breast-cancer.arff file). Compare its accuracy to that of

NullModel and NaiveBayes.

2. Compare the correlation matrix on X with the corresponding Conditional Mutual Information (CMI)

matrix. How well do they capture dependencies. Use multiple datasets.

3. Show that the two formulas (the one using conditional probability and the other using joint probability)

for Conditional Mutual Information (CMI) give the samem results.

4. Re-engineer TANBayes to use correlation instead of Conditional Mutual Information (CMI). Compare

the results with the current TANBayes implementation.

5. The FANBayes class implements a Forest Augmented Näıve (FAN) Bayes Classifier suitable for discrete

input data. It competes with TANBayes by allowing multiple trees and is thus more flexible. Compare

FANBayes and TANBayes on multiple datasets.

280

7.7 Bayesian Network Classifier

A Bayesian Network Classifier [17] is used to classify a discrete input data vector x by determining which

of k classes has the highest Joint Probability of x and the response/outcome y (i.e., one of the k classes) of

occurring.

P (y, x0, x1, . . . , xn−1) (7.30)

Using the Chain Rule of Probability, the Joint Probability calculation can factored into multiple calcu-

lations of conditional probabilities as well as the class probability of the response. For example, given three

variables, the joint probability may be factored as follows:

P (x0, x1, x2) = P (x0)P (x1|x0)P (x2|x0, x1) (7.31)

Conditional dependencies are specified using a Directed Acyclic Graph (DAG). A feature/variable rep-

resented by a node in the network is conditionally dependent on its parents only,

ŷ = argmax
y∈Dy

P (y)

n−1∏
j=0

P (xj |xp(j), y) (7.32)

where xp(j) is the vector of features/variables that xj is dependent on, i.e., its parents. In our model, each

variable has dependency with the response variable y (a defacto parent). Note, some more general BN

formulations do not distinguish one of the variables to be the response y as we do.

Conditional probabilities are recorded in tables referred to as Conditional Probability Tables (CPTs).

Each variable will have a CPT and the number of columns in the table is governed by the number of other

variables it is dependent upon. If this number is large, the CPT may become prohibitively large.

7.7.1 Network Augmented Näıve Bayes

The TwoNANBayes class implements a Network Augmented Näıve (NAN) Bayes Classifier suitable for discrete

input data, that is restricted to at most two x-parents. It is a special case of a general Network Augmented

Näıve (NAN) Bayes Classifier, also know as a Bayesian Network Classifier.

For TwoNANBayes the parents of variable xj are recoded in a vector xp(j) of length 0, 1 or 2. Although

the restriction to at most 2 parents might seem limiting, the problem of finding the optimal structure is still

NP-hard [28].

281

7.8 Markov Network

A Markov Network is a probabilistic graphical model where directionality/causality between random variables

is not considered, only their bidirectional relationships. In general, let x be an n-dimensional vector of random

variables.

x = [x0, . . . xn−1]

Given a data instance x, its likelihood of occurrence is given by the joint probability.

P (x = x)

In order to compute the joint probability, it needs to be factored based on conditional independencies. These

conditional independencies may be illustrated graphically, by creating a vertex for each random variable xi

and letting the structure of the graph reflect the conditional independencies,

xi ⊥ xk | {xj}

such that removal of the vertices in the set {xj} will disconnect xi and xk in the graph. These conditional

independencies may be exploited to factor the joint probability, e.g.,

P (xi, xk | {xj}) = P (xi | {xj})P (xk | {xj})

When two random variables are directly connected by an undirected edge (denoted xi − xj) they cannot

to separated by removal of other vertices. Together they form an Undirected Graph G(x, E) where the

vertex-set is the set of random variables x and the edge-set is defined as follows:

E = {xi − xj |xi and xj are not conditionally independent}

When the random variables are distributed in space, the Markov Network may from a grid, in which case

the network is often referred to as a Markov Random Field (MRF).

7.8.1 Markov Blanket

A vertex in the graph xi will be conditionally independent of all other vertices, except those in its Markov

Blanket. The Markov Blanket for random variable xi is simply the immediate neighbors of xi in G:

B(xi) = {xj |xi − xj ∈ E} (7.33)

The edges E are selected so that random variable xi will be conditionally independent of any other (k 6= i)

random variable xk that is not in its Markov blanket.

xi ⊥ xk |B(xi) (7.34)

282

7.8.2 Factoring the Joint Probability

Factorization of the joint probability is based on the graphical structure of G that reflects the conditional

independencies. It has been shown (see the Hammersley-Clifford Theorem) that P (x) may be factored

according the set of maximal cliques1 Cl in graph G.

P (x) =
1

Z

∏
c∈Cl

φc(xc) (7.35)

For each clique c in the set Cl, a potential function φc(xc) is defined. (Potential functions are non-negative

functions that are used in place of marginal/conditional probabilities and need not sum to one; hence the

normalizing constant Z).

Suppose a graph G([x0, x1, x2, x3, x4], E) has two maximal cliques, Cl = {[x0, x1, x2], [x2, x3, x4]} then

P (x) =
1

Z
φ0(x0, x1, x2)φ1(x2, x3, x4)

7.8.3 Exercises

1. Consider the random vector x = [x0, x1, x2] with conditional independency

x0 ⊥ x1 |x2

show that

P (x0, x1, x2) = P (x2)P (x0 |x2)P (x1 |x2)

1a clique is a set of vertices that are fully connected

283

7.9 Decision Tree ID3

A Decision Tree (or Classification Tree) classifier [162, 158] will take an input vector x and classify it, i.e.,

give one of k class values to y by applying a set of decision rules configured into a tree. Abstractly, the

decision rules may be viewed as a function f .

y = f(x) = f(x0, x1, . . . , xn−1) (7.36)

The DecisionTreeI D3 [147] class implements a Decision Tree classifier using the Iterative Dichotomiser

3 (ID3) algorithm. The classifier is trained using an m-by-n data matrix X and a classification vector y.

Each data vector in the matrix is classified into one of k classes numbered 0, 1, . . . , k − 1. Each column in

the matrix represents a x-variable/feature (e.g., Humidity). The value count vc vector gives the number of

distinct values per feature (e.g., 2 for Humidity).

7.9.1 Entropy

In decision trees, the goal is to reduce the disorder in decision making. Assume the decision is of the

yes(1)/no(0) variety and consider the following decision/classification vectors: y = (1, 1, . . . , 1, 1) or y′ =

(1, 0, . . . , 1, 0). In the first case all the decisions are yes, while in the second, three are an equal number of

yes and no decisions. One way to measure the level of disorder is Shannon entropy. To compute the entropy,

first convert the m-dimensional decision/classification vector y into a k-dimensional probability vector p.

The frequency and toProbability functions in the Probability object may be used for this task (see

NullModel from the last chapter).

For the two cases, p = (1, 0) and p′ = (.5, .5), so computing the Shannon entropy H(p) (see the

Probability Chapter), we obtain H(p) = 0 and H(p′) = 1. These indicate that there is no disorder in

the first case and maximum disorder in the second case.

Entropy is used as measure of the impurity of a node (e.g., to what degree is it a mixture of ‘-’ and ‘+’). For

a discussion of additional measures see [158].

7.9.2 Example Problem

Let us consider the Tennis example from NullModel and NaiveBayes and compute the entropy level for the

decision of whether to play tennis. There are 14 days worth of training data see Table 7.13, which indicate

that for 9 of the days the decision was yes (play tennis) and for 5 it was no (do not play). Therefore, the

entropy (if no features/variables are considered) is

H(p) = H(
5

14
,

9

14
) = − 5

14
log2(

5

14
)− 9

14
log2(

9

14
) = 0.9403

Recall that the features are Outlook x0, Temp x1, Humidity x2, and Wind x3. To reduce entropy, find

the feature/variable that has the greatest impact on reducing disorder. If feature/variable j is factored into

the decision making, entropy is now calculated as follows:

vcj−1∑
v=0

ν(x:j = v}
m

H(px:j=v) (7.37)

where ν(x:j = v} is the frequency count of value v for column vector x:j in matrix X. The sum is the

weighted average of the entropy over all possible vcj values for variable j.

284

Table 7.13: Tennis Example

Day x:0 x:1 x:2 x:3 y

1 2 2 1 0 0

2 2 2 1 1 0

3 1 2 1 0 1

4 0 1 1 0 1

5 0 0 0 0 1

6 0 0 0 1 0

7 1 0 0 1 1

8 2 1 1 0 0

9 2 0 0 0 1

10 0 1 0 0 1

11 2 1 0 1 1

12 1 1 1 1 1

13 1 2 0 0 1

14 0 1 1 1 0

To see how this works, let us compute new entropy values assuming each feature/variable is used, in turn,

as the principal feature for decision making. Starting with feature j = 0 (Outlook) with values of Rain (0),

Overcast (1) and Sunny (2), compute the probability vector and entropy for each value and weight them by

how often that value occurs.

2∑
v=0

ν(x:0 = v)

m
H(px:0=v) (7.38)

For v = 0, we have 2 no (0) cases and 3 yes (1) cases (2−,3+), for v = 1, we have (0−,4+) and for v = 2,

we have (3−,2+).

ν(x:0 = 0)

14
H(px:0=0) +

ν(x:0 = 1)

14
H(px:0=1) +

ν(x:0 = 2)

14
H(px:0=2)

5

14
H(px:0=0) +

4

14
H(px:0=1) +

5

14
H(px:0=2)

We are left with computing three entropy values:

H(px:0=0) = H(
2

5
,

3

5
) = −2

5
log2(

2

5
)− 3

5
log2(

3

5
) = 0.9710

H(px:0=1) = H(
0

4
,

4

4
) = −0

4
log2(

0

4
)− 4

4
log2(

4

4
) = 0.0000

H(px:0=2) = H(
3

5
,

2

5
) = −3

5
log2(

3

5
)− 2

5
log2(

2

5
) = 0.9710

285

The weighted average is then 0.6936, so that the drop in entropy (also called information gain) is 0.9403 -

0.6936 = 0.2467. As shown in Table 7.14, the other entropy drops are 0.0292 for Temperature (1), 0.1518

for Humidity (2) and 0.0481 for Wind (3).

Table 7.14: Choices for Principal Feature

j Variable/Feature Entropy Entropy Drop

0 Outlook 0.6936 0.2467

1 Temperature 0.9111 0.0292

2 Humidity 0.7885 0.1518

3 Wind 0.8922 0.0481

Hence, Outlook (j = 0) should be chosen as the principal feature for decision making. As the entropy is

too high, make a tree with Outlook (0) as the root and make a branch for each value of Outlook: Rain (0),

Overcast (1), Sunny (2). Each branch defines a sub-problem.

The resulting tree is shown in Figure 7.3 where the node is designated by the variable (in this case x0).

The edges indicate the values that this variable can take on, while the two numbers n−p+ indicate the

number of negative and positive cases.

x0

5−9+

.

2−3+

.

0−4+

.

3−2+

= 0 = 1 = 2

Figure 7.3: Decision Tree for “Play Tennis?” Example

Sub-problem x0 = 0

The sub-problem for Outlook: Rain (0) see Table 7.15 is defined as follows: Take all five cases/rows in the

data matrix X for which x:0 = 0.

If we select Wind (j = 3) as the next variable, we obtain the following cases: For v = 0, we have (0−,3+),

so the probability vector and entropy are

px:3=0 = (
0

5
,

3

5
) H(px:3=0) = 0

286

Table 7.15: Sub-problem for node x0 and branch 0

Day x:1 x:2 x:3 y

4 1 1 0 1

5 0 0 0 1

6 0 0 1 0

10 1 0 0 1

14 1 1 1 0

For v = 1, we have (2−,0+), so the probability vector and entropy are

px:3=1 = (
2

5
,

0

5
) H(px:3=1) = 0

If we stop expanding the tree at this point, we have the following rules.

1 if x0 == 0 then

2 if x3 == 0 then yes

3 if x3 == 1 then no

4 if x0 == 1 then yes

5 if x0 == 2 then no

The overall entropy can be calculated as the weighted average of all the leaf nodes.

3

14
· 0 +

2

14
· 0 +

4

14
· 0 +

5

14
· .9710 = .3468

Sub-problem x0 = 2

Note that if x0 = 1, the entropy for this case is already zero, so this node need not be split and remains as

a leaf node. There is still some uncertainty left when x0 = 2, so this node may be split. The sub-problem

for Outlook: Rain (2) see Table 8.1 is defined as follows: Take all five cases/rows in the data matrix X for

which x−0 = 2.

Table 7.16: Sub-problem for node x0 and branch 2

Day x:1 x:2 x:3 y

1 2 1 0 0

2 2 1 1 0

8 1 1 0 0

9 0 0 0 1

11 1 0 1 1

It should be obvious that y = 1− x:2. For v = 0, we have (0−,2+), so the probability vector and entropy

are

287

px:2=0 = (
0

5
,

2

5
) H(px:3=0) = 0

For v = 1, we have (3−,0+), so the probability vector and entropy are

px:2=1 = (
3

5
,

0

5
) H(px:3=0) = 0

At this point, the overall entropy is zero and the decision tree is the following (shown as a pre-order

traversal from ScalaTion).

Decision Tree:

[-1 -> Node (j = 0, nu = VectorI(5, 9), y = 1, leaf = false)

[0 -> Node (j = 3, nu = VectorI(2, 3), y = 1, leaf = false)

[0 -> Node (j = 1, nu = VectorI(0, 3), y = 1, leaf = true)]

[1 -> Node (j = 1, nu = VectorI(2, 0), y = 0, leaf = true)]

]

[1 -> Node (j = 1, nu = VectorI(0, 4), y = 1, leaf = true)]

[2 -> Node (j = 2, nu = VectorI(3, 2), y = 0, leaf = false)

[0 -> Node (j = 1, nu = VectorI(0, 2), y = 1, leaf = true)]

[1 -> Node (j = 1, nu = VectorI(3, 0), y = 0, leaf = true)]

]

]

The above process of creating the decision tree is done by a recursive, greedy algorithm. As with many

greedy algorithms, it does not guarantee an optimal solution.

7.9.3 Early Termination

Producing a complex decision tree with zero entropy may suggest over-fitting, so that a simpler tree may

be more robust. One approach would be terminate once entropy decreases to a certain level. One problem

with this is that expanding a different branch could have led to a lower entropy with a tree of no greater

complexity. Another approach is simply to limit the depth of the tree. Simple decision trees with limited

depth are commonly used in Random Forests, a more advanced technique discussed later.

The DecisionTree trait provides methods for building decision trees, calculating entropy and recursive

methods to support making predictions.

7.9.4 DecisionTree Trait

1 trait DecisionTree:

2

3 def addRoot (r: Node): Unit = root = r

4 def add (n: Node , v: Int , c: Node): Unit =

5 def add (n: Node , vc: (Int , Node)*): Unit =

6 def makeLeaf (n: Node): Unit =

7 def leafChildren (n: Node): Boolean = n.branch.values.forall (_.leaf)

8 def candidates: Set [Node] =

9 def bestCandidate (can: Set [Node]): (Node , Double) =

10 def calcEntropy (nodes: ArrayBuffer [Node] = leaves): Double =

288

11 def predictIrec (z: VectorI , n: Node = root): Int =

12 def predictIrecD (z: VectorD , n: Node = root): Int =

13 def printTree (): Unit =

The DecisionTree ID3 class extends this trait implementing the ID3 algorithm with methods for train-

ing, testing, making predictions and produing summary statistics. The train method calls the private

buildTree method that recursively builds the decision tree by expanding nodes until entropy drops to the

cutoff threshold or the tree depth is at the specified tree height.

7.9.5 DecisionTree ID3 Class

Class Methods:

1 @param x the input/data m-by-n matrix with instances stored in rows

2 @param y the response/classification m-vector , where y_i = class for row i

3 @param fname_ the name for each feature/variable xj (defaults to null)

4 @param k the number of classes (defaults to 2)

5 @param cname_ the name for each class

6 @param hparam the hyper -parameters for the Decision Tree classifier

7

8 class DecisionTree_ID3 (x: MatrixD , y: VectorI , fname_ : Array [String] = null ,

9 k: Int = 2, cname_ : Array [String] = Array ("No", "Yes"),

10 hparam: HyperParameter = DecisionTree.hp)

11 extends Classifier (x, y, fname_ , k, cname_ , hparam)

12 with FitC (y, k)

13 with DecisionTree:

14

15 override def parameter: VectorD = VectorD (param)

16 override def train (x_ : MatrixD = x, y_ : VectorI = y): Unit =

17 def test (x_ : MatrixD = x, y_ : VectorI = y): (VectorI , VectorD) =

18 override def predictI (z: VectorI): Int = predictIrec (z)

19 override def predictI (z: VectorD): Int = predictIrecD (z)

20 override def summary (x_ : MatrixD = null , fname_ : Array [String] = null ,

21 b_ : VectorD = p_y , vifs: VectorD = null): String =

7.9.6 Pruning

An alternative to early termination is to build a complex tree and then prune the tree. Pruning involves

selecting a node whose children are all leaves and undoing the split that created the children. Compared

to early termination, pruning will take more time to come up with the solution. For the tennis example,

pruning could be used to turn node 5 into a leaf node (pruning away two nodes) where the decision would

be the majority decision y = 1. The entropy for this has already been calculated to be .3468. Instead node 1

could be turned into a leaf (pruning away two nodes). This case is symmetric to the other one, so the entropy

would be .3468, but the decision would be y = 0. The original ID3 algorithm did not use pruning, but its

follow on algorithm C4.5 does (see the next Chapter). The ScalaTion implementation of ID3 does support

pruning. The DecisionTree ID3wp class extends DecisionTree ID3 with methods for finding candidates

for pruning and doing the actual pruning.

289

7.9.7 DecisionTree ID3wp Class

Class Methods:

1 @param x the input/data m-by-n matrix with instances stored in rows

2 @param y the response/classification m-vector , where y_i = class for row i of

matrix x

3 @param fname_ the name for each feature/variable xj (defaults to null)

4 @param k the number of classes (defaults to 2)

5 @param cname_ the name for each class

6 @param hparam the hyper -parameters for the Decision Tree classifier

7

8 class DecisionTree_ID3wp (x: MatrixD , y: VectorI , fname_ : Array [String] = null ,

9 k: Int = 2, cname_ : Array [String] = Array ("No", "Yes"),

10 hparam: HyperParameter = DecisionTree.hp)

11 extends DecisionTree_ID3 (x, y, fname_ , k, cname_ , hparam):

12

13 def prune (nPrune: Int = 1, threshold: Double = 0.98): Unit =

7.9.8 Exercises

1. The Play Tennis example (see NaiveBayes) can also be analyzed using decisions trees.

1 import Example_PlayTennis._

2

3 DecisionTree.hp("height") = 2

4 val mod = DecisionTree_ID3 (xy, fname)() // create a classifier

5 mod.trainNtest ()() // train and test classifier

6 mod.printTree () // print the decision tree

7 println (mod.summary ()) // summary statistics

8

9 val z = VectorI (2, 2, 1, 1) // new data vector to

classify

10 banner (s"Classify $z")

11 println (s"classify ($z) = ${mod.classify (z)}")

12

13 banner ("Validation")

14 println ("mod test accu = " + mod.validate ()()) // out -of-sample testing

Use DecisionTree ID3 to build classifiers for the Example PlayTennis problem. Compare its accuracy

to that of NullModel, NaiveBayes and TANBayes.

2. Do the same for the Breast Cancer problem (data in breast-cancer.arff file).

3. For the Breast Cancer problem, evaluate the effectiveness of the prune method.

4. Again for the Breast Cancer problem, explore the results for various limitations to the maximum

height/depth of tree via the height hyper-parameter.

290

7.10 Hidden Markov Model

A Hidden Markov Model (HMM) provides a natural way to study a system with an internal state and

external observations. One could image looking at a flame and judging the temperature (internal state) of

the flame by its color (external observation). When this is treated as a discrete problem, an HMM may

be used; whereas, as a continuous problem, a Kalman Filter may be used (see the chapter on State Space

Models). For HMMs, we assume that the internal state is unknown (hidden), but may be predicted by from

the observations.

Consider two discrete-valued, discrete-time stochastic processes. The first process represents the internal

state of a system

{xt : t ∈ {0, . . . T − 1}}

while the second process represents corresponding observations of the system

{yt : t ∈ {0, . . . T − 1}}

The internal state influences the observations. In a deterministic setting, one might imagine

yt = f(xt)

Unfortunately, since both xt and yt are both stochastic processes, their trajectories need to be described

probabilistically. For tractability and because it often suffices, the assumption is made that the state xt is

only significantly influenced by its previous state xt−1.

P (xt|xt−1, xt−2, x0) = P (xt|xt−1)

In other words, the transitions from state to state are governed by a discrete-time Markov chain and char-

acterized by state-transition probability matrix A = [aij], where

aij = P (xt = j|xt−1 = i)

The influence of the state upon the observation is also characterized by emission probability matrix B = [bkj],

where

bjk = P (yt = k|xt = j)

is the conditional probability of the observation being k when the state is j. This represents a second

simplifying assumption that the observation is effectively independent of prior states or observations. To

predict the evolution of the system, it is necessary to characterize the initial state of the system x0.

πj = P (xt = j)

The dynamics of an HMM model is thus represented by two matrices A, B and an intial state probability

vector π.

291

7.10.1 Example Problem

Let the system under study be a lane of road with a sensor to count traffic flow (number of vehicles passing

the sensor in a five minute period). As a simple example, let the state of the road be whether or not there

is an accident ahead. In other words, the state of road is either 0 (No-accident) or 1 (Accident). The only

information available is the traffic counts and of course historical information for training an HMM model.

Suppose the chance of an accident ahead is 10%.

π = [0.9, 0.1]

From historical information, two transition probabilities are estimated: the first is for the transition from

no accident to accident which is 20%; the second from accident to no-accident state (i.e., the accident has

been cleared) which is 50% (i.e., probability of one half that the accident will be cleared by the next time

increment). The number of states n = 2. Therefore, the state-transition probability matrix A is[
0.8 0.2

0.5 0.5

]
As A maps states to state, A is an n-by-n matrix.

Clearly, the state will influence the traffic flow (tens of cars per 5 minutes) with possible values of 0, 1,

2, 3. The number of observed values m = 4. Again from historical data the emission probability matrix B

is estimated to be [
0.1 0.2 0.3 0.4

0.5 0.2 0.2 0.1

]
As B maps states to observed values, B is an n-by-m matrix.

One question to address is, given a time series (observations sequence), what corresponding sequence of

states gives the highest probability of occurrence to the observed sequences.

y = [3, 3, 0]

This may be done by computing the joint probability P (x,y)

P (NNN,y) = π0 · b03 · a00 · b03 · a00 · b00 = 0.9 · 0.4 · 0.8 · 0.4 · 0.8 · 0.1 = 0.009216

P (NNA,y) = π0 · b03 · a00 · b03 · a01 · b10 = 0.9 · 0.4 · 0.8 · 0.4 · 0.2 · 0.5 = 0.011520

P (NAN,y) = π0 · b03 · a01 · b13 · a10 · b00 = 0.9 · 0.4 · 0.2 · 0.1 · 0.5 · 0.1 = 0.000360

P (NAA,y) = π0 · b03 · a01 · b13 · a11 · b10 = 0.9 · 0.4 · 0.2 · 0.1 · 0.5 · 0.5 = 0.001800

P (ANN,y) = π1 · b03 · a10 · b03 · a00 · b00 = 0.1 · 0.1 · 0.5 · 0.4 · 0.8 · 0.1 = 0.000160

P (ANA,y) = π1 · b03 · a10 · b03 · a01 · b10 = 0.1 · 0.1 · 0.5 · 0.4 · 0.2 · 0.5 = 0.000200

P (AAN,y) = π1 · b03 · a11 · b13 · a10 · b00 = 0.1 · 0.1 · 0.5 · 0.1 · 0.5 · 0.1 = 0.000025

P (AAA,y) = π1 · b03 · a11 · b13 · a11 · b10 = 0.1 · 0.1 · 0.5 · 0.1 · 0.5 · 0.5 = 0.000125

The state giving the highest probability is x = NNA. The marginal probability of the observed sequence

P (y) can be computed by summing over all eight states.

292

P (y) =
∑
x

P (x,y) = 0.023406

The algorithms given in the subsections below are adapted from [181]. For these algorithms, we divide

the time series/sequence of observations into two parts (past and future).

yt− = [y0, y1, yt]

yt+ = [yt+1, yt+2, yT−1]

They allow one to calculate (1) the probability of arriving in a state at time t with observations yt−, (2) the

conditional probability of seeing future observations yt+ from a given state at time t, and (3) the conditional

probability of being in a state at time t given all the observations y.

7.10.2 Forward Algorithm

For longer observation sequences/time series, the approach of summing over all possible state vectors (of

which there are nT) will become intractable. Much of the computation is repetitive anyway. New matrices

A, B and Γ are defined to save such intermediate calculations.

The forward algorithm (α-pass) computes the A matrix. The probability of being in state j at time t

having observations up to time t is given by

αtj = P (xt = j,y = yt−)

Computation of αtj may be done efficiently using the following recurrence.

αtj = bj,yt

n−1∑
i=0

αt−1,i aij = bj,yt [αt−1 · a:j]

To get to state j at time t, the system must transition from some state i at time t − 1 and at time t emit

the value yt. These values may be saved in a T -by-n matrix A = [αtj] and efficiently computed by moving

forward in time.

1 def forwardEval0 (): MatrixD =

2 for j <- rstate do alp(0, j) = pi(j) * b(j, y(0)) // compute alpha_0 (at t = 0)

3 for t <- 1 until tt; j <- rstate do // iterate over time and states

4 alp(t, j) = b(j, y(t)) * (alp(t-1) dot a(?, j))

5 end for

6 alp

7 end forwardEval0

The marginal probability is now simply the sum of the elements in the last row of the α matrix

P (y) =

n∑
j=0

αT−1,j

ScalaTion also provides a forwardEval method that uses scaling to avoid underflow.

293

7.10.3 Backward Algorithm

The backward algorithm (β-pass) computes the B matrix. The conditional probability of having future

observations after time t (y = yt+) given the current state xt = i is

βti = P (y = yt+|xt = i)

Computation of βtj may be done efficiently using the following recurrence.

βti =

n−1∑
j=0

aij bj,yt+1
βt+1,j

From state i at time t, the system must transition to some state j at time t+ 1 and at time t+ 1 emit the

value yt+1. These values may be saved in a T -by-n matrix B = [βti] and efficiently computed by moving

backward in time.

1 def backwardEval0 (): MatrixD =

2 for i <- rstate do bet(tt -1, i) = 1.0 // initialize beta_{tt -1} to 1

3 for t <- tt -2 to 0 by -1; i <- rstate do // iterate backover time , over states

4 bet(t, i) = 0.0

5 for j <- rstate do bet(t, i) += a(i, j) * b(j, y(t+1)) * bet(t+1, j)

6 end for

7 bet

8 end backwardEval0

ScalaTion also provides a backwardEval method that uses scaling to avoid underflow.

7.10.4 Viterbi Algorithm

The Viterbi algorithm (γ-pass) computes the Γ matrix. The conditional probability of the state at time t

being i, given all observations (y = y) is

γti = P (xt = i|y = y)

As αti captures the probability up to time t and βti captures the probability after time t, the conditional

probability may be calculated as follows:

γti =
αtiβti
P (y)

In ScalaTion, the Γ = [γti] matrix is calculated using the Hadamard product.

1 def gamma (alp: MatrixD , bet: MatrixD): MatrixD = (alp *~ bet) / probY (alp)

The conditional probability of being in state i at time t and transitioning to state j at time t+ 1 given

all observations (y = y) is

γtij = P (xt = i, xt+1 = j|y = y)

Note, this equation is not defined for the last time point T − 1, since there is no next state. Getting to state

i at time t is characterized by αti, the probability of the state transitioning to from i to j is characterized

aij , the probability of emitting yt+1 from state j at time t+ 1 is bj,yt+1
, and finally going from state j to the

end is characterized by βt+1,j .

294

γtij =
αtiaijbj,yt+1

βt+1,j

P (y)

The Viterbi Algorithm viterbiDecode computes the Γ matrix (gam in code) from scaled versions of alp and

bet. It also computes the Γ = [γtij] tensor (gat in code).

7.10.5 Training

The train method will call forwardEval, backwardEval and viterbiDecode to calculate updated values

for the A, B and Γ matrices as well as for the Γ tensor. These values are used to re-estimate the π, A and

B parameters.

1 @param x_ the training/full data/input matrix (ignored)

2 @param y_ the training/full response/output vector (defaults to full y)

3

4 override def train (x_ : MatrixD = null , y_ : VectorI = y): Unit =

5 var oldLogPr = 0.0

6 breakable {

7 for it <- 1 to MIT do // up to Maximum ITerations

8 val logPr = logProbY (true) // compute the new log probability

9 if logPr > oldLogPr then

10 oldLogPr = logPr // improvement => continue

11 forwardEval () // alpha -pass

12 backwardEval () // beta -pass

13 viterbiDecode () // gamma -pass

14 reestimate () // re-estimate the model (pi, a, b)

15 else

16 println (s"train: HMM model converged after $it iterations")

17 break ()

18 end if

19 end for

20 } // breakable

21 println (s"train: HMM model did not converged after $MIT iterations")

22 end train

The training loop will terminate early when there is no improvement to P (y). To avoid underflow −log(P (y)

is used.

7.10.6 Reestimation of Parameters

The parameters for an HMM model are π,A and B and may be adjusted to maximize the probability of

seeing the observation vector P (y). Since α0i = πibi,y(0), we can re-estimation π as follows:

πi =
α0i

bi,y0
= γ0i

The A matrix can re-estimated as follows:

aij =

∑T−2
t=0 γtij∑T−2
t=0 γti

Similarly, the B matrix can re-estimated as follows:

295

bik =

∑T−1
t=0 Iyt=k γti∑T−1

t=0 γti

The detailed derivations are left to the exercises.

7.10.7 HiddenMarkov Class

Class Methods:

1 @param y the observation vector/observed discrete -valued time series

2 @param m the number of observation symbols/values {0, 1, ... m-1}

3 @param n the number of (hidden) states in the model

4 @param cname_ the class names for the states , e.g., ("Hot", "Cold")

5 @param pi the probabilty vector for the initial state

6 @param a the state transition probability matrix (n-by -n)

7 @param b the observation probability matrix (n-by-m)

8 @param hparam the hyper -parameters

9

10 class HiddenMarkov (y: VectorI , m: Int , n: Int , cname_ : Array [String] = null ,

11 private var pi: VectorD = null ,

12 private var a: MatrixD = null ,

13 private var b: MatrixD = null ,

14 hparam: HyperParameter = null)

15 extends Classifier (null , y, null , n, cname_ , hparam) // hidden x = null

16 with FitC (y, n):

17

18 def size: Int = n

19 override def parameter: VectorD = pi

20 def parameters: (MatrixD , MatrixD) = (a, b)

21 def jointProb (x: VectorI): Double =

22 def forwardEval0 (): MatrixD =

23 def backwardEval0 (): MatrixD =

24 def gamma (): MatrixD = (alp *~ bet) / probY ()

25 def forwardEval (): MatrixD =

26 def getC: VectorD = c

27 def backwardEval (): MatrixD =

28 def viterbiDecode (): MatrixD =

29 def reestimate (): Unit =

30 override def train (x_ : MatrixD = null , y_ : VectorI = y): Unit =

31 def test (x_ : MatrixD = null , y_ : VectorI = y): (VectorI , VectorD) =

32 override def report: String =

33 override def predictI (z: VectorI): Int =

7.10.8 Exercises

1. Show that for t ∈ {0, . . . T − 2},

γti =

n−1∑
j=0

γtij

296

2. Show that

πi =
α0i

bi,y0
= γ0i

3. Show that

aij =

∑T−2
t=0 γtij∑T−2
t=0 γti

4. Show that

bik =

∑T−1
t=0 Iyt=k γti∑T−1

t=0 γti

7.11 Further Reading

1. Data Classification Algorithms and Applications [2]

2. Data Mining Practical Machine Learning Tools and Techniques, Fourth Edition [205]

297

298

Chapter 8

Classification: Continuous Variables

For the problems in this chapter, the response/classification variable is still discrete, but some/all of the

feature variables are now continuous. Technically, classification problems fit in this category, if it is infeasible

or nonproductive to compute frequency counts for all values of a variable (e.g., for xj , the value count

vcj = ∞). If a classification problem almost fits in the previous chapter, one may consider the use of

binning to convert numerical variables into categorical variables (e.g, convert weight into weight classes).

Care should be taken since binning represents hidden parameters in the model and arbitrary choices may

influence results.

299

8.1 Gaussian Näıve Bayes

The Naı̈veBayesR class implements a Gaussian Näıve Bayes Classifier, which is the most commonly used

such classifier for continuous input data. The classifier is trained using a data matrix X and a classification

vector y. Each data vector in the matrix is classified into one of k classes numbered 0, 1, . . . , k − 1.

Class probabilities are calculated based on the population of each class in the training-set. Relative

probabilities are computed by multiplying these by values computed using conditional density functions

based on the Normal (Gaussian) distribution. The classifier is näıve, because it assumes feature independence

and therefore simply multiplies the conditional densities.

Starting with main results from the section on Näıve Bayes (equation 4.5),

ŷ = argmax
y∈{0,...,k−1}

P (y)

n−1∏
j=0

P (xj |y) (8.1)

if all the variables xj are continuous, we may switch from conditional probabilities P (xj |y) to conditional

densities f(xj |y). The best prediction for class y is the value ŷ that maximizes the product of the conditional

densities multiplied by the class probability.

ŷ = argmax
y∈{0,...,k−1}

P (y)

n−1∏
j=0

f(xj |y) (8.2)

Although the formula assumes the conditional independence of xjs, the technique can be applied as long as

correlations are not too high.

Using the Gaussian assumption, the conditional density of xj given y, is approximated by estimating the

two parameters of the Normal distribution,

xj |y ∼ Normal(µc, σ
2
c) (8.3)

where class c ∈ {0, 1, . . . , k − 1}, µc = E [x|y = c] and σ2
c = V [x|y = c]). Thus, the conditional density

function is

f(xj |y = c) =
1√

2πσc
e
− (x−µc)2

2σ2c (8.4)

Class probabilities P (y = c) may be estimated as mc
m , where mc is the frequency count of the number of

occurrences of c in the class vector y. Conditional densities are needed for each of the k class values, for each

of the n variables (each xj) (i.e., kn are needed). Corresponding means and variances may be estimated as

follows:

µ̂cj =
1

mc

m−1∑
i=0

(xij |yi = c) (8.5)

σ̂2
cj =

1

mc − 1

m−1∑
i=0

((xij − µ̂cj)2|yi = c) (8.6)

Using conditional density (cd) functions estimated in the train method (see code for details), an input

vector z can be classified using the predictI or classify method.

300

1 override def predictI (z: VectorD): Int =

2 for c <- 0 until k; j <- x.indices2 do p_yz(c) *= cd(c)(j)(z(j))

3 p_yz.argmax () // return class with highest probability

4 end predictI

8.1.1 NaiveBayesR Class

Class Methods:

1 @param x the real -valued data vectors stored as rows of a matrix

2 @param y the class vector , where y_i = class for row i of the matrix x, x(i)

3 @param fname_ the names for all features/variables (defaults to null)

4 @param k the number of classes (defaults to 2)

5 @param cname_ the names for all classes

6 @param hparam the hyper -parameters

7

8 class NaiveBayesR (x: MatrixD , y: VectorI , fname_ : Array [String] = null ,

9 k: Int = 2, cname_ : Array [String] = Array ("No", "Yes"),

10 hparam: HyperParameter = NaiveBayes.hp)

11 extends Classifier (x, y, fname_ , k, cname_ , hparam)

12 with FitC (y, k):

13

14 def calcStats (x_ : MatrixD = x, y_ : VectorI = y): Unit =

15 def calcHistogram (x_j: VectorD , intervals: Int): VectorD =

16 override def train (x_ : MatrixD = x, y_ : VectorI = y): Unit =

17 def test (x_ : MatrixD = x, y_ : VectorI = y): (VectorI , VectorD) =

18 override def predictI (z: VectorD): Int =

19 override def summary (x_ : MatrixD = null , fname_ : Array [String] = null ,

20 b_ : VectorD = p_y , vifs: VectorD = null): String =

8.1.2 Exercises

1. Use NaiveBayesR to classify manufactured parts according whether they should pass quality con-

trol based on curvature and diameter tolerances. See people.revoledu.com/kardi/tutorial/LDA/

Numerical%20Example.html for details.

1 // features/variable:

2 // x1: curvature

3 // x2: diameter

4 // y: classification: pass (0), fail (1)

5 // x1 x2 y

6 val xy = MatrixD ((7, 3), 2.95, 6.63, 0, // joint data matrix

7 2.53, 7.79, 0,

8 3.57, 5.65, 0,

9 3.16, 5.47, 0,

10 2.58, 4.46, 1,

11 2.16, 6.22, 1,

12 3.27, 3.52, 1)

13

301

people.revoledu.com/kardi/tutorial/LDA/Numerical%20Example.html
people.revoledu.com/kardi/tutorial/LDA/Numerical%20Example.html

14 val fname = Array ("curvature", "diameter") // feature names

15 val cname = Array ("pass", "fail") // class names

16 val nbr = NaiveBayesR (xy, fname , 2, cname)() // create NaiveBayesR nbr

302

8.2 Simple Logistic Regression

The SimpleLogisticRegression class supports simple logistic regression. In this case, the predictor vector

x is two-dimensional [1, x1]. Again, the goal is to fit the parameter vector b in the regression equation

y = b · x + ε = b0 + b1x1 + ε (8.7)

where ε represents the residuals (the part not explained by the model). This looks like simple linear regression,

with the difference being that the response variable y is binary (y ∈ {0, 1}). Since y is binary, minimizing

the distance, as was done before, may not work well. First, instead of focusing on y ∈ {0, 1}, we focus on

the conditional probability of success py(x) ∈ [0, 1], i.e.,

py(x) = P (y = 1|x) (8.8)

For example, the random variable y could be used to indicate whether a customer will pay back a loan (1)

or not (0). The predictor variable x1 could be the customer’s FICA score.

8.2.1 mtcars Example

Another example is from the Motor Trends Cars (mtcars) dataset (see https://stat.ethz.ch/R-manual/

R-devel/library/datasets/html/mtcars.html), gist.github.com/seankross/a412dfbd88b3db70b74b).

Try using mpg to predict/classify the car’s engine as either V-shaped(0) or Straight(1), as in V-6 or S-4. First,

use SimpleRegression to predict py(x) where y is V/S and x1 is mpg, (x = [1, x1]). Plot y versus x1 and then

add a vector to the plot for the predicted values for py. Utilizing simple linear regression to predict py(x)

would correspond to the following equation.

py(x) = b0 + b1x1

8.2.2 Logistic Function

The linear relationship between y and x1 may be problematic, in the sense that there is likely to be a range

of rapid transition before which loan default is likely and after which loan repayment is likely. Similarly,

there is rapid transition from S(1) to V(0) as mpg increases. This suggests that some “S-curve” function such

as the logistic function may be more useful. The standard logistic function (sigmoid function) is

logistic(z) =
1

1 + e−z
=

ez

1 + ez
(8.9)

Letting z = b0 + b1x1, we obtain

py(x) = logistic(b0 + b1x1) =
eb0+b1x1

1 + eb0+b1x1
(8.10)

8.2.3 Logit Function

The goal now is to transform the right hand side into the usual linear form (i.e., b · x).

py(x) =
eb·x

1 + eb·x
(8.11)

303

https://stat.ethz.ch/R-manual/R-devel/library/datasets/html/mtcars.html
https://stat.ethz.ch/R-manual/R-devel/library/datasets/html/mtcars.html
gist.github.com/seankross/a412dfbd88b3db70b74b

Multiplying through by 1 + eb·x gives

py(x) + eb·xpy(x) = eb·x (8.12)

Solving for eb·x yields

eb·x =
py(x)

1− py(x)
(8.13)

Taking the natural logarithm of both sides gives

ln
py(x)

1− py(x)
= b · x = b0 + b1x1 (8.14)

where the function on the left hand side is called the logit function.

logit(py(x)) = b · x = b0 + b1x1 (8.15)

Putting the model in this form shows it is a special case of a Generalized Linear Model (see the Chapter on

Generalized Linear Models) and will be useful in the estimation procedure.

8.2.4 Maximum Likelihood Estimation

Imagine you wish to create a model that is able to generate data that looks like the observed data (i.e., the

data in the dataset). The choice of values for the parameters b (treated as a random vector) will impact the

quality of the model. Define a function of b that will be maximized when the parameters are ideally set to

generate the observed data.

8.2.5 Likelihood Function

We can think of this function as the likelihood of b given the predictor vector x and the response variable y.

L(b|x, y) (8.16)

In this case, y ∈ {0, 1}, so if we estimate the likelihood for a single data instance (or row), we have

L(b|x, y) = py(x)y (1− py(x))1−y (8.17)

If y = 1, then L = py(x) and otherwise L = 1− py(x). These are the probabilities for the two outcomes for

a Bernoulli random variable (and equation 6.5 concisely captures both).

For each instance i ∈ {0, . . . ,m− 1}, a similar factor is created. These are multiplied together for all the

instances (in the dataset, or training or testing). The likelihood of b given the predictor matrix X and the

response vector y is then

L(b|x, y) =

m−1∏
i=0

py(xi)
yi (1− py(xi))

1−yi (8.18)

304

8.2.6 Log-likelihood Function

To reduce round-off errors, a log (e.g., natural log, ln) is taken

l(b|x, y) =

m−1∑
i=0

yi ln(py(xi)) + (1− yi)ln(1− py(xi)) (8.19)

This is referred as the log-likelihood function. Collecting yi terms give

l(b|x, y) =

m−1∑
i=0

yi ln
py(xi)

1− py(xi)
+ ln(1− py(xi)) (8.20)

Substituting b · xi for logit(py(xi)) gives

l(b|x, y) =

m−1∑
i=0

yi b · xi + ln(1− py(xi)) (8.21)

Now substituting
eb·xi

1 + eb·xi
for py(xi) gives

l(b|x, y) =

m−1∑
i=0

yi b · xi − ln(1 + eb·xi) (8.22)

Multiplying the log-likelihood by -2 makes the distribution approximately Chi-square (see Wilks Theorem[203]).

− 2l = − 2

m−1∑
i=0

yi b · xi − ln(1 + eb·xi) (8.23)

Or since b = [b0, b1],

− 2l = − 2

m−1∑
i=0

yi(b0 + b1xi1)− ln(1 + eb0+xi1) (8.24)

Letting βi = b0 + b1xi1 gives

− 2l = − 2

m−1∑
i=0

yiβi − ln(1 + eβi) (8.25)

It is more numerically stable to perform a negative rather than positive ez function.

− 2l = − 2

m−1∑
i=0

yiβi − βi − ln(e−βi + 1) (8.26)

8.2.7 Computation in ScalaTion

The computation of −2l is carried out in ScalaTion via the ll method. It loops through all instances

computing βi (bx in the code) and summing all the terms given in equation 6.9.

1 def ll (b: VectorD): Double =

2 var sum = 0.0

3 var bx = 0.0 // beta

4 for i <- y.indices do

305

5 bx = b(0) + b(1) * x(i, 1)

6 sum += y(i) * bx - bx - log (exp (-bx) + 1.0)

7 end for

8 -2.0 * sum

9 end ll

8.2.8 Making a Decision

So far, SimpleLogisticRegression is a model for predicting py(x). In order to use this for binary classi-

fication a decision needs to be made: deciding on either 0 (no) or 1 (yes). A natural way to do this is to

choose 1 when py(x) exceeds 0.5. The predicI pr classify methods may be use.

1 override def predictI (z: VectorD): Int =

2 val py = sigmoid (b dot z) // P(y = 1|x)

3 is (py > cThresh) // compare to classification threshold

4 end predictI

Note, the is method in the scalation package is defined as follows:

1 inline def is (p: Boolean): Int = if p then 1 else 0

In some cases, this may results in imbalance between false positives and false negatives. Quality of

Fit (QoF) measures may improve by tuning the classification/decision threshold cThresh. Decreasing the

threshold pushes false negatives to false positives. Increasing the threshold does the opposite. Ideally, the

tuning of the threshold will also push more cases into the diagonal of the confusion matrix and minimize

errors. Finally, in some cases it may be more important to reduce one more than the other, false negatives

vs. false positives (see the exercises).

8.2.9 SimpleLogisticRegression Class

Class Methods:

1 @param x the input/design matrix augmented with a first column of ones

2 @param y the binary response vector , y_i in {0, 1}

3 @param fname_ the names for all features/variables

4 @param cname_ the names for both classes

5 @param hparam the hyper -parameters

6

7 class SimpleLogisticRegression (x: MatrixD , y: VectorI ,

8 fname_ : Array [String] = Array ("one", "x1"),

9 cname_ : Array [String] = Array ("No", "Yes"),

10 hparam: HyperParameter = Classifier.hp)

11 extends Classifier (x, y, fname_ , 2, cname_ , hparam)

12 with FitC (y, 2):

13

14 override def pseudo_rSq: Double = 1.0 - r_dev / n_dev

15 override def train (x_ : MatrixD = x, y_ : VectorI = y): Unit =

16 def train_null (x_ : MatrixD = x, y_ : VectorI = y): Unit =

17 def test (x_ : MatrixD = x, y_ : VectorI = y): (VectorI , VectorD) =

18 override def parameter: VectorD = b

19 override def fit: VectorD =

20 def fitLabel: Seq [String] = QoFC.values.map (_.toString).toIndexedSeq ++

306

21 Seq ("n_dev", "r_dev", "aic")

22 override def predictI (z: VectorD): Int =

23 override def predictI (z: VectorI): Int = predictI (z.toDouble)

24 override def summary (x_ : MatrixD = null , fname_ : Array [String] = null ,

25 b_ : VectorD = b, vifs: VectorD = null): String =

8.2.10 Exercises

1. Plot the standard logistic function (sigmoid for scalars, sigmoid for vectors).

1 import scalation.modeling.ActivationFun.sigmoid_

2 val z = VectorD.range (0, 160) / 10.0 - 8.0

3 val fz = sigmoid_ (z)

4 new Plot (z, fz)

2. For the mtcars dataset, determine the model parameters b0 and b1 directly (i.e., do not call train).

Rather perform a grid search for a minimal value of the ll function. Use the x matrix (one, mpg) and

y vector (V/S) from SimpleLogisticRegressionTest.

1 // 32 data points: One Mpg

2 val x = MatrixD ((32, 2), 1.0, 21.0, // 1 - Mazda RX4

3 1.0, 21.0, // 2 - Mazda RX4 Wa

4 1.0, 22.8, // 3 - Datsun 710

5 1.0, 21.4, // 4 - Hornet 4 Drive

6 1.0, 18.7, // 5 - Hornet Sportabout

7 1.0, 18.1, // 6 - Valiant

8 1.0, 14.3, // 7 - Duster 360

9 1.0, 24.4, // 8 - Merc 240D

10 1.0, 22.8, // 9 - Merc 230

11 1.0, 19.2, // 10 - Merc 280

12 1.0, 17.8, // 11 - Merc 280C

13 1.0, 16.4, // 12 - Merc 450S

14 1.0, 17.3, // 13 - Merc 450SL

15 1.0, 15.2, // 14 - Merc 450 SLC

16 1.0, 10.4, // 15 - Cadillac Fleetwood

17 1.0, 10.4, // 16 - Lincoln Continental

18 1.0, 14.7, // 17 - Chrysler Imperial

19 1.0, 32.4, // 18 - Fiat 128

20 1.0, 30.4, // 19 - Honda Civic

21 1.0, 33.9, // 20 - Toyota Corolla

22 1.0, 21.5, // 21 - Toyota Corona

23 1.0, 15.5, // 22 - Dodge Challenger

24 1.0, 15.2, // 23 - AMC Javelin

25 1.0, 13.3, // 24 - Camaro Z28

26 1.0, 19.2, // 25 - Pontiac Firebird

27 1.0, 27.3, // 26 - Fiat X1 -9

28 1.0, 26.0, // 27 - Porsche 914-2

29 1.0, 30.4, // 28 - Lotus Europa

30 1.0, 15.8, // 29 - Ford Pantera L

31 1.0, 19.7, // 30 - Ferrari Dino

32 1.0, 15.0, // 31 - Maserati Bora

307

33 1.0, 21.4) // 32 - Volvo 142E

34

35 // V/S (e.g., V-6 vs. I-4)

36 val y = VectorI (0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0,

37 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1)

3. Compare the effectiveness of SimpleLogisticRegression versus SimpleRegression on the mtcars

dataset. See simpleLogisticRegressionTest.

4. If the treatment for a disease is risky and consequences of having the disease are minimal, would you

prefer to focus on reducing false positives or false negatives?

5. If the treatment for a disease is safe and consequences of having the disease may be severe, would you

prefer to focus on reducing false positives or false negatives?

308

8.3 Logistic Regression

The LogisticRegression class supports logistic regression. In this case, x may be multi-dimensional

[1, x1, . . . , xk]. Again, the goal is to fit the parameter vector b in the regression equation

y = b · x + ε = b0 + b1x1 + . . . + bkxk + ε (8.27)

where ε represents the residuals (the part not explained by the model). This looks like multiple linear

regression. The difference being that the response variable y is binary (y ∈ {0, 1}). Since y is binary,

minimizing the distance, as was done before may not work well. First, instead of focusing on y ∈ {0, 1}, we

focus on the conditional probability of success py(x) ∈ [0, 1], i.e.,

py(x) = P (y = 1|x) (8.28)

Still, py(x) is bounded, while b · x is not. We therefore, need a transformation, such as the logit transfor-

mation, and fit b · x to this function. Treating this as a Generalized Linear Model problem,

y = µ(x) + ε (8.29)

g(µ(x)) = b · x (8.30)

we let the link function g = logit.

logit(µ(x)) = ln
py(x)

1− py(x)
= b · x (8.31)

This is the logit regression equation. Second, instead of minimizing the sum of squared errors, we wish to

maximize the likelihood of predicting correct outcomes. For the ith training case xi with outcome yi, the

likelihood function is based on the Bernoulli distribution.

py(xi)
yi(1− py(xi))

1−yi (8.32)

The overall likelihood function is the product over all m cases. The equation is the same as 6.6 from the

last section.

L(b|x, y) =

m−1∏
i=0

py(xi)
yi (1− py(xi))

1−yi (8.33)

Following the same derivation steps, will give the same log-likelihood that is in equation 6.7.

l(b|x, y) =

m−1∑
i=0

yi b · xi − ln(1 + eb·xi) (8.34)

Again, multiplying the log-likelihood function by -2 makes the distribution approximately Chi-square.

− 2l = − 2

m−1∑
i=0

yi b · xi − ln(1 + eb·xi) (8.35)

The likelihood can be maximized by minimizing −2l, which is a nonlinear function of the parameter vector

b. Various optimization techniques may be used to search for optimal values for b. Currently, ScalaTion

309

uses BFGS, a popular general-purpose QuasiNewton NLP solver. Other possible optimizers include LBFGS

and IRWLS. For a more detailed derivation, see http://www.stat.cmu.edu/~cshalizi/350/lectures/26/

lecture-26.pdf.

8.3.1 LogisticRegression Class

Class Methods:

1 @param x the input/design matrix augmented with a first column of ones

2 @param y the binary response vector , y_i in {0, 1}

3 @param fname_ the names for all features/variables (defaults to null)

4 @param cname_ the names for both classes

5 @param hparam the hyper -parameters

6

7 class LogisticRegression (x: MatrixD , y: VectorI , fname_ : Array [String] = null ,

8 cname_ : Array [String] = Array ("No", "Yes"),

9 hparam: HyperParameter = Classifier.hp)

10 extends SimpleLogisticRegression (x, y, fname_ , cname_ , hparam):

11

12 override def train (x_ : MatrixD = x, y_ : VectorI = y): Unit =

13 def vif: VectorD = ???

8.3.2 Exercises

1. Use Logistic Regression to classify whether stock market will be increasing or not. The Smarket

dataset is in the ISLR library, see [85] section 4.6.2.

2. Use Logistic Regression to classify whether a customer will purchase caraavan insurance. The

Caravan dataset is in the ISLR library, see [85] section 4.6.6.

310

http://www.stat.cmu.edu/~cshalizi/350/lectures/26/lecture-26.pdf
http://www.stat.cmu.edu/~cshalizi/350/lectures/26/lecture-26.pdf

8.4 Simple Linear Discriminant Analysis

The SimpleLDA class support Linear Discriminant Analysis which is useful for multiway classification of

continuously valued data. The response/classification variable can take on k possible values, y ∈ {0, 1, . . . , k−
1}. The feature variable x is one dimensional for SimpleLDA, but can be multi-dimensional for LDA discussed

in the next section. Given the data about an instance stored in variable x, pick the best (most probable)

classification y = c.

As was done for Näıve Bayes classifiers, we are interested in the probability of y given x.

P (y|x) =
P (x|y)P (y)

P (x)
(8.36)

Since x is now continuous, we need to work with conditional densities as is done Gaussian Näıve Bayes

classifiers,

P (y|x) =
f(x|y)P (y)

f(x)
(8.37)

where

f(x) =

k−1∑
c=0

f(x|y = c)P (y = c) (8.38)

Now let us assume the conditional probabilities are normally distributed with a common variance.

x|y ∼ Normal(µc, σ
2) (8.39)

where class c ∈ {0, 1, . . . , k − 1}, µc = E [x|y = c] and σ2 is the pooled variance (weighted average of

V [x|y = c]). Thus, the conditional density function is

f(x|y = c) =
1√
2πσ

e−
(x−µc)2

2σ2 (8.40)

Substituting into eqaution 6.10 gives

P (y|x) =

1√
2πσ

e−
(x−µc)2

2σ2 P (y)

f(x)
(8.41)

where

f(x) =

k−1∑
c=0

1√
2πσ

e−
(x−µc)2

2σ2 P (y = c) (8.42)

Because of differing means, each conditional density will be shifted resulting in a mountain range appear-

ance when plotted together. Given a data point x, the question becomes, which mountain is it closest to in

the sense of maximizing the conditional probability expressed in equation 6.11.

P (y|x) ∝ 1√
2πσ

e−
(x−µc)2

2σ2 P (y) (8.43)

Since the term
1√
2πσ

is same for all values of y, it may be ignored. Taking the natural logarithm yields

311

ln(P (y|x)) ∝ −(x− µc)2

2σ2
+ ln(P (y)) (8.44)

Expanding −(x− µc)2 gives −x2 + 2xµc − µ2
c and the first term may be ignored (same for all y).

ln(P (y|x)) ∝ xµc
σ2
− µ2

c

2σ2
+ ln(P (y)) (8.45)

The right hand side functions in 4.12 are linear in x and are called discriminant functions δc(x).

Given training data vectors x and y, define xc (or xc in the code) to be the vector of all xi values where

yi = c and let its length be denoted by mc. Now the k means may be estimated as follows:

µ̂c =
1 · xc
mc

(8.46)

The common variance my be estimated using a pooled variance estimator.

σ̂2 =
1

m− k

k−1∑
c=0

‖xc − µc‖2 (8.47)

Finally, mcm can be used to estimate P (y).

These can easily be translated into ScalaTion code. Most of the calculations are done in the train

method. It estimates the class probability vector p y, the group means vector mu and the pooled variance.

The vectors term1 and term2 capture the x-term (µc/σ
2) and the constant term (µ2

c/2σ
2 − ln(P (y))) in

equation 6.12.

1 override def train (x_ : MatrixD = x, y_ : VectorI = y): Unit =

2 val xc = for c <- 0 until k yield // groups for x

3 VectorD (for i <- y_.indices if y(i) == c yield x_(0, i)) // group c

4 p_y = VectorD (xc.map (_.dim / y.dim.toDouble)) // probability y = c

5 mu = VectorD (xc.map (_.mean)) // group means

6 var sum = 0.0

7 for c <- 0 until k do sum += (xc(c) - mu(c)).normSq

8 sig2 = sum / (m - k).toDouble // pooled variance

9 term1 = mu / sig2

10 term2 = mu~ˆ2 / (2.0 * sig2) - p_y.map (log (_))

11 end train

Given the two precomputed terms, the classify method simply multiplies the first by z(0) and subtracts

the second. Then it finds the argmax of the delta vector to return the class with the maximum delta,

which corresponds the most probable classification.

ŷ = argmaxc
zµc
σ2
− µ2

c

2σ2
+ ln(P (y)) (8.48)

1 override def predictI (z: VectorD): Int =

2 val delta = term1 * z(0) - term2

3 delta.argmax ()

4 end predictI

312

8.4.1 SimpleLDA Class

Class Methods:

1 * @param x the input/design matrix with only one column

2 * @param y the response/classification vector , y_i in {0, 1}

3 * @param fname_ the name for the feature/variable

4 * @param k the number of possible values for y (0, 1, ... k-1)

5 * @param cname_ the names for all classes

6 * @param hparam the hyper -parameters

7 */

8 class SimpleLDA (x: MatrixD , y: VectorI , fname_ : Array [String] = Array ("x1"),

9 k: Int = 2, cname_ : Array [String] = Array ("No", "Yes"),

10 hparam: HyperParameter = Classifier.hp)

11 extends Classifier (x, y, fname_ , k, cname_ , hparam)

12 with FitC (y, 2):

13

14 override def train (x_ : MatrixD = x, y_ : VectorI = y): Unit =

15 def test (x_ : MatrixD = x, y_ : VectorI = y): (VectorI , VectorD) =

16 override def predictI (z: VectorD): Int =

17 override def predictI (z: VectorI): Int = predictI (z.toDouble)

18 override def summary (x_ : MatrixD = null , fname_ : Array [String] = null ,

8.4.2 Exercises

1. Generate two samples using Normal (98.6, 1.0) and Normal (101.0, 1.0) with 100 in each sample.

Put the data instances into a single x vector. Let the y vector be 0 for the first sample and 1 for the

second. Use SimpleLDA to classify all 200 data points and determine the values for tp, tn, fn and

fp. See scalation.modeling.classifying.simpleLDATest2.

313

8.5 Linear Discriminant Analysis

Like SimpleLDA, the LDA class support Linear Discriminant Analysis that is used for multiway classification

of continuously valued data. Similarly, the response/classification variable can take on k possible values,

y ∈ {0, 1, . . . , k − 1}. Unlike SimpleLDA, this class is intended for cases where the feature vector x is multi-

dimensional. The classification y = c is chosen to maximize the conditional probability of class y given the

n-dimensional data/feature vector x.

P (y|x) =
f(x|y)P (y)

f(x)
(8.49)

where

f(x) =

k−1∑
c=0

f(x|y = c)P (y = c)

In the multi-dimensional case, x|y has a multivariate Gaussian distribution, Normal(µc,Σ), where µc are

the mean vectors E [x|y = c] and Σ is the common covariance matrix (weighted average of C [x|y = c]. The

conditional density function is given by

f(x|y = c) =
1

(2π)
n
2 |Σ| 12

e−
1
2 (x−µc)

ᵀ
Σ−1(x−µc)

Dropping factors independent of c and multiplying by P (y = c) gives

f(x|y = c)P (y = c) ∝ e−
1
2 (x−µc)

ᵀ
Σ−1(x−µc)P (y = c)

Taking the natural logarithm

ln(P (y|x)) ∝ − 1
2 (x− µc)

ᵀ
Σ−1(x− µc) + ln(P (y = c))

The discriminant functions are obtained by multiplying out and again dropping terms independing of c.

δc(x) = x
ᵀ

Σ−1µc −
µc

ᵀ
Σ−1µc
2

+ ln(P (y = c)) (8.50)

As in the last section, the means for each class c (µc), the common covariance matrix (Σ), and the class

probabilities (P (y)) must be estimated.

8.5.1 LDA Class

Class Methods:

1 @param x the real -valued training/test data vectors stored as rows of a matrix

2 @param y the training/test classification vector , where y_i = class for row i

3 @param fname_ the names for all features/variables (defaults to null)

4 @param k the number of classes (k in {0, 1, ...k-1}

5 @param cname_ the names for all classes

6 @param hparam the hyper -parameters

7

8 class LDA (x: MatrixD , y: VectorI , fname_ : Array [String] = null ,

9 k: Int = 2, cname_ : Array [String] = Array ("No", "Yes"),

314

10 hparam: HyperParameter = Classifier.hp)

11 extends Classifier (x, y, fname_ , k, cname_ , hparam)

12 with FitC (y, k):

13

14 def corrected_cov (xc: MatrixD): MatrixD = (xc.T * xc) / xc.dim

15 override def train (x_ : MatrixD = x, y_ : VectorI = y): Unit =

16 def test (x_ : MatrixD = x, y_ : VectorI = y): (VectorI , VectorD) =

17 override def predictI (z: VectorD): Int =

18 override def predictI (z: VectorI): Int = predictI (z.toDouble)

19 override def summary (x_ : MatrixD = null , fname_ : Array [String] = null ,

20 b_ : VectorD = parameter , vifs: VectorD = null): String =

8.5.2 Exercises

1. Use LDA to classify manufactured parts according whether they should pass quality control based on

curvature and diameter tolerances. See people.revoledu.com/kardi/tutorial/LDA/Numerical%

20Example.html for details.

315

people.revoledu.com/kardi/tutorial/LDA/Numerical%20Example.html
people.revoledu.com/kardi/tutorial/LDA/Numerical%20Example.html

8.6 K-Nearest Neighbors Classifier

The KNN Classifier class is used to classify a new vector z into one of k classes y ∈ {0, 1, . . . , k − 1}. It

works by finding its κ-nearest neighbors to the point z. These neighbors essentially vote according to their

classification. The class with the most votes is selected as the classification of vector z. Using a distance

metric, the κ vectors nearest to z are found in the training data, which are stored row-wise in data matrix

X. The corresponding classifications are given in vector y, such that the classification for vector xi is given

by yi.

In ScalaTion to avoid the overhead of calling sqrt, the square of the Euclidean distance is used

(although other metrics can easily be swapped in). The squared distance from vector x to vector z is then

d(x) = d(x, z) = ‖x− z‖2

The distance metric is used to collect the κ nearest vectors into set topκ(z), such that there does not exists

any vector xj /∈ topκ(z) that is closer to z.

topκ(z) = {xi|i ∈ {0, . . . , κ− 1} and @(xj /∈ topκ(z) and d(xj) < d(xi)}

In case of ties for the most distant point to include in topκ(z) one could pick the first point encountered or

the last point. A less biased approach would be to randomly break the tie.

Now y(topκ(z)) can be defined to be the vector of votes from the members of the set, e.g., y(top3(z)) =

[1, 0, 1]. The ultimate classification is then simply the mode (most frequent value) of this vector (e.g., 1 in

this case).

ŷ = mode y(topκ(z))

8.6.1 Lazy Learning

Training in the KNN Classifier class is lazy, i.e., the work is done in the predictI/classify methods,

rather than the train method.

1 override def predictI (z: VectorD): Int =

2 nearest (z) // set top -kappa to kappa nearest

3 for i <- 0 until kappa do count(y(topK(i)._1)) += 1 // tally votes per class

4 val best = count.argmax () // class with maximal count

5 reset () // reset topK and counters

6 best // return the best

7 end predictI

The kNearest method finds the κ x vectors closest to the given vector z. This method updates topK by

replacing the most distant x vector in topK with a new one if it is closer. Each element in the topK array is

a tuple (j, d(j)) indicating which vector and its distance from z. Each of these selected vectors will have

their vote taken, voting for the class for which it is labeled. These votes are tallied in the count vector. The

class with the highest count will be selected as the best class.

8.6.2 KNN Classifier Class

Class Methods:

316

1 @param x the input/data matrix

2 @param y the classification of each vector in x

3 @param fname_ the names for all features/variables (defaults to null)

4 @param k the number of classes (defaults to 2)

5 @param cname_ the names for all classes

6 @param kappa the number of nearest neighbors to consider

7 @param hparam the hyper -parameters

8

9 class KNN_Classifier (x: MatrixD , y: VectorI , fname_ : Array [String] = null ,

10 k: Int = 2, cname_ : Array [String] = Array ("No", "Yes"),

11 kappa: Int = 3, hparam: HyperParameter = null)

12 extends Classifier (x, y, fname_ , k, cname_ , hparam)

13 with FitC (y, k):

14

15 def distance (x: VectorD , z: VectorD): Double = (x - z).normSq

16 def test (x_ : MatrixD = x, y_ : VectorI = y): (VectorI , VectorD) =

17 override def predictI (z: VectorD): Int =

18 override def predictI (z: VectorI): Int = predictI (z.toDouble)

19 def reset (): Unit =

20 override def summary (x_ : MatrixD = null , fname_ : Array [String] = null ,

21 b_ : VectorD = p_y , vifs: VectorD = null): String =

8.6.3 Exercises

1. Create a KNN Classifier for the joint data matrix given below and determine its tp, tn, fn, fp values

upon re-classification of the data matrix. Let k = 3. Use Leave-One-Out validation for computing

tp, tn, fn, fp.

1 // x1 x2 y

2 val xy = MatrixD ((10, 3), 1, 5, 1, // joint data matrix

3 2, 4, 1,

4 3, 4, 1,

5 4, 4, 1,

6 5, 3, 0,

7 6, 3, 1,

8 7, 2, 0,

9 8, 2, 0,

10 9, 1, 0,

11 10, 1, 0)

2. Under what circumstances would one expect a KNN Classifier to perform better than

LogisticRegression?

3. How could KNN Classifier be adpated to work for prediction problems?

317

8.7 Decision Tree C45

The DecisionTree C45 class implements a Decision Tree classifier that uses the C4.5 algorithm. The classifier

is trained using an m-by-n data matrix X and an n-dimensional classification vector y. Each data vector in

the matrix is classified into one of k classes numbered 0, . . . , k − 1. Each column in the matrix represents a

feature (e.g., Humidity). The value count vc vector gives the number of distinct values per feature (e.g., 2

for Humidity).

Depending on the data type of a column, ScalaTion’s implementation of C4.5 works like ID3 unless

the column is continuous. A column is flagged isCont if it is continuous or relatively large ordinal. For a

column that isCont, values for the feature are split into a left group and a right group based upon whether

they are ≤ or > an optimal threshold, respectively.

Candidate thresholds/split points are all the mid points between all column values that have been sorted.

The threshold giving the maximum entropy drop (or gain) is the one that is chosen.

8.7.1 Example Problem

Consider the following continuous version of the play tennis example. The x1 and x2 columns (Temperature

and Humidity) are now listed as continuous measurements rather than as categories as was the case for ID3.

The Example PlayTennis Cont object is used to test integer/continuous classifiers.

1 // The Example_PlayTennis_Cont is the well -known classification problem on whether to play

2 // tennis based on given weather conditions.

3 // The ’Cont’ version uses continuous values for Temperature and Humidity ,

4 // @see sefiks.com /2018/05/13/a-step -by-step -c4 -5-decision -tree -example

5

6 object Example_PlayTennis_Cont:

7

8 // combined data matrix [x | y]

9 // dataset --

10 // x0: Outlook: Rain (0), Overcast (1), Sunny (2)

11 // x1: Temperature: Continuous

12 // x2: Humidity: Continuous

13 // x3: Wind: Weak (0), Strong (1)

14 // y: the response/classification decision

15 // variables/features: x0 x1 x2 x3 y

16 val xy = MatrixD ((14, 5), 2, 85, 85, 0, 0, // day 1

17 2, 80, 90, 1, 0, // day 2

18 1, 83, 78, 0, 1, // day 3

19 0, 70, 96, 0, 1, // day 4

20 0, 68, 80, 0, 1, // day 5

21 0, 65, 70, 1, 0, // day 6

22 1, 64, 65, 1, 1, // day 7

23 2, 72, 95, 0, 0, // day 8

24 2, 69, 70, 0, 1, // day 9

25 0, 75, 80, 0, 1, // day 10

26 2, 75, 70, 1, 1, // day 11

27 1, 72, 90, 1, 1, // day 12

28 1, 81, 75, 0, 1, // day 13

29 0, 71, 80, 1, 0) // day 14

30

31 val fname = Array ("Outlook", "Temp", "Humidity", "Wind") // feature/variable names

318

32 val conts = Set (1, 2) // set of continuous

features

33 val cname = Array ("No", "Yes") // class names for y

34 val k = cname.size // number of classes

35

36 val x = xy.not (?, 4) // columns 0, 1, 2, 3

37 val y = xy(?, 4).toInt // column 4

38

39 end Example_PlayTennis_Cont

As with the ID3 algorithm, the C4.5 algorithm picks x0 as the root node. This feature is not continuous

and has three branches. Branch b0 will lead to a node where as before x3 is chosen. Branch b1 will lead to

a leaf node. Finally, branch b2 will lead to a node where continuous feature x2 is chosen.

Sub-problem x0 = 2

Note that if x0 = 0 or 1, the algorithm works like ID3. However, there is still some uncertainty left when

x0 = 2, so this node may be split and it turn out the split will involve continuous feature x2. The sub-problem

for Outlook: Rain (2) see Table 8.1 is defined as follows: Take all five cases/rows in the data matrix X for

which x−0 = 2.

Table 8.1: Sub-problem for node x0 and branch 2

Day x:1 x:2 x:3 y

1 85 85 0 0

2 80 90 1 0

8 72 95 0 0

9 69 70 0 1

11 75 70 1 1

The distinct values for feature x2 in sorted order are the following: [70.0 ,85.0, 90.0, 95.0]. Therefore, the

candidate threshold/split points for continuous feature x2 are their midpoints: [77.5, 87.5, 92.5]. Threshold

77.5 yields (0-, 2+) on the left and (3-, 0+) on the right, 87.5 yields (1-, 2+) on the left and (2-, 0+) on the

right, and 92.5 yields (2-, 2+) on the left and (1-, 0+) on the right. Clearly, the best threshold value is 77.5.

Since a continuous feature splits elements into low (left) and high (right) groups, rather than branching on

all possible values, the same continuous feature may be chosen again by a descendant node.

8.7.2 DecisionTree C45 Class

Class Methods:

1 @param x the input/data matrix with instances stored in rows

2 @param y the response/classification vector , where y_i = class for row i

3 @param fname_ the names for all features/variables (defaults to null)

4 @param k the number of classes (defaults to 2)

5 @param cname_ the names for all classes

319

6 @param conts the set of feature indices for variables that are treated as continuous

7 @param hparam the hyper -parameters for the Decision Tree classifier

8

9 class DecisionTree_C45 (x: MatrixD , y: VectorI , fname_ : Array [String] = null ,

10 k: Int = 2, cname_ : Array [String] = Array ("No", "Yes"),

11 conts: Set [Int] = Set [Int] (),

12 hparam: HyperParameter = DecisionTree.hp)

13 extends Classifier (x, y, fname_ , k, cname_ , hparam)

14 with FitC (y, k)

15 with DecisionTree:

16

17 override def parameter: VectorD = VectorD (param)

18 override def train (x_ : MatrixD = x, y_ : VectorI = y): Unit =

19 def test (x_ : MatrixD = x, y_ : VectorI = y): (VectorI , VectorD) =

20 override def predictI (z: VectorI): Int = predictIrec (z)

21 override def predictI (z: VectorD): Int = predictIrecD (z)

22 override def summary (x_ : MatrixD = null , fname_ : Array [String] = null ,

23 b_ : VectorD = p_y , vifs: VectorD = null): String =

8.7.3 Pruning

8.7.4 DecisionTree C45wp Class

Class Methods:

1 @param x the input/data matrix with instances stored in rows

2 @param y the response/classification vector , where y_i = class for row i

3 @param fname_ the names for all features/variables (defaults to null)

4 @param k the number of classes (defaults to 2)

5 @param cname_ the names for all classes

6 @param conts the set of feature indices for variables that are treated as continuous

7 @param hparam the hyper -parameters for the decision tree

8

9 class DecisionTree_C45wp (x: MatrixD , y: VectorI , fname_ : Array [String] = null ,

10 k: Int = 2, cname_ : Array [String] = Array ("No", "Yes"),

11 conts: Set [Int] = Set [Int] (),

12 hparam: HyperParameter = DecisionTree.hp)

13 extends DecisionTree_C45 (x, y, fname_ , k, cname_ , conts , hparam):

14

15 def prune (nPrune: Int = 1, threshold: Double = 0.98): Unit =

8.7.5 Exercises

1. Run DecisionTree C45 on the Example PlayTennis dataset and verify that it produces the same

answer as DecisionTree ID3.

2. Complete the C45 Decision Tree for the Example PlayTennis Cont problem.

320

3. Run DecisionTree C45 on the winequality-white dataset. Plot the accuracy and F1 measure versus

the maximum tree height/depth (height).

321

8.8 Bagging Trees

Bootstrap does sampling with replacement, thus allowing many large sub-samples of a dataset or training

set to be created. Bootstrap Aggregation (Bagging) allows a modeling technique to be applied on several

sub-samples. As a decision tree is at risk of overfitting, it is a good candidate for bagging. A decision tree is

created for each sub-sample. Given a new data point is to be classified, each tree makes its prediction and

the majority vote is taken as the overall classification. When k is larger than 2, the plurality will be taken.

Bagging works on the notion of ”wisdom of the crowd”: The consensus of several trees is more likely to be

correct than the prediction of a single tree. Experimentation has borne this out.

8.8.1 Creating Subsample

The creation of a sub-sample is done by the subSample method in the modeling.Sampling class. It creates

a random sub-sample of rows from data matrix x and elements from classification vector y, returning the

sub-sample matrix and vector, as well as the indices selected irows.

1 @param x the original input/data matrix

2 @param y the original integer -valued output/response vector

3 @param nSamp the desired sample size (number of rows in matrix)

4 @param stream the random number stream to use

5

6 def subSample (x: MatrixD , y: VectorI , nSamp: Int , stream: Int):

7 (MatrixD , VectorI , Array [Int]) =

8 if nSamp >= x.dim then

9 (x, y, null)

10 else

11 val rsg = RandomVecSample (x.dim , nSamp , stream)

12 val irows = rsg.igen

13 (x(irows), y(irows), irows)

14 end if

15 end subSample

8.8.2 Training

Training involves creating a DecisionTree C45 classifier for each sub-sample and calling train for each tree.

1 @param x_ the training/full data/input matrix (defaults to full x)

2 @param y_ the training/full response/output vector (defaults to full y)

3

4 override def train (x_ : MatrixD = x, y_ : VectorI = y): Unit =

5 for l <- 0 until nTrees do

6 val (sub_x , sub_y , irows) = subSample (x_, y_, sampleSize , l)

7

8 trees(l) = new DecisionTree_C45 (sub_x , sub_y , fname , k, cname , conts , hparam)

9 trees(l).train ()

10 end for

11 end train

322

8.8.3 Hyper-parameters

The following hyper-parameters can be adjusted to improve the model: The number of trees (nTrees) to

create has a major effect. The bagging ratio (bRatio) is the ratio of the size of the sub-sample to the size of

dataset (or training set). Finally, the height/depth limit (height) puts a limit of the height of each decision

tree.

1 protected val nTrees = hparam ("nTrees").toInt

2 private val bRatio = hparam ("bRatio").toDouble

3 private val height = hparam ("height").toInt

Note, many (more than 50) trees may be needed to get good results for BaggingTrees and RandomForest.

8.8.4 BaggingTrees Class

Class Methods:

1 @param x the data matrix (instances by features)

2 @param y the response/class labels of the instances

3 @param fname_ the names of the variables/features (defaults to null)

4 @param k the number of classes (defaults to 2)

5 @param cname_ the names of the classes

6 @param conts the set of feature indices for variables that are treated as continuous

7 @param hparam the hyper -parameters for the bagging trees

8

9 class BaggingTrees (x: MatrixD , y: VectorI , fname_ : Array [String] = null ,

10 k: Int = 2, cname_ : Array [String] = Array ("No", "Yes"),

11 conts: Set [Int] = Set [Int] (),

12 hparam: HyperParameter = DecisionTree.hp)

13 extends Classifier (x, y, fname_ , k , cname_ , hparam)

14 with FitC (y, k):

15

16 override def parameter: VectorD = null

17 override def train (x_ : MatrixD = x, y_ : VectorI = y): Unit =

18 def test (x_ : MatrixD = x, y_ : VectorI = y): (VectorI , VectorD) =

19 override def predictI (z: VectorD): Int =

20 override def summary (x_ : MatrixD = null , fname_ : Array [String] = null ,

323

8.9 Random Forest

The BaggingTrees class provides diversity of opinion via bootstrap sampling and Random Forests increase

the diversity by having each tree work potentially on different, yet closely related problems. Each tree selects

a subset of the columns in the original data matrix.

The RandomForest class builds multiple decision trees for a given problem. Each decision tree is built

using a sub-sample (rows) of the data matrix x as well as a subset of the features/variables (columns) of x.

As with BaggingTrees, the fraction of rows used is given by the bagging ratio bRatio, while the new

RandomForest hyper-parameter fbRatio specifies the ratio between the number of columns selected and

total number of columns fbRatio Reasonable values for these ratios are around 0.7 (70%).

Given a new instance vector z, each of the trees will classify it and the class with the most number of

votes (one from each tree), will be the overall response of the random forest.

8.9.1 Extracting Sub-features

Starting with a sub-sample of the data matrix x, a subset of the features/columns may be selected by

randomly generating the column positions to be included. The projected matrix and the column index

positions selected are returned by the selectSubFeatures method.

1 @param sub_x the sub -sample of data matrix x to select features/columns from

2

3 def selectSubFeatures (sub_x: MatrixD): (MatrixD , VectorI) =

4 val columns = rvg.igen.sorted // column indices selected

5 val x_sub_f = sub_x(?, columns) // extract selected columns

6 (x_sub_f , columns)

7 end selectSubFeatures

8.9.2 Training

Training involves creating a DecisionTree C45 classifier for each sub-sample on selected features and calling

train for each tree. The current selected features held in the columns variable and saved for the lth tree

in jcols. In addition, it is needed to extract to relevant feature names (fname2) and continuous column

indicators (conts2).

1 @param x_ the training/full data/input matrix (defaults to full x)

2 @param y_ the training/full response/output vector (defaults to full y)

3

4 override def train (x_ : MatrixD = x, y_ : VectorI = y): Unit =

5 for l <- 0 until nTrees do

6 val (sub_x , sub_y , irows) = subSample (x_, y_, sampleSize , l)

7 val (xf, columns) = selectSubFeatures (sub_x)

8 val fname2 = columns.map (fname(_)).toArray

9 val conts2 = conts.filter (columns contains _)

10 jcols(l) = columns

11

12 trees(l) = new DecisionTree_C45 (xf, sub_y , fname2 , k, cname , conts2 , hparam)

13 trees(l).train ()

14 end for

15 end train

324

8.9.3 RandomForest Class

Class Methods:

1 @param x the data matrix (instances by features)

2 @param y the response class labels of the instances

3 @param fname_ the feature/variable names (defaults to null)

4 @param k the number of classes (defaults to 2)

5 @param cname_ the names of the classes

6 @param conts the set of feature indices for variables that are treated as continuous

7 @param hparam the hyper -parameters

8

9 class RandomForest (x: MatrixD , y: VectorI , fname_ : Array [String] = null ,

10 k: Int = 2, cname_ : Array [String] = Array ("No", "Yes"),

11 conts: Set [Int] = Set [Int] (),

12 hparam: HyperParameter = DecisionTree.hp)

13 extends BaggingTrees (x, y, fname_ , k , cname_ , conts , hparam):

14

15 def selectSubFeatures (xx: MatrixD , rStream: Int): (MatrixD , VectorI) =

16 override def train (x_ : MatrixD = x, y_ : VectorI = y): Unit =

17 override def predictI (z: VectorD): Int =

8.9.4 Exercises

1. Compare DecisionTree C45, BaggingTrees and Random Forest classifiers on the White-Wine, Breast

Cancer, and Diabetes datasets. Use the default setting for the hyper-parameters.

2. Compare BaggingTrees and Random Forest classifiers on the White-Wine, Breast Cancer, and Di-

abetes datasets. Increase the number of trees from low default setting (Supreme Court 9) to 51,

incrementing by 2. Plot the accuracy and F1 measure versus the number of trees.

3. Compare BaggingTrees and Random Forest classifiers on the White-Wine, Breast Cancer, and Dia-

betes datasets. Increase the maximum height/depth of the trees from 3 to 20. Plot the accuracy and

F1 measure versus the maximum tree height.

325

8.10 Support Vector Machine

The idea behind support vector machines is actually quite simple and can be easy to follow when x ∈ R2 and

y ∈ {−1,+1}. The negative responses can be indicated in a plot by ”-” (or ”o”), while positive responses

can be indicted by ”+” (or ”*”). Consider the following Eight Point Example depicted in Figure 8.1 where

the goal is to separate the two sets of points.

0 2 4 6

0

2

4

6

x

y

Finding a Line Between Two Sets of Points

Figure 8.1: SVM: Eight Point Example

Suppose the points represent tank regimes for the blue (o) and green (*) armies. Your mission as a peace

keeping force is split the two armies. Naturally, one should try to maximize the distance to any tank regime.

At this point, the peace keeping force is to be placed in a line, although this can relaxed later on.

The first question is determine the equation of line. This can be done by lining a ruler up on the front of

one army and moving it to toward the other army and stopping in the middle. Clearly that line is x+y = 7.

This can verified to computing the distance to each of points and observing the minimum distance orthogonal

to the line for each army is 1√
2

= 0.7071. This distance is referred to as the half margin and the goal is to

maximize it. From a data science perspective it makes sense to maximum the margin as any point below

the split line will be classified as −1, while any point above the split line will be classified as +1.

Notice that only five of eight points are relevant in determining the position/equation of the middle

separting line (see the points on the red lines in Figure 8.2). These may be viewed as front-line points or

more generally as support vectors.

8.10.1 Separating Hyperplane

In higher dimensions, the line separating the two sets of points becomes a hyperplane, i.e., the set points

x ∈ Rn satisfying the following equation,

326

0 2 4 6

0

2

4

6

x

y

Maximizing the Margin

Figure 8.2: SVM: Support Vectors in Eight Point Example

w · x− b = 0 (8.51)

where w is a vector normal to the hyperplane and b is an offset. For the example, w = [1, 1] and b = 7.

Note that w is the gradient of f(x) = w · x− b w.r.t. x.

The minimum directional distance from the hyperplane to the origin 0 is given by

b

‖w‖
(8.52)

and equals 7√
2

= 4.9497 for the example problem. Subtracting this value would move the hyperplane to the

origin.

The equations for the two red lines/hyperplanes are given by

w · x− b = -1 (8.53)

w · x− b = 1 (8.54)

Note, making these two equations valid in general may require rescaling of w. In this case, the equations

can be verified as follows:

[1, 1] · [2, 4]− 7 = -1 (8.55)

[1, 1] · [2, 6]− 7 = 1 (8.56)

The full margin is the distance between these two red lines/hyperplanes and is given by

2

‖w‖
(8.57)

which equals 2√
2

=
√

2 for the example problem. Therefore, maximizing the margin is equivalent to mini-

mizing the norm of the w, ‖w‖.

327

8.10.2 Optimization Problem

Given a dataset (X,y) with xi being the ith row of matrix X ∈ Rm×n and yi being the ith element of vector

y ∈ Rm, the goal of minimizing ‖w‖ can be cast as a constrained optimization problem:

min
1

2
‖w‖2 = min

1

2

n−1∑
j=0

w2
i (8.58)

subject to

w · xi − b ≤ -1 if yi = -1 (8.59)

w · xi − b ≥ 1 if yi = 1 (8.60)

The constraints can be written more concisely as follows:

yi(w · xi − b) ≥ 1 for i = 0, . . . ,m− 1 (8.61)

or in the form of standard inequality constraints,

yi(w · xi − b)− 1 ≥ 0 for i = 0, . . . ,m− 1 (8.62)

This is a quadratic optimization problem with linear inequality constraints involving n+1 unknowns (w and

b) and m constraints. Such optimization problems can be solved by introducing a Lagrange multiplier αi ≥ 0

for each inequality constraint https://aa.ssdi.di.fct.unl.pt/files/AA-09_notes.pdf. Therefore, the

Lagrangian (see the Appendix) is given by

L(w, b,α) =
1

2
‖w‖2 −

m−1∑
i=0

αi [yi(w · xi + b) − 1] (8.63)

The problem is now to minimize the Lagrangian by finding optimal values for the parameters w and b.

Taking the gradient of L w.r.t. w and b, and setting it equal to zero yields,

∂L

∂w
= w −

m−1∑
i=0

αiyixi = 0 (8.64)

∂L

∂b
= −

m−1∑
i=0

αiyi = 0 (8.65)

Dual Formulation

The dual form will reformulate the problem in terms of the Lagrange multipliers. As an exercise, show that

‖w‖2 = w ·w =
∑
i

∑
j

αiyixi · αjyjxj =
∑
i

∑
j

αiαjyiyjxi · xj (8.66)

The rest of the formula can be rearranged as follows:

m−1∑
i=0

αi [yi(w · xi + b) − 1] =
∑
i

αiyiw · xi +
∑
i

αiyib +
∑
i

αi

328

https://aa.ssdi.di.fct.unl.pt/files/AA-09_notes.pdf

The first term becomes

∑
i

αiyi

∑
j

αjyjxj

 · xi
The second term is zero due to the constraint

∑
i

αiyi = 0. Combining yields

LD(α) = − 1

2

∑
i

∑
j

αiαjyiyjxi · xj +
∑
i

αi (8.67)

The dual problem is formulated as a maximization problem (see the Appendix).

maxLD(α) = − 1

2

∑
i

∑
j

αiαjyiyjxi · xj +
∑
i

αi (8.68)

subject to

∑
i

αiyi = 0 and αi ≥ 0 (8.69)

See the exercise for algorithms to solve this optimization problem.

8.10.3 Running the Example Problem

1 val xy = MatrixD ((8, 3), 2, 2, -1, // 8 data points

2 4, 2, -1,

3 2, 4, -1,

4 2, 6, 1,

5 4, 4, 1,

6 6, 2, 1,

7 6, 4, 1,

8 4, 6, 1)

9

10 val (x, y) = (xy.not(?, 2), xy(?, 2).toInt)

11

12 val mod = new SupportVectorMachine (x, y) // create optimizer

13 mod.trainNtest ()()

14 println (mod.summary ())

8.10.4 SupportVectorMachine Class

The SupportVectorMachine class implements linear support vector machines (SVM). A set of vectors stored

in a matrix are divided into positive(1) and negative(-1) cases. The algorithm finds a hyperplane that best

divides the positive from the negative cases. Each vector xi is stored as a row in the X matrix.

Class Methods:

1 @param x the input/data matrix with points stored as rows

2 @param y the classification of the data points stored in a vector

3 @param fname_ the feature/variable names (defaults to null)

4 @param cname_ the names of the classes

5 @param hparam the hyper -parameters

6

329

7 class SupportVectorMachine (x: MatrixD , y: VectorI , fname_ : Array [String] = null ,

8 cname_ : Array [String] = Array ("-", "+"),

9 hparam: HyperParameter = null)

10 extends Classifier (x, y, fname_ , 2, cname_ , hparam)

11 with FitC (y, k = 2):

12

13 override def parameter: VectorD = w :+ b

14 override def train (x_ : MatrixD = x, y_ : VectorI = y): Unit =

15 def test (x_ : MatrixD = x, y_ : VectorI = y): (VectorI , VectorD) =

16 override def predictI (z: VectorD): Int = if (w dot z) >= b then 1 else -1

17 override def summary (x_ : MatrixD = null , fname_ : Array [String] = null ,

18 b_ : VectorD = p_y , vifs: VectorD = null): String =

19 override def toString: String = "(w, b) = " + (w, b)

8.10.5 Exercises

1. Develop a SupportVectorMachine model for the Eight Point Example given in this section. What are

w and b. What is the size of the margin?

2. Compare DecisionTree C45, BaggingTrees, Random Forest, and Support Vector Machine classifiers on

the White-Wine, Breast Cancer, and Diabetes datasets.

3. Give pseudocode for Platt’s Sequential Minimal Optimization (SMO) algorithm for SVM [146].

4. Explain the improvements to Platt’s SMO algorithm suggested by Keerthi et al. [93].

330

8.11 Neural Network Classifiers

It is easy to use Neural Networks as classifiers. The last layer can be set up to provide a probability

of outcome. For example, for two-way classification (k = 2) a single output node’s value can indicate the

probability of a positive outcome (y = 1). One minus this value is used as the indicator for the corresponding

negative outcome (y = 0). Whichever is higher is then the predicted class. Of course for better balance of

false positives and false negatives a threshold may be used.

8.11.1 Model Equation

As it produces values between 0 (negative outcome) and 1 (positive outcome), the sigmoid activation function

S(u) is often used for the last layer of a Neural Network classifier.

S(u) =
1

1 + e−u
(8.70)

The NeuralNet Class 3L class supports single-output, 3-layer (input, hidden and output) Neural-Network

classifiers. The model equation is a specialization of the one given for NeuralNet 3L (see the Chapter on

Nonlinear Models and Neural Networks). Given an input vector x ∈ Rn the model predicts a value which is

considered off by ε.

y = S(B · f(A · x)) + ε = S(B
ᵀ

f(A
ᵀ

x)) + ε (8.71)

where

• f : Rnz → Rnz is the hidden layer activation function (user specified)

• S : R→ R is the output layer activation function (sigmoid)

• A ∈ Rn×nz is the input-hidden parameter matrix with bundled α vector

• B ∈ Rnz×1 is the hidden-output parameter matrix with bundled β vector

• ε ∈ R is the residual/error

As discussed in the Chapter on Nonlinear Models and Neural Networks the parameter weight matrix and

bias vector are bundled into a NetParam object.

The corresponding network diagram is shown in Figure 8.3. Its input layer has n = 2 nodes, hidden layer

has nz = 3 nodes, output layer 1 node.

8.11.2 Training Equation

Given a dataset (X,y) consisting of a input/data matrix X ∈ Rm×n and an output/response vector y ∈ Rm

(training data), the goal is to fit the parameters A ∈ Rn×nz and B ∈ Rnz×1 connecting the layers to minimize

a loss function (e.g., sse or cross-entropy).

y = S(f(XA)B) + ε (8.72)

331

x0

z0

f

α0

z1

α1

z2

α2

x1

y0

S

β0

a00

a01

a02

a10

a11

a12

b00

b10

b20

Figure 8.3: A Simple Three-Layer (input, hidden, output) Neural Network Classifier

8.11.3 Prediction Equation

Once trained, the network can classify the output value for a new input vector z,

ŷ = S(B · f(A · z)) = S(B
ᵀ

f(A
ᵀ

z)) (8.73)

If ŷ > 0.5 then return 1 (positive classification); otherwise return 0 (negative classification). More generally,

the test can involve a threshold τ , i.e., ŷ > τ .

8.11.4 Optimization

One may utilize the same loss that used for regression type problems (sse or mse) in which case the mse loss

function is

L(A,B) =
1

2m
‖y − S(f(XA)B)‖2 (8.74)

Or using summation notation,

L(A,B) =
1

2m

m−1∑
i=0

yi − S(B
ᵀ

f(A
ᵀ

xi)) (8.75)

However, a typically better alternative is to use cross-entropy for the loss function [135] (section 3.1).

L(A,B) = − 1

m

m−1∑
i=0

yi ln ŷi + (1− yi)ln(1− ŷi) (8.76)

Substituting for ŷi yields,

L(A,B) = − 1

m

m−1∑
i=0

yi lnS(B
ᵀ

f(A
ᵀ

xi)) + (1− yi) ln (1− S(B
ᵀ

f(A
ᵀ

xi))) (8.77)

332

Partial Derivatives

The partial derivative w.r.t, weight bh connecting hidden node h with the output node (there is only one) is

∂L
∂bh

=
1

m
z:h · (ŷ − y) (8.78)

The partial derivative w.r.t, weight ajh connecting input node j with hidden node h is

∂L
∂ajh

=
1

m
... (8.79)

See the Probability Chapter for more information about cross-entropy and the Nonlinear Models and Neural

Network Chapter for computing gradients (and their partial derivatives) of loss functions. See the exercises

for partial derivatives for the biases α and β.

8.11.5 NeuralNet Class 3L Class

Class Methods:

1 @param x the m-by -n input matrix (training data consisting of m input vectors)

2 @param y the m output vector (training data consisting of m output integer values)

3 @param fname_ the feature/variable names (defaults to null)

4 @param cname_ the names for all classes

5 @param nz the number of nodes in hidden layer (-1 => use default formula)

6 @param hparam the hyper -parameters for the model/network

7 @param f the activation function family for layers 1->2 (input to hidden)

8 the activation function family for layers 2->3 (hidden to output) is

sigmoid

9

10 class NeuralNet_Class_3L (x: MatrixD , y: VectorI , fname_ : Array [String] = null ,

11 cname_ : Array [String] = Array ("No", "Yes"),

12 nz: Int = -1, hparam: HyperParameter = NeuralNet_Class_3L.hp,

13 f: AFF = f_tanh)

14 extends Classifier (x, y, fname_ , 2, cname_ , hparam)

15 with FitC (y, 2):

16

17 override def train (x_ : MatrixD = x, y_ : VectorI = y): Unit =

18 override def train2 (x_ : MatrixD = x, y_ : VectorI = y): Unit =

19 def trainNtest (x_ : MatrixD = x, y_ : VectorI = y)

20 def trainNtest2 (x_ : MatrixD = x, y_ : VectorI = y)

21 def test (x_ : MatrixD = x, y_ : VectorI = y): (VectorI , VectorD) =

22 override def predictI (z: VectorD): Int = (nn3.predict (z)(0) + cThresh).toInt

23 override def summary (x_ : MatrixD = null , fname_ : Array [String] = null ,

24 b_ : VectorD = p_y , vifs: VectorD = null): String =

8.11.6 Exercises

1. Compare the QoF measures for Neural Class 3L using sse vs. cross-entropy for the loss function. Do

this for the Breast Cancer and Diabetes datasets.

333

2. Suppose model 1 predicts 0.1 when the actual value is 1 and 0.9 when its 0. Consider the following

two vectors: y = [1, 0] and ŷ = [0.1, 0.9]. Compute the cross-entropy loss function

L = − 1

2
(1 ln 0.1 + 0 ln 0.9)

Now suppose for model 2 the predictions are in closer agreement with the actual values ŷ = [0.1, 0.9].

Recompute the cross-entropy loss function

L = − 1

2
(1 ln 0.9 + 0 ln 0.1)

Which model is better? How do these two examples help explain why cross-entropy works as a loss

function.

3. Derive the results for the partial derivative w.r.t. weight bh,
∂L
∂bh

.

4. Derive the results for the partial derivative w.r.t. weight ajh,
∂L
∂ajh

.

5. Derive the results for the partial derivative w.r.t. bias αh,
∂L
∂αh

.

6. Derive the results for the partial derivative w.r.t. bias β,
∂L
∂β

.

334

Chapter 9

Generalized Linear Models and

Regression Trees

General Linear Models presented in Prediction Chapter cover a wide range of simple models that are easy

to use and explain and can be rapidly trained typically using Ordinary Least Squares (OLS) that boils down

to matrix factorization.

Complex nonlinear models can provide improved Quality of Fit and handle cases where General Linear

Models are not sufficiently predictive. However, they often result in the following disadvantage: harder to use

and explain, substantially longer training times, more likely to overfit and require tuning of hyper-parameters.

This chapter examines two categories of modeling techniques that fall between the two extreme categories

of models just discussed. The two categories of models of intermediate complexity are Generalized Linear

Models and Regression Trees.

9.1 Generalized Linear Model

A Linear Model may be viewed as fitting a distribution to a continuous random variable y.

y ∼ Normal(b · x, σ2) (9.1)

By subtracting the mean b · x, y becomes the sum of two terms.

y = b · x + ε (9.2)

where ε ∼ Normal(0, σ2).

Now generalize the first term b · x into an optionally transformed linear function of x called the mean

function.

y = µy(x) + ε (9.3)

The mean function is restricted to be of the following form.

g(µy(x)) = b · x (9.4)

335

where g is an invertible function. One may think of g is as a link function, or its inverse g−1 as an activation

function. The idea of a link function is that it uncovers an underlying linear model b · x. In other words, g

is a function that links y’s mean to a linear combination of the predictor variables. The idea of an activation

function is that is allows a transformation function to be applied to the linear combination b · x, as is done

in Perceptrons.

µy(x) = g−1(b · x) (9.5)

For example, a commonly used activation function in Perceptrons is the sigmoid function.

µy(x) = sigmoid(b · x) (9.6)

where the sigmoid function (a simple form of the more general logistic function) is

sigmoid(t) =
1

1 + e−t
(9.7)

The inverse of the sigmoid function is the logit function.

logit(u) = ln
u

1− u
(9.8)

Applying the logit function to both sides of equation yields

logit(µy(x)) = b · x (9.9)

The form of the response random variable y is also generalized, e.g., it may be a discrete random variable.

So far, we have been focusing on the first term, the mean function, but what about the second term, the

residual/error term? The treatment of residuals/errors in Generalized Linear Models, is generalized as well.

For one, they need not follow the Normal distribution. Also, they are not required to be additive, e.g., they

may be multiplicative.

To produce this level of generality/flexibility the methodology for Generalized Linear Models is to separate

the model into a systematic component to determine the mean function, and a random component to handle

the residuals/errors. Continuing with the mean function above, let y have domain Dy = {0, 1} and the errors

ε be additive and distributed as Bernoulli(p). Writing the two components together yields

y = µy(x) + ε

logit(µy(x)) = b · x

These are the model equations of Logistic Regression. When the link function is the identity function, the

response random variable is continuous and the errors ε distributed as Normal(0, σ2), we are back to a Linear

Model, written as a Generalized Linear Model.

y = µy(x) + ε

µy(x) = b · x

Several additional combinations of link functions and residual distributions are commonly used as shown

in the table below.

336

Model Type Response Type (y) Link Function Residual Distribution

Logistic Regression binary {0, 1} logit Bernoulli Distribution

Poisson Regression integer {0, . . . ,∞} ln Poisson Distribution

Exponential Regression continuous [0,∞) ln or reciprocal Exponential Distribution

General Linear Model (GLM) continuous (−∞,∞) identity Normal Distribution

Table 9.1: Types of Generalized Linear Models

See http://idiom.ucsd.edu/~rlevy/lign251/fall2007/lecture_13.pdf and http://link.springer.

com/article/10.1023%2FA%3A1022436007242#page-1. for additional details.

Since the response variable for Logistic Regression is defined on finite domains, it has been placed under

Classification (see the last chapter).

337

http://idiom.ucsd.edu/~rlevy/lign251/fall2007/lecture_13.pdf
http://link.springer.com/article/10.1023%2FA%3A1022436007242#page-1
http://link.springer.com/article/10.1023%2FA%3A1022436007242#page-1

9.2 Maximum Likelihood Estimation

In this section, rather than estimating parameters using Least Squares Estimation (LSE), Maximum Like-

lihood Estimation (MLE) will be used. For a deeper view of estimation concepts see [15]. Given a dataset

with m instances, the model will produce an error for each instance. When the error is large, the model is

in disagreement with the data. When errors are normally distributed, the probability density will be low for

a large error, meaning this is an unlikely case. If this is true for many of the instances, the problem is not

the data, it is the values given for the parameters. The parameter vector b should be set to maximize the

likelihood of seeing instances in the dataset. This notion is captured in the likelihood function L(b). Note,

for the Simpler Regression model there is only a single parameter, the slope b.

Given an m instance dataset (x,y) where both are m-dimensional vectors and a Simpler Regression

model

y = bx+ ε

where ε ∼ N(0, σ2), let us consider how to estimate the parameter b. While LSE is based upon the distance

of errors from zero, MLE transforms this distance based upon for example the pdf of the error distribution.

Notice that for small errors, the Normal distribution is more tolerant than the Exponential distribution,

while for larger errors it is less tolerant. See the exercises for how to visualize this.

For this model and dataset, the likelihood function L(b) is the product of m Normal density functions

(making the assumption that the instances are independent).

L(b) =

m−1∏
i=0

1√
2πσ

e−ε
2
i /2σ

2

Since εi = yi − bxi, we may rewrite L(b) as

L(b) =

m−1∏
i=0

1√
2πσ

e−(yi−bxi)2/2σ2

Taking the natural logarithm gives the log-likelihood function l(b)

l(b) =

m−1∑
i=0

−ln(
√

2πσ)− (yi − bxi)2/2σ2

The derivative of l(b) w.r.t. b is

dl

db
=

m−1∑
i=0

−2xi(yi − bxi)/2σ2

For optimization, the derivative may be set to zero

m−1∑
i=0

xi(yi − bxi) = 0

Solving for b gives

b =

∑
xiyi∑
x2
i

=
x · y
x · x

338

9.2.1 Akaike Information Criterion

The Akaike Information Criterion (AIC) serves as an alternative to measures like R2-Adjusted, R̄2.

AIC = 2(n+ 1)− 2l(b, σ2)

It is twice the number of parameters n+ 1 to be estimated minus twice the optimal log-likelihood. Note, the

n comes from estimating the coefficients dim(b) and 1 comes from estimating the error/redidual variance

σ2. The smaller the AIC value, the better the model.

For linear regression, the above formula is equivalent to

AIC = 2(n+ 1)−m ln
(sse
m

)
+ constant

and the contant may be ignored as all models for the given dataset will have the same constant.

9.2.2 MLE for Generalized Linear Models

Maximum Likelihood Estimation (MLE) is general purpose and applies widely to statistical estimation

problems.

Let us consider how it can be applied to Generalized Linear Models. A Generalized Linear Model for a

response random variable y is of the following form.

y = µy(x) ~ ε

g(µy(x)) = b · x

The ~ is used to indicate either + (for additive errors) or × (for multiplicative errors).

Now given an m-instance dataset (X,y), we need to determine the link function g, the residual/error

distribution ε ∼ Dist(b), and finally the parameters b using MLE.

When y is continuous, the pdf conditioned on the parameters may be used to capture the error distribu-

tion.

fε(ε|b)

The error for each instance may be calculated from the dataset.

εi = yi − g−1(b · xi) for additive errors

εi = yi/g
−1(b · xi) for multiplicative errors

When errors are highly correlated, Generalized Linear Models are not ideal. Thus, we assume the errors are

independent and identically distributed (iid).

Because of the independence assumption, the joint error density is the product of the density for each

instance εi, Therefore, the likelihood function w.r.t. the parameter vector b is

L(b) =

m−1∏
i=0

fε(εi|b)

339

Taking the natural logarithm yields

l(b) =

m−1∑
i=0

ln fε(εi|b) (9.10)

Analagously, for discrete random variables, the pdf is replaced with pmf

l(b) =

m−1∑
i=0

ln pε(εi|b) (9.11)

For Maximum Likelihood Estimation, the above two equations may serve as a starting point.

340

9.3 Poisson Regression

The PoissonRegression class can be used for developing Poisson Regression models. In this case, a response

y may be thought of as a count that may take on a non-negative integer value. The probability density

function (pdf) for the Poisson distribution with mean λ may be defined as follows:

f(y;λ) =
λy

y!
e−λ

Again, treating this as a Generalized Linear Model problem,

y = µ(x) + ε

g(µ(x)) = b · x

The link function g for Poisson Regression is the ln (natural logarithm) function.

ln(µ(x)) = b · x

The residuals εi are distributed according to the Poisson distribution.

µ(xi)
yi

yi!
e−µ(xi)

Therefore, the likelihood function for Poisson Regression is as follows:

L =

m−1∏
i=0

µ(xi)
yi

yi!
e−µ(xi)

Taking the natural logarithm gives the log-likelihood function.

l =

m−1∑
i=0

yiln(µ(xi)− µ(xi)− ln(yi!)

Substituting µ(xi) = eb·xi yields the following:

l =

m−1∑
i=0

yib · xi − eb·xi − ln(yi!)

Since the last term is independent of the parameters, removing it will not affect the optimization.

l =

m−1∑
i=0

yib · xi − eb·xi

See http://www.stat.uni-muenchen.de/~helmut/Geo/stat_geo_11_Handout.pdf for more details.

Example Problem:

341

http://www.stat.uni-muenchen.de/~helmut/Geo/stat_geo_11_Handout.pdf

9.3.1 PoissonRegression Class

Class Methods:

1 @param x the data/input matrix augmented with a first column of ones

2 @param y the integer response/output vector , y_i in {0, 1, ... }

3 @param fname_ the names of the features/variables (defaults to null)

4 @param hparam the hyper -parameters (currently has none)

5

6 class PoissonRegression (x: MatrixD , y: VectorD , fname_ : Array [String] = null ,

7 hparam: HyperParameter = null)

8 extends Predictor (x, y, fname_ , hparam)

9 with Fit (dfm = x.dim2 - 1, df = x.dim - x.dim2):

10

11 def ll (b: VectorD): Double =

12 def ll_null (b: VectorD): Double =

13 def train (x_ : MatrixD = x, y_ : VectorD = y.toDouble): Unit =

14 def train_null (): Unit =

15 def test (x_ : MatrixD = x, y_ : VectorD = y): (VectorD , VectorD) =

16 override def fit: VectorD =

17 override def predict (z: VectorD): Double = round (exp (b dot z)).toDouble

18 def buildModel (x_cols: MatrixD): PoissonRegression =

342

9.4 Regression Trees

As with Decision (or Classification) Trees, Regression Trees make predictions based upon what range each

variable/feature is in. If the tree is binary, there are two ranges for each feature split: low (below a threshold)

and high (above a threshold). Building a Regression Tree essentially then requires finding thresholds for

splitting variables/features. A threshold will split a dataset into two groups. Letting θk be a threshold for

splitting variable xj , we may split the rows in the X matrix into left and right groups.

leftk(X) = {xi|xij ≤ θk} (9.12)

rightk(X) = {xi|xij > θk} (9.13)

For splitting variable xj , the threshold θk should be chosen to minimize the weighted sum of the Mean

Squared Error (MSE) of the left and right sides. Alternatively, one can minimize the Sum of Squared Errors

(SSE). This variable becomes the root node of the regression tree. The dataset for the root node’s left

branch consists of leftk(X), while the right branch consists of rightk(X). If the maximum tree depth is

limited to one, the root’s left child and right child will be leaf nodes. For a leaf node, the prediction value

that minimizes MSE is the mean µ(y), see exercises.

9.4.1 Example Problem

Consider the following small dataset with just one predictor variable x0.

1 val x = MatrixD ((10, 1), 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

2 val y = VectorD (5.23 , 5.7, 5.91, 6.4, 6.8, 7.05, 8.9, 8.7, 9.0, 9.05)

Given a limit on the depth of the tree, nodes are split recursively, starting with the root. The process

terminates when the limit is reached or improvement is deemed inadequate. Each split adds a constraint on

a variable.

Depth = 1

In this case, θ0 = 6.5 divides the dataset into

left0(X) = {1, 2, 3, 4, 5, 6}

right0(X) = {7, 8, 9, 10}

Root (-Inf, Inf]

Leaf x0 in (-Inf, 6.5]

Leaf x0 in (6.5, Inf]

with means µ0(y) = 6.18 (left) and µ1(y) = 8.91 (right).

Figure 9.1 shows a regression tree of depth 1. The constraints are shown on edges and the MSE and

number of qualifying instances are shown by the node.

343

x0

(1.930 @10)

.

(0.277 @6)

.

(0.021 @4)

<= 6.5 > 6.5

Figure 9.1: Regression Tree Example: Depth = 1

Depth = 2

Further splitting may occur on x0 (or xj for multidimensional examples). If we let the maximum tree depth

be two, we obtain the following four regions, corresponding to the four leaf nodes,

Root (-Inf, Inf]

Node x0 in (-Inf, 6.5]

Leaf x0 in (-Inf, 3.5]

Leaf x0 in (3.5, 6.5]

Node x0 in (6.5, Inf]

Leaf x0 in (6.5, 8.5]

Leaf x0 in (8.5, Inf]

with means µ0(y) = 5.61, µ1(y) = 6.75, µ2(y) = 8.80 and µ3(y) = 9.03. Each internal (non-leaf) node will

have a threshold. They are θ0 = 6.5, θ1 = 3.5 and θ2 = 8.5.

9.4.2 Regions

The number of regions (or leaf nodes) is always one greater than the number of thresholds. The region for leaf

node l, Rl = (xj , (al, bl]), defines the feature/variable being split and the interval of inclusion. Corresponding

to each region Rl is an indicator function,

1l(x) = xj ∈ (al, bl] (9.14)

which simply indicates {false, true} or {0, 1} whether variable xj is in the interval (al, bl]. Now define 1∗l (x)

as the product of the indicator functions from leaf l until (not including) the root of the tree,

1
∗
l (x) =

∏
h∈ anc (l)

1h(x) (9.15)

where anc(l) is the set of ancestors of leaf node l (inclusive of l, exclusive of root). Since only one of these 1∗

indicator functions can be true for any given x vector, we may concisely express the regression tree model

as follows:

344

y =
∑

l∈ leaves

1
∗
l (x)µl(y) + ε (9.16)

Thus, given a predictor vector x, predicting a value for the response variable y corresponds to taking the

mean y-value of the vectors in x’s composite region (the intersection of regions from the leaf until the root).

The prediction function to compute ŷ is thus piecewise constant.

ŷ =
∑

l∈ leaves

1
∗
l (x)µl(y) (9.17)

As locality determines the prediction for Regression Trees, they are similar to KNN Regression.

9.4.3 Determining Thresholds

For the kth split, a simple way to determine the best threshold is to take each feature/variable xj and find

a value θk that minimizes the weighted sum of the MSEs.

min
θk

wl mse(leftk(X)) + wr mse(rightk(X)) (9.18)

where wl and wr are the weights for the left and right sides, respectively. The overall score for a tree is then

just the weighted sum of the MSEs for all leaf nodes, where the weight is the fraction of the instances that

qualify for that leaf node.

Possible values for θk are the values between any two consecutive values in vector x:j sorted. This

will allow any possible split of x:j to be considered. For example, {1, 10, 11, 12} should not be split in the

middle, e.g., into {1, 10} and {11, 12}, but rather into {1} and {10, 11, 12}. Possible thresholds (split points)

are the averages of any two consecutive values, i.e., 5.5, 10.5 and 11.5. A straitforward way to implement

determining the next variable xj and its threshold θk would be to iterate over all features/variables and

split points. Calculating the weighted sum of left and right mse from scratch for each candidate split point

is inefficient. These values may be computed incrementally using the fast thresholding algorithm [40]. See

[195] for derivations of efficient algorithms.

9.4.4 RegressionTree Class

Class Methods:

1 @param x the m-by-n input/data matrix

2 @param y the response m-vector

3 @param fname_ the names of the features/variables (defaults to null)

4 @param hparam the hyper -parameters for the model

5 @param curDepth current depth

6 @param branchValue the branch value for the tree node

7 @param feature the feature for the tree’s parent node

8 @param leaves the leaf counter

9

10 class RegressionTree (x: MatrixD , y: VectorD , fname_ : Array [String] = null ,

11 hparam: HyperParameter = RegressionTree.hp, curDepth: Int = 0,

12 branchValue: Int = -1, feature: Int = -1, leaves: Counter = Counter ()

)

345

13 extends Predictor (x, y, fname_ , hparam)

14 with Fit (dfm = x.dim2 - 1, df = x.dim - x.dim2):

15

16 def numLeaves: Int = leaves.get

17 def train (x_ : MatrixD , y_ : VectorD): Unit =

18 def test (x_ : MatrixD = x, y_ : VectorD = y): (VectorD , VectorD) =

19 def printTree (): Unit =

20 def printTree2 (): Unit =

21 override def predict (z: VectorD): Double =

22 override def predict (z: MatrixD = x): VectorD =

23 override def buildModel (x_cols: MatrixD): RegressionTree =

346

9.5 Linear Model Trees

The regression trees in the last section have prediction functions that are piecewise constant, while those

in this section are piecewise linear. Each region in the previous section is covered by a flat surface, while

the regions in this section are covered by hyperplanes. These types of regression trees are also called Model

Trees (e.g., M5 [148]).

At each leaf node, rather than taking the average of all the points (like using a Null Model), a multiple

linear regression model is used. As such more data points are needed in each leaf, implying the need to have

a sufficiently large dataset and typically have less splitting (smaller tree depth).

As the degrees of freedom in leaves may become small, it is useful to use Stepwise Refinement to reduce

the number of parameters.

9.5.1 Splitting

A node should only be split if its multiple regression model is significantly worse than the combination of

the two regression models of its children.

9.5.2 Pruning

9.5.3 Smoothing

The response surface may be made more smooth by taking a weighted average of the predictions of all models

from the root to the leaf.

9.5.4 RegressionTreeMT class

1 @param x the m-by-n input/data matrix

2 @param y the response m-vector

3 @param fname_ the names of the features/variables (defaults to null)

4 @param hparam the hyper -parameters for the model

5 @param curDepth current depth

6 @param branchValue the branch value for the tree node

7 @param feature the feature for the tree’s parent node

8 @param leaves the leaf counter

9

10 class RegressionTreeMT (x: MatrixD , y: VectorD , fname_ : Array [String] = null ,

11 hparam: HyperParameter = RegressionTree.hp, curDepth: Int = 0,

12 branchValue: Int = -1, feature: Int = -1, leaves: Counter =

Counter ())

13 extends Predictor (x, y, fname_ , hparam)

14 with Fit (dfm = x.dim2 - 1, df = x.dim - x.dim2):

15

16 def numLeaves = leaves.get

17 def train (x_ : MatrixD , y_ : VectorD): Unit =

18 def test (x_ : MatrixD = x, y_ : VectorD = y): (VectorD , VectorD) =

19 def printTree (): Unit =

20 def printTree2 (): Unit =

21 override def predict (z: VectorD): Double =

22 override def predict (z: MatrixD = x): VectorD =

23 override def buildModel (x_cols: MatrixD): RegressionTreeMT =

347

9.6 Random Forest Regression

Random Forest Regression takes multiple regreession trees and averages their predictions. The trees are

used in parallel.

9.6.1 RegressionTreeRF Class

1 @param x the data matrix (instances by features)

2 @param y the response/class labels of the instances

3 @param fname_ the names of the variables/features (defaults to null)

4 @param hparam the hyper -parameters to the random forest

5

6 class RegressionTreeRF (x: MatrixD , y: VectorD , fname_ : Array [String] = null ,

7 hparam: HyperParameter = hp)

8 extends Predictor (x, y, fname_ , hparam)

9 with Fit (dfm = x.dim2 - 1, df = x.dim - x.dim2):

10

11 def train (x_ : MatrixD , y_ : VectorD): Unit =

12 def test (x_ : MatrixD = x, y_ : VectorD = y): (VectorD , VectorD) =

13 override def predict (z: VectorD): Double =

14 override def buildModel (x_cols: MatrixD): RegressionTreeGB =

348

9.7 Gradient Boosting Regression

Gradient Boosting Regression tries to correct the predictions fm of a regression tree by using a subsequent

tree (with prediction function fm+1) to predict the stage m residuals/errors, ε = y − fm(X). The trees are

used sequencially in M stages and the corrections are moderated by a learning rate.

9.7.1 RegressionTreeGB Class

1 @param x the input/data matrix

2 @param y the output/response vector

3 @param fname_ the feature/variable names (defaults to null)

4 @param hparam the hyper -parameters for the model

5

6 class RegressionTreeGB (x: MatrixD , y: VectorD , fname_ : Array [String] = null ,

7 hparam: HyperParameter = RegressionTree.hp)

8 extends Predictor (x, y, fname_ , hparam)

9 with Fit (dfm = x.dim2 - 1, df = x.dim - x.dim2):

10

11 def train (x_ : MatrixD , y_ : VectorD): Unit =

12 def test (x_ : MatrixD = x, y_ : VectorD = y): (VectorD , VectorD) =

13 override def predict (z: VectorD): Double =

14 override def predict (z: MatrixD = x): VectorD =

15 override def buildModel (x_cols: MatrixD): RegressionTreeGB =

349

9.8 Exercises

1. Explain the difference between AIC and (Bayesian Information Criterion) BIC.

2. Let x ∼ Exponential(λ) and y ∼ Normal(µ, σ2) with λ = 1, µ = 0 and σ = 1, the corresponding pdfs

are as follows:

fx(x) = e−x

fy(x) =
1√
2π
e−

x2

2

Plot and compare the pdfs fx and fy vs. x over the interval [0, 4].

3. For Regression Trees, show that for each leaf node that the optimal value for the constant is the mean.

4. Consider the following two-dimensional Regression Tree problem. FIX.

5. Create Regression Tree models for the Example AutoMPG dataset. Compare the results for multiple

depths.

6. How can bagging and boosting be used to improve upon Regression Trees.

7. Contrast KNN Regression with Regression Trees in terms of the shape of and how regions are formed.

350

9.9 Further Reading

1. Inductive Learning of Tree-based Regression Models [195] https://www.dcc.fc.up.pt/~ltorgo/PhD/

2. Generalized Linear Models, Second Edition [121]

3. Generalized Linear Models (GLM) [191]

4. Optimal Classification and Regression Trees with Hyperplanes Are as Powerful as Classification and

Regression Neural Networks,

https://dbertsim.mit.edu/pdfs/papers/2018-sobiesk-optimal-classification-and-regression-trees.

pdf

351

https://www.dcc.fc.up.pt/~ltorgo/PhD/
https://dbertsim.mit.edu/pdfs/papers/2018-sobiesk-optimal-classification-and-regression-trees.pdf
https://dbertsim.mit.edu/pdfs/papers/2018-sobiesk-optimal-classification-and-regression-trees.pdf

352

Chapter 10

Nonlinear Models and Neural

Networks

353

10.1 Nonlinear Regression

The NonlinearRegression class supports Nonlinear Regression (NLR). In this case, the vector of input/pre-

dictor variable x ∈ Rn can be multi-dimensional [1, x1, ...xk] and the function f is nonlinear in the parameters

b ∈ Rp.

10.1.1 Model Equation

As before, the goal is to fit the parameter vector b in the model/regression equation,

y = f(x; b) + ε (10.1)

where ε represents the residuals (the part not explained by the model). The function f : Rn × Rp → R is

called the mean response function.

Note that y = b0 + b1x1 + b2x
2
1 + ε is still linear in the parameters. The example below is not, as there

is no transformation that will make the formula linear in the parameters.

y = (b0 + b1x1)/(b2 + x1) + ε

Nonlinear Regression can more precisely model phenomena compared to using the linear approximations

of multiple linear regression. Although quadratic and cubic regressions allow the lines to be bent to better fit

the data, they do not provide the flexibility of nonlinear regression, see Chapter 13 of [102]. The functional

forms in nonlinear regressions can be selected by the physics driving the phenomena. At the other extreme,

simple nonlinear functions of linear combinations of several input variables, allow many diverse phenomena

to be modeled, for example, using Neural Networks. Neural Networks trade interpretability for a universal

modeling framework.

10.1.2 Training

A training dataset consisting of m input-output pairs is used to minimize the error in the prediction by

adjusting the parameter vector b. Given an input matrix X consisting of m input vectors and an output

vector y consisting of m output values, minimize the distance between the target output vector y and the

predicted output vector f(X; b).

The model training process depicted in Figure 10.1 involves

• a Dataset (X,y) where input/data matrix X ∈ Rm×n and output/response vector y ∈ Rm,

• a Model with mean response function f or vectorized mean response function f : Rm×n × Rp → Rm,

and

• a Trainer with loss function L : Rp → R.

In Figure 10.1, the ith row/instance of the Dataset is taken as the input vector x ∈ Rn to the model to

produce a predicted response,

ŷ = f(x; b) instance level

ŷ = f(X; b) dataset level

354

where f (f) is the (vectorized) mean response function and the parameter vector b ∈ Rp.

Dataset (X,y)

Model f

Trainer L

x

ŷ

y

b

Figure 10.1: Nonlinear Regression: Dataset - Model - Trainer View

Note that for linear models typically p = n, but for nonlinear models, it is not uncommon for p > n, i.e.,

the number of parameters to be greater than the number of input/predictor variables.

Loss Function

Optimization techniques can be used to determine a “good” value for the parameter vector b, by minimizing

a loss function.

L(b; y, ŷ)

Common forms of loss functions are based on minimizing an `1 or `2 norm of the error vector ε = y − ŷ =

y − f(X; b),

minb ‖y − f(X; b)‖ (10.2)

Again for an `2 norm, it is convenient to use its square and minimize the dot product of the error with itself

(or rather half of that 1
2ε · ε).

L(b) =
1

2
(y − f(X; b)) · (y − f(X; b)) (10.3)

An alternative equation for the loss function uses summation notation to add up the square of each error

εi = yi − f(xi; b) over all m instances.

L(b) =
1

2

m−1∑
i=0

[yi − f(xi; b)]2 (10.4)

355

Special Case of a Linear Model

For a linear model, f is simply a linear combination of the input variables, i.e., f(X; b) = Xb, so

L(b) =
1

2
(y −Xb) · (y −Xb)

Recall that taking the gradient with respect to b and setting it equal to 0, yields the Normal Equations,

(X
ᵀ

X)b = X
ᵀ

y

Then matrix factorization can be used to relatively quickly find a globally optimal value for the parameter

vector b.

10.1.3 Optimization

For nonlinear regression, a Least-Squares (minimizing the errors/residuals) method can be used to fit the

parameter vector b. Finding optimal values for the parameters b may be found by either solving the Normal

Equations or using an iterative optimization algorithm. In either case, gradients of the loss function are used

to find these values.

L(b) =
1

2

m−1∑
i=0

[yi − f(xi; b)]2

The jth partial derivative of this loss function L(b) may be determined using the chain rule.

∂L(b)

∂bj
= −

m−1∑
i=0

[yi − f(xi; b)]
∂f(xi; b)

∂bj
(10.5)

Setting each partial derivative (j = 0 . . . p− 1) to zero yields,

m−1∑
i=0

f(xi; b)
∂f(xi; b)

∂bj
=

m−1∑
i=0

yi
∂f(xi; b)

∂bj

Collecting these equations for all values of j leads to the Normal Equations for nonlinear models. Unfortu-

nately, they form a system of nonlinear equations requiring numerical solution. Instead of solving the Normal

Equations for nonlinear models, one may use an optimization algorithm to minimize the loss function L(b).

First-Order Optimization Algorithms

First-order optimization algorithms utilize first derivatives, typically moving in the opposite direction to the

gradient.

∇L(b) =

[
∂L(b)

∂b0
, . . . ,

∂L(b)

∂bp−1

]
(10.6)

Noting that εi = yi − f(xi; b), the jth partial derivative can be written more concisely.

∂L(b)

∂bj
= −

m−1∑
i=0

[εi]
∂f(xi; b)

∂bj
(10.7)

356

Therefore, an optimization algorithm essentially operates off of the gradient of the mean response function

f . For greater accuracy and efficiency for a given function f , utilization of formulas for its partial derivatives

is preferred over their numerical calculation.

Second-Order Optimization Algorithms

Second-order optimization algorithms utilize both first derivatives (gradient) and second derivatives (Hes-

sian). A user defined mean response function f that takes a vector of inputs x and a vector of parameters

b,

1 f: (VectorD , VectorD) => Double

is passed as a parameter to the NonlinearRegression class. This function is used to create a predicted

output value ypi for each input vector xi. The sseF method (as a loss function) applies function f to all

m input vectors to compute predicted output values. These are then subtracted from the actual output

to create an error vector, whose squared Euclidean norm is returned. The sseF is embedded in the train

method.

1 @param x_ the training/full data/input matrix

2 @param y_ the training/full response/output vector

3

4 def train (x_ : MatrixD = x, y_ : VectorD = y): Unit =

5

6 // ::

7 /** Function to compute sse for the given values for the parameter vector b.

8 * @param b the parameter vector

9 */

10 def sseF (b: VectorD): Double =

11 val yp = x_.map (f(_, b)) // predicted response vector

12 (y_ - yp).normSq // sum of squared errors

13 end sseF

14

15 val bfgs = new BFGS (sseF) // minimize sseF using nonlinear optimizer

16 val result = bfgs.solve (b_init) // result from optimizer

17 val sse = result._1 // optimal function value

18 b = result._2 // optimal parameter vector

19 end train

ScalaTion’s optimization package provide several solvers for linear, quadratic, integer and nonlinear pro-

gramming/optimization. Currently, the BFGS class (a Quasi-Newton optimizer) is used for finding an optimal

b by minimizing sseF. It uses the second-order Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm that

can improve convergence over first-order algorithms such as gradient/steepest descent. The BFGS algorithm

determines a search direction by deflecting the gradient/steepest descent direction vector (opposite the gra-

dient) by multiplying it by a matrix that approximates the inverse Hessian. This optimizer requires an initial

guess b init for the parameter vector b.

For more information see http://www.bjsos.umd.edu/socy/alan/stats/socy602_handouts/kut86916_

ch13.pdf.

357

http://www.bjsos.umd.edu/socy/alan/stats/socy602_handouts/kut86916_ch13.pdf
http://www.bjsos.umd.edu/socy/alan/stats/socy602_handouts/kut86916_ch13.pdf

10.1.4 Use of the Chain Rule

The Chain Rule for Differential Calculus can be used to obtain derivatives, partial derivatives and gradients

needed in Nonlinear Regression and Neural Networks. Consider the following function of the variable x; the

rule works as follows:

f(x) = (7− 3x2)2

To obtain the derivative of the function f w.r.t. x,
df

dx
, f can be expressed as the composition of two

functions f = f ◦ u,

f(x) = f(u(x)) where u(x) = (7− 3x2) and f(u) = u2

so the chain rule can be applied.

df

dx
=

df

du

du

dx
(10.8)

where

df

du
= 2u

du

dx
= − 6x

Multiplying and substituting for u yields

df

dx
= [2(7− 3x2)][−6x] = − 12x(7− 3x2)

This basic rule carries over to partial derivatives.

∂L
∂bj

=
dL
du

∂u

∂bj
(10.9)

For example, consider the function f(x, y) = (7− 3xy)2. Let u(x, y) = 7− 3xy and f(u) = u2; applying the

chain rule gives

∂f

∂x
=

df

du

∂u

∂x
(10.10)

∂f

∂x
= [2u][−3y] = − 6y(7− 3xy)

Of course, there are additional chain rules in multivariate calculus, see https://www.whitman.edu/mathematics/

multivariable/multivariable.pdf.

358

https://www.whitman.edu/mathematics/multivariable/multivariable.pdf
https://www.whitman.edu/mathematics/multivariable/multivariable.pdf

10.1.5 NonlinearRegression Class

Class Methods:

1 @param x the data/input matrix optionally augmented with a first column of ones

2 @param y the response/output vector

3 @param f the nonlinear function f(x, b) to fit

4 @param b_init the initial guess for the parameter vector b

5 @param fname_ the feature/variable names (defaults to null)

6 @param hparam the hyper -parameters (currently has none)

7

8 class NonlinearRegression (x: MatrixD , y: VectorD , f: FunctionP2S ,

9 b_init: VectorD , fname_ : Array [String] = null ,

10 hparam: HyperParameter = null)

11 extends Predictor (x, y, fname_ , hparam)

12 with Fit (dfm = x.dim2 - 1, df = x.dim - x.dim2):

13

14 def train (x_ : MatrixD = x, y_ : VectorD = y): Unit =

15 def sseF (b: VectorD): Double =

16 def test (x_ : MatrixD = x, y_ : VectorD = y): (VectorD , VectorD) =

17 override def predict (z: VectorD): Double = f(z, b)

10.1.6 Exercises

1. Given the Normal Equations for Nonlinear Regression models,

m−1∑
i=0

f(xi; b)
∂f(xi; b)

∂bj
=

m−1∑
i=0

yi
∂f(xi; b)

∂bj

simplify them assuming f is linear in the parameters b, i.e.,

f(xi; b) = xi · b

Hint:

∂f(xi; b)

∂bj
= xij

2. List and compare several nonlinear optimization algorithms from the following classes:

(a) derivative-free optimization algorithms,

(b) first-order optimization algorithms, and

(c) second-order optimization algorithms.

3. Enzyme catalyzed biochemical reactions may be described by a Michaelis-Menten nonlinear regression

model [119]. The reaction rate/velocity y = v is a function of the substrate concentration x,

359

y =
b0x

x+ b1
+ ε

where parameter b0 = Vmax is the maximum reaction velocity (occurs at high substrate concentration)

and parameter b1 = Km is the Michaelis constant that measures the strength of the enzyme-substrate

interaction. Use the dataset given in Table 2 of [119] to train the model.

4. The jth partial derivative of the loss function L(b) is copied below.

∂L(b)

∂bj
= −

m−1∑
i=0

[yi − f(xi; b)]
∂f(xi; b)

∂bj

∂L(b)

∂bj
= −

m−1∑
i=0

[εi]
∂f(xi; b)

∂bj

The first-order optimization algorithms use gradients/partial derivatives to iteratively improve the

parameters. Gradient Descent (GD) uses the whole training set, while Stochastic Gradient Descent

(SGD) uses a (typically random) subset of the training set (called a mini-batch). For pure Stochastic

Gradient Descent (SGD), the parameters are updated for every data instance i, so the above equation

becomes the following:

∂L(b)

∂bj
= − [εi]

∂f(xi; b)

∂bj

Now, suppose the error εi > 0 (positive). This means that the predicted value ŷi = f(xi; b) is too low.

This begs the question of how to change the parameter bj to reduce the loss function, make the error

smaller or equivalently increase the mean response function f .

Clearly, the answer depends on the slope of the mean response function.

∂f(xi; b)

∂bj

For the case where the slope of the mean response function is positive, determine whether to increase

or decrease the parameter bj . Also, explain what this does to the loss function.

5. In the figure below, determine the value of εi for

(a) bj = 1

(b) bj = 4

360

1 1.5 2 2.5 3 3.5 4

75

80

85

90

bj

y

How to Update Parameter bj , y(black), ŷ(blue)

Assuming the slope of the mean response function f is positive at both values of bj , how should the

jth parameter bj be changed (increased or decreased) for (a) and (b)?

361

10.2 Simple Exponential Regression

The SimpleExpRegression class can be used for developing Simple Exponential Regression models. These

are useful when data exhibit exponential growth or decay.

10.2.1 Model Equation

Simple Exponential Regression models have a single predictor variable x = [x]. They are a type of Nonlinear

Model for a response random variable y having a model equation of the following form,

y = b0e
b1x + ε (10.11)

The mean response function has two parameters, a multiplier b0 and a growth rate b1.

f(x,b) = b0e
b1x (10.12)

Note, for SimpleExpRegression the number of parameters p = 2, while the number of predictor variables

n = 1.

10.2.2 Training

Given a dataset (x,y) where x ∈ Rm and y ∈ Rm, the parameters b = [b0, b1] may be determined using

Least Squares Estimation (LSE). The loss function may be deduced from the general NLR loss function in

summation form.

L(b) =
1

2

m−1∑
i=0

[yi − f(xi; b)]2

Replacing the general mean response function f(xi; b) with b0e
b1xi yields,

L(b) =
1

2

m−1∑
i=0

[yi − b0eb1xi]2 (10.13)

When ε ∼ N(0, σ2I), i.e., each error has mean 0 and variance σ2, the same parameter estimates can be

obtained using the Maximum Likelihood Estimation (MLE), see the Chapter on Generalized Linear Models.

See the Exercises, to show the equivalence of the two estimation techniques.

10.2.3 Optimization

Optimization for Simple Exponential Regression involves determining the gradient of the loss function with

respect to the parameters b. Starting with the general formula for the jth partial derivative of the loss

function L(b)

∂L(b)

∂bj
= −

m−1∑
i=0

[εi]
∂f(xi; b)

∂bj

the partial derivatives of the mean response function are needed. In this case, there are two parameters

b = [b0, b1] and two formulas:

362

Partial Derivatives of the Mean Response Function

∂f(xi; b)

∂b0
= eb1xi (10.14)

∂f(xi; b)

∂b1
= xib0e

b1xi (10.15)

Partial Derivatives of the Loss Function

∂L(b)

∂b0
= −

m−1∑
i=0

[εi] e
b1xi (10.16)

∂L(b)

∂b1
= −

m−1∑
i=0

[εi]xib0e
b1xi (10.17)

Since the ith predicted response ŷi = b0e
b1xi , these two equations may be simplied as follows:

∂L(b)

∂b0
= −

m−1∑
i=0

[εi] ŷi/b0 = − ε · (ŷ/b0) (10.18)

∂L(b)

∂b1
= −

m−1∑
i=0

[εi]xiŷi = − ε · (x ∗ ŷ) (10.19)

where ∗ is the element-wise vector product (e.g., [2, 4, 6] ∗ [5, 3, 1] = [10, 12, 6]). The gradient of the loss

function is the vector formed from the two partial derivatives given above.

∇L(b) =

[
∂L(b)

∂b0
,
∂L(b)

∂b1

]
(10.20)

∇L(b) = − [ε · (ŷ/b0), ε · (x ∗ ŷ)] (10.21)

A Gradient Descent Optimizer is a simple type of first-order optimization algorithm. It starts at a random

(or guessed) point in parameter space and iteratively moves in the direction opposite to the gradient. To

control how rapidly the algorithm moves in that direction, a learning rate η is introduced as a hyper-parameter

to tune. With each iteration the parameter b is updated as follows:

b = b − η∇L(b)

The pseudocode for the Gradient Descent Algorithm for Simple Exponential Regression is as follows:

1 b = b_init // initial random/guessed parameter vector

2 while loss_decreasing do // stopping rule

3 val yp = f(x, b) // y-predicted vector

4 val ε = y - yp // error vector

5 val δ0 = ε dot yp / b0 // delta 0 - partial of loss w.r.t. b0

6 val δ1 = ε dot yp * x // delta 1 - partial of loss w.r.t. b1

7 b0 += η * δ0 // update to first parameter

8 b1 += η * δ1 // update to second parameter

9 end while

363

10.2.4 Linearization

In this subsection, we examine two versions of simple exponential regression to see if the model can be

linearized, by transforming the model so that it becomes linear in the parameters. The mean response

function for the simple exponential regression model is

f(x,b) = b0 e
b1x

Multiplicative Errors

Consider this mean response function with multiplicative errors,

y = b0 e
b1x ε

Taking the natural logarithm yields

ln(y) = ln(b0) + b1x + ln(ε)

This linearized form can be used to fit the transformed response as was done with TranRegression.

ln(y) = β0 + b1x + e

Additive Errors

Now consider this mean response function with additive errors,

y = b0 e
b1x + ε

Taking the natural logarithm yields

ln(y) = ln(b0 e
b1x + ε)

Notice that the error model is different (multiplicative vs. additive) so the transformed linear regression model

is different from the original nonlinear exponential regression model. They may be viewed as competitors,

see the exercises.

Some nonlinear models are intrinsically linear in that the data can be transformed into a linear form,

although the transformation may transform the errors inappropriately. The following nonlinear model,

however, cannot be transformed to a linear form, regardless of the error model. It adds an additional

parameter to the simple exponential model.

y = b0 + b1e
b2x + ε (10.22)

10.2.5 Exercises

1. Consider the following hospitalization dataset from Chapter 13 of [102].

364

1 val xy = MatrixD ((15, 2), 2, 54,

2 5, 50,

3 7, 45,

4 10, 37,

5 14, 35,

6 19, 25,

7 26, 20,

8 31, 16,

9 34, 18,

10 38, 13,

11 45, 8,

12 52, 11,

13 53, 8,

14 60, 4,

15 65, 6)

Plot y = xy(?, 1) patient prognostic index versus x = xy(?, 0) days hospitalized.

2. Model the hospitalization dataset using Simple Linear Regression, plot the regression line and show

the Quality of Fit (QoF) measures.

3. Model the hospitalization dataset using Simple Exponential Regression, plot the regression curve and

show the Quality of Fit (QoF) measures. How do the QoF measures compare with those produced by

Simple Linear Regression?

4. Model the hospitalization dataset using Log Transformed Linear Regression, plot the regression curve

and show the Quality of Fit (QoF) measures. How do the QoF measures compare with those produced

by Simple Linear Regression and Simple Exponential Regression?

5. For the following exponential regression model

y = b0e
b1x + ε

show that when error vector ε ∼ N(0, σ2I), the LSE and MLE estimation techniques will produce the

same parameter estimates.

6. Use the pseudo-code given in this section to write a Gradient Descent Optimizer for Simple Exponential

Regression using ScalaTion.

7. Pass the loss function into a second-order Quasi-Newton Optimizer and compare to the first-order

algorithm in term of the parameter solution, the value of the loss function, and the number of steps

needed for convergence.

365

10.3 Exponential Regression

The simple exponential regression model can be extended to have multiple predictor variables, e.g., x =

[x1, x2] and b = [b0, b1, b2].

y = b0 e
b1−2·x + ε (10.23)

Note, b1−2 = [b1, b2]. The mean response function then is

f(x,b) = b0 e
b1−2·x

By introducing a new variable, x0 = 1, the equation may be rewritten.

f(x,b) = eb·x (10.24)

The `2 loss function for Exponential Regression is

L(b) =
1

2

m−1∑
i=0

[yi − eb·x]2

Again, starting with the general formula for the jth partial derivative of the loss function L(b)

∂L(b)

∂bj
= −

m−1∑
i=0

[εi]
∂f(xi; b)

∂bj

the problem reduces to finding the jth partial derivative of the mean response function.

∂f(xi,b)

∂bj
= xije

b·xi

Substituting this result into the general formula gives

∂L(b)

∂bj
=

m−1∑
i=0

[εi]xije
b·xi (10.25)

This mean response function can be linearized using a log transformation. Alternatively, one can also

look into using a Generalized Linear Model (GLM) for such datasets to provide more options for deal-

ing with the error distribution. See http://www.stat.uni-muenchen.de/~leiten/Lehre/Material/GLM_

0708/chapterGLM.pdf for more details. Also, see the exercises.

10.3.1 ExpRegression Class

Class Methods:

1 @param x the data/input matrix

2 @param y the response/output vector

3 @param fname_ the feature/variable names (defaults to null)

4 @param hparam the hyper -parameters (currently none)

5 @param nonneg whether to check that responses are nonnegative

6

7 class ExpRegression (x: MatrixD , y: VectorD , fname_ : Array [String] = null ,

366

http://www.stat.uni-muenchen.de/~leiten/Lehre/Material/GLM_0708/chapterGLM.pdf
http://www.stat.uni-muenchen.de/~leiten/Lehre/Material/GLM_0708/chapterGLM.pdf

8 hparam: HyperParameter = null , nonneg: Boolean = true)

9 extends Predictor (x, y, fname_ , hparam)

10 with Fit (dfm = x.dim2 - 1, df = x.dim - x.dim2):

11

12 def ll (b: VectorD): Double =

13 def ll_null (b: VectorD): Double =

14 def train (x_ : MatrixD = x, y_ : VectorD = y): Unit =

15 def train_null (): Unit =

16 def test (x_ : MatrixD = x, y_ : VectorD = y): (VectorD , VectorD) =

17 override def summary (x_ : MatrixD = getX , fname_ : Array [String] = fname ,

18 b_ : VectorD = b, vifs: VectorD = vif ()): String =

19 override def predict (z: VectorD): Double = exp (b dot z)

20 override def buildModel (x_cols: MatrixD): ExpRegression =

10.3.2 Exercises

1. A Generalized Linear Model (GLM) that utilized Maximum Likelihood Estimation (MLE) may be

used for such data. The response variable y is modeled as the product of a mean response function

f(x; b) = µy(x) and exponentially distributed residuals/errors ε.

y = µy(x) × ε

ln(µy(x)) = b · x

where the link function g = ln with inverse (g−1 = exp).

g(µy(x)) = ln(µy(x)) = b · x

Explain why the errors/residuals εi = yi/µy(xi) follow and Exponential distribution.

f(yi/µy(xi)) =
1

µy(xi)
e−yi/µy(xi)

2. Show that the likelihood function for Exponential Regression is the following:

L =

m−1∏
i=0

1

µy(xi)
e−yi/µy(xi)

Substituting for µy(xi) = eb·xi gives

L =

m−1∏
i=0

e−b·xi e−yi/e
b·xi

Taking the natural logarithm gives the log-likelihood function.

367

l =

m−1∑
i=0

−b · xi −
yi
eb·xi

3. Write a function to compute the negative log-likelihood (−l) and pass it into a nonlinear optimization

algorithm for minimization.

368

10.4 Perceptron

The Perceptron class supports single-valued 2-layer (input and output) Neural Networks. The inputs into a

Neural Net are given by the input vector x, while the outputs are given by the output value y. As depicted

in Figure 10.2, each component of the input xj is associated with an input node in the network, while the

output y is associated with the single output node. The input layer consists of n input nodes, while the

output layer consists of 1 output node.

x0

x1

x2

y

f

β

b0

b1

b2

Figure 10.2: Network Diagram for a Perceptron

An edge connects each input node with the output node, i.e., there are n edges in the network. To

include an intercept in the model (also referred to as bias) one of the inputs (say x0) must always be set to

1. Alternatively, a bias offset β can be associated with the output node and added to the weighted sum (see

below).

10.4.1 Model Equation

The weights on the edges are analogous to the parameter vector b in regression. The output y has an

associated parameter vector b, where parameter value bj is the edge weight connecting input node xj with

output node y.

Recall the model equation for multiple linear regression.

y = b · x + ε = b0 + b1x1 + ...bn−1xn−1 + ε

We now take the linear combination of the inputs, b · x, and apply an activation function fa (or simply f).

y = f(b · x) + ε = f(

n−1∑
j=0

bjxj) + ε (10.26)

The general mean response function fr(x; b) of nonlinear regression, which takes two vectors as input, is

now replaced by first taking a linear combination of x and then applying a simpler activation function that

takes a single scalar as input, i.e., f(b · x).

369

10.4.2 Ridge Functions

Restricting the multi-dimensional function fr(x; b) to f(b · x) means that the response surface is simply a

ridge function. As an example, let b = [.5, 2, 1] and x = [1, x1, x2], then

ŷ = f([.5, 2, 1] · [1, x1, x2]) = f(2x1 + x2 + .5)

Choosing the activation function f to be the sigmoid function results in the ridge function shown in Figure

10.3. Compared to the hyperplane shown in the Regression section, its more flexible shape provides provides

more potential for matching a variety of response surfaces.

−4 −2 0 2 4 −5

0

5

0

0.5

1

x1

x2

y

Figure 10.3: Ridge Function: ŷ = sigmoid(2x1 + x2 + .5)

10.4.3 Training

Given several input vectors and output values (e.g., in a training set), optimize/fit the weights b connecting

the layers. After training, given an input vector x, the net can be used to predict the corresponding output

value ŷ.

A training dataset consisting of m input-output pairs is used to minimize the error in the prediction by

adjusting the parameter/weight vector b ∈ Rn. Given an input/data matrix X ∈ Rm×n consisting of m

input vectors and an output vector y ∈ Rm consisting of m output values, minimize the distance between

the actual/target output vector y and the predicted output vector ŷ,

ŷ = f(Xb) (10.27)

where f : Rm → Rm is the vectorized version of the activation function f . The vectorization may occur over

the entire training set or more likely, an iterative algorithm may work with a group/batch of instances at a

time. In other words, the goal is to minimize some norm of the error vector.

370

(X,y)

x0

x1

x2

ŷ

fa(b · x)

y

ε = y − ŷ

b0

b1

b2

yi

xi0

xi1

xi2

Figure 10.4: Training Diagram for Perceptron

ε = y − ŷ = y − f(Xb) (10.28)

Using the Euclidean (`2) norm, we have

minb ‖y − f(Xb)‖

As was the case with regression, it is convenient to minimize the dot product of the error with itself (‖ε‖2 =

ε · ε). In particular, we aim to minimize half of this value, half sse (loss function L).

L(b) =
1

2
[y − f(Xb)] · [y − f(Xb)] (10.29)

Using summation notation gives

L(b) =
1

2

m−1∑
i=0

[yi − f(xi · b)]2 (10.30)

10.4.4 Optimization

Optimization for Perceptrons and Neural Networks is typically done using an iterative optimization algorithm

that utilizes gradients. Popular optimizers include Gradient Descent (GD), Stochastic Gradient Descent

(SGD), Stochastic Gradient Descent with Momentum (SGDM), Root Mean Square Propagation (RMSProp)

and Adaptive Moment Estimation (Adam) (see Appendix on Optimization for details).

The gradient of the loss function L is calculated by computing all of the partial derivatives with respect

to the parameters/weights.

∇L(b) =

[
∂L
∂b0

, . . . ,
∂L

∂bn−1

]
371

Partial Derivative for bj

Starting with the nonlinear regression general formula for the jth partial derivative of the loss function L(b)

∂L(b)

∂bj
= −

m−1∑
i=0

[εi]
∂fr(xi; b)

∂bj

and specializing the mean response function fr(xi; b) to f(xi ·b), i.e., the function of two vectors is replaced

with an activation function applied to the dot product of the two vectors, yields,

∂L(b)

∂bj
= −

m−1∑
i=0

[εi]
∂f(xi · b)

∂bj

Now, the partial derivative of f(xi · b) with respect to bj can be determined via the chain rule using the

scalar pre-activation response ui = xi · b.

∂f(xi · b)

∂bj
=

∂f(ui)

∂ui

∂ui
∂bj

(10.31)

Derivative of the Activation Function

Since ∂f(ui)
∂ui

is a regular derivative as it is one dimensional, it can be replaced with df(ui)
dui

which may be

denoted as f ′(ui).

∂f(ui)

∂ui
=

df(ui)

dui
= f ′(ui) (10.32)

Derivative of the Pre-Activation Response

∂ui
∂bj

=
∂

∂bj
(b0xi0 + · · ·+ bjxij + · · ·+ bkxik) = xij (10.33)

Combining Results

∂f(xi · b)

∂bj
= f ′(ui)xij

Therefore, the jth partial derivative of the loss function L becomes

∂L(b)

∂bj
= −

m−1∑
i=0

[εi]xij f
′(ui) (10.34)

The sum can be replaced with a dot product (sum of products),

∂L(b)

∂bj
= − x:j · (ε ∗ f ′(u)) (10.35)

where x:j is the jth column of data matrix X, ∗ is the element-wise vector product, u = Xb, and f ′(u) is

the vector extension of the derivative of the activation function df(ui)
dui

= f ′(ui) over all m instances.

See the derivation below that expresses the loss function as the dot product of the error vectors. It

provides another way to obtain the same results.

372

Alternative Derivation at the Vector Level

The same basic derivation can be carried out at the vector level as well. Taking the partial derivative with

respect to the jth parameter/weight, bj , is a bit complicated since we need to use the chain rule and the

product rule. First, letting u = Xb (the pre-activation response) allows the loss function to be simplified to

L(b) =
1

2
[y − f(u)] · [y − f(u)] (10.36)

The chain rule from vector calculus to be applied is

∂L(b)

∂bj
=

∂L(b)

∂u
· ∂u

∂bj
(10.37)

The first partial derivative is

∂L(b)

∂u
= − [y − f(u)] ∗ f ′(u) (10.38)

where the first part of the r.h.s. is f ′(u) which is the derivative of f with respect to vector u and the

second part is the difference between the actual and predicted output/response vectors. The two vectors are

multiplied together, element-wise.

The second partial derivative is

∂u

∂bj
= x:j (10.39)

where x:j is the jth column of matrix X (see Exercises 4, 5 and 6 for details).

The dot product of the two partial derivatives gives

∂L(b)

∂bj
= − x:j · [y − f(u)] f ′(u)

Since the error vector ε = y − f(u), we may simplify the expression.

∂L(b)

∂bj
= − x:j · (ε ∗ f ′(u)) (10.40)

The jth partial derivative (or jth element of the gradient) indicates the relative amount to move (change bj)

in the jth dimension to reduce L. Notice that equations 10.33 and 10.38 are the same.

The δ Vector

The goal of training is to minimize the errors. The errors are calculated using forward propagation through

the network. The parameters (weights and bias) are updated by back-propagation of the errors, or more

precisely, the slope-adjusted errors as illustrated in Figure 10.5.

373

x0

x1

x2

y

→ ε

← δ

b0

b1

b2

Figure 10.5: Perceptron: the ε and δ Vectors

Therefore, it is helpful especially for multi-layer neural networks to define the delta vector δ as follows:

δ =
∂L(b)

∂u
= − ε ∗ f ′(u) (10.41)

It multiplies the derivative of the vectorized activation function f by the negative error vector, element-wise.

If the error is small or the derivative is small, the adjustment to the parameter should be small. The partial

derivative of L with respect to bj now simplifies to

∂L(b)

∂bj
= x:j · δ (10.42)

10.4.5 Example Calculation for ε and δ

Assume that the activation function is the sigmoid function. Starting with the parameter/weight vector

b = [.1, .2, .1],

compute the m-dimensional vectors, ε and δ, for Exercise 7. With these parameters, the predicted out-

put/response vector ŷ may be computed in two steps: The first step computes the response, pre-activation

u = Xb. The second step takes this vector and applies the activation function to each of its elements.

This requires looking ahead to the subsection on activation functions. The sigmoid function (abbreviated

sigmoid) is defined as follows:

sigmoid(u) = [1 + e−u]−1 (10.43)

Figure 10.6 show the response surface for the example problem where the response y is color-coded.

Pre-activation Vector u

From Figure 10.6 create the input/data matrix X ∈ R9×3 and multiply it by the current parameter vector

b ∈ R3. The pre-activation vector is the aggregated signal before activation.

374

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

x1

x
2

Figure 10.6: Example Perceptron Problem (Exercise 7): response values, black (.2), blue (.3), green (.5),

purple/crimson (.8), red (1), form a diagonal terrace pattern

u = Xb = [.1, .15, .2, .2, .25, .3, .3, .35, .4]

Predicted Response Vector ŷ

The predicted response vector is determined by applying the activation function to each element of the

pre-activation vector.

ŷ = sigmoid(u) = sigmoid([.1, .15, .2, .2, .25, .3, .3, .35, .4])

= [.5249, .5374, .5498, .5498, .5621, .5744, .5744, .5866, .5986]

Error Vector ε

The error vector ε is simply the difference between the actual and predicted output/response vectors.

ε = y − ŷ

[.5000, .3000, .2000, .8000, .5000, .3000, 1.0000, .8000, .5000] −

[.5249, .5374, .5498, .5498, .5621, .5744, .5744, .5866, .5986] =

[−.0249,−.2374,−.3498, .2501,−.0621,−.2744, .4255, .2133,−.0986]

Delta Vector δ

To compute the delta vector δ, we must look ahead to get the derivative of the activation function (see

exercise 8).

sigmoid′(u) = sigmoid(u) [1− sigmoid(u)]

375

Therefore, since sigmoid(u) = ŷ

δ = − ε ∗ [ŷ ∗ (1− ŷ)]

[.0062, .0590, .0865,−.0619, .0153, .0670,−.1040,−.0517, .0237]

Forming the Gradient

Combining the partial derivatives ∂h̄
∂bj

for the loss function into an n-dimensional vector (i.e., the gradient)

yields

∇L(b) =
∂L(b)

∂b
= −X

ᵀ

[ε ∗ f ′(Xb)] = X
ᵀ

δ (10.44)

Parameter Update

Since many optimizers such as gradient-descent, move in the direction opposite to the gradient by a distance

governed by the learning rate η (alternatively step size), the following term should be subtracted from the

weight/parameter vector b.

∇L(b) η = X
ᵀ

δ η (10.45)

The right hand side is an n-by-m matrix, m vector product yielding an n vector result. Since gradient-

based optimizers move in the negative gradient direction by an amount determined by the magnitude of the

gradient times a learning rate η, the parameter/weight vector b is updated as follows:

b = b − X
ᵀ

δ η (10.46)

10.4.6 Initializing Weights/Parameters

The weight/parameter vector b should be randomly set at the start of the optimization. The weightVec

function in the Initializer object generates a random weight/parameter vector with elements values in

(0, limit). The stream may be changed to generate different random numbers.

1 @param rows the number of rows

2 @param limit the maximum value for any weight

3 @param stream the random number stream to use

4

5 def weightVec (rows: Int , stream: Int = 0, limit: Double = -1.0): VectorD =

6 val lim = if limit <= 0.0 then limitF (rows) else limit

7 val rvg = new RandomVecD (rows , lim , 0.0, stream = stream)

8 rvg.gen

9 end weightVec

10

11 private inline def limitF (rows: Int): Double = 1.0 / sqrt (rows)

For testing or learning purposes, the weights may also be set manually.

1 @param w0 the initial weights for parameter b

2

3 def setWeights (w0: VectorD): Unit = b = w0

376

10.4.7 Activation Functions

An activation function fa (or simple f) takes an aggregated signal and transforms it. These activation

functions typically introduce smooth non-linearities either between lowers and upper bound (e.g., [0, 1] or

[−1, 1]) or follow a rectified linear unit (zero for negative signals and linear for positive signals).

The simplest activation function is the id or identity function where the aggregated signal is passed

through unmodified. In this case, Perceptron is in alignment with Regression (see Exercise 9). This

activation function is usually not intended for neural nets with more layers, since theoretically they can be

reduced to a two-layer network (although it may be applied in the last layer).

More generally useful activation functions include reLU, lreLU, eLU, seLU, geLU, sigmoid, tanh and

gaussian. Several activation functions are compared in [118, 137]. For these activation functions the

outputs in the y vector need to be transformed into the range specified for the activation function, see Table

10.1. It may be also useful to transform/standardize the inputs to hit the sweet spot for the particular

activation function being used.

The curves of three of the activation functions are shown in Figure 10.7

Table 10.1: Activation Functions: Identity id, Rectified Linear Unit reLU, Leaky Rectified Linear Unit

lreLU, Exponential Linear Unit eLU, Scaled Exponential Unit seLU, Gaussian Error Linear Unit geLU,

Sigmoid sigmoid, Hyperbolic Tangent tanh, and Gaussian gaussian.

Name Function y = f(u) Domain Range Derivative f ′(u) Inverse u = f−1(y)

id u R R 1 y

reLU max(0, u) R R+
1u>0 y for y > 0

lreLU max(αu, u), α < 1 R R ifu<0(α, 1) min(yα , y)

eLU ifu<0(α(eu − 1), u) R R ifu<0(f(u) + α, 1) ify<0(ln(yα + 1), y)

seLU λ[ifu<0(α(eu − 1), u)] R R λ[ifu<0(f(u) + α, 1)] 1
λ [ify<0(ln(yα + 1), y)]

geLU uΦ(u) R R . .

sigmoid [1 + e−u]−1 R (0, 1) f(u)[1− f(u)] −ln(1
y − 1)

tanh tanh(u) R (−1, 1) 1− f(u)2 .5 ln
(

1+y
1−y
)

gaussian e−u
2 R (0, 1] −2ue−u

2 √
−ln(y)

The Gaussian Error Linear Unit (geLU) activation function is uΦ(u) where Φ(u) is the CDF for the

standard Normal (or Gaussian) distribution (see the Probability Chapter). As this function is computed

numerically, the following approximation may be used instead.

uΦ(u) ≈ f(u) = .5u
[
1 + tanh

[√
2/π(u+ .044715u3)

]]
(10.47)

The derivative of the geLU activation function f ′(u) may be computed using product and chain rules [133].

f ′(u) = .5 tanh(.0356774u3 + .797885u) + .5 + (10.48)

(.0535161u3 + .398942u) cosh−2(.0356774u3 + .797885u) (10.49)

377

−3 −2 −1 0 1 2 3

−1

0

1

2

3

u

f
(u

)

Figure 10.7: Activation Functions: sigmoid (blue), tanh (black), reLU (green)

The sigmoid function has an ‘S’ shape, which facilitates its use as a smooth and differentiable version

of a step function, with larger negative values tending to zero and larger positive values tending to one. In

the case of using sigmoid for the activation function, f ′(u) = f(u)[1− f(u)], so

δ = − ε ∗ [f ′(u)] = − ε ∗ [f(u) ∗ [1− f(u)]

Gradient-descent algorithms iteratively move in the negative gradient direction by an amount determined

by the magnitude of the gradient times a learning rate η, so the parameter/weight vector b is adjusted as

follows:

b = b − X
ᵀ

δ η

Continuation of Example Calculation

Assuming the learning rate η = 1 and taking the δ vector from the example, the update to parameter/weight

vector b is

X
ᵀ

δ η = [.0402,−.1218, .1886]

Consequently, the updated value for the parameter/weight vector b is

b = [.1, .2, .1] − [.0402,−.1218, .1886] = [.0597, .3218,−.0886]

Check to see if the new values for b have improved/decreased the loss function L.

10.4.8 Basic Gradient Descent Algorithm

A basic gradient descent algorithm is an iterative process that typically terminates when the drop in the loss

function L is small or a maximum number of iterations is exceeded. The parameters η and max epochs need

378

careful adjustments to obtain nearly (locally) optimal values for L. Gradient-descent works by iteratively

moving in the opposite direction as the gradient until a stopping rule evaluates to true (e.g., stop after qth

increase in L and return best solution so far). The rate of convergence can be adjusted using the learning

rate η which multiplies the gradient. Setting it too low slows convergence, while setting it too high can cause

oscillation or divergence. In ScalaTion, the learning rate η (eta in the code) is a hyper-parameter that

defaults to 0.1, but is easily adjusted, e.g.,

1 Optimizer.hp ("eta") = 0.05

train Method

The train method contains the main training loop that is shown below. Inside the loop, new values yp are

predicted, from which an error vector e is determined. This is used to calculate the delta vector d, which

along x.T and eta are used to update the parameter/weight vector b. Note, x , y which default to x, y

constitute the training set.

1 @param x_ the training/full data/input matrix

2 @param y_ the training/full response/output vector

3

4 def train (x_ : MatrixD = x, y_ : VectorD = y): Unit =

5 if b == null then b = weightVec (n) // initialize parameters/weights

6 var sse0 = Double.MaxValue

7

8 var (go, epoch) = (true , 1)

9 cfor (go && epoch <= maxEpochs , epoch += 1) { // epoch learning phase

10 val yp = f.f_ (x_ * b) // predicted output vector f(Xb)

11 e = y_ - yp // error vector for y

12 val δ = -f.d (yp) * e // delta vector for y

13 b -= x_.T * δ * η // update the parameters/weights

14

15 val sse = (y_ - f.f_ (x_ * b)).normSq // recompute sum of errorsˆ2

16 collectLoss (sse) // collect loss per epoch

17 if sse >= sse0 then go = false // stop when sse increases

18 else sse0 = sse // save prior sse

19 } // cfor

20 end train

The vector function f.f is the vectorization of the activation function f.f, and is created in ScalaTion

using the vectorize high-order function defined in the mathstat package, e.g., given a scalar function f , it

can produce the corresponding vector function f .

1 def vectorize (f: FunctionS2S): FunctionV2V = (x: VectorD) => x.map (f(_))

2 val f_ = vectorize (f)

The function f.d is the derivative of the vector activation function. The collectLoss method is defined in

the MonitorLoss trait.

The core of the algorithm is the first four lines in the loop. Table 10.2 show the correspondence between

these lines of code and the main/boxed equations derived in this section. Note, all the equations in the table

are vector assignments.

The third line of code appears to be different from the mathematical equation, in terms of passing the pre-

activation versus the post-activation response. It turns out that all derivatives for the activation functions

379

Table 10.2: Correspondence between Code and Boxed Equations

Code Equation Equation Number

yp = f.f (x * b) ŷ = f(Xb) 10.25

e = y - yp ε = y − ŷ 10.26

δ = -f.d (yp) * e δ = −ε ∗ f ′(Xb) 10.39

b -= x .T * δ * η b = b−Xᵀ
δη 10.44

(except Gaussian) are either formulas involving constants or simple functions of the activation function itself,

so for efficiency, the yp vector is passed in.

Warning: This implementation is minimal to illustrate the basic required mechanisms, and as such is

likely to be less accurate. For example, the code does not create mini-batches, has a stopping rule that is too

simple, uses a fixed learning rate, does not utilize a modern optimization algorithm. For a useful perceptron,

NeuarlNet 2L in the neuralnet package may be used with one node in the output layer.

A perceptron can be considered to be a special type of nonlinear or transformed regression, see Exercise

10.

The ActivationFun Object

The Perceptron class defaults to the f sigmoid Activation Function Family (AFF), which is defined with

the ActivationFun object.

1 @param name the name of the activation function

2 @param f the activation function itself (scalar version)

3 @param f_ the vector version of the activation function

4 @param d the vector version of the activation function derivative

5 @param bounds the (lower , upper) bounds on the range of the activation function

6 e.g., (0, 1) for sigmoid , defaults to null => no limit

7 @param arange the (lower , upper) bounds on the input (active) range of the function

8 e.g., (-2, 2) for sigmoid , defaults to null => no limit

9

10 case class AFF (name: String , f: FunctionS2S , f_ : FunctionV2V , d: FunctionV2V ,

11 bounds: (Double , Double) = null , arange: (Double , Double) = null):

12

13 val fM = matrixize (f_) // the matrix version of activation function

14 val dM = matrixize (d) // the matrix version of activation function derivative

15

16 end AFF

The sigmoid and tanh famalies are defined as follows:

1 val f_sigmoid = AFF ("sigmoid", sigmoid , sigmoid_ , sigmoidD , (0, 1), (-2, 2))

2 val f_tanh = AFF ("tanh", tanh , tanh_ , tanhD , (-1, 1), (-2, 2))

In general, the AFF for family f contains the following:

1 val f = AFF (n, f, f_ , d, (lb, ub), (a1, a2))

380

Rescaling

Depending on the activation function, rescaling of outputs and/or inputs may be necessary:

1. Output: If the actual response vector y is outside the bounds/range of the activation function, it will

be impossible for the predicted response vector ŷ to approximate it, so rescaling will be necessary. The

bounds in AFF is used for rescaling vector y.

2. Input: If the linear combination of inputs takes the pre-activation value beyond the effective domain

(active range) of the activation function, training will become slow (or even ineffective), e.g., when u

is large, f(u) will be nearly 1 for sigmoid, even when there are substantial changes to u induced by

updates to the parameters. The arange in AFF is used for rescaling the columns of matrix X.

As a convenience, all the modeling techniques in ScalaTion have a factory method for rescaling the inputs

and outputs.

1 @param x the data/input matrix

2 @param y the response/output vector

3 @param fname the feature/variable names (defaults to null)

4 @param hparam the hyper -parameters (defaults to hp)

5 @param f the activation function family for layers 1->2 (input to output)

6

7 def rescale (x: MatrixD , y: VectorD , fname: Array [String] = null ,

8 hparam: HyperParameter = hp , f: AFF = f_sigmoid): Perceptron =

9 var itran: FunctionV2V = null // inverse transform -> original scale

10

11 val x_s = if scale then rescaleX (x, f)

12 else x

13 val y_s = if f.bounds != null then { val y_i = rescaleY (y, f);

14 itran = y_i._2; y_i._1 }

15 else y

16

17 new Perceptron (x_s , y_s , fname , hparam , f, itran)

18 end rescale

Other activation functions should be experimented with, as one may produce better results. All the

activation functions shown in Table 10.1 are available in the ActivationFun object.

Essentially, parameter optimization in perceptrons involves using/calculating several vectors as summa-

rized in Table 10.3 where n is the number of parameters and m is the number of instances used at a particular

point in the iterative optimization algorithm, for example, corresponding to the total number of instances

in a training set for Gradient Descent (GD).

Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) utilizes a fraction of the m instances to make updates to the parameters,

corresponding to just 1 for pure SGD or to the size of a mini-batch (e.g., 30) for the common form of SGD.

Instead of single loop of the Perceptron, there is a nested loop, the outer loop is over training epochs, while

the inner loop is over mini-batches.

1 cfor (go && epoch <= maxEpochs , epoch += 1) { // iterate over each epoch

2 val batches = permGen.igen.chop (nB) // permute indices & chop

3 for ib <- batches do b -= updateWeight (x(ib), y(ib)) // iterate: update param b

381

This has the obvious benefit of reducing the amount of computation required to make parameter updates.

Somewhat surprisingly, it also makes it easier for the algorithm to escape local minima and to generally be

a more robust algorithm. The mini-batch size is another hyper-parameter that can be tuned.

Table 10.3: Vectors Used in Perceptrons

Vector Space Formula Description

xi Rn given the ith row of the input/data matrix

x:j Rm given the jth column of the input/data matrix

b Rn given the parameter vector (updated per iteration)

u Rm Xb the pre-activation vector

y Rm given the actual output/response vector

ŷ Rm f(u) the predicted output/response vector

ε Rm y − ŷ the error/residual vector

δ Rm −ε ∗ f ′(u) the negative-slope-weighted error vector

β ⊕w Rn b concatenation of bias scalar and weight vector

10.4.9 Perceptron Class

Class Methods:

1 @param x the data/input m-by-n matrix (data consisting of m input vectors)

2 @param y the response/output m-vector (data consisting of m output values)

3 @param fname_ the feature/variable names (defaults to null)

4 @param hparam the hyper -parameters for the model/network (defaults to Perceptron.hp)

5 @param f the activation function family for layers 1->2 (input to output)

6 @param itran the inverse transformation function returns responses to original scale

7

8 class Perceptron (x: MatrixD , y: VectorD , fname_ : Array [String] = null ,

9 hparam: HyperParameter = Perceptron.hp,

10 f: AFF = f_sigmoid , val itran: FunctionV2V = null)

11 extends Predictor (x, y, fname_ , hparam)

12 with Fit (dfm = x.dim2 - 1, df = x.dim - x.dim2)

13 with MonitorLoss:

14

15 def setWeights (w0: VectorD): Unit = b = w0

16 def reset (eta_ : Double): Unit = eta = eta_

17 def train (x_ : MatrixD = x, y_ : VectorD = y): Unit =

18 def test (x_ : MatrixD = x, y_ : VectorD = y): (VectorD , VectorD) =

19 override def predict (z: VectorD): Double = f.f (b dot z)

20 override def predict (z: MatrixD = x): VectorD = f.f_ (z * b)

21 override def buildModel (x_cols: MatrixD): Perceptron =

The train method uses Gradient Descent with a simple stopping rule and a non-adaptive learning rate.

382

A better optimizer is used by the train method in the NeuralNet 2L class that uses Stochastic Gradient

Descent, a better stopping rule (see StoppingRule class), and an adaptive learning rate. The work is

delegated to the Optimizer SGD object and can easily be changes to use Stochastic Gradient Descent with

Momentum using the Optimizer SGDM object. A NeuralNet 2L may be thought of as multiple Perceptrons.

10.4.10 Exercises

1. Plot the rest of activation functions in Table 10.1 in the same plot and compare them.

2. The Texas Temperature regression problem can also be analyzed using a perceptron.

1 val fname = Array ("one", "Lat", "Elev", "Long")

2

3 // 16 data points: one x1 x2 x3

4 // Lat Elev Long County

5 val x = MatrixD ((16, 4), 1.0, 29.767 , 41.0, 95.367 , // Harris

6 1.0, 32.850 , 440.0 , 96.850 , // Dallas

7 1.0, 26.933 , 25.0, 97.800 , // Kennedy

8 1.0, 31.950 , 2851.0 , 102.183 , // Midland

9 1.0, 34.800 , 3840.0 , 102.467 , // Deaf Smith

10 1.0, 33.450 , 1461.0 , 99.633 , // Knox

11 1.0, 28.700 , 815.0 , 100.483 , // Maverick

12 1.0, 32.450 , 2380.0 , 100.533 , // Nolan

13 1.0, 31.800 , 3918.0 , 106.400 , // El Paso

14 1.0, 34.850 , 2040.0 , 100.217 , // Collington

15 1.0, 30.867 , 3000.0 , 102.900 , // Pecos

16 1.0, 36.350 , 3693.0 , 102.083 , // Sherman

17 1.0, 30.300 , 597.0 , 97.700 , // Travis

18 1.0, 26.900 , 315.0 , 99.283 , // Zapata

19 1.0, 28.450 , 459.0 , 99.217 , // Lasalle

20 1.0, 25.900 , 19.0, 97.433) // Cameron

21

22 val y = VectorD (56.0 , 48.0, 60.0, 46.0, 38.0, 46.0, 53.0, 46.0,

23 44.0, 41.0, 47.0, 36.0, 52.0, 60.0, 56.0, 62.0)

24

25 banner ("Perceptron with scaled y values")

26 val mod = Perceptron.rescale (x, y, fname) // factory method auto rescales

27 // val mod = new Perceptron (x, y, fname) // constructor does not auto

rescale

28

29 mod.reset (eta_ = 0.5) // try several learning rates

30 mod.trainNtest ()() // train and test the model

31

32 banner ("scaled prediction")

33 val yp = mod.predict () // scaled predicted output values

34 println ("target output: y = " + y)

35 println ("predicted output: yp = " + yp)

36

37 banner ("unscaled prediction")

38 val (ymin , ymax) = (y.min , y.max)

39 val ypu = unscaleV ((ymin , ymax), (0, 1)) (yp) // unscaled predicted output values

40 println ("target output: y = " + y)

41 println ("unscaled output: ypu = " + ypu)

383

3. Analyze the Example Concrete dataset in the neuralnet package, which has three output variables

y0, y1 and y2. Create a perceptron for each output variable.

4. Use the following formula for matrix-vector multiplication

u = Xb =
∑
j

bjx:j

to derive the formula for the following partial derivative

∂u

∂bj
= x:j

5. Given the formula for the loss function L : Rm → R expressed in terms of the pre-activation vector

u = Xb and the vectorized activation function f : Rm → Rm,

L(u) =
1

2
(y − f(u)) · (y − f(u))

derive the formula for the gradient of L with respect to u.

∇L =
∂L
∂u

= − f ′(u)(y − f(u))

Hint: Take the gradient,
∂L
∂u

, using the product rule (d1 · f2 + f1 · d2).

∂L
∂u

= − ∂f(u)

∂u
· (y − f(u))

where f1 = f2 = y − f(u) and d1 = d2 = −∂f(u)

∂u
. Next, assuming

∂f(u)

∂u
is a diagonal matrix, show

that the above equation can be rewritten as

∂L
∂u

= − f ′(u) (y − f(u))

where f ′(u) = [f ′(u0), . . . , f ′(um−1)] and the two vectors, f ′(u) and y− f(u), are multiplied, element-

wise.

6. Show that the m-by-m Jacobian matrix, Jf (u) =
∂f(u)

∂u
, is a diagonal matrix, i.e.,

Jf (u) =

[
∂fi(u)

∂uj

]
= 0 if i 6= j

where fi = f the scalar activation function. Each diagonal element is the derivative of the activation

function applied to the ith input, f ′(ui). See the section on Vector Calculus in Chapter 2 that discusses

Gradient Vectors, Jacobian Matrices and Hessian Matrices.

7. Show the first 10 iterations that update the parameter/weight matrix b that is initialized to [.1, .2, .1].

Use the following combined input-output matrix. Let the perceptron use the default sigmoid function.

384

1 // 9 data points: one x1 x2 y

2 val xy = MatrixD ((9, 4), 1.0, 0.0, 0.0, 0.5,

3 1.0, 0.0, 0.5, 0.3,

4 1.0, 0.0, 1.0, 0.2,

5 1.0, 0.5, 0.0, 0.8,

6 1.0, 0.5, 0.5, 0.5,

7 1.0, 0.5, 1.0, 0.3,

8 1.0, 1.0, 0.0, 1.0,

9 1.0, 1.0, 0.5, 0.8,

10 1.0, 1.0, 1.0, 0.5)

11

12 Preceptron.hp("eta") = 1.0 // try several values for eta

13 val nn = new Perceptron (x, y, null , hp) // create a perceptron , user control

14 // val nn = Perceptron (xy, null , hp) // create a perceptron , automatic

scaling

For each iteration, do the following: Print the weight/parameter update vector X
ᵀ
δη and the new

value for weight/parameter vector b, Make a table with m rows showing values for

x1, x2, y; u, ŷ, ε, ε2, ŷ(1− ŷ), and δ

Try letting η = 1 then 2. Also, compute sse and R2.

8. Show that for sigmoid function

sigmoid(u) = [1 + e−u]−1 =
1

1 + e−u

its derivative is

sigmoid′(u) =
d sigmoid(u)

du
= sigmoid(u)[1− sigmoid(u)]

9. Show that when the activation function f is the id function, that f ′(u) is the one vector, 1. Plug this

into the equation for the gradient of the loss function to obtain the following result.

∂L
∂b

= −Xᵀ
[1 ε] = −Xᵀ

(y −Xb)

Setting the gradient equal to zero, now yields (X
ᵀ
X)b = X

ᵀ
y, the Normal Equations.

10. Show that a Perceptron with an invertible activation function f is similar to TranRegression with

tranform f−1. Explain any differences in the parameter/weight vector b and the sum of squared errors

sse. Use the sigmoid activation function and the AutoMPG dataset and make the following two plots

(using PlotM): y, ypr, ypt vs. t and y, ypr, ypp vs. t, where y is the actual response/output, ypr is

the prediction from Regression, ypt is the prediction from TranRegression and ypp is the prediction

from Perceptron.

385

10.5 Multi-Output Prediction

The PredictorMV trait (Predictor Multi-Variate) provides the basic structure and API for a variety of

modeling techniques that produce multiple responses/outputs, e.g., Neural Networks and Multi-Variate

Regression. It serves the same role that Predictor does for the regression modeling techniques that have a

single response/output variable.

10.5.1 Model Equation

For modeling techniques extending this trait, the model equation takes an input vector x, pre-multiplies it

by the transpose of the parameter matrix B, applies a function f to the resulting vector and adds an error

vector ε,

y = f(B · x) + ε = f(B
ᵀ

x) + ε (10.50)

where

• y is an ny-dimensional output/response random vector,

• x is an n-dimensional input/data vector,

• B is an n-by-ny parameter matrix,

• f : Rny → Rny is a function mapping vectors to vectors, and

• ε is an ny-dimensional residual/error random vector.

For Multi-Variate Regression (RegressionMV), f is the identity function.

10.5.2 Training

The training equation takes the model equation and several instances in a dataset to provide estimates for

the values in parameter matrix B. Compared to the single response/output variable case, the main difference

is that the response/output vector, the parameter vector, and the error vector now all become matrices.

Y = f(XB) + E (10.51)

where X is an m-by-n data/input matrix, Y is an m-by-ny response/output matrix, B is an n-by-ny param-

eter matrix, f is a function mapping one m-by-ny matrix to another, and E is an m-by-ny residual/error

matrix. Note, a bold function symbol f is used is used to denote a function mapping either vectors to vectors

(as was the case in the Model Equation subsection) or matrices to matrices (as is the case here).

f : Rm×ny → Rm×ny

If one is interested in referring to the kth component (or column) of the output, the model equation

decomposes into

y:k = f(Xb:k) + ε:k (10.52)

Recall that yk indicates the kth row of matrix Y , while y:k indicates the kth column.

386

Analogous to other predictive modeling techniques, PredictorMV takes four arguments: the data/input

matrix x, the response/output matrix y, the feature/variable names fname, and the hyper-parameters for

the model/network hparam.

10.5.3 PredictorMV Trait

Class Methods:

1 @param x the input/data m-by-n matrix

2 (augment with a first column of ones to include intercept in model)

3 @param y the response/output m-by-ny matrix

4 @param fname the feature/variable names (if null , use x_j s)

5 @param hparam the hyper -parameters for the model/network

6

7 trait PredictorMV (x: MatrixD , y: MatrixD , protected var fname: Array [String],

8 hparam: HyperParameter)

9 extends Model:

10

11 def getX: MatrixD = x

12 def getY: MatrixD = y

13 def getFname: Array [String] = fname

14 def numTerms: Int = getX.dim2

15 def train (x_ : MatrixD = x, y_ : MatrixD = y): Unit

16 def train (x_ : MatrixD , y_ : VectorD): Unit = // first column only

17 def train2 (x_ : MatrixD = x, y_ : MatrixD = y): Unit =

18 def test (x_ : MatrixD = x, y_ : MatrixD = y): (MatrixD , MatrixD)

19 def test (x_ : MatrixD , y_ : VectorD): (VectorD , VectorD) = // first column only

20 def trainNtest (x_ : MatrixD = x, y_ : MatrixD = y)

21 (xx: MatrixD = x, yy: MatrixD = y): (MatrixD , MatrixD) =

22 def trainNtest2 (x_ : MatrixD = x, y_ : MatrixD = y)

23 (xx: MatrixD = x, yy: MatrixD = y): (MatrixD , MatrixD) =

24 def makePlots (yy: MatrixD , yp: MatrixD): Unit =

25 override def report (ftMat: MatrixD): String =

26 def orderByY (y_ : VectorD , yp_ : VectorD): (VectorD , VectorD) =

27 def predict (z: VectorD): VectorD // = b dot z

28 def predict (x_ : MatrixD): MatrixD =

29 def hparameter: HyperParameter = hparam

30 def parameter: MatrixD =

31 def parameters: NetParams = bb

32 def residual: MatrixD = e

33

34 def buildModel (x_cols: MatrixD): PredictorMV

35 def selectFeatures (tech: SelectionTech , idx_q: Int = QoF.rSqBar.ordinal ,

36 cross: Boolean = true): (LinkedHashSet [Int], MatrixD) =

37 def forwardSel (cols: LinkedHashSet [Int], idx_q: Int = QoF.rSqBar.ordinal): BestStep =

38 def forwardSelAll (idx_q: Int = QoF.rSqBar.ordinal , cross: Boolean = true):

39 (LinkedHashSet [Int], MatrixD) =

40 def backwardElim (cols: LinkedHashSet [Int], idx_q: Int = QoF.rSqBar.ordinal ,

41 first: Int = 1): BestStep =

42 def backwardElimAll (idx_q: Int = QoF.rSqBar.ordinal , first: Int = 1,

43 cross: Boolean = true): (LinkedHashSet [Int], MatrixD) =

44 def stepRegressionAll (idx_q: Int = QoF.rSqBar.ordinal , cross: Boolean = true):

45 (LinkedHashSet [Int], MatrixD) =

387

46

47 def vif (skip: Int = 1): VectorD =

48 inline def testIndices (n_test: Int , rando: Boolean): IndexedSeq [Int] =

49 def validate (rando: Boolean = true , ratio: Double = 0.2)

50 (idx : IndexedSeq [Int] =

51 testIndices ((ratio * y.dim).toInt , rando)): MatrixD =

52 def crossValidate (k: Int = 5, rando: Boolean = true): Array [Statistic] =

The methods provided by PredictorMV are similar to those in Predictor, but extensions to handle response

matrices are added.

The RegressionMV class extends PredictorMV and shares the factorization but individually solves for

each output/response variable and is hence faster than performing Regression individually.

10.5.4 RegressionMV Class

Class Methods:

1 @param x the data/input m-by-n matrix

2 (augment with a first column of ones to include intercept in model)

3 @param y the response/output m-by-ny matrix

4 @param fname_ the feature/variable names (defaults to null)

5 @param hparam the hyper -parameters (defaults to Regression.hp)

6

7 class RegressionMV (x: MatrixD , y: MatrixD , fname_ : Array [String] = null ,

8 hparam: HyperParameter = Regression.hp)

9 extends PredictorMV (x, y, fname_ , hparam)

10 with Fit (dfm = x.dim2 - 1, df = x.dim - x.dim2):

11

12 def train (x_ : MatrixD = x, y_ : MatrixD = y): Unit =

13 def test (x_ : MatrixD = x, y_ : MatrixD = y): (MatrixD , MatrixD) =

14 override def summary (x_ : MatrixD = getX , fname_ : Array [String] = fname ,

15 def predict (z: VectorD): VectorD = b.asInstanceOf [MatrixD] dot z

16 override def predict (x_ : MatrixD): MatrixD = x_ * b.asInstanceOf [MatrixD]

17 def buildModel (x_cols: MatrixD): RegressionMV =

10.5.5 Optimizer Object and Trait

The default hyper-parameters for all neural networks are defined in the Optimizer object. Typically, some of

these hyper-parameters will need to be tuned. The constants are more baked-in than the hyper-parameters

and require recompilation to change.

1 object Optimizer:

2

3 val hp = new HyperParameter

4 hp += ("eta", 0.1, 0.1) // learning/convergence rate

5 hp += ("bSize", 20, 20) // mini -batch size , common range 10 to 40

6 hp += ("maxEpochs", 400, 400) // maximum number of epochs/iterations

388

7 hp += ("lambda", 0.01, 0.01) // regularization/shrinkage hyper -parameter

8 hp += ("upLimit", 4, 4) // up-limit hyper -parameter for stopping rule

9 hp += ("beta", 0.9, 0.9) // momentum decay hyper -parameter

10 hp += ("nu", 0.9, 0.9) // importance of momentum in parameter est.

11

12 val ADJUST_PERIOD = 100 // number of epochs before adjusting eta

13 val ADJUST_FACTOR = 1.1 // learning rate adjustment factor (1+)

14 val NSTEPS = 16 // steps in eta grid/line search

15 val estat = new Statistic ("epochs")

16

17 end Optimizer

The Optimizer trait provides an abstract method called optimize that must be implemented in extending

optimization classes such Optimizer SGD. It also provides a method for automatic optimization that includes

built-in grid search. In addition, it provides a helper method (permGenerator) that facilitates the creation

of random mini-batches.

1 trait Optimizer extends MonitorLoss with StoppingRule:

2

3 def permGenerator (m: Int , rando: Boolean = true): PermutedVecI =

4 def optimize (x: MatrixD , y: MatrixD , b: NetParams , eta_ : Double , f: Array [AFF]):

5 (Double , Int)

6 def auto_optimize (x: MatrixD , y: MatrixD , b: NetParams , etaI: (Double , Double),

7 f: Array [AFF], opti: (MatrixD , MatrixD , NetParams , Double ,

8 Array [AFF]) => (Double , Int)): (Double , Int) =

9 end Optimizer

10.5.6 NetParam Class

A model producing multiple output variables will have parameters as weight matrices. They may also have

bias vectors. To unify these cases, ScalaTion utilizes the NetParam case class for holding a weight matrix

along with an optional bias vector. Linear algebra like operators are provided for convenience, e.g., the *:

allows one to write x *: p, corresponding to the mathematical expression XP where X is the input/data

matrix and P holds the parameters. If the bias b is null, this is just matrix multiplication.

1 def *: (x: MatrixD): MatrixD = x * w + b

Inside, the x is multiplied by the weight matrix w and the bias vector b is added. Note, the *: is right

associative since the NetParam object is on right (see NeuralNet 2L for an example of its usage).

Class Methods:

1 @param w the weight matrix

2 @param b the optional bias/intercept vector (null => not used)

3

4 case class NetParam (w: MatrixD , var b: VectorD = null)

5

6 def copy: NetParam = NetParam (w.copy , if b != null then b.copy else null)

7 def trim (dim: Int , dim2: Int): NetParam =

8 def update (c: NetParam): Unit = { w = c.w; b = c.b }

9 def set (c: NetParam): Unit = { w = c.w; b = c.b }

10 def update (cw: MatrixD , cb: VectorD = null): Unit = { w = cw; b = cb }

11 def set (cw: MatrixD , cb: VectorD = null): Unit = { w = cw; b = cb }

389

12 def += (c: NetParam): Unit =

13 def += (cw: MatrixD , cb: VectorD): Unit =

14 def -= (c: NetParam): Unit =

15 def -= (cw: MatrixD , cb: VectorD = null): Unit =

16 def * (x: MatrixD): MatrixD =

17 def *: (x: MatrixD): MatrixD = x * w + b

18 def dot (x: VectorD): VectorD = (w dot x) + b

19 def toMatrixD: MatrixD = if b == null then w else b +: w

20 override def toString: String = s"b.w = $w \\n b.b = $b"

390

10.6 Two-Layer Neural Networks

The NeuralNet 2L class supports multi-valued 2-layer (input and output) Neural Networks. The inputs into

a Neural Network are given by the input vector x, while the outputs are given by the output vector y. Each

input xj is associated with an input node in the network, while each output yk is associated with an output

node in the network, as shown in Figure 10.8. The input layer consists of n input nodes, while the output

layer consists of ny output nodes.

x0

x1

x2

y0

f

β0

y1

β1

b00

b01

b10

b11

b20

b21

Figure 10.8: Two-Layer (input, output) Neural Network

An edge connects each input node with each output node, i.e., there are nny edges in the network. The

edge connecting input node j to output node k has weight bjk. In addition, below each output node is a

bias βk. An alternative to having explicit bias offsets, is to include an intercept in the model (as an implicit

bias) by adding a special input node (say x0) having its input always set to 1.

10.6.1 Model Equation

The weights on the edges are analogous to the parameter vector b in regression. Each output variable yk,

has its own parameter vector b:k. These are collected as column vectors into a parameter/weight matrix B,

where parameter value bjk is the edge weight connecting input node xj with output node yk.

After training, given an input vector x, the network can be used to predict the corresponding output

vector y. The network predicts an output/response value for yk by taking the weighted sum of its inputs

and passing this sum through activation function f .

yk = f(b:k · x) + εk = f
(n−1∑
j=0

bjkxj
)

+ εk

The model equation for NeuralNet 2L can written in vector form as follows:

y = f(B · x) + ε = f(B
ᵀ

x) + ε (10.53)

391

10.6.2 Training

Given several input vectors and output vectors in a training dataset (i = 0, . . . ,m − 1), the goal is to

optimize/fit the parameters/weights B. The training dataset consisting of m input-output pairs is used to

minimize the error in the prediction by adjusting the parameter/weight matrix B. Given an input matrix

X ∈ Rm×n consisting of m input vectors and an output matrix Y ∈ Rm×ny consisting of m output vectors,

minimize the distance between the actual/target output matrix Y and the predicted output matrix Ŷ ,

Ŷ = f(XB) (10.54)

This will minimize the error matrix E = Y − Ŷ

minB‖Y − f(XB)‖F (10.55)

where ‖·‖F is the Frobenius norm, X is a m-by-n matrix, Y is a m-by-ny matrix, and B is a n-by-ny matrix.

Other norms may be used as well, but the square of the Frobenius norm will give the overall sum of squared

errors sse.

‖E‖2F =

m−1∑
i=0

ny−1∑
j=0

ε2ij (10.56)

10.6.3 Optimization

As was the case with regression, it is convenient to minimize the dot product of the error with itself. We do

this for each of the columns of the Y matrix to get the sse for each yk and sum them up. The goal then is

to simply minimize the loss function L(B) = 1
2sse(B). As in the Perceptron section, we work with half of

the sum of squared errors sse. Summing the error over each column vector y:k in matrix Y gives

L(B) =
1

2

ny−1∑
k=0

(y:k − f(Xb:k)) · (y:k − f(Xb:k)) (10.57)

This nonlinear optimization problem may be solved by a variety of optimization techniques, including

Gradient-Descent, Stochastic Gradient Descent or Stochastic Gradient Descent with Momentum.

Most optimizers require a derivative and ideally these should be provided in functional form (otherwise

the optimizer will need to numerically approximate them). Again, for the sigmoid activation function,

sigmoid(u) =
1

1 + e−u

the derivative is

sigmoid(u)[1− sigmoid(u)]

To minimize the loss function, we decompose it into ny functions.

L(b:k) = 1
2 (y:k − f(Xb:k)) · (y:k − f(Xb:k))

392

Notice that this is the same as the Perceptron loss function, just with subscripts on y and b.

In Regression, we took the gradient and set it equal to zero. Here, gradients will need to be computed by

the optimizer. The equations will be the same as given in the Perceptron section, again just with subscripts

added. The boxed equations from the Perceptron section become the following: The prediction vector for

the kth response/output is

ŷ:k = f(Xb:k) (10.58)

The error vector for the kth response/output is

ε:k = y:k − ŷ:k = y:k − f(Xb:k) (10.59)

The delta vector for the kth response/output is

δ:k =
∂L
∂uk

= − ε:k ∗ f ′(Xb:k) (10.60)

where uk = Xb:k. The gradient with respect to the kth parameter vector is

∂L
∂b:k

= −X
ᵀ

[ε:k ∗ f ′(Xb:k)] = X
ᵀ

δ:k

Finally, the update for the kth parameter vector is

b:k = b:k − X
ᵀ

δ:k η (10.61)

Sigmoid Case

For the sigmoid function, f ′(Xb:k) = f(Xb:k) ∗ [1− f(Xb:k)], so

δ = − ε:k ∗ f(Xb:k) ∗ [1− f(Xb:k)]

10.6.4 Matrix Version

Of course the boxed equations may be rewritten in matrix form. The m-by-ny prediction matrix Ŷ has a

column for each output variable.

Ŷ = f(XB) (10.62)

The m-by-ny negative of the error matrix E is the difference between the predicted and actual/target

output/response.

E = Ŷ − Y (10.63)

The m-by-ny delta matrix ∆ adjusts the error according to the slopes within f ′(XB) and is the element-wise

matrix (Hadamard) product of f ′(XB) and E.

∆ = f ′(XB) � E (10.64)

393

In math, the Hadamard product may be denoted by the � symbol, while in ScalaTion it is denoted by �

or ∗ ∼. Finally, the n-by-ny parameter matrix B is updated by −Xᵀ
∆η.

B = B −X
ᵀ

∆η (10.65)

The train Method

The train method calls the appropriate optimizer and records statistics about the number of epochs. The

corresponding code for the train method is shown below:

1 @param x_ the training/full data/input matrix

2 @param y_ the training/full response/output matrix

3

4 def train (x_ : MatrixD = x, y_ : MatrixD = y): Unit =

5 val epochs = opti.optimize2 (x_, y_, bb , eta , Array (f)) // optimize parameters bb

6 println (s"ending epoch = $epochs")

7 estat.tally (epochs._2)

8 end train

For NeuralNet 2L, the bulk of the work is done by the optimize2 method, in for example, the Optimizer SGD

class. The initializattion part of this method is defined as follows:

1 @param x the m-by-nx input matrix (training data consisting of m input vectors)

2 @param y the m-by-ny output matrix (training data consisting of m output vectors)

3 @param bb the array of parameters (weights & biases) between every two adjacent layers

4 @param eta the initial learning/convergence rate

5 @param ff the array of activation function family for every two adjacent layers

6

7 def optimize2 (x: MatrixD , y: MatrixD ,

8 bb: NetParams , eta: Double , ff: Array [AFF]): (Double , Int) =

9 val permGen = permGenerator (x.dim) // permutation vector gen

10 val b = bb(0) // net -param: weight matrix

11 // and bias vector

12 val f = ff(0) // activation function

13 val bSize = min (hp("bSize").toInt , x.dim) // batch size

14 val maxEpochs = hp("maxEpochs").toInt // maximum number of epochs

15 val upLimit = hp("upLimit").toInt // limit on increasing lose

16 var η = eta // set initial learning rate

17 val nB = x.dim / bSize // the number of batches

The main loop iterates up to maxEpochs, but may exist early depending on what stopWhen returns. The

learning rate η is periodically adjusted.

1 var sse_best_ = -0.0

2 var (go, epoch) = (true , 1)

3 cfor (go && epoch <= maxEpochs , epoch += 1) { // iterate over each epoch

4 val batches = permGen.igen.chop (nB) // permute indices & chop

5

6 for ib <- batches do b -= updateWeight (x(ib), y(ib)) // update parameter b

7

8 val sse = (y - f.fM (b * x)).normFSq // recompute sse

9 collectLoss (sse) // collect loss per epoch

10 val (b_best , sse_best) = stopWhen (Array (b), sse)

11 if b_best != null then

12 b.set (b_best (0))

394

13 sse_best_ = sse_best // save best in sse_best_

14 go = false

15 else

16 if epoch % ADJUST_PERIOD == 0 then η *= ADJUST_FACTOR

17 end if

18 } // cfor

The parameters are updated in the updateWeight method.

1 inline def updateWeight (x: MatrixD , y: MatrixD): MatrixD =

2 val α = η / x.dim // eta over the batch size

3 val yp = f.fM (b * x) // prediction: Yp = f(XB)

4 val ε = yp - y // negative of error matrix

5 val δ = f.dM (yp) � ε // delta matrix for y

6

7 x.T * δ * α // return change in params

8 end updateWeight

The end of the optimize2 method returns the best value for the loss function and the number of epochs.

1 if go then ((y - f.fM (b * x)).normFSq , maxEpochs) // return sse and # epochs

2 else (sse_best_ , epoch - upLimit)

3 end optimize2

Note: f.fM is the matrix version of the activation function and it is created using the matrixize high-order

function that takes a vector function as input.

1 def matrixize (f: FunctionV2V): FunctionM2M = (x: MatrixD) => x.map (f(_))

2 val fM = matrixize (f_)

Similary, f.dM is the matrix version of the derivative of the activation function. The NeuralNet 2L class

also provides train2 (with built in η search) methods.

Also note: ScalaTion provides the following alternatives for (a) Hadamard product: � or *∼, and (b)

Transpose: T-like Unicode symbol or transpose.

10.6.5 NeuralNet 2L Class

Class Methods:

1 @param x the m-by -n input/data matrix (full/training data having m input vectors)

2 @param y the m-by -ny output/response matrix (full/training data having m vectors)

3 @param fname_ the feature/variable names (defaults to null)

4 @param hparam the hyper -parameters for the model/network (defaults to Optimizer.hp)

5 @param f the activation function family for layers 1->2 (input to output)

6 @param itran the inverse transformation function returns response matrix to original

7 scale

8

9 class NeuralNet_2L (x: MatrixD , y: MatrixD , fname_ : Array [String] = null ,

10 hparam: HyperParameter = Optimizer.hp,

11 f: AFF = f_sigmoid , val itran: FunctionM2M = null)

12 extends PredictorMV (x, y, fname_ , hparam)

13 with Fit (dfm = x.dim2 - 1, df = x.dim - x.dim2):

14

15 def train (x_ : MatrixD = x, y_ : MatrixD = y): Unit =

16 override def train2 (x_ : MatrixD = x, y_ : MatrixD = y): Unit =

395

17 def test (x_ : MatrixD = x, y_ : MatrixD = y): (MatrixD , MatrixD) =

18 override def makePlots (yy_ : MatrixD , yp: MatrixD): Unit =

19 def predict (v: VectorD): VectorD = f.f_ (bb(0) dot v)

20 override def predict (v: MatrixD = x): MatrixD = f.fM (bb(0) * v)

21 def buildModel (x_cols: MatrixD): NeuralNet_2L =

22 def summary2 (x_ : MatrixD = getX , fname_ : Array [String] = fname ,

23 b_ : MatrixD = parameter): String =

10.6.6 NeuralNet 2L Object

The NeuralNet 2L companion object provides factory methods for buidling two-layer neural nets: The

apply method creates a NeuralNet 2L with automatic resclaing from a combined data matrix. The rescale

method creates a NeuralNet 2L with automatic rescaling from a data matrix and response matrix. The

perceptron method creates a NeuralNet 2L with automatic rescaling from a data matrix and response

vector. As the number of output nodes is one in this case, it is effectively a perceptron that is typically

better than the Perceptron class that is intentionally keep simple.

Although all modeling techniques provide factory methods for convenience, due to the increased need for

rescaling of data, these methods are more important for neural networks.

Object Methods:

1 object NeuralNet_2L extends Scaling:

2

3 @param xy the combined input and output matrix

4 @param fname the feature/variable names (defaults to null)

5 @param hparam the hyper -parameters (defaults to Optimizer.hp)

6 @param f the activation function family for layers 1->2 (input to output)

7 @param col the first designated response column (defaults to the last column)

8

9 def apply (xy: MatrixD , fname: Array [String] = null ,

10 hparam: HyperParameter = Optimizer.hp, f: AFF = f_sigmoid)

11 (col: Int = xy.dim2 - 1): NeuralNet_2L =

12

13 @param x the input/data m-by-n matrix

14 @param y the output/response m-by-ny matrix

15 @param fname the feature/variable names (defaults to null)

16 @param hparam the hyper -parameters (defaults to Optimizer.hp)

17 @param f the activation function family for layers 1->2 (input to output)

18

19 def rescale (x: MatrixD , y: MatrixD , fname: Array [String] = null ,

20 hparam: HyperParameter = Optimizer.hp, f: AFF = f_sigmoid): NeuralNet_2L =

21

22 @param x the input/data m-by-n matrix

23 @param y_ the output/response m-vector

24 @param fname the feature/variable names (defaults to null)

25 @param hparam the hyper -parameters (defaults to Optimizer.hp)

26 @param f the activation function family for layers 1->2 (input to output)

27

28 def perceptron (x: MatrixD , y_ : VectorD , fname: Array [String] = null ,

396

29 hparam: HyperParameter = Optimizer.hp, f: AFF = f_sigmoid):

30 NeuralNet_2L =

10.6.7 Exercises

1. The dataset in Example Concrete consists of 7 input variables and 3 output variables.

1 // Input Variables (7) (component kg in one Mˆ3 concrete):

2 // 1. Cement

3 // 2. Blast Furnace Slag

4 // 3. Fly Ash

5 // 4. Water

6 // 5. Super Plasticizer (SP)

7 // 6. Coarse Aggregate

8 // 7. Fine Aggregate

9 // Output Variables (3):

10 // 1. SLUMP (cm)

11 // 2. FLOW (cm)

12 // 3. 28-day Compressive STRENGTH (Mpa)

Create a NeuralNet 2L model to predict values for the three outputs y0, y1 and y2. Compare with the

results of using three Perceptrons.

2. Create a NeuralNet 2L model to predict values for the one output for the AutoMPG dataset. Compare

with the results of using the following models: (a) Regression, (b) Perceptron.

3. Were the results in for the AutoMPG dataset the same for Perceptron and NeuralNet 2L? Please

explain. In general, is a NeuralNet 2L equivalent to ny Perceptrons?

4. Compare the convergence for the AutoMPG dataset of the following three optimization algorithm by

plotting the drop in the loss function versus the number of epochs.

(a) Gradient Descent (GD) from the train method in Perceptron.

(b) Stochastic Gradient Descent (SGD) from the train method in NeuralNet 2L using Optimizer SGD.

This will require recompilation as Optimizer SGDM is the default optimizer for NeuralNet 2L.

1 // val opti = new Optimizer_SGD () // SGD parameter optimizer

2 val opti = new Optimizer_SGDM () // SGDM parameter optimizer

(c) Stochastic Gradient Descent with Momentum (SGDM) from the train method in NeuralNet 2L.

using Optimizer SGDM.

5. Explain how the ADAM optimizer works and redo the above exercise using Keras comparing GD, SGD,

SGDM and Adam.

6. Draw a NeuralNet 2L with n = 4 input nodes and ny = 2 output nodes. Label the eight edges with

weights from the 4-by-2 weight matrix B = [bjk]. Write the two model equations, one for y0 and one

for y1. Combine these two equations into one vector equation for y = [y0, y1]. Given column vector

x = [1, x1, x2, x3], express ŷ = f(B
ᵀ
x) at the scalar level.

397

10.7 Three-Layer Neural Networks

The NeuralNet 3L class supports 3-layer (input, hidden and output) Neural Networks. The inputs into a

Neural Net are given by the input vector x, while the outputs are given by the output vector y. Between

these two layers is a single hidden layer, whose intermediate values will be denoted by the vector z. Each

input xj is associated with an input node in the network, while each output yk is associated with an output

node in the network, as shown in Figure 10.9. The input layer consists of n input nodes, the hidden layer

consists of nz hidden nodes, and the output layer consists of ny output nodes.

x0

z0

f0

α0

z1

α1
x1

z2

α2

y0

f1

β0

y1

β1

a00

a01

a02

a10

a11

a12

b00

b01

b10

b11

b20

b21

Figure 10.9: Three-Layer (input, hidden, output) Neural Network

There are two sets of edges. Edges in the first set connect each input node with each hidden node, i.e.,

there are nnz such edges in the network. The parameters (or edge weights) for the first set of edges are

maintained in matrix A = [ajh]n×nz . Edges in the second set connect each hidden node with each output

node, i.e., there are nzny such edges in the network. The parameters (or edge weights) for the second set of

edges are maintained in matrix B = [bhk]nz×ny .

There are now two activation functions, f0 and f1. f0 is applied at each node in the hidden layer, while f1

plays this role for the output layer. Having two activation functions allows greater capability to approximate

a variety of functional forms (for more information see [36, 81] on Universal Approximation Theorems).

10.7.1 Model Equation

The model equation for NeuralNet 3L can written in vector form as follows:

y = f1(B · f0(A · x)) + ε = f1(B
ᵀ

f0(A
ᵀ

x)) + ε (10.66)

The innermost matrix-vector product multiplies the transpose of the n-by-nz matrix A by the n-by-1 vector

x, producing an nz-by-1 vector, which is passed into the f0 vectorized activation function. The outermost

matrix-vector product multiplies the transpose of the nz-by-ny matrix B by the nz-by-1 vector results,

producing an ny-by-1 vector, which is passed into the f1 vectorized activation function.

398

Intercept/Bias

As before, one may include an intercept in the model (also referred to as bias) by having a special input

node (say x0) that always provides the value 1. A column of all one in an input matrix (see below) can

achieve this. This approach could be carried forward to the hidden layer by including a special node (say z0)

that always produces the value 1 (referred to as the bias trick). In such case, the computation performed at

node z0 would be thrown away and replaced with 1, although a clever implementation could avoid the extra

calculation. The alternative is to replace the uniform notion of parameters with two types of parameters,

weights and biases. ScalaTion supports this with the NetParam case class.

1 @param w the weight matrix

2 @param b the bias/intercept vector

3

4 case class NetParam (var w: MatrixD , var b: VectorD = null):

5

6 ...

7 def dot (x: VectorD): VectorD = (w dot x) + b

Following this approach, there is no need for the special nodes and the dot product is re-defined to add the

bias b to the regular matrix-vector dot product (w dot x). Note, the NetParam class defines several other

methods as well. The vector version of the predict method in NeuralNet 3L uses this dot product to make

predictions.

1 @param v the new input vector

2

3 def predict (v: VectorD): VectorD =

4 val yp = f1.f_ (bb(1) dot f.f_ (bb(0) dot v)) // scaled? prediction

5 if itran == null then yp

6 else itran (MatrixD (yp))(0) // back to original scale

7 end predict

Note: f0 corresponds to f.f in the code, while f1 corresponds to f1.f in the code.

Including the bias vectors α and β and splitting the computation of the predicted value ŷ into two steps

yields,

z = f0(A
ᵀ

x +α) (10.67)

ŷ = f1(B
ᵀ

z + β) (10.68)

10.7.2 Ridge Functions

While perceptrons allow the hyperplane to be bent, the fact that they are restricted to a single ridge function,

limits their capabilities. Furthermore, as two layer neural networks are equivalent to having a perceptron

for each output node, their capabilities are limited as well. The fundamental improvement begins with three

layer (one hidden layer) neural networks, as they allow the superposition of ridge functions, as depicted in

Figure 10.11. Somewhat like waves on an ocean, the ridge functions may collide to form flexible response

surfaces.

One may see the superposition of ridge functions when the input is two dimensional, e.g., x1 = weight

and x2 = modelyear for the AutoMPG dataset. Letting f1 be the identity function id, the model equation

(or rather the corresponding prediction equation) reduces to

399

ŷ = B · f0(A · x) (10.69)

where matrix A ∈ R2×2 and matrix B ∈ R2×1. Expanding the outer dot product results in the following:

ŷ = b00f0(a:0 · x) + b10f0(a:1 · x) (10.70)

Including the biases produces

ŷ = b00f0(a:0 · x + α0) + b10f0(a:1 · x + α1) + β0 (10.71)

The corresponding network diagram is shown in Figure 10.10.

x0 z0

f0

α0

z1

α1

x1

y0

β0

a00

a01

a10

a11

b00

b10

Figure 10.10: A Simple Three-Layer (input, hidden, output) Neural Network

Each hidden node brings in a ridge function and since the second activation is the identity function, the

output ŷ is a linear combination of the two (e.g., sigmoid) ridge functions.

−4 −2 0 2 4 −5

0

5

0

1

2

x0

x1

ŷ

Figure 10.11: Ridge Functions: ŷ = Superposition of Two Ridge Functions

400

The equation (not optimized) used in Figure 10.11 is

ŷ =
1

1 + e−(2x0+x1+.5)
+

1

1 + e−(x0−x1+.5)

See the subsection on Response Surface and the exercises for an optimized equation.

Note, the use of identity id activation function for the last layer means that the final layer preforms a

linear transformation, so that rescaling of the outputs y may be avoided.

10.7.3 Training

Given a training dataset made up of an m-by-n input matrix X and an m-by-ny output matrix Y , training

consists of making a prediction Ŷ ,

Ŷ = f1(f0(XA)B) (10.72)

and determining the error in prediction E = Y − Ŷ with the goal of minimizing the error.

minA,B‖Y − f1(f0(XA)B)‖F (10.73)

Training involves an iterative procedure (e.g., stochastic gradient descent) that adjusts parameter values

(for weights and biases) to minimize a loss function such as sse or rather half sse (or L). Before the main

loop, random parameter values (for weights and biases) need to be assigned to NetParam A and NetParam

B. Roughly as outlined in section 3 of [157], the training can be broken into four steps:

1. Compute predicted values for output ŷ and compare with actual values y to determine the error y− ŷ.

2. Back propagate the adjusted error to determine the amount of correction needed at the output layer.

Record this as vector δ1.

3. Back propagate the correction to the hidden layer and determine the amount of correction needed at

the hidden layer. Record this as vector δ0.

4. Use the delta vectors, δ1 and δ0, to makes updates to NetParam A and NetParam B, i.e., the weights

and biases.

10.7.4 Optimization

In this subsection, the basic elements of the back-propagation algorithm are presented. In particular, we

now go over the four steps outlined above in more detail. Biases are ignored for simplicity, so the A and B

NetParams are treated as weight matrices. In the code, the same logic includes the biases (so nothing is lost,

see exercises). Note that L denotes a loss function, while h is an index into the hidden layer.

1. Compute predicted values: Based on the randomly assigned weights to the A and B matrices, predicted

outputs ŷ are calculated. First values for the hidden layer z are calculated, where the value for hidden

node h, zh, is given by

zh = f0(a:h · x) for h = 0, . . . , nz − 1

401

where f0 is the first activation function (e.g., sigmoid), a:h is column-h of the A weight matrix, and x

is an input vector for a training sample/instance (row in the data matrix). Typically, several samples

(referred to as a mini-batch) are used in each step. Next, the values computed at the hidden layer are

used to produce predicted outputs ŷ, where the value for output node k, ŷk, is given by

ŷk = f1(b:k · z) for k = 0, . . . , ny − 1

where the second activation function f1 may be the same as (or different from) the one used in the

hidden layer and b:k is column-k of the B weight matrix. Now the difference between the actual and

predicted output can be calculated by simply subtracting the two vectors, or element-wise, the error

for the kth output, εk, is given by

εk = yk − ŷk for k = 0, . . . , ny − 1

Obviously, for subsequent iterations, the updated/corrected weights rather than the initial random

weights are used.

2. Back propagate from output layer: Given the computed error vector ε, the delta/correction vector δ1

for the output layer may be calculated, where for output node k, δ1
k is given by

δ1
k = [−εk] f ′1(b:k · z) for k = 0, . . . , ny − 1 (10.74)

where f ′1 is the derivative of the activation function (e.g., for sigmoid, f ′(u) = f(u)[1 − f(u)]). The

partial derivative of the loss function L with respect to the weight connecting hidden node h with

output node k, bhk, is given by

∂L
∂bhk

= zhδ
1
k (10.75)

3. Back propagate from hidden layer: Given the delta/correction vector δ1 from the output layer, the

delta vector for the hidden layer δ0 may be calculated, where for hidden node h, δ0
h is given by

δ0
h = [bh · δ1] f ′0(a:h · x) for h = 0, . . . , nz − 1 (10.76)

This equation is parallel to the one given for δ1
k in that an error-like factor multiplies the derivative

of the activation function. In this case, the error-like factor is the weighted combination of the δ1
k for

output nodes connected to hidden node h times row-h of weight matrix B. The weighted combination

is computed using the dot product.

bh · δ1 =

ny−1∑
k=0

bhk δ
1
k

The partial derivative of L with respect to the weight connecting input node j with hidden node h,

ajh, is given by

∂L
∂ajh

= xjδ
0
h (10.77)

402

4. Update weights: The weight matrices A and B, connecting input to hidden and hidden to output layers,

respectively, may now be updated based on the partial derivatives. For gradient descent, movement

is in the opposite direction, so the sign flips from positive to negative. These partial derivatives are

multiplied by the learning rate η which moderates the adjustments to the weights.

bhk −= zh δ
1
k η (10.78)

ajh −= xj δ
0
h η (10.79)

Figure 10.12 shows the forward (→) and backward (←) propagation through the Neural Network and depicts

the role of δ in updating the parameters from the perspective of hidden node zh.

x0

x→

zh

f0(a:h · x)→

← δ0
h

x1

y0

f1(b:0 · z)→

ε0 →

← δ1
0

y1

f1(b:1 · z)→

ε1 →

← δ1
1

a0h

a1h

bh0

bh1

Figure 10.12: View for Hidden Node zh

To improve the stability of the algorithm, weights are adjusted based on accumulated corrections over a

mini-batch of instances, where a mini-batch is a sub-sample of the training dataset and may be up to the

size the of the entire training dataset (for i = 0, . . . ,m − 1). Once training has occurred over the current

mini-batch including, at the end, updates to the A and B estimates, the current epoch is said to be complete.

Correspondingly, the above equations may be vectorized/matrixized so that calculations are performed over

many instances in a mini-batch using matrix operations. Each outer iteration (epoch) typically should

improve the A and B estimates. Simple stopping rules include specifying a fixed number of iterations or

breaking out of the outer loop when the loss function L fails to decrease for q iterations.

10.7.5 Matrix Version

Given a training dataset consisting of an input/data matrix X ∈ Rm×n and an output/response matrix

Y ∈ Rm×ny , the optimization equations may be re-written in matrix form as shown below.

The gradient descent optimizer used by the train method has one main loop, while the stochastic

gradient descent optimizer used by the train in Optimizer SGD has two main loops. The outer loop iterates

over epochs which serve to improve the parameters/weights with each iteration. If the fit does not improve

in several epochs, the algorithm likely should break out of this loop.

403

The four boxed equations from the previous section become seven due to the extra layer. The optimizers

compute predicted outputs and take differences between the actual/target values and these predicted values

to compute an error matrix. These results are then used to compute delta matrices that form the basis for

updating the parameter/weight matrices A ∈ Rn×nz and B ∈ Rnz×ny .

1. The hidden (latent) values for all m instances and all nz hidden nodes are computed by applying

the first matrixized activation function f0 to the matrix product XA to produce the latent feature

matrix Z ∈ Rm×nz .

Z = f0(XA) (10.80)

The predicted output matrix Ŷ ∈ Rm×ny is similarly computed by applying the second matrixized

activation function f1 to the matrix product ZB.

Ŷ = f1(ZB) (10.81)

2. The negative of the error matrix E ∈ Rm×ny is just the difference between the predicted and

actual/target values.

E = Ŷ − Y (10.82)

3. This information is sufficient to calculate delta matrices: ∆1 for adjusting B and ∆0 for adjusting A.

The output-layer delta matrix ∆1 ∈ Rm×ny is the element-wise matrix (Hadamard) product of E

and f ′1(ZB).

∆1 = E � f ′1(ZB) (10.83)

The hidden-layer delta matrix ∆0 ∈ Rm×nz is the element-wise matrix (Hadamard) product of

∆1B
ᵀ

and f ′0(XA).

∆0 = [∆1B
ᵀ

] � f ′0(XA) (10.84)

4. As mentioned, the delta matrices form the basis (a matrix transpose × delta × the learning rate η)

for updating the parameter/weight matrices, A and B.

B −= Z
ᵀ

∆1 η (10.85)

A −= X
ᵀ

∆0 η (10.86)

404

10.7.6 train Method

The corresponding ScalaTion code for the train method is show below.

1 @param x_ the training/full data/input matrix

2 @param y_ the training/full response/output matrix

3

4 def train (x_ : MatrixD = x, y_ : MatrixD = y): Unit =

5 val epochs = opti.optimize3 (x_, y_, bb , eta , Array (f, f1)) // optimize param bb

6 println (s"ending epoch = $epochs")

7 estat.tally (epochs._2)

8 end train

10.7.7 Stochastic Gradient Descent Algorithm

The stochastic gradient descent algorithm for NeuralNet 3L places the above matrix equations into a loop

to iteratively update the weight matrices and bias vectors (unified via the NetParam class). The work is

done by the optimize3 method, e.g., in the Optimizer SGD class. The code below initializes values for the

optimize3 method. These include a permutation generator that is used for producing randomized mini-

batches, convenient aliases for the two sets of net-parameters as well as for the two activation functions, three

values from hyper-parameters (bSize, maxEpochs, and upLimit), the initial learning rate, and the number

of batches.

1 @param x the m-by-n input matrix (training data consisting of m input vectors)

2 @param y the m-by-ny output matrix (training data consisting of m output vectors)

3 @param bb the array of parameters (weights & biases) between two adjacent layers

4 @param eta the initial learning/convergence rate

5 @param ff the array of activation function family for every two adjacent layers

6

7 def optimize3 (x: MatrixD , y: MatrixD ,

8 bb: NetParams , eta: Double , ff: Array [AFF]): (Double , Int) =

9 val permGen = permGenerator (x.dim) // permutation vector gen

10 val (a, b) = (bb(0), bb(1)) // two sets of net -parameters

11 val (f, f1) = (ff(0), ff(1)) // two activation functions

12 val bSize = min (hp("bSize").toInt , x.dim) // batch size

13 val maxEpochs = hp("maxEpochs").toInt // maximum number of epochs

14 val upLimit = hp("upLimit").toInt // limit on increasing lose

15 var η = eta // set initial learning rate

16 val nB = x.dim / bSize // the number of batches

The main part of the optimize3 method is a nested loop: The outer loop iterates up to maxEpochs, but

may exist early depending on what stopWhen returns. The inner loop iterates through the mini-batches (ib

is the ith mini-batch) The learning rate η is periodically adjusted.

1 var sse_best_ = -0.0

2 var (go, epoch) = (true , 1)

3 cfor (go && epoch <= maxEpochs , epoch += 1) { // iterate over each epoch

4 val batches = permGen.igen.chop (nB) // permute indices & chop

5

6 for ib <- batches do

7 val ab = updateWeight (x(ib), y(ib)) // update parameters a & b

8 a -= ab._1; b -= ab._2

9 end for

405

10

11 val sse = (y - b * f1.fM (f.fM (a * x))).normFSq

12 collectLoss (sse) // collect the loss per epoch

13 val (b_best , sse_best) = stopWhen (Array (a, b), sse)

14 if b_best != null then

15 a.set (b_best (0))

16 b.set (b_best (1))

17 sse_best_ = sse_best // save best in sse_best_

18 go = false

19 else

20 if epoch % ADJUST_PERIOD == 0 then η *= ADJUST_FACTOR

21 end if

22 } // cfor

The updateWeight method is used to update the parameters (weights and biases). It performs both

forward and back propagation on the mini-batch passed in.

1 inline def updateWeight (x: MatrixD , y: MatrixD): (NetParam , NetParam) =

2 val α = η / x.dim // eta over batch size

3 var z = f.fM (a * x) // Z = f(XA)

4 var yp = f1.fM (b * z) // Yp = f(ZB)

5 var ε = yp - y // negative of error matrix

6 val δ 1 = f1.dM (yp) � ε // delta matrix for y

7 val δ 0 = f.dM (z) � (δ1 * b.w.T) // delta matrix for z

8

9 (NetParam (x.T * δ0 * α, δ0.mean * η), // change a params

10 NetParam (z.T * δ1 * α, δ1.mean * η)) // change b params

11 end updateWeight

The end of the optimize3 method returns the best value for the loss function and the number of epochs.

1 if go then ((y - b * f1.fM (f.fM (a * x))).normFSq , maxEpochs) // ret. sse , epochs

2 else (sse_best_ , epoch - upLimit)

3 end optimize3

For stochastic gradient descent in the Optimizer SGD class, the inner loop divides the training dataset

into nB mini-batches. A batch is a randomly selected group/batch of rows. Each batch (ib) is passed to the

updateWeight (x(ib), y(ib)) method that updates the A and B parameter/weight matrices.

Neural networks may be used for prediction/regression as well as classification problems. For predic-

tion/regression, the number of output nodes would corresponding to the number of responses. For example,

in the ExampleConrete example there are three response columns, requiring three instances of Regression

or one instance of NeuralNet 3L. Three separate NeuralNet 3L instances each with one output node could

be used as well. Since some activation functions have limited ranges, it is common practice for these types of

problems to let the activation function in the last layer be identity id. If this is not done, response columns

need to be re-scaled based on the training dataset. Since the testing dataset may have values outside this

range, this approach may not be ideal.

Softmax Activation Function

For classification problems, it is common to have an output node for each response value for the categorical

variable, e.g., “no”, “yes” would have y0 and y1, while “red”, “green”, “blue” would have y0, y1 and y2. The

softmax activation function is a common choice for the last layer for classification problems.

406

fi(u) =
eui

1 · eu
for i = 0, . . . , n− 1

The values produced by the softmax activation function can be thought of as giving a probability score to

the particular class label, e.g., the image shows a “cat” vs. “dog”.

An alternative for binary classification (k = 2) is to have one output node and use sigmoid activation for

the last layer.

10.7.8 Example Error Calculation Problem

Draw a 3-layer (input, hidden and output) Neural Network (with sigmoid activation), where the number of

nodes per layer are n = 2, nz = 2 and ny = 1.

Input to Hidden Layer Parameters

Initialize bias vector α to [.1, .1] and weight matrix A (n-by-nz) to[
.1 .2

.3 .4

]

Hidden to Output Layer Parameters

Initialize bias vector β to [.1] and weight matrix B (nz-by-ny) to[
.5

.6

]

Compute the Error for the First Iteration

Let x = [x0, x1] = [2, 1] and y0 = .8, and then compute the error ε0 = y0 − ŷ0, by feeding the values from

vector x forward. First compute values at the hidden layer for z.

zh = f0(a:h · x + αh)

z0 = f0(a:0 · x + α0)

z0 = f0([0.1, 0.3] · [2.0, 1.0] + 0.1)

z0 = f0(0.6) = 0.645656

z1 = f0(a:1 · x + α1)

z1 = f0([0.2, 0.4] · [2.0, 1.0] + 0.1)

z1 = f0(0.9) = 0.710950

One may compute the values for sigmoid activation function as follows:

1 println (ActivationFun.sigmoid_ (VectorD (0.6, 0.9)))

Then compute predicted values at the output layer for ŷ.

407

ŷk = f1(b:k · z + βk)

ŷ0 = f1(b:0 · z + β0)

ŷ0 = f1([0.5, 0.6] · [0.645656, 0.71095] + 0.1)

ŷ0 = f1(0.849398) = 0.7004408

Therefore, the error is

ε0 = y0 − ŷ0

ε0 = 0.8− 0.7004408 = 0.0995592

10.7.9 Response Surface

The response surface for a 3-Layer Neural Network on AutoMPG based on the best combination of two

features, weight and modelyear, can be shown in a 3D plot. The surface can be calculated from how

input matrix x is rescaled and from the model parameter values bb found by the optimizer. Recall that

some activation functions have an active range outside of which the neural network may get stuck. In such

cases, the each column of the input/data matrix needs to be rescaled into the active range of the activation

function. This is done by the rescaleX method.

1 rescaleX: from (VectorD (1.61300 , 70.0000) , VectorD (5.14000 , 82.0000)) to (-2.0, 2.0)

2

3 parameter bb = Array (b.w = MatrixD (-2.12262 , -0.743867 ,

4 -0.200314 , 1.62988)

5 b.b = VectorD (-2.15785 , -1.65227)

6 b.w = MatrixD (15.7250 ,

7 13.1971)

8 b.b = VectorD (13.4702))

From these a prediction formula may be created that closely approximates the predict method.

x = [(4/3.537)(x1 − 1.61300)− 2, ((4/12)(x2 − 70)− 2]

ŷ = 15.7250 sigmoid ([−2.12262,−0.200314] · x− 2.15785) +

13.1971 sigmoid ([−0.743867, 1.62988] · x− 1.65227) +

13.4702

See the exercises.

10.7.10 NeuralNet 3L Class

Class Methods:

1 @param x the m-by -n input/data matrix (full/training data having m vectors)

2 @param y the m-by -ny output/response matrix (full/training data having m vectors)

3 @param fname_ the feature/variable names (defaults to null)

408

4 @param nz the number of nodes in hidden layer (-1 => use default formula)

5 @param hparam the hyper -parameters for the model/network (defaults to Optimizer.hp)

6 @param f the activation function family for layers 1->2 (input to output)

7 @param f1 the activation function family for layers 2->3 (hidden to output)

8 @param itran the inverse transformation returns response matrix to original scale

9

10 class NeuralNet_3L (x: MatrixD , y: MatrixD , fname_ : Array [String] = null ,

11 private var nz: Int = -1, hparam: HyperParameter = Optimizer.hp,

12 f: AFF = f_sigmoid , f1: AFF = f_id ,

13 val itran: FunctionM2M = null)

14 extends PredictorMV (x, y, fname_ , hparam)

15 with Fit (dfm = x.dim2 , df = x.dim - x.dim2): // under -estimates df

16

17 def train (x_ : MatrixD = x, y_ : MatrixD = y): Unit =

18 override def train2 (x_ : MatrixD = x, y_ : MatrixD = y): Unit =

19 def test (x_ : MatrixD = x, y_ : MatrixD = y): (MatrixD , MatrixD) =

20 override def makePlots (yy_ : MatrixD , yp: MatrixD): Unit =

21 def predict (v: VectorD): VectorD =

22 override def predict (v: MatrixD = x): MatrixD =

23 def buildModel (x_cols: MatrixD): NeuralNet_3L =

24 def summary2 (x_ : MatrixD = getX , fname_ : Array [String] = fname ,

25 b_ : MatrixD = parameter): String =

10.7.11 Exercises

1. Delta Vectors: For the example error calculation problem given in this section, calculate the δ1 = [δ1
0]

vector using the following formula.

δ1
k = − εk f ′1(b:k · z)

Rework the problem using separate weights (b:k) and biases (βk) (not lumped together as parameters).

to compute δ1
k.

δ1
k = − εk f ′1(b:k · z + βk)

Calculate the δ0 = [δ0
0 , δ

0
1] vector using the analogous reworked formula having separate weights (a:h)

and biases (αh) to compute δ0
h.

δ0
h = [bh · δ1] f ′0(a:h · x + αh)

2. Parameter Update Equations: Use the δ1 vector to update weight matrix B, i.e., for each row h,

bh −= zhδ
1η

and update the bias vector β as follows:

409

β −= δ1η

Use the δ0 vector to update weight matrix A, i.e., for each row j,

aj −= xjδ
0η

and update the bias vector α as follows:

α −= δ0η

3. Derive the equation for the partial derivative of the loss function L w.r.t. bhk,

∂L
∂bhk

= zhδ
1
k

by defining pre-activation value vk = b:k · z and applying the following chain rule:

∂L
∂bhk

=
∂L
∂vk

∂vk
∂bhk

4. Explain the formulations for the two delta matrices.

∆1 = E � f ′1(ZB)

∆0 = [∆1B
ᵀ

] � f ′0(XA)

5. The dataset in Example Concrete consists of 7 input variables and 3 output variables. See the

NeuralNet 2L section for details. Create a NeuralNet 3L model to predict values for the three outputs

y0, y1 and y2. Compare with the results of using a NeuralNet 2L model.

6. Create a NeuralNet 3L model to predict values for the one output for the AutoMPG dataset. Compare

with the results of using the following models: (a) Regression, (b) Perceptron, (c) NeuralNet 2L.

7. For the AutoMPG dataset let the activation function for the last layer be id, so that rescaling of the

output/response y is not needed. Then try all of ScalaTion’s activation functions and compare the

QoF for (a) in-sample testing, (b) validation, i.e., train-n-test split (TnT), and (c) cross-validation.

8. Use the formula for ŷ given in the Response Surface subsection to plot ŷ vs. x1 and x2.

9. Conduct a literature study on the effectiveness and efficiency of various training algorithms for neural

networks, for example see [31].

410

10.8 Multi-Hidden Layer Neural Networks

The NeuralNet XL class supports basic x-layer (input, {hidden} and output) Neural Networks. For example

a four layer neural network (see Figure 10.13) with have four layers of nodes with (one input layer numbered

0, two hidden layers numbered 1 and 2, and one output layer numbered 3). Note, since the input layer’s

purpose is just to funnel the input into the model, it is also common to refer to such a neural network as

a three layer network. This has the advantage that the number of layers now corresponds to the number

parameter/weight matrices.

x0

z0

f0

β0
0

z1

β0
1x1

z2

β0
2

ζ0

f1

β1
0

ζ1

β1
1

y0

f2

β2
0

y1

β2
1

b000

b001

b002

b010

b011

b012

b100

b101

b110
b111

b120

b121

b200

b201

b210
b211

Figure 10.13: Four-Layer (input, hidden (l = 0), hidden (l = 1), output (l = 2)) Neural Network

In ScalaTion, the number of active layers is denoted by nl (which in this case equals 3 with l = 0, 1, 2).

Since arrays of matrices are used in the ScalaTion code, multiple layers of hidden nodes are supported.

The matrix Bl = [bljk] maintains the weights for layer l, while βl = [βlk] maintains the biases for layer l.

In particular, parameter b which holds the weights and biases for all layers is of type NetParams where

1 type NetParams = Array [NetParam]

For simplicity, in the model equation below rolls the biases into the weights using NetParam.

10.8.1 Model Equation

The equations for NeuralNet XL are the same as those used for NeuralNet 3L, except that the calculations

are repeated layer by layer in a forward direction for prediction. The model equation for a four layer

NeuralNet XL can written in vector form as follows:

y = f2(B2 · f1(B1 · f0(B0 · x))) + ε (10.87)

where Bl is the NetParam (weight matrix and bias vector) connecting layer l to layer l + 1 and fl is the

vectorized activation function at layer l + 1.

411

10.8.2 Training

As before, the training dataset consists of an m-by-n input matrix X and an m-by-ny output matrix Y .

During training, the predicted values Ŷ are compared to actual/target values Y ,

Ŷ = f2(f1(f0(XB0)B1)B2) (10.88)

to compute an error matrix E = Y − Ŷ , to be minimized.

minB‖Y − f2(f1(f0(XB0)B1)B2)‖F (10.89)

Corrections based on these errors are propagated backward through the network to improve the parameter

estimates (weights and biases) layer by layer.

10.8.3 Optimization

The seven boxed equations from the previous section become six due to unification of the last two. As before,

the optimizers compute a predicted output matrix and then take differences between the actual/target values

and these predicted values to compute an error matrix. These computed matrices are then used to compute

delta matrices that form the basis for updating the weight matrices. Again for simplicity, biases are ignore in

the equations below, but are taken care of in the code through the NetParam abstraction. See the exercises

for details.

1. The values are feed forward through the network, layer by layer. For layer l, these values are stored

in matrix Zl. The first layer is the input, so Z0 = X. For the rest of the layers, Zl+1 equals the

result of activation function fl being applied to the product of the previous layer’s Zl matrix times its

parameter matrix Bl.

Z0 = X (10.90)

For each layer l in the forward direction:

Zl+1 = fl(ZlBl) (10.91)

2. The negative of the error matrix E is just the difference between the predicted and actual/target

values, where Ŷ = Znl.

E = Ŷ − Y (10.92)

3. This information is sufficient to calculate delta matrices ∆l. For the last layer:

∆nl−1 = f ′nl−1(Znl−1Bnl−1) � E (10.93)

For the rest of layers in the backward direction with l being decremented:

∆l = f ′l (ZlBl) � (∆l+1B
ᵀ

l+1) (10.94)

412

4. As mentioned, the delta matrices form the basis (a matrix transpose × delta × the learning rate η)

for updating the parameter/weight matrices, Bl for each layer l.

Bl −= Z
ᵀ

l ∆l η (10.95)

The implementation of the train encodes these equation and uses gradient descent to improve the

parameters Bl over several epochs, terminating early when the objective/cost function fails to improve.

1 @param x_ the training/full data/input matrix

2 @param y_ the training/full response/output matrix

3

4 def train (x_ : MatrixD = x, y_ : MatrixD = y): Unit =

5 if flayer >= 0 then opti.freeze (flayer) // optimizer to freeze flayer

6 val epochs = opti.optimize (x_, y_, bb, eta , f) // optimize parameters bb

7 println (s"ending epoch = $epochs")

8 estat.tally (epochs._2)

9 end train

The code for the optimize method may be found in the Optiimzer SGD and Optimizer SGDM classes. Again,

the train2 method includes limited auto-tuning of hyper-parameters.

10.8.4 Number of Nodes in Hidden Layers

The array nz gives the number of nodes for each of the hidden layers. If the user does not specify the number

of nodes for each hidden layer, then based on the number of input nodes n and number of output nodes ny,

defaults are utilized according to one of two rules.

1 if nz == null then nz = compute_nz // Rule default # nodes for hidden layers

If the array is null, then default numbers for the hidden layers are utilized. The default rule sets the first

hidden layer to 2 * n + 1 and divides this by the layer number for subsequent layers.

The number of nodes in each layer is currently used as a very rough estimate of the Degrees of Freedom

for the neural network. Also, the Degrees of Freedom is only considered for the first output variable (y0).

There is ongoing research to characterize Generalized Degrees of Freedom for neural networks [61]. As this

work matures, plans are for ScalaTion to include them.

10.8.5 Avoidance of Overfitting

If efforts are not made to avoid over-fitting, NeuralNet XL models are likely to suffer from this problem.

When R2, R̄2 are much higher than R2
cv there may be two causes. One is that the tuning of hyper-parameters

on the full dataset, is different from the tuning on training set slices. Two is that the optimization algorithm

finished with the signal and continued on to fit the noise. The simplest way to reduce over-fitting is to make

the optimizer quit before focusing its efforts on the noise. If only we knew. A crude way to this is to reduce

the maximum number of epochs. A better way to do this is to split a training set into two parts, one for

training (iteratively adjusting the parameters) and other for the stopping rule. The stopping rule would

compute the objective/loss function only using the validation data. Drop-out may be used in which a node

temporarily taken out of the model. Regularization of the parameters, as was done for Ridge and Lasso

Regression, may help as well.

413

10.8.6 Deep Learning

When the number of hidden layers are increased beyond the base levels of one or two, the learning may be

described as deep. In addition, special types of layers or units may be included such as convolutional or

recurrent.

There are Universal Approximation Theorems that indicate that Neural Networks with one hidden layer

(with arbitrary width) can approximate a board class of functions mapping inputs to outputs. However,

other theorems show the using more hidden layers allows the width to be reduced. This is the realm of deep

learning that has showed success in many applications areas, including automatic speech recognition, image

classification, computer vision and natural language processing.

10.8.7 NeuralNet XL Class

Class Methods:

1 @param x the m-by -n input/data matrix (full/training data having m input vectors)

2 @param y the m-by -ny output/response matrix (full/training data having m vectors)

3 @param fname_ the feature/variable names (defaults to null)

4 @param nz the number of nodes in each hidden layer , e.g.,

5 Array (9, 8) => 2 hidden of sizes 9 and 8 (null => use default formula)

6 @param hparam the hyper -parameters for the model/network (defaults to Optimizer.hp)

7 @param f the array of activation function families between every pair of layers

8 @param itran the inverse transformation function returns response to original scale

9

10 class NeuralNet_XL (x: MatrixD , y: MatrixD , fname_ : Array [String] = null ,

11 private var nz: Array [Int] = null ,

12 hparam: HyperParameter = Optimizer.hp,

13 f: Array [AFF] = Array (f_sigmoid , f_sigmoid , f_id),

14 val itran: FunctionM2M = null)

15 extends PredictorMV (x, y, fname_ , hparam)

16 with Fit (dfm = x.dim2 , df = x.dim - x.dim2): // under -estimate of df

17

18 def getNetParam (layer: Int = 1): NetParam = bb(layer)

19 def freeze (layer: Int): Unit = flayer = layer

20 def compute_nz: Array [Int] =

21 def train (x_ : MatrixD = x, y_ : MatrixD = y): Unit =

22 override def train2 (x_ : MatrixD = x, y_ : MatrixD = y): Unit =

23 def test (x_ : MatrixD = x, y_ : MatrixD = y): (MatrixD , MatrixD) =

24 override def makePlots (yy_ : MatrixD , yp: MatrixD): Unit =

25 def predict (v: VectorD): VectorD =

26 override def predict (v: MatrixD = x): MatrixD =

27 def buildModel (x_cols: MatrixD): NeuralNet_XL =

28 def summary2 (x_ : MatrixD = getX , fname_ : Array [String] = fname ,

29 b_ : MatrixD = null): String =

414

10.8.8 Exercises

1. Examine the implementation of the train method and the NetParam case class, where the net param-

eter b has two parts: the weight matrix b.w and the bias vector b.b. Show how the biases affect the

calculation of prediction matrix Ŷ = Znl in the feed forward process.

2. Examine the implementation of the train method and the NetParam case class and show how the

biases affect the update of the weights b.w in the back-propagation process.

3. Examine the implementation of the train method and the NetParam case class and show how the

biases b.b are updated in the back-propagation process.

4. The dataset in Example Concrete consists of 7 input variables and 3 output variables. See the

NeuralNet 2L section for details. Create a NeuralNet XL model with four layers to predict values

for the three outputs y0, y1 and y2. Compare with the results of using a NeuralNet 3L model.

5. Create a NeuralNet XL model with four layers to predict values for the one output for the AutoMPG

dataset. Compare with the results of using the following models: (a) Regression, (b) Perceptron,

(c) NeuralNet 2L, (d) NeuralNet 3L.

6. Tuning the Hyper-Parameters: The learning rate η (eta in the code) needs frequent tuning.

ScalaTion as with most packages has limited auto-tuning of the learning rate. Tune the other hyper-

parameters for the AutoMPG dataset.

1 object Optimizer:

2

3 /** hyper -parameters for tuning the optimization algorithms - user tuning

4 */

5 val hp = new HyperParameter

6 hp += ("eta", 0.1, 0.1) // learning/convergence rate

7 hp += ("bSize", 20, 20) // mini -batch size , common range 10 to 40

8 hp += ("maxEpochs", 400, 400) // maximum number of epochs/iterations

9 hp += ("lambda", 0.01, 0.01) // regularization/shrinkage hyper -parameter

10 hp += ("upLimit", 4, 4) // up -limit hyper -parameter for stopping rule

11 hp += ("beta", 0.9, 0.9) // momentum decay hyper -parameter

12 hp += ("nu", 0.9, 0.9) // interpolates between SGD (nu = 0) and

13 // (normalized) SHB (nu = 1)

14

15 // example adjustments - to be done before creating the neural network model

16 hp("eta") = 0.05

17 hp("bSize") = 25

18 hp("maxEpochs") = 200

19 hp("lambda") = 0.02

20 hp("upLimit") = 5

21 hp("beta") = 0.8

22 hp("nu") = 0.8

Note, in other packages patience is number of upward steps, not the number of subsequent upward

steps. Below are additional neural network hyper-parameters for a future release of ScalaTion.

1 hp += ("dropout", 0.05, 0.05) // probability of neuron dropping out

2 hp += ("valSplit", 0.1, 0.1) // training -validation set split fraction

415

7. Tuning the Network Architecture: The architecture of the neural network can be tuned by

(a) changing the number of layers,

(b) changing the number of nodes in each hidden layer, and

(c) changing the activation functions.

Tune the architecture for the AutoMPG dataset. The number of layers and number of nodes in each

layer should only be increased when there is non-trivial improvement.

8. Feature Selection for Neural Networks. Although Neural Networks may be used without Feature

Selection, it can still be useful to consider. An improvement over Forward Selection and Backward

Elimination is Stepwise Regression. Start with no variables in the model and add one variable that

improves the selection criterion the most. Add the second best variable for step two. After the second

step determine whether it is better to add or remove a variable. Continue in this fashion until no

improvement in the selection criterion is found. For Forward Selection and Backward Elimination it

may instructive to continue all the way to the end (all variables for forward/no variables for backward).

Stepwise regression may lead to coincidental relationships being included in the model, particularly

if a penalty-free QoF measure such as R2 is used. Typically, this approach is used when there a

penalty for having extra variables/parameters, e.g., R2 adjusted R̄2, R2 cross-validation R2
cv or Akaike

Information Criterion (AIC). See the section on Maximum Likelihood Estimation for a definition of

AIC. Alternatives to Stepwise Regression include Lasso Regression (`1 regularization) and to a lesser

extent Ridge Regression (`2 regularization).

Perform Forward Selection, Backward Elimination, and Stepwise Regression with all four criteria: R2,

R̄2, R2
cv, and AIC. Plot the curve for each criterion, determine the best number of variables and what

these variables are. Compare the four criteria.

As part of a larger project compare this form of feature selection with that provided by Ridge Regression

and Lasso Regression.

Use the following types of models: TranRegression, Perceptron, NeuralNet 3L, and NeuralNet XL

(4 layers).

In addition to the AutoMPG dataset, use the Concrete dataset and three more datasets from UCI

Machine Learning Repository. The UCI datasets should have more instances (m) and variables (n)

than the first two datasets. The testing is to be done in ScalaTion and Keras.

9. Double Descent in Deep Learning. Conventional wisdom indicates that as more features, nodes,

or parameters are added the network/model, the training loss (e.g., based on mse or sse) will continue

to decrease, but the testing loss (out-of-sample) will start to increase. Recent research suggests that

as even more parameters are added to the network/model, the testing loss may begin to decrease for

a second time. Try this with some of the datasets from the last question. Note, that a decrease in the

loss function corresponds to an increase in R2 for training or R2
cv for testing.

416

10.9 Convolutional Neural Networks

One way to think about a Convolution Neural Network (CNN) is to take an ordinary Neural Network such

as a 2-layer Neural Network and add a special non-neural layer in front of it, as depicted in Figure 10.14.

This special layer is called the convolutional layer (there may be more than one). Its purpose is to reduce

the volume of input in such a way that the salient features are brought forward. When the input is huge,

such as image data, it is important to reduce the amount of data sent to the last layers, now referred to as

the Fully-Connected (FC) layers.

Conv

Layers

z0

z1

z2

y0

f

β0

y1

β1

b00

b01

b10

b11

b20

b21

Figure 10.14: High-Level View of a Convolutional Neural Network

The convolution layers will take the input and apply convolutional filtering along with pooling operations.

Inputs to the convolutional layers may be 1D (vector), 2D (matrix) or 3D or higher (tensor). After the convo-

lutional layers, a flattening layer is used to turn matrices/tensors into vectors. Whatever the dimensionality

of the input, the output of the flattening layer will be one dimensional. The flattening layer will fully connect

to the first FC layer using a parameter matrix for edge weights. In general, the box labeled Conv Layers

may consist of multiple convolutional layers with multiple pooling layer interspersed, followed by a flattening

layer. Some of the advantages of convolutional networks are listed below:

• Input Data Reduced for Subsequent Layers.

• Learning Involves Fewer Parameters.

• Faster Network Training Time.

• Bringing Salient Features to the Forefront.

For additional background, there are multiple basic introductions to convolutional networks including

[97, 108]. In the next two sections, 1D and 2D convolutional networks will be presented.

417

10.10 1D CNN

A 1D CNN takes the simplest form of input, that of a one-dimensional vector. Such input is found in

sequence data such a time series, sound/audio and text. More well known are 2D CNNs where the input is

two-dimensional as in grayscale images. Color images would be 3D as there are typically three color channels.

Convolutional Neural Networks can be deep and complex, but in their simplest form they may be viewed

as a modified Fully-Connected Neural Network. The example shown in Figure 10.15 of a one-dimensional

convolutional network replaces the first dense layer with a convolutional layer. There are two differences:

First the connections are sparse (at least not full) and the weights/parameters are shared by all second layer

nodes. Notice that each node zh is only connected to three input nodes forming a window of width nc = 3

starting at index h,

x[h,nc] = xh:h+nc−1 = [xh, xh+1, xh+2] for h = 0, 1, 2 (10.96)

and that the parameters are always c = [c0, c1, c2]. The second set of edges fully connect the z nodes with

the y nodes.

x0

x1

x2

x3

x4

z0

f0

α

z1

α

z2

α

y0

f1

β0

y1

β1

c0

c1

c0

c2

c1

c0

c2

c1

c2

b00

b01

b10
b11

b20

b21

Figure 10.15: Simple 1D CNN

Convolutional Filter

As the edge weights are shared, rather than duplicating them for multiple edges, we may think of the vector

c = [c0, c1, c2] as a convolutional filter (or cofilter) that is used to calculate second layer node values,

zh = x[h,3] · c = xh:h+2 · c (10.97)

418

for each index value h by shifting the window/slice xh:h+2 and taking the dot product with the cofilter c.

For example, if the input x = [1, 2, 3, 4, 5] and the cofilter c = [0.5, 1.0, 0.5], then

z = [4, 6, 8]

To keep things simple, we assume the bias α is zero and that the convolutional layer’s activation function

f0 is the identity function. The z vector is then propagated through the fully connected layer to obtain

predicted output ŷ.

ŷk = f1(b:k · z)

10.10.1 Model Equation

The calculation of second layer node values can be vectorized by introducing a convolutional operator ∗c that

shifts the cofilter c over the vector x, slicing and computing dot products, which are collected into vector z.

z = x ∗c c (10.98)

In cases where activation function f0 is not the identity function, the equation becomes

z = f0(x ∗c c) (10.99)

ScalaTion’s conv function in object CoFilter 1D implements this convolution operator ∗c. Note, the

subscript c is used to avoid confusion with element-wise vector multiplication.

1 @param c the cofilter vector of coefficient

2 @param x the input/data vector

3

4 def conv (c: VectorD , x: VectorD): VectorD =

5 val y = new VectorD (x.dim - c.dim + 1)

6 for k <- y.indices do y(k) = x(k until k + c.dim) dot c

7 y

8 end conv

The second equation takes the z vector and propagates it through the Fully-Connected (FC) component

of the network

y = f1(B · z) + ε (10.100)

where the B matrix is a 3-by-2 matrix in the example.

Recall the model equation for NeuralNet 3L written in vector form.

y = f1(B · f0(A · x)) + ε

For 1D CNNs, the model equation is very similar.

y = f1(B · f0(x ∗c c)) + ε (10.101)

Rather than taking the dot product with a matrix of unshared parameters/weights A, the input vector x

undergoes convolution with cofilter vector c. Adding in the shared scalar bias α for the convolutional layer

and the unshared bias vector β for the fully connected layer gives

419

y = f1(B · f0(x ∗c c + α) + β) + ε (10.102)

When input vector x is large it may be useful to further reduce the vector sizes by pooling, e.g., max-

pooling with stride s = 2, would take the max of two adjacent elements and then move on to the next two.

ScalaTion’s pool function in object CoFilter 1D implements the pooling operator.

1 @param x the input/data vector

2 @param s the size of the pooling window

3

4 def pool (x: VectorD , s: Int = 2): VectorD =

5 val p = new VectorD (x.dim / s)

6 for j <- p.indices do

7 val jj = s * j

8 p(j) = x(jj until jj+s).max ()

9 end for

10 p

11 end pool

10.10.2 Training

Training 1D Convolutional Neural Networks is more complicated, although more efficient, than training

Fully-Connected Neural Networks [97]. Training involves finding values for the parameters B ∈ Rnz×ny ,

β ∈ Rny , c ∈ Rnc and α ∈ R that minimize a given loss function L. To simplify the development, the biases

will be ignored.

For a single input vector x yielding

ŷ = f1(B · f0(x ∗c c)) (10.103)

the `2 loss function will be

L(B, c) =
1

2
[(y − ŷ) · (y − ŷ)] (10.104)

10.10.3 Optimization

As with NeuralNet 3L, there are basically four steps in optimization.

1. Compute predicted values: Based on the randomly assigned weights to vector c and matrix B,

predicted outputs ŷ are calculated. First values for the hidden layer z are calculated, where the value

for hidden node h, zh, is given by

zh = f0(x[h,nc] · c) for h = 0, . . . , nz − 1

where f0 is the first activation function (e.g., reLU), c is the convolutional filter which contains the

shared weights/parameters, and x is an input vector for a training sample/instance (row in the data

matrix). Next, the values computed at the hidden layer are used to produce predicted outputs ŷ,

where the value for output node k, ŷk, is given by

420

ŷk = f1(b:k · z) for k = 0, . . . , ny − 1

where the second activation function f1 may be the same as (or different from) the one used in the

hidden layer and b:k is column-k of the B weight matrix. Now the difference between the actual and

predicted output, the error, for the kth output, εk, is given by

εk = yk − ŷk for k = 0, . . . , ny − 1

2. Back propagate from output layer: Given the computed error vector ε, the delta/correction vector

δ1 for the output layer may be calculated, where for output node k, δ1
k is given by

δ1
k = [−εk] f ′1(b:k · z) for k = 0, . . . , ny − 1 (10.105)

where f ′1 is the derivative of the activation function. The partial derivative of the loss function L with

respect to the weight connecting hidden node h with output node k, bhk, is given by

∂L
∂bhk

= zhδ
1
k (10.106)

3. Back propagate from hidden layer: Given the delta/correction vector δ1 from the output layer,

the delta vector for the hidden layer δ0 may be calculated, where for hidden node h, δ0
h is given by

δ0
h = [bh · δ1] f ′0(x[h,nc] · c) for h = 0, . . . , nz − 1 (10.107)

The partial derivative of L with respect to the jth weight in the convolutional filter, cj , is given by

∂L
∂cj

=

nz−1∑
h=0

xj+hδ
0
h = x[j,nz] · δ0 (10.108)

4. Update weights: The weights c and B, in the convolutional and full-connected layers, respectively,

may now be updated based on the partial derivatives. For gradient descent, movement is in the opposite

direction, so the sign flips from positive to negative. These partial derivatives are multiplied by the

learning rate η which moderates the adjustments to the weights.

bhk −= zh δ
1
k η (10.109)

cj −= x[j,nz] · δ0 η (10.110)

10.10.4 Matrix Version

1. The hidden (latent) values for all m instances and all nz hidden nodes are computed by applying the

first matrixized activation function f0 to the convolution X ∗c c to produce the latent feature matrix

Z ∈ Rm×nz .

421

Z = f0(X ∗c c) (10.111)

The predicted output matrix Ŷ ∈ Rm×ny is similarly computed by applying the second matrixized

activation function f1 to the matrix product ZB.

Ŷ = f1(ZB) (10.112)

2. The negative of the error matrix E ∈ Rm×ny is just the difference between the predicted and

actual/target values.

E = Ŷ − Y (10.113)

3. This information is sufficient to calculate delta matrices: ∆1 for adjusting B and ∆0 for adjusting A.

The output-layer delta matrix ∆1 ∈ Rm×ny is the element-wise matrix (Hadamard) product of E

and f ′1(ZB).

∆1 = E � f ′1(ZB) (10.114)

The hidden-layer delta matrix ∆0 ∈ Rm×nz is the element-wise matrix (Hadamard) product of

∆1B
ᵀ

and f ′0(XA).

∆0 = [∆1B
ᵀ

] � f ′0(X ∗c c) (10.115)

4. As mentioned, the delta matrices form the basis (a matrix transpose × delta × the learning rate η)

for updating the parameter/weight matrix B and cofilter vector c.

B −= Z
ᵀ

∆1 η (10.116)

cj −= [X
ᵀ

:,[j,nz]∆
0].mean η (10.117)

10.10.5 Gradient Descent Algorithm

The basic gradient descent algorithm adapts the above equations into a loop to iteratively update the weight

matrices and bias vectors (unified via the NetParam class). The corresponding ScalaTion code for the

train method is shown below. Note: *: defined in NetParam computes value-matrix * weigth-matrix +

bias-vector.

1 def train (x_ : MatrixD = x, y_ : MatrixD = y): Unit =

2 var sse0 = Double.MaxValue // hold prior value of sse

3

4 var (go, epoch) = (true , 1)

5 cfor (go && epoch <= maxEpochs , epoch += 1) {

6 var z = f.fM (conv (x_ , c)) // Z = f(conv (X, c))

7 var yp = f1.fM (b * z) // Yp = f(ZB)

8 val ε = yp - y_ // negative of error matrix

422

9 val δ1 = f1.dM (yp) � ε // delta matrix for y

10 val δ0 = f.dM (z) � (δ1, b.w.T) // delta matrix for z

11 CNN_1D.updateParam (x_, z, δ0, δ1, eta , c, b)

12

13 val yp_ = f1.fM (f0.fM (conv (x, c)) *: b) // updated predictions

14 val sse = sseF (y_, yp_)

15 if sse > sse0 then return // return early if moving up

16 sse0 = sse // save prior sse

17 end for

18 end train

Again note: ScalaTion provides the following alternatives for (a) Hadamard product: � or *∼, and (b)

Transpose: T-like Unicode symbol or transpose.

The updateParam method produces new values for c and b.

1 def updateParam (x_ : MatrixD , z: MatrixD , δ0: MatrixD , δ1: MatrixD , eta: Double ,

2 c: VectorD , b: NetParam) =

3 for j <- c.indices do

4 var sum = 0.0

5 for i <- x_.indices; h <- z.indices2 do sum += x_(i, h+j) * δ0(i, h)

6 c(j) -= (sum / x_.dim) * eta // update c in conv filter

7 end for

8 b -= (z.T * δ1 * eta , δ1.mean * eta) // update b weights/biases

9 end updateParam

10.10.6 Example Error Calculation Problem

Given the following problem, compute the negative error matrix.

1 val x = MatrixD ((2, 5), 1, 2, 3, 4, 5,

2 6, 7, 8, 9, 10)

3 val y = MatrixD ((2, 2), 6, 9,

4 16, 24)

5 val c = VectorD (0.5, 1, 0.5)

6 val b = NetParam (MatrixD ((3, 2), 0.1, 0.2,

7 0.3, 0.4,

8 0.5, 0.6))

Use the following code to compute the negative error matrix E.

1 val z = f0.fM (conv (x, c)) // Z = f(conv (X, c))

2 val yp = f1.fM (z *: b) // Yp = f(ZB)

3 val ε = yp - y // negative error E = Yp - Y

4 println (s"ε = $ε")

10.10.7 Two Convolutional Filters

Typically, a convolutional layer may have multiple cofilters. Figure 10.16 has two cofilters: The first cofilter

incident upon the yellow nodes in the middle has weights c0 = [c00, c
0
1, c

0
2], while the second cofilter incident

upon the orange nodes in the middle has weights c1 = [c10, c
1
1, c

1
2]. The superscripts are left off in the figure

due to crowding of edge labels.

423

x0

x1

x2

x3

x4

z0

f0

α

z1

α

z2

α

z3

α

z4

α

z5

α

y0

f1

β0

y1

β1

c0

c1

c2
c0

c1

c2
c0

c1

c2

c0

c1

c2
c0

c1

c2
c0

c1

c2

b00

b01

b10

b11

b20

b21

b30

b31

b40

b41

b50

b51

Figure 10.16: A 1D CNN with Two Convolution Filters c0 and c1

The cofilter c0 will move over the input nodes producing feature map φ0 (the yellow nodes in the middle),

while cofilter c1 will also move over the input nodes producing feature map φ1 (the orange nodes in the

middle). As there are no other layers before the fully-connected layer, these two feature maps are combined

(or flattened) and activated to form a hidden (z = [z0, z1, z2, z3, z4, z5]) layer. The stride indicates how far

the cofilter moves (e.g., down one node, down two nodes) on each step. Here the stride is equal to one.

Figure 10.17 shows the same Convolutional Neural Network from the point of view of tensors flowing

through the network (in this case the tensors are just vectors). Cofilter c0 moves through the input vector x

taking the dot product of itself with the blue, purple/crimson and black windows/slices, respectively. These

three dot products produce the values in feature map φ0. (Note that blue line from cofilter c0 to feature

map φ0 has utilized all the values in the cofilter and all values in the blue window and is shown as a single

line to reduce clutter.) The same logic is used for the second cofilter c1 to create feature map φ1. The

difference lies only in the values in each of these two convolution vectors.

Now the two feature maps φ0 and φ1 need to be combined. In general this is done by a flattening

operation. For the 1D case, the feature maps are already vectors so flattening reduces to vector concatenation.

This flattened vector is activated using f0 to produce z that serves as an entry point into the fully-connected

part of the network. Further computations produce the output vector ŷ based on vector z and parameter

matrix B, with their product activated using f1.

424

x0

x

x1

x2

x3

x4

c00

c0

c01

c02

c10

c1

c11

c12

φ0
0

φ0

φ0
1

φ0
2

φ1
0

φ1

φ1
1

φ1
2

z0

z = f0(.)

z1

z2

z3

z4

z5

α

y0

ŷ = f1(.)

β0

y1

β1

x0:2 · c0

x1:3 · c0

x2:4 · c0

x0:2 · c1

x1:3 · c1

x2:4 · c1

b00

b01

b10

b11

b20

b21

b30

b31

b40

b41

b50

b51

Figure 10.17: Tensor Flow Diagram Showing Two Convolution Filters c0, c0 and Two Feature Maps φ0, φ0

followed by a Fully-Connected Layer

A Convolutional Neural Network may have multiple convolutional layers as well as pooling layers (dis-

cussed in more detail in the next section). Activation (e.g., using reLU) occurs at the end of paired

convolutional-pooling layers. In addition, the fully-connected part may consist of multiple layers.

10.10.8 CNN 1D Class

Class Methods:

1 @param x the input/data matrix with instances stored in rows

2 @param y the output/response matrix , where y_i = response for row i of matrix x

3 @param fname_ the feature/variable names (defaults to null)

4 @param nf the number of filters for this convolutional layer

5 @param nc the width of the filters (size of cofilters)

6 @param hparam the hyper -parameters for the model/network

7 @param f the activation function family for layers 1->2 (input to hidden)

8 @param f1 the activation function family for layers 2->3 (hidden to output)

9 @param itran the inverse transformation function returns responses to original scale

10

11 class CNN_1D (x: MatrixD , y: MatrixD , fname_ : Array [String] = null ,

12 nf: Int = 1, nc: Int = 3,

13 hparam: HyperParameter = Optimizer.hp,

14 f: AFF = f_reLU , f1: AFF = f_reLU ,

15 val itran: FunctionM2M = null)

16 extends PredictorMV (x, y, fname_ , hparam)

425

17 with Fit (dfm = x.dim2 - 1, df = x.dim - x.dim2):

18

19 def filter (i: Int , f: Int): VectorD =

20 def updateFilterParams (f: Int , vec2: VectorD): Unit = filt(f).update (vec2)

21 override def parameters: NetParams = Array (NetParam (MatrixD.fromVector (c)), b)

22 def train (x_ : MatrixD = x, y_ : MatrixD = y): Unit =

23 override def train2 (x_ : MatrixD = x, y_ : MatrixD = y): Unit =

24 def test (x_ : MatrixD = x, y_ : MatrixD = y): (MatrixD , MatrixD) =

25 def predict (z: VectorD): VectorD = f1.f_ (b dot f.f_ (conv (z, c)))

26 override def predict (z: MatrixD = x): MatrixD = f1.fM (b * f.fM (conv (z, c)))

27 def buildModel (x_cols: MatrixD): CNN_1D =

10.10.9 Exercises

1. Delta Vectors: For the example error calculation problem given in this section, calculate the δ1 and

δ0 vectors.

2. Parameter Update Equations: For the same example, use the δ1 vector to update weight matrix B

for the fully-connected layer. Use the δ0 vector to update weight vector c for the convolutional layer.

3. For the same example, make four training steps and see what what happens to sse.

4. Create a CNN 1D model for the AutoMPG dataset.

1 val cn = new CNN_1D (x, MatrixD (y))

5. Create and demo a 1D CNN for the MIT-BIH Arrhythmia Database using ScalaTion’s CNN 1D class

and Keras. See https://physionet.org/content/mitdb/1.0.0.

426

https://physionet.org/content/mitdb/1.0.0

10.11 2D CNN

Two-dimensional Convolution Networks (2D CNN2) are needed when the data instances are two-dimensional

and based on a regular grid pattern where the values in the grid can be mapped to a matrix. For 2D CNNs,

flattening operators are added to the convolutional and pooling operators. The following references focus on

2D Convolutional Networks [88, 214]. To clarify what can happen in a 2D CNN convolutional layer, consider

the well-known MNIST problem to classify hand written digits 0 to 9. Given 10,000 grayscale images, each

having 28-by-28 pixels, the goal is to train a convolutional network to classify an image as one of 10 digits.

The following simple network architecture may be used as a starting point for the MNIST problem:

• Convolutional Layer. A convolutional layer consists of one or more convolutional filters, for which a

convolutional operation is applied to the input for each filter, conceptually in parallel. The result of

the convolutions may then be passed into an activation function. For this problem, assume there is

just one 5-by-5 convolutional filter.

• Pooling Layer. A pooling layer takes the output of a convolutional layer and reduces/aggregates it.

A common pooling operation is generally applied to the results of the convolution. For this problem,

assume there is a 2-by-2 max-pooling operation applied to the one filter.

• Flattening Layer. Between the convolutional layers and fully-connected layers a flattening layer turns

the matrices (or tensors for 3D CNN) flowing through the convolutional layers and pooling layers into

vectors as required by the fully-connected layers.

• Fully Connected Output Layer. A 10 node layer where the ith node represents the ith digit. Whichever

output node gets the highest score is the classification result. In general, there may be multiple fully-

connected layers.

Advanced network architectures may have many convolutional layers and pooling layers. Since one layer

comes after the other, the signals are processed in series (not parallel). For this problem, assume there is

just one convolutional layer.

10.11.1 Filtering Operation

A filter is a small matrix, e.g., a 5-by-5 matrix that scans across the image taking the dot product of its values

with the values in a 5-by-5 window of the image, as depicted in Figure 10.18. Commonly a (convolutional)

stride of 1 is used that moves the window one position/pixel at a time. This process produces a 24-by-24

result matrix referred to as a feature map. Padding can be used to maintain the size of the image. The

commonly used zero-padding would put zeros around the image. Each of the filters will produce its own

feature map.

The MNIST dataset consisting of many images can be collected into a 3-dimensional tensor X. The ith

row (or renamed as a sheet) of the tensor X, Xi, will be a 28-by-28 input matrix.

Instead of looking at a large input matrix X, consider one of the matrices given on the following Webpage

https://cs231n.github.io/convolutional-networks. It is a 5-by-5 matrix, extracted below.

427

https://cs231n.github.io/convolutional-networks

x00

x10

x20

x01

x11

x21

x02

x12

x22

c00

c10

c01

c11

φ00

φ10

φ10

φ11

Figure 10.18: Portion of an Input Image/Matrix X - Convolutional Filter C - Feature Map Φ

X =

0 0 2 1 0

0 0 0 1 2

1 2 2 0 2

2 0 0 0 1

2 2 2 0 1

 (10.118)

The effect of applying the following 2-by-2 convolutional filter matrix C to X,

C =

[
1 1

0 1

]
(10.119)

is produced by using the convolution operator (∗c), which will give the following feature map matrix Φ,

Φ = X ∗c C (10.120)

where each element in the resulting 4-by-4 feature map matrix Φ is the dot product of a subimage and

the convolutional filter. The subimage is a shifting 2-by-2 window/slice of the original image with top-left

position (j, k).

φjk = Xj:j+1,k:k+1 · C (10.121)

The resulting feature map matrix Φ is shown below.

Φ =

0 2 4 3

2 2 1 5

3 4 2 3

4 2 0 2

 (10.122)

Notice for this example, if a reLU activation function is applied, the final feature map is unaltered.

ScalaTion’s conv function in the CoFilter 2D object implements the convolution operator.

def conv (x: MatrixD, c: MatrixD): MatrixD =

val (m, n) = (c.dim, c.dim2)

val phi = new MatrixD (x.dim + 1 - m, x.dim2 + 1 - n)

428

for j <- phi.indices; k <- phi.indices2 do

phi(j, k) = (x(j until j+m, k until k+n) *~ c).sum

end for

phi

end conv

10.11.2 Pooling Operation

Each feature map can be further reduced to a pooled feature map using a pooling operation. Max pooling

takes the maximum value in each non-overlapping 2-by-2 region as the value for the pooled feature map.

Each of the pooled feature maps will be 12-by-12 matrices. All these values will be placed in the flattening

layer consisting of 12× 12 = 144 nodes.

Using 2-by-2 max pooling, the maximum of each non-overlapping 2-by-2 submatrix is taken.

pjk = max Φ2j:2j+1,2k:2k+1 (10.123)

to produce the 2-by-2 matrix P . Note, having a pooling stride of 2 will make the regions non-overlapping.

P =

[
2 5

4 3

]
(10.124)

ScalaTion’s pool function in the CoFilter 2D object implements the pooling operator.

def pool (x: MatrixD, s: Int = 2): MatrixD =

val p = new MatrixD (x.dim / s, x.dim2 / s)

for j <- p.indices; k <- p.indices2 do

val (jj, kk) = (s*j, s*k)

p(j, k) = x.max (jj until jj+s, kk until kk+s)

end for

p

end pool

10.11.3 Flattening Operation

Flattening takes either a matrix or tensor and forms a single vector that includes all the elements. A matrix

may be flattened in either row-major or column-major style. The ScalaTion method in MatrixD shown

below flattens a matrix in row-major fashion.

1 def flatten: VectorD =

2 val a = Array.ofDim [Double] (dim * dim2)

3 var k = 0

4 for i <- indices do

5 val v_i = v(i)

6 var j = 0

7 cfor (j < dim2 , j += 1) { a(k) = v_i(j); k += 1 }

8 end for

9 new VectorD (a.length , a)

10 end flatten

Therefore, the flattened pooled matrix P is

429

P.flatten = [2, 5, 4, 3]

10.11.4 Model Equation

The first equation for a 2D CNN computes the intermediate z vector for a particular image, X, by taking

the following steps: (i) convolve X with convolutional filter C, (ii) apply the first activation function f0 (e.g.,

reLU), (iii) pool to reduce size, and (iv) flatten matrix into a vector.

z = [pool(f0(X ∗c C))].flatten (10.125)

The second equation takes the z vector and propagates it through the Fully-Connected (FC) layer of the

network. The model equation includes these two steps with an error term added.

y = f1(B · z) + ε (10.126)

where the B matrix connects each of the 144 nodes in the flattened layer to the 10 output nodes of the FC

layer. Combining these two equations yields

y = f1(B · [pool(f0(X ∗c C))].flatten) + ε (10.127)

More generally, multiple convolutional filters (along with their pooling) can be used simultaneously.

See the exercises for an example with multiple convolutional filters. In addition, multiple combination

convolution-pooling layers are often used, as in Deep Learning. The fully-connected part of the network may

also consist of multiple layers as well.

10.11.5 Training

Training involves finding values for the parameters B ∈ Rnz×ny , β ∈ Rny , C ∈ Rnc×nc and α ∈ R that

minimize a given loss function L. To simplify the development, the biases will be ignored.

For a single input matrix X yielding

ŷ = f1(B · [pool(f0(X ∗c C))].flatten) (10.128)

the `2 loss function will be

L(B,C) =
1

2
[(y − ŷ) · (y − ŷ)] (10.129)

10.11.6 Optimization

10.11.7 Exercises

1. Develop the modeling equations for a 2D CNN that consists of the following layers:

(a) Convolutional Layer with two feature maps. 5× 5 convolutional filters, no padding, stride 1 and

reLU activation.

(b) Pooling Layer using max-pooling. 2× 2 pooling with a stride of 2.

(c) Flattening Layer to convert matrices into a vector.

430

(d) Fully-Connected Layer with 10 output nodes.

2. If the above network is used for a 28×28 MNIST image/matrix, give the dimensions for all components

in the network. How many parameters will need to be optimized?

3. Create and demo a 2D CNN for the MNIST dataset using Keras. See http://yann.lecun.com/exdb/

mnist.

4. It is common in data science to normalize input data. This is especially true when there are nonlinear

transformations. For CNNs and deep learning, normalizing the initial input may be insufficient, so other

types of normalization have been introduced, such as batch normalization, and layer normalization.

Discuss the advantages and disadvantages of the various normalization techniques.

5. The convolution operator slides a window the size of the convolution filter over the image. For a dilated

CNN, when the dilation rate is 2, the window size is enlarged in each dimension since every other pixel

is skipped. Given a 3-by-3 convolution filter, the window size (size of the receptive field in the image)

is 3-by-3. In this case the dilation rate is 1. In general, a dilation rate of n, will mean n− 1 pixels will

skipped for every pixel used. What would the window size if the dilation rate is 2?

6. Create a 3D CNN that processes color images using Keras. It will take a four-dimensional input

tensor X = [xijkl] where i indicates which image, j indicates which (horizontal) row, k indicates

which (vertical) column, and l indicates which color channel. Use the CIFAR-10 dataset https:

//www.cs.toronto.edu/~kriz/cifar.html.

431

http://yann.lecun.com/exdb/mnist
http://yann.lecun.com/exdb/mnist
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html

10.12 Transfer Learning

Transfer learning is applicable to many types of machine learning problems [140]. In this section, we focus

on transfer learning for neural networks [190].

The first sets of transformations (from input to the first hidden layer and between the first and second

hidden layers) in a Neural Network allow nonlinear effects to be created to better capture characteristics of

the system under study. These are taken in combination in later latter layers of the Neural Network. The

thought is that related problems share similar nonlinear effects. In other words, two datasets on related

problems used to train two Neural Networks are likely to develop similar nonlinear effects at certain layers.

If this is the case, the training of the first Neural Network could expedite the training of the second Neural

Network. Some research has shown the Quality of Fit (QoF) may also be enhanced as well.

The easiest way to imagine this is to have two four-layer Neural Networks, say with 30 inputs for the

first and 25 for the second. Let the first hidden layer have 50 nodes and second have 20 nodes, with an

output layer for the single output/response value. The only difference in node count is in the input layer.

For the first Neural Network, the sizes of the parameter/weight matrices are 30-by-50, 50-by-20 and 20-by-1.

The only difference in the second Neural Network is that the first matrix is 25-by-50. After the first Neural

Network is trained, its second matrix (50-by-20) along with its associated bias vector could be transferred

to the second Neural Network. When training starts for the second Neural Network, random initialization

is skipped for this matrix (and its associated bias vector). A training choice is whether to freeze this layer

or allow its values to be adjusted during back-propagation.

10.12.1 Definition of Transfer Learning

In its simplest form transfer learning involves two related datasets and two related tasks.

• Dataset. A dataset D may be defined as an ordered pair of tensors D = (X,Y) where X is the input

tensor and Y is the output tensor. It is assumed that there is an unknown function f and a noise

generator ε that characterizes the relationship between input tensor X and output tensor Y.

Y = f(X) + ε (10.130)

• Task. In a limited sense, a task τ may be viewed a procedure to produce a model function fm that

approximates f . Secondary goals include interpretability and generalizability. The closeness of the

approximation can be measured by some norm of the differences between the functions or more generally

by a task inspired loss function (e.g., MSE for regression taks or cross entropy for classifications tasks),

fm = min{fk : ‖f − fk‖ for fk ∈ F} (10.131)

where F is a function space. For example, if the input tensor is two-dimensional (a matrix) and the

output tensor is one-dimensional (a vector), F could be the set of all linear transformations of the

column space of the input matrix to R. The goal of multiple linear regression is to find a point in the

column space of matrix X closest to the vector y.

• Transfer Learning. Now given two datasets D1 and D2, and two tasks τ1 and τ2, the question is

whether the efforts in task τ1 can reduce the effort and/or improve the quality of outcome of task τ2.

432

Transfer learning is ideally applied when both the datasets and the tasks are similar (or related in some

sense) and when the first dataset is large enough to support accurate training. Applying transfer learning

to the second task may be motivated by limited time/computational resources or lack of data. The lack of

data often happens for classification tasks with missing labels (y values).

10.12.2 Type of Transfer Learning

Transfer Learning can involve domain adaptation and instance selection. For neural networks, components

of one network developed for task τ1 may be transferred to another network under development for task τ2.

Transfer Learning in Neural Networks

An area in which transfer learning has demonstrated considerable success is in Convolutional Networks.

Therefore, consider a dataset where the input is a three-dimensional tensor X ∈ Rm×w×h, where m is the

number of grayscale images, w is their pixel width and h is their pixel height. For image classification, the

output is a one-dimensional vector y ∈ {0, . . .K − 1}m, where K is the number of classes in classification C.

For simplicity, assume that m2 < m1, w2 = w1, h2 = h1, and K2 ≤ K1. We are left with two issues: how

similar/related are the two sets of images and what is the logical/semantic connection between classification

C2 and classification C1. The similarity of classification schemes could be based on the fraction of classes in

C2 that are also in C1.

r =
|C2 ∩ C1|
|C2|

(10.132)

This can be refined when there is an underlying ontology to provide meaning to the classifications and their

class labels, as well as, a metric for semantic distance. Note, some pre-trained models may have been trained

to discriminate between hundreds or thousands of image types, e.g., ImageNet [98].

Selection of a source dataset may now be decomposed into the following steps:

1. Initial Screening. Initial screening of potential candidate source datasets can be done by comparing

their similarity to that of the target dataset D2. Information divergence (e.g., KL divergence) or

distances based on optimal transport may be used to explore the similarity of datasets (or their under-

lying probability measures). Source datasets sufficiently similar and with pre-trained models should

be tested in step 2.

2. Choosing Candidates. Datasets identified from step 1 may be selected as candidates by applying

them to the target problem in the following way. Replace the last fully-connected layer of the source

convolutional network with a new one, where the output layer is reduced from K1 to K2 nodes. Call this

the adapted model. Freeze all the previous layers and train the last layer from scratch. A layer being

frozen means that its parameters (weights and biases) will not be changed during back-propagation.

Choose the models with better Quality of Fit (QoF) measures or lower loss functions.

3. Fine-Tuning. Let D1 be one of the candidate datasets. One option would be to train the adapted

model/network from scratch. Unfortunately, this would be time consuming at best and likely to fail

at worst due to lack of class labels. Retraining involves a choice for each layer, whether to freeze,

fine-time, or train from scratch. Making the right choice for each layer can lead to a more accurate

model. Unfortunately, a convolution network with 16 trainable layers, such as VGG-16 [189], would

433

require 316 = 43, 047, 721 models to train. Therefore, establishing criteria for deciding how to handle

each layer is important. Although it tends to be generally the case, that the later layers are specific

to the given task and that earlier layers are more generic and hence transferable as is, recent research

has shown benefits in fine-tuning some early layers [66].

Domain Adaptation

To summarize, given two datasets D1 = (X1,Y1) and D2 = (X1,Y2), and two tasks τ1 and τ2, utilze trained

model/network fm1 to produce a new model fm2 by reusing much of fm1 to make training have similar or

better outcomes in less time.

Typically in domain adaptation, we may assume that τ1 = τ2 and the task is classification (thus, the

outputs are vectors). It may be further assumed that a label mapping function can be defined so that class

labels in classification 1 can be mapped without loss of information to labels in classification 2. Thus, we

may stipulate that the output vectors are points in the following label spaces.

y1 ∈ [0, . . . ,K − 1]m1 (10.133)

y2 ∈ [0, . . . ,K − 1]m2 (10.134)

The focus in domain adaptation is on applying transformations on the input datasets, X1 and X2. Let

the form of inputs now be reduced to matrices X1 ∈ Rm1×n1 and X2 ∈ Rm2×n2 . To facilitate visualization,

let the number of columns in both matrices be 2 (n1 = n2 = 2). Now, two-dimensional histograms may be

produced for each input data matrix.

Instance Selection

10.12.3 NeuralNet XLT Class

Class Methods:

1 @param x the m-by -n input matrix (training data consisting of m input vectors)

2 @param y the m-by -ny output matrix (training data consisting of m output vectors

)

3 @param fname_ the feature/variable names (defaults to null)

4 @param nz the number of nodes in each hidden layer , e.g., Array (9, 8) => 2

hidden of sizes 9 and 8

5 (null => use default formula)

6 @param hparam the hyper -parameters for the model/network

7 @param f the array of activation function families between every pair of layers

8 @param l_tran the layer to be transferred in (defaults to first hidden layer)

9 @param transfer the saved network parameters from a layer of a related neural network

10 trim before passing in if the size does not match

11 @param itran the inverse transformation function returns responses to original scale

12

13 class NeuralNet_XLT (x: MatrixD , y: MatrixD , fname_ : Array [String] = null ,

14 nz: Array [Int] = null , hparam: HyperParameter = hp ,

15 f: Array [AFF] = Array (f_sigmoid , f_sigmoid , f_id),

16 l_tran: Int = 1, transfer: NetParam = null ,

17 itran: FunctionM2M = null)

434

18 extends NeuralNet_XL (x, y, fname_ , nz , hparam , f, itran):

19

20 def trim (tl: NetParam , lt: Int = l_tran): NetParam = tl.trim (sizes(lt), sizes(lt+1))

10.12.4 Exercises

1. Find two related datasets at https://huggingface.co/datasets/inria-soda/tabular-benchmark

and use the larger dataset to transfer in a layer and see if this improves the QoF. Compare the following

three scenarios:

(a) QoF of small dataset trained with its own data

(b) QoF of small dataset after a layer is transferred in and not frozen

(c) QoF of small dataset after a layer is transferred in and frozen (see freeze method in NeuralNet XL)

435

https://huggingface.co/datasets/inria-soda/tabular-benchmark

10.13 Extreme Learning Machines

An Extreme Learning Machine (ELM) may be viewed as three-layer Neural Network with the first set of

fixed-parameters (weights and biases) frozen. The values for these parameters may be randomly generated

or transferred in from a Neural Network. With the first set of fixed-parameters frozen, only the second set

of parameters needs to be optimized. When the second activation function is the identity function (id), the

optimization problem is the same as for the Regression problem, so that matrix factorization may be used

to train the model. This greatly reduces the training time over Neural Networks. Although the first set of

fixed-parameters is not optimized, nonlinear effects are still created at the hidden layer and there may be

enough flexibility left in the second set of parameters to retain some of the advantages of Neural Networks.

10.13.1 Model Equation

A relatively simple form of Extreme Learning Machine in ScalaTion is ELM 3L1. It allows for a single

output/response variable y and multiple input/predictors variables x = [x0, x1, . . . xn−1]. The number of

nodes per layer are n for input, nz for hidden and ny = 1 for output. The second activation function f1 is

implicitly id and be left out.

The model equation for ELM 3L1 can written in vector form as follows,

y = b · f0(A
ᵀ

x)) + ε (10.135)

where A is the first layer NetParam consisting of an n-by-nz weight matrix and an nz bias vector. In

ScalaTion, these parameters are initialized as follows (see exercises for details):

1 private var a = new NetParam (weightMat3 (n, nz , s),

2 weightVec3 (nz , s))

The second layer is simply an nz weight vector b. The first layer’s weights and biases A are frozen, while

the second layer parameters b are optimized.

10.13.2 Training

Given a dataset (X,y), training will be used to adjust values of the parameter vector b. The objective is to

minimize the distance between the actual and predicted response vectors.

fobj = ‖y − b · f0(XA)‖ (10.136)

10.13.3 Optimization

An optimal value for parameter vector b may be found using Regression.

1 @param x_ the training/full data/input matrix

2 @param y_ the training/full response/output vector

3

4 def train (x_ : MatrixD = x, y_ : VectorD = y): Unit =

5 val z = f.fM (a * x_) // layer 1->2: Z = f(XA)

6 val reg = new Regression (z, y_) // layer 2-3: delegate to ‘Regression

‘

7 reg.train ()

8 b = reg.parameter

436

9 end train

Extreme Learning Machines typically are competitive with lower order polynomial regression and may

have fewer parameters than CubicXRegression.

10.13.4 ELM 3L1 Class

Class Methods:

1 @param x the m-by -n input matrix (training data consisting of m input vectors)

2 @param y the m output vector (training data consisting of m output scalars)

3 @param fname_ the feature/variable names (if null , use x_j s)

4 @param nz the number of nodes in hidden layer (-1 => use default formula)

5 @param hparam the hyper -parameters for the model/network

6 @param f the activation function family for layers 1->2 (input to hidden)

7 @param itran the inverse transformation function returns responses to original scale

8

9 class ELM_3L1 (x: MatrixD , y: VectorD , fname_ : Array [String] = null ,

10 private var nz: Int = -1, hparam: HyperParameter = null ,

11 f: AFF = f_tanh , val itran: FunctionV2V = null)

12 extends Predictor (x, y, fname_ , hparam)

13 with Fit (dfm = x.dim2 - 1, df = x.dim - x.dim2):

14

15 def compute_df_m (nz_ : Int): Int = nz_

16 def parameters: VectorD = b

17 def train (x_ : MatrixD = x, y_ : VectorD = y): Unit =

18 def test (x_ : MatrixD = x, y_ : VectorD = y): (VectorD , VectorD) =

19 override def predict (z: VectorD): Double = b dot f.f_ (a dot z)

20 override def predict (z: MatrixD = x): VectorD = f.fM (a * z) * b

21 def buildModel (x_cols: MatrixD): ELM_3L1 =

When the second activation function is not id, then the optimization of the second set of parameters

works like it does for Transformed Regression. Also, when multiple outputs are needed, the ELM 3L may be

used.

10.13.5 Exercises

1. Create an ELM 3L1 model to predict values for the AutoMPG dataset. Compare with the results of

using the following models: (a) Regression, (b) Perceptron, (c) NeuralNet 2L, (d) NeuralNet 3L,

(e) NeuralNet XL

2. Time each of the six model given above using ScalaTion’s time method (in the scalation package).

1 def time [R] (block: => R): R =

This method can time the execution of any block of code (time { block }).

3. Compare the following strategies for initializing NetParam A (weights and biases for the first layer).

(a) randomly generated weights

437

(b) binary sparse weights

(c) ternary sparse weights

For an explanation of these three weight initialization schemes, see https://core.ac.uk/download/

pdf/301130498.pdf.

438

https://core.ac.uk/download/pdf/301130498.pdf
https://core.ac.uk/download/pdf/301130498.pdf

Chapter 11

Time Series/Temporal Models

For time series forecasting, time series/temporal models are used in order to make forecasts into the future.

Applications are numerous and include weather, sales projections, energy consumption, economic indicators,

financial instruments and traffic conditions. For time series classification, related models are applied to

sequential data that includes Speech Recognition and Natural Language Processing (NLP).

Until this chapter, predictive models have been of the form

y = f(x; b) + ε

where x is the vector of predictive variables/features, y is the response variable and ε is the residual/error.

In order to fit the parameters b, m samples are collected into a data/input matrix X and a response/out-

put vector y. The samples are treated as though they are independent. In many case, such as data collected

over time, they are often not independent. For example, the current Gross Domestic Product (GDP) will

likely show high dependency upon the previous quarter’s GDP. If the model is to forecast the next quarter’s

GDP, surely it should take into account the current (or recent) GDP values.

General Time Series Model

One may think about forecasting as follows: Given that you know today’s high temperature yt, predict (or

forecast) tomorrow’s high temperature yt+1. Of course, using historical data (past temperatures) would be

likely to improve the quality of the forecasts.

To begin with, one could focus on forecasting the value of response y at time t+1 as a function of current

and past (or lagged) values of y, e.g.,

yt+1 = f(yt, yt−1, . . . , yt−p′ ; φ) + εt+1 (11.1)

This indicates the forecasted value is a function the most recent p (back p′ = p− 1 to 0 time units) values.

In vector form, the equation becomes,

yt+1 = f(yt−p′:t; φ) + εt+1 (11.2)

where f is a function of the slice of the past p values yt−p′:t and the parameter vector φ is analogous to the

b vector used in previous chapters.

The lags may also be dilated, e.g., with a dilation rate of 2,

439

[yt−2p+1, . . . , yt−3, yt−1]

In addition to past values of the response vector, due to the time-oriented nature of the data, one can

literally use past errors to improve forecasts. This is easier to rationalize if they are termed shocks or

innovations, e.g., sometime unexpected happened that caused a forecast to be off. Obviously, other variables

besides the response variable itself may be used. In some models, these are referred to as exogenous variables.

Some forecasting techniques such as Time Series Regression with Lagged Variables can select the features

using for example forward selection, backward elimination or stepwise refinement.

Initially in this chapter, time will be treated as discrete time.

440

11.1 Forecaster

The Forecaster trait within the scalation.modeling.forecasting package provides a common framework

for several forecasters. The key methods are the following:

• The train method must be called first as it matches the parameter values to patterns in the data.

Training can occur on a training set or the full dataset/time series.

• The test method is used to assess the Quality of Fit of the trained model in making predictions (one

time-unit ahead forecasts). It can be applied to the full dataset for in-sample testing, or to the testing

set for out-of-sample testing.

• The trainNtest calls train, test and report.

• The testF method takes testing to the next level. Once predictions are judged to be satisfactory, the

model can be assessed in terms of its ability to make longer term forecasts. Obviously, the farther into

the future the forecasts are made, the greater the challenge. The quality of the forecasts are likely

degrade as the forecasting horizon h increases.

• The predict method gives a one-step ahead forecast. Given the current time t (e.g., think of it as

today) based on for example the current value yt, past values, etc. predict the next (e.g., tomorrow’s)

value yt+1.

• The predictAll method extends this over the times-series (or a sub-range of it)

• The forecast method is the analog of predict, but for multi-horizon forecasting, returning a vector

of forecasts for 1 to h time units (e.g., days) ahead.

• The forecastAt method will provide all the forecasts for a particular forecasting horizon h.

• The forecastAll method extends this over all forecasting horizon from 1 up to and including h. The

commonly used recursive method for forecasting into the future, requires forecasts to be generated and

stored in a matrix (called yf) one horizon at a time. The first forecast is made entirely from actual

data, while the next one dependent on the prior forecast. Depending on how many past values are

used in the model, eventually the recursive methods will produce forecasts solely based on forecasted

values. The alternative, direct method, will be discussed later.

Forecaster Trait

Trait Methods:

1 @param y the response vector (time series data)

2 @param tt the time vector , if relevant (index as time may suffice)

3 @param hparam the hyper -parameters for models extending this trait

4

5 trait Forecaster (y: VectorD , tt: VectorD = null , hparam: HyperParameter = null)

6 extends Model:

7

8 def cap: Int = 1 // how far into the past

9 def getY: VectorD = y

441

10 def getFname: Array [String] = Array ("no-x features")

11 def train (x_null: MatrixD , y_ : VectorD): Unit

12 def test (x_null: MatrixD , y_ : VectorD): (VectorD , VectorD)

13 protected def testSetup (y_ : VectorD , doPlot: Boolean = true): (VectorD , VectorD) =

14 def trainNtest (y_ : VectorD = y)(yy: VectorD = y): (VectorD , VectorD) =

15 def testF (h: Int , y_ : VectorD): (VectorD , VectorD)

16 protected def testSetupF (y_ : VectorD , h: Int , doPlot: Boolean = true):

17 (VectorD , VectorD) =

18 def hparameter: HyperParameter = hparam

19 def parameter: VectorD = new VectorD (0) // vector with no elements

20 def nparams: Int = parameter.dim // number of parameters

21 def residual: VectorD = { if e == null then flaw ("residual",

22 "must call test method first"); e }

23 def predict (z: VectorD): Double =

24 def predict (t: Int , y_ : VectorD): Double

25 def predictAll (y_ : VectorD): VectorD =

26 def forecast (t: Int , yf: MatrixD , y_ : VectorD , h: Int): VectorD

27 def forecastAt (yf: MatrixD , y_ : VectorD , h: Int): VectorD

28 def forecastAll (y_ : VectorD , h: Int): MatrixD =

29 def forwardSel (cols: Set [Int], idx_q: Int = QoF.rSqBar.ordinal):

30 (Int , Forecaster) = ???

31 def forwardSelAll (idx_q: Int = QoF.rSq.ordinal , cross: Boolean = false):

32 (Set [Int], MatrixD) =

11.1.1 Stats4TS Case Class

The following class is used to produce basic statistics about a time series, passed in as a vector. Even if

the model will not end up using a large number of lags, it is a good idea to collect statistics for several

lags to assess which ones may be important. The Stats4TS case class in the scalation.mathstat package

defines the Auto-Correlation Function (ACF). It holds the mean, variance, the auto-covariance vector and

the auto-correlation vector.

Class Methods:

1 @param y the response vector (time series data) for the training/full dataset

2 @param lags_ the maximum number of lags

3

4 case class Stats4TS (y: VectorD , lags_ : Int):

5

6 val lags = min (y.dim -1, lags_) // lags can’t exceed dataset size

7 val mu = y.mean // sample mean

8 val sig2 = y.variance // sample variance

9 val acv = new VectorD (lags + 1) // auto -covariance vector

10 for k <- acv.indices do acv(k) = y acov k // k-th lag auto -covariance

11 val acr = acv / acv(0) // auto -correlation function

12 override def toString: String =

13

14 end Stats4TS

442

11.1.2 Auto-Correlation Function

To better understand the dependencies in the data, it is useful to look at the auto-correlation. Consider the

following time series data used in forecasting lake levels recorded in the Lake Level Times-series Dataset.

(see cran.r-project.org/web/packages/fpp/fpp.pdf):

val m = 98

val t = VectorD.range (0, m)

val y = VectorD (580.38, 581.86, 580.97, 580.80, 579.79, 580.39, 580.42, 580.82, 581.40, 581.32,

581.44, 581.68, 581.17, 580.53, 580.01, 579.91, 579.14, 579.16, 579.55, 579.67,

578.44, 578.24, 579.10, 579.09, 579.35, 578.82, 579.32, 579.01, 579.00, 579.80,

579.83, 579.72, 579.89, 580.01, 579.37, 578.69, 578.19, 578.67, 579.55, 578.92,

578.09, 579.37, 580.13, 580.14, 579.51, 579.24, 578.66, 578.86, 578.05, 577.79,

576.75, 576.75, 577.82, 578.64, 580.58, 579.48, 577.38, 576.90, 576.94, 576.24,

576.84, 576.85, 576.90, 577.79, 578.18, 577.51, 577.23, 578.42, 579.61, 579.05,

579.26, 579.22, 579.38, 579.10, 577.95, 578.12, 579.75, 580.85, 580.41, 579.96,

579.61, 578.76, 578.18, 577.21, 577.13, 579.10, 578.25, 577.91, 576.89, 575.96,

576.80, 577.68, 578.38, 578.52, 579.74, 579.31, 579.89, 579.96)

The data also available in the scalation.modeling.forecasting package.

1 import Example_LakeLevels .{t, y}

First plot this dataset and then look at its Auto-Correlation Function (ACF).

1 new Plot (t, y, null , "Plot of y vs. t", true)

The Auto-Correlation Function (ACF) measures how much the past can influence a forecast. If the

forecast is for time t+ 1, then the current/past time points are t, t− 1, . . . , t− p′. The k-lag auto-covariance

(auto-correlation), γk (ρk) is the covariance (correlation) of yt and yt−k.

γk = C [yt, yt−k] (11.3)

ρk = corr(yt, yt−k) (11.4)

Note that γ0 = V [yt] and ρk = γk/γ0. These equations assume the stochastic process {yt|t ∈ [0,m − 1]} is

covariance stationary (see exercises).

Although vectors need not be created, to compute corr(yt, yt−2) one could imagine computing the cor-

relation between y(2 until m) and y(0 until m-2). In ScalaTion, the ACF is provided by the acF

function from the Correlogram trait in the scalation.mathstat package.

1 @main def correlogramTest (): Unit =

2

3 val y = VectorD (1, 2, 5, 8, 3, 6, 9, 4, 5, 11,

4 12, 16, 7, 6, 13, 15, 10, 8, 14, 17)

5

6 object CT extends Correlogram (y)

7

443

cran.r-project.org/web/packages/fpp/fpp.pdf

8 banner ("Plot Data")

9 new Plot (null , y, null , "y vs. t", lines = true)

10

11 banner ("Test Correlogram")

12 CT.makeCorrelogram ()

13 val acf = CT.acF

14 val pacf = CT.pacF

15 println (s"acF = $acf")

16 println (s"pacF = $pacf")

17 CT.plotFunc (acf , "ACF")

18 CT.plotFunc (pacf , "PACF")

19

20 end correlogramTest

The first point in plot is the auto-correlation of yt with itself, while the rest of the points are ACF(k), the

k-lag auto-correlation.

11.1.3 Correlogram

A correlogram shows how a time series correlates with lagged versions of itself and allows one to visualize

the important dependencies in the time series.

Correlogram Trait

Trait Methods:

1 @param y the time series data (response vector)

2

3 trait Correlogram (y: VectorD):

4

5 def makeCorrelogram (y_ : VectorD = y): Unit =

6 def acF: VectorD = stats.acr

7 def pacF: VectorD = pacf

8 def psiM: MatrixD = psi

9 def statsF: Stats4TS = stats

10 def durbinLevinson (g: VectorD , ml: Int): MatrixD =

11 def plotFunc (fVec: VectorD , name: String , show: Boolean = true): Unit =

11.1.4 Quality of Fit (QoF) for Time Series Data

In addition to the Forecaster trait, models must extend the Fit trait and so several QoF measures are

available, including R2, R̄2, MAE, MSE, RMSE, and AIC.

Five QoF measures that are widely used in time series analysis are the following (assuming yt and ŷt are

properly aligned): The first two are in the units of the response variable (e.g., meters), while the last three

are relative measures (e.g., MAPE ranges from 0 to 100% and sMAPE ranges from 0 to 200%). In all cases,

the smaller the value the better.

444

1. Mean Absolute Error (MAE)

MAE =
1

m

m−1∑
t=0

|yt − ŷt| (11.5)

Problem: If yt is large, a difference of 10 may be negligible.

2. Root Mean Squared Error (RMSE)

RMSE =
√
[

1

m

m−1∑
t=0

(yt − ŷt)2

]
(11.6)

Problem: Same as for MAE plus can be overly influenced by outliers (or near outliers).

3. Mean Absolute Percentage Error (MAPE)

MAPE =
100

m

m−1∑
t=0

|yt − ŷt|
|yt|

(11.7)

Problem: If some values for yt are 0, it will return infinity. Also, an upward shift of the values will

reduce/improve the score (e.g, changing from Celsius to Kelvins)

4. symmetric Mean Absolute Percentage Error (sMAPE)

sMAPE =
200

m

m−1∑
t=0

|yt − ŷt|
|yt|+ |ŷt|

(11.8)

Problem: Same problem, but to a lesser degree, as both yt and ŷt need to be zero. Also, an upward

shift of the values will reduce the score.

5. Mean Absolute Scaled Error (MASE)

MASE =
MAE

MAE n
(11.9)

where the denominator is the MAE for the Näıve Model (Simple Random Walk) that is used as the

standard baseline model to compare other models with.

MAE n =
1

m− 1

m−1∑
t=1

|yt − yt−1| (11.10)

While the standard baseline model for prediction is the Null Model (guess the mean), it tends not to

perform well for time series forecasting, so the Näıve Model (guess the previous value) is used in its

place. Therefore, MASE measures how well the forecasting model works relative to the Näıve Model.

When MASE is 1, the model performance is on par with the Näıve Model, values below 1 are better

and values above 1 are worse. Note, for long horizon forecasts MASE values above 1 are likely to

happen.

445

11.2 Baseline Models: Random Walk, Null and Trend Models

There are three simple baseline models for time series data: the Random Walk, the Null Model and the

Trend Model. These models are very simple and serve as baselines for other forecasting models to compete

against.

11.2.1 Random Walk Model

The physical property of inertia would suggest that many processes may be accurately modeled as a Random

Walk, at least in the short run. The Random Walk Model (or Näıve Model) states the future value yt+1

may be modeled as the current value yt disturbed by white noise εt+1.

yt+1 = yt + εt+1 (11.11)

Notice that this model has no parameters to estimate and as such is considered to be a baseline model for

more sophisticated models to improve upon. If they cannot, their value is questionable.

11.2.2 White Noise

A stochastic process {εt|t ∈ {0, . . . ,m− 1}} is said to be white noise if

E [εt] = 0 zero mean (11.12)

E
[
εt

2
]

= σ2 constant variance (11.13)

E [εtεt−k] = 0 for k ≥ 1 uncorrelated (11.14)

Several distributions may be used to generate white noise with the most common being the Gaussian (Normal)

distribution, N(0, σ2I).

11.2.3 Detecting Random Walks

To determine whether a stochastic process is a random walk, take its first difference.

y′t = yt − yt−1 = εt (11.15)

Then apply the Ljung-Box Test to see if it qualifies as white noise.

q = m(m+ 2)

h∑
k=1

ρ2
k

m− k
∼ χ2

h (11.16)

where ρk is the k-lag autocorrelation and m is the length of the time series. Large values for q indicate

significant autocorrelation. Hyndman [84] recommends that the number of lags h be 10 for non-seasonal

processes. See the section on SARIMA for a discussion of seasonal models.

446

11.2.4 RandomWalk Class

Class Methods:

1 @param y the response vector (time series data)

2 @param tt the time vector , if relevant (time index may suffice)

3 @param hparam the hyper -parameters (none => use null)

4

5 class RandomWalk (y: VectorD , tt: VectorD = null , hparam: HyperParameter = null)

6 extends Forecaster (y, tt, hparam)

7 with Correlogram (y)

8 with Fit (dfm = 1, df = y.dim - 1):

9

10 def train (x_null: MatrixD , y_ : VectorD): Unit =

11 def test (x_null: MatrixD , y_ : VectorD): (VectorD , VectorD) =

12 def testF (h: Int , y_ : VectorD): (VectorD , VectorD) =

13 def predict (t: Int , y_ : VectorD): Double = y_(t)

14 def forecast (t: Int , yf: MatrixD , y_ : VectorD , h: Int): VectorD =

15 def forecastAt (yf: MatrixD , y_ : VectorD , h: Int): VectorD =

11.2.5 Null Model

A simpler baseline modeling technique that is typically not as accurate as RandomWalk is the NullModel.

The Null Model (or Mean Model) simply always forecasts future values to be equal to the training mean.

When the process mean is stable over time, this a reasonable baseline model to consider.

yt+1 = µy + εt+1 (11.17)

where µy is the mean of the response variable estimated from the training set. For in-sample assessment it is

computed over the full dataset. For out-of-sample assessment using rolling validation, each retraining may

produce a slightly different value for the mean. See the section on Rolling Validation.

11.2.6 NullModel Class

Class Methods:

1 @param y the response vector (time series data)

2 @param tt the time vector , if relevant (time index may suffice)

3 @param hparam the hyper -parameters (none => use null)

4

5 class NullModel (y: VectorD , tt: VectorD = null , hparam: HyperParameter = null)

6 extends Forecaster (y, tt, hparam)

7 with Correlogram (y)

8 with Fit (dfm = 0, df = y.dim - 1):

9

10 def train (x_null: MatrixD , y_ : VectorD): Unit =

11 def test (x_null: MatrixD , y_ : VectorD): (VectorD , VectorD) =

12 def testF (h: Int , y_ : VectorD): (VectorD , VectorD) =

447

13 override def parameter: VectorD = VectorD (mu)

14 def predict (t: Int , y_ : VectorD): Double = mu

15 def forecast (t: Int , yf: MatrixD , y_ : VectorD , h: Int): VectorD =

16 def forecastAt (yf: MatrixD , y_ : VectorD , h: Int): VectorD =

11.2.7 Trend Model

When the process mean changes over time, a (Linear) Trend Model will usually work better than the Null

Model. While the Null Model produces a forecasting line with slope 0, as its generalization, the Trend Model

allows positive (trending up) or negative slopes (trending down). The predictions/forecasts are made based

on the following linear model of time t.

yt+1 = b0 + b1(t+ 1) + εt+1 (11.18)

where b0 is the intercept and b1 is the slope. The SimpleRegression class can be used to estimate the

parameter/coefficient vector b = [b0, b1].

Of course, the more sophisticated trend models (e.g., quadratic) may be applied, but these are usually not

considered baseline. Also, care must be taken for these complex models when applied over long forecasting

horizons as higher order terms may become unrealistically large.

11.2.8 TrendModel Class

Class Methods:

1 @param y the response vector (time series data)

2 @param tt the time vector (required for the trend model)

3 @param hparam the hyper -parameters (none => use null)

4

5 class TrendModel (y: VectorD , tt: VectorD , hparam: HyperParameter = null)

6 extends Forecaster (y, tt, hparam)

7 with Correlogram (y)

8 with Fit (dfm = 1, df = y.dim - 1):

9

10 def train (x_null: MatrixD , y_ : VectorD): Unit =

11 def test (x_null: MatrixD , y_ : VectorD): (VectorD , VectorD) =

12 def testF (h: Int , y_ : VectorD): (VectorD , VectorD) =

13 override def parameter: VectorD = b

14 def predict (t: Int , y_ : VectorD): Double = reg.predict (VectorD (1, t))

15 def forecast (t: Int , yf: MatrixD , y_ : VectorD , h: Int): VectorD =

16 def forecastAt (yf: MatrixD , y_ : VectorD , h: Int): VectorD =

11.2.9 Forecasting Lake Levels - Battle of the Baselines

As a simple example, run and compare the three baseline modeling techniques, RandomWalk, NullModel and

TrendModel on the Lake Level Time Series Dataset. The three baseline models are compared based on their

448

in-sample Quality of Fit (Qof) measures. See the exercises for out-of-sample quality assessment.

1 @main def randomWalkTest2 (): Unit =

2

3 import Example_LakeLevels .{t, y}

4

5 banner (s"Tests: RandomWalk on LakeLevels Dataset")

6 val mod = new RandomWalk (y) // create a Random Walk Model

7 mod.trainNtest ()() // train -test model on full data

8

9 banner (s"Tests: NullModel on LakeLevels Dataset")

10 val nm = new NullModel (y) // create a Null Model

11 nm.trainNtest ()() // train -test model on full data

12

13 banner (s"Tests: TrendModel on LakeLevels Dataset")

14 val tm = new TrendModel (y) // create a Trend Model

15 tm.trainNtest ()() // train -test model on full data

16

17 banner ("Select model based on ACF and PACF")

18 mod.plotFunc (mod.acF , "ACF") // Auto -Correlation Function (ACF)

19 mod.plotFunc (mod.pacF , "PACF") // Partial Auto -Correlation Func.

20

21 end randomWalkTest2

Note, computation of mase requires the first value of y (y(0)) which is eliminated by the test method as it

aligns the time series y and yp. Hence, mase is computed separately from the other QoF measures.

Results from Random Walk

In the plot, the forecasts (in red) simply follow the actual values (in black) with a one-step delay. The report

for RandomWalk shows the quality of fit.

REPORT

--

modelName mn = RandomWalk

--

hparameter hp = null

--

features fn = Array(no-x features)

--

parameter b = VectorD()

--

fitMap qof = LinkedHashMap(rSq -> 0.676806, rSqBar -> 0.673440, sst -> 166.664699,

sse -> 53.865000, mse0 -> 0.555309, rmse -> 0.745191, mae -> 0.585567, dfm -> 1.000000,

df -> 96.000000, fStat -> 201.035387, aic -> -105.107880, bic -> -99.958458,

mape -> 0.101146, smape -> 0.101154)

--

mase = 1.0

In particular, the R2 is 0.676806, the Mean Absolute Error (MAE) is 0.585567, the Mean Absolute Percentage

Error (MAPE) is 0.101146, the symmetric MAPE is 0.101154, and the Mean Absolute Scaled Error (MASE)

449

is 1.0 (as expected).

Results from Null Model

In the plot, the forecasts (in red) are a flat line that cuts the actual values (in black) in the middle (mean).

The report for NullModel shows a reduced quality of fit.

REPORT

--

modelName mn = NullModel

--

hparameter hp = null

--

features fn = Array(no-x features)

--

parameter b = VectorD(578.990)

--

fitMap qof = LinkedHashMap(rSq -> 0.000000, rSqBar -> 0.000000, sst -> 166.664699,

sse -> 166.664699, mse0 -> 1.718193, rmse -> 1.310799, mae -> 1.057230, dfm -> 1.000000,

df -> 96.000000, fStat -> 0.000000, aic -> -159.888779, bic -> -154.739357,

mape -> 0.182630, smape -> 0.182614)

--

mase = 1.805481

In this case, the R2 is 0.0 (as expected), the Mean Absolute Error (MAE) is 1.057230, the Mean Absolute

Percentage Error (MAPE) is 0.182630, the symmetric MAPE is 0.182614, and the Mean Absolute Scaled

Error (MASE) is 1.805481.

Results from Trend Model

In the plot, the forecasts (in red) are a flat line that cuts the actual values (in black) in the middle (mean).

The report for TtendModel shows a reduced quality of fit.

REPORT

--

modelName mn = TrendModel

--

hparameter hp = null

--

features fn = Array(no-x features)

--

parameter b = VectorD(580.169,-0.0240708)

--

fitMap qof = LinkedHashMap(rSq -> 0.264379, rSqBar -> 0.264379, sst -> 166.664699,

sse -> 122.602045, mse0 -> 1.263939, rmse -> 1.124250, mae -> 0.920808, dfm -> 1.000000,

df -> 96.000000, fStat -> 34.501992, aic -> -144.997325, bic -> -139.847903,

mape -> 0.159076, smape -> 0.159073)

450

--

mase = 1.572507

For the final baseline model, the R2 is 0.264379, the Mean Absolute Error (MAE) is 0.920808, the Mean

Absolute Percentage Error (MAPE) is 0.159076, the symmetric MAPE is 0.159073, and the Mean Absolute

Scaled Error (MASE) is 1.572507

Figure 11.1 shows in-sample, one-step ahead forecasting plots, where the actual values y are shown in

red, Random Walk forecasts y-RW are shown in green, Null Model forecasts y-NM are shown in blue, and

Trend Model forecasts y-TM are shown in black.

Figure 11.1: Comparison of Baseline Time Series Models: Lake Level vs. Year

Notice that y-RW follows the actual time series value with a lag of one time unit, while y-NM and y-TM are

straight lines, with the former being a horizontal line at the mean value for the time series and the latter

showing negative slope indicating a downward trend.

451

A useful time series model should have a MASE smaller than minimum of the values from the three

baselines (RandomWalk, NullModel and TrendModel).

11.2.10 Exercises

1. Generate Gaussian white noise with a variance of one and plot it.

1 val noise = Normal (0, 1)

2 val y = VectorD (for i <- 0 until 100 yield noise.gen)

3 new Plot (null , y, null , "white noise")

2. Create a Random Walk model for the above white noise process, plot the process value vs. the

forecasted value and assess the Quality of Fit (QoF). Also, examine the Auto-Correlation Function

(ACF) plot. What would it mean if a peak in the ACF plot was outside the error bands. Ignore

the first value corresponding to the zeroth lag where the correlation ρ0 should one and the partial

correlation ψ00 should be zero.

1 val mod = new RandomWalk (y) // time series model

2 mod.trainNtest ()() // train -test model on full dataset

3 mod.plotFunc (mod.acF , "ACF")

Note: plotFunc includes error bands/confidence intervals.

3. For the Lake-Level Dataset, apply the Ljung-Box Test to see if yt or εt are white noise. Determine the

values for q for each case and the 95% critical value of χ2
10.

1 import scalation.variate.Quantile.chiSquareInv

2 println (chiSquareInv (0.95, 10))

4. Give the model equations for a Random Walk with Drift. How is the drift parameter estimated? What

are its advantages?

5. Explain the results from the three baseline models, Random Walk, Null and Trend Models, for out-of

sample horizon h = 1 assessment show below. See the section on Rolling Validation for how out-of-

sample QoF measures are produced.

Random Walk: rollValidate: for horizon h = 1:

LinkedHashMap(rSq -> 0.511033, rSqBar -> 0.511033, sst -> 74.797020, sse -> 36.573300,

mse0 -> 0.746394, rmse -> 0.863941, mae -> 0.690000, dfm -> 1.000000, df -> 49.000000,

fStat -> 51.211192, aic -> -59.547204, bic -> -55.763564, mape -> 0.119283, smape -> 0.119301)

Null Model: rollValidate: for horizon h = 1:

LinkedHashMap(rSq -> -0.668405, rSqBar -> -0.668405, sst -> 74.797020, sse -> 124.791686,

mse0 -> 2.546769, rmse -> 1.595860, mae -> 1.313594, dfm -> 1.000000, df -> 49.000000,

fStat -> -19.630623, aic -> -90.603986, bic -> -86.820346, mape -> 0.227405, smape -> 0.227085)

Trend Model: rollValidate: for horizon h = 1:

452

LinkedHashMap(rSq -> -0.433676, rSqBar -> -0.463545, sst -> 74.797020, sse -> 107.234717,

mse0 -> 2.188464, rmse -> 1.479346, mae -> 1.255724, dfm -> 1.000000, df -> 48.000000,

fStat -> -14.519640, aic -> -89.187547, bic -> -85.403906, mape -> 0.216952, smape -> 0.217159)

6. Compare the three baseline models, Random Walk, Null and Trend Models, using out-of sample

assessment for h > 1 via the RollValidate object. See the section on Rolling Validation. What can

be said about the three baseline model as a group? What about the relative strengths of each baseline

modeling technique as the forecasting horizon increases?

7. Two of the three baseline models can be unified using the Simple Moving Average Model. While

RandomWalk takes the last value as the forecast, SimpleMovingAverage takes the average the last

q-values as the forecast.

1 @param y the response vector (time series data)

2 @param tt the time points , if needed

3 @param hparam the hyper -parameters

4

5 class SimpleMovingAverage (y: VectorD , tt: VectorD = null ,

6 hparam: HyperParameter = SimpleMovingAverage.hp)

7 extends Forecaster (y, tt, hparam)

8 with Correlogram (y)

9 with Fit (dfm = 1, df = y.dim - 1):

Show that for q = 1, SimpleMovingAverage gives the same results as RandomValk, while as q becomes

large, it approximates the results of the Mean Model, i.e., NullModel.

8. Consider a stochastic process generated from a Random Walk with y0 = 0 and εt+1 ∼ N(0, σ2)

yt+1 = yt−1 + εt+1 (11.19)

Show that E [yt] = 0 and V [yt] = t σ2. The fact that the variance grows linearly in time shows that an

Random Walk is not a covariance stationary process (see the section on ARIMA).

453

11.3 Simple Exponential Smoothing

The basic idea of Simple Exponential (SES) is to start with Random Walk,

ŷt+1 = yt (11.20)

but stabilize/smooth out the forecast by maintaining a state variable the summarizes the past.

The state variable st+1 is a weighted combination of the most recent value yt and the most recent value

of the state variable st. The forecasted value ŷt+1 is taken as the value of the state variable st+1.

st+1 = α yt + (1− α)st (11.21)

ŷt+1 = st+1 (11.22)

The state variable may be initialized as the initial value of the time series (other options include taking an

average or letting it be a second parameter passed to an optimizer).

s0 = y0 (11.23)

The parameter α ∈ [0, 1] is referred to as the smoothness parameter. When α = 1, SES becomes Random

Walk as older values in the time series are ignored. When α = 0, SES the state remains locked at its initial

value. Thus, α ∈ (0, 1] is a more practical range.

The reason it is called exponential smoothing is that the impact of older values in the time series decreases

exponentially.

11.3.1 Model Equation

The model equation indicates that next forecasted value (one step ahead) is the value of the state variable

plus a random element/shock.

yt+1 = st+1 + εt+1 (11.24)

11.3.2 Training

For SES, one may minimize the sum of squared errors (sse). The error at time t is given by

εt = yt − ŷt (11.25)

In vector form ε = [ε0 . . . , εm−1], the equation becomes,

ε = y − ŷ (11.26)

A loss function L(α) = sse = ε · ε may be minimized to determine the parameter α (alternatively, both s0

and α).

L(α) = (y − ŷ) · (y − ŷ) (11.27)

In ScalaTion, the train method is used to find an optimal value for α (a).

454

1 override def train (x_null: MatrixD , y_ : VectorD): Unit =

2

3 def f_obj (x: VectorD): Double = (y_ - smooth (x(0), y_)).normSq

4

5 if opt then

6 val optimizer = new L_BFGS_B (f_obj , l = lo, u = up) // Quasi -Newton optimizer

7 val opt = optimizer.solve (VectorD (a), toler = TOL) // optimize value for a

8 a = (opt._2)(0) // pull from result

9 end if

10 s = smooth (a) // predicted values

11 end train

y holds the vector of yt values, while smooth calculates ŷt

11.3.3 Effect of the Smoothing Parameter

As the smoothing parameter α get smaller, the forecast curve becomes more smooth, as shown in the plot

produced by the following code applied to the Lake Level database.

1 @main def simpleExpSmoothingTest5 (): Unit =

2

3 import Example_LakeLevels .{t, y}

4

5 val mod = new SimpleExpSmoothing (y) // time series model

6 mod.toggleOpt () // switch auto optimization off

7

8 for i <- 0 to 5 do

9 val a = i.toDouble / 5.0

10 banner (s"Build SimpleExpSmoothing model with a = $a")

11 mod.reset (a)

12 mod.train (null , y) // train the model on full dataset

13 val (yp, qof) = mod.test (null , y) // test the model on full dataset

14 println (mod.report (qof)) // report on Quality of Fit (QoF)

15 end for

16

17 end simpleExpSmoothingTest5

11.3.4 SimpleExpSmoothing Class

Class Methods:

1 @param y the response vector (original time series data)

2 @param tt the time vector , if relevant (time index may suffice)

3 @param hparam the hyper -parameters

4

5 class SimpleExpSmoothing (y: VectorD , tt: VectorD = null ,

6 hparam: HyperParameter = SimpleExpSmoothing.hp)

7 extends Forecaster (y, tt, hparam)

8 with Correlogram (y)

9 with Fit (dfm = 1, df = y.dim - 1):

10

11 def reset (a: Double): Unit = α = a

12 def toggleOpt (): Unit = opt = ! opt

455

13 def smooth (a: Double = α, y_ : VectorD = y): VectorD =

14 def train (x_null: MatrixD , y_ : VectorD): Unit =

15 def test (x_null: MatrixD , y_ : VectorD): (VectorD , VectorD) =

16 def testF (h: Int , y_ : VectorD): (VectorD , VectorD) =

17 override def parameter: VectorD = VectorD (α)

18 def predict (t: Int , y_ : VectorD): Double = s(t+1)

19 override def predictAll (y_ : VectorD): VectorD = s

20 def forecast (t: Int , yf: MatrixD , y_ : VectorD , h: Int): VectorD =

21 def forecastAt (yf: MatrixD , y_ : VectorD , h: Int): VectorD =

22 def forecastAll (h: Int , y_ : VectorD): MatrixD =

11.3.5 Exercises

1. Test customized (α = 0.5) vs. optimized (α optimizer determined) smoothing on the following synthetic

data.

1 @main def simpleExpSmoothingTest3 (): Unit =

2

3 val m = 50

4 val r = Random ()

5 val y = VectorD (for i <- 0 until m yield i + 10.0 * r.gen)

6

7 val mod = new SimpleExpSmoothing (y) // smooth time series data: y vs.

t

8

9 banner ("Customized Simple Exponential Smoothing")

10 mod.smooth (0.5) // use customized parameters , don

’t train

11 val (yp, qof) = mod.test (null , y) // test the model on full dataset

12 println (mod.report (qof)) // report on Quality of Fit (QoF)

13 println (s"mase = $Fit.mase (y, yp)}")

14

15 banner ("Optimized Simple Exponential Smoothing")

16 mod.train (null , y) // train to use optimal α

17 val (yp2 , qof2) = mod.test (null , y) // test the model on full dataset

18 println (mod.report (qof2)) // report on Quality of Fit (QoF)

19 println (s"mase = $Fit.mase (y, yp2)}")

20

21 end simpleExpSmoothingTest3

2. For some optimization software it is necessary to pass in an objective function and derivative func-

tion(s). For this type of optimization, ŷ needs to be replaced.

ŷt = αyt−1 + α(1− α)yt−2 + α(1− α)2yt−3 + . . . (11.28)

As a sum this becomes,

ŷt = α

t−1∑
k=0

(1− α)kyt−1−k (11.29)

456

Therefore, the loss function is expressed as a double sum.

L(α) =

m−1∑
t=0

[
yt − α

t−1∑
k=0

(1− α)kyt−1−k

]2

(11.30)

Create a formula for the derivative of L(α) and pass the function and its derivative into the NewtonRaphson

class found in the scalation.optimization package to find an optimal value for α.

457

11.4 Auto-Regressive (AR) Models

In order to predict future values for a response variable y, the obvious thing to do is to find variables that

may influence the value of y. The most obvious is prior (or lagged) values of itself. Often, other variables

may be helpful as well, some of which may be time series themselves. Given the variety of information

potentially available, it should not be surprising that there are numerous modeling techniques used for time

series forecasting [20, 84].

One of the simplest types of forecasting models of the form given in the first section of this chapter is

to make the future value yt+1 be linearly dependent on the last p values of y. In particular, a pth-order

Auto-Regressive AR(p) model predicts the next value yt+1 from the sum of the last p values each weighted

by its own coefficient/parameter φj ,

yt+1 = δ + φ ·← yt−p′:t + εt+1 (11.31)

where

• p′ = p− 1

• ·← is the dot product with the second argument reversed,

• the parameter vector φ = [φ0, . . . , φp′],

• the slice of the past p values yt−p′:t−1 = [yt−p′ , . . . , yt],

• the constant/intercept/drift δ = µ(1− 1 · φ), and

• the error/noise represented by εt+1.

This equation may be expanded out into

yt+1 = δ + φ0yt + φ1yt−1 + . . . + φp′yt−p′ + εt+1 (11.32)

εt represents noise that shocks the system at each time step. We require that E [εt] = 0, V [εt] = σ2
ε , and

that all the noise shocks be independent.

Zero-Centered

To better capture the dependency, the data can be zero-centered, which can be accomplished by subtracting

the mean µ, zt = yt − µ.

zt+1 = φ0zt + φ1zt−1 + . . . + φp′zt−p′ + εt+1 (11.33)

Notice that since zt is zero-centered, δ drops out (see exercises) and the formulas for the mean, variance and

covariance are simplified.

E [zt] = 0 (11.34)

V [zt] = E
[
zt

2
]

= γ0 (11.35)

C [zt, zt−k] = E [ztzt−k] = γk (11.36)

Recall that covariance C [x, y] = E [(x− µx)(y − µy)].

458

11.4.1 AR(1) Model

When the future is mainly dependent only on the most recent value, e.g., ρ1 is high and rest ρ2, ρ3, etc. are

decaying, then an AR(1) model may be sufficient.

zt+1 = φ0zt + εt+1 (11.37)

An estimate for the parameter φ0 may be determined from the Auto-Correlation Function (ACF).

Solving for the φ0 Parameter

Take this equation from zt and multiply it by zt−k.

ztzt−k = φ0zt−1zt−k + εtzt−k

Taking the expected value of the above equation gives,

E [ztzt−k] = φ0E [zt−1zt−k] + E [εtzt−k] (11.38)

Using the definition for γk given above for k ≥ 1, this can be rewritten as

γk = φ0γk−1 + 0

The zero is due to the fact that E [εtzt−k] = C [εt, zt−k] and past value zt−k is independent of future noise

shock εt. Now dividing by the variance γ0 yields

ρk = φ0ρk−1 (11.39)

An estimate for parameter φ0 may be easily determined by simply setting k = 1 in the above equation.

φ0 = ρ1 (11.40)

Furthermore, ρ0 is 1 and

ρk = φk0 for |φ0| < 1 (11.41)

Solving for the Noise Variance

When k = 0, multiplying by zt gives,

E [ztzt] = φ0E [zt−1zt] + E [εtzt] (11.42)

Using gamma notation and replacing zt with ẑt + εt yields

γ0 = φ0γ1 + E [εt(ẑt + εt)]

Since ẑt is independent of εt, the last term becomes E [εtεt] and as γ1 = γ0ρ1, the variance of the noise may

be written as follows:

σ2
ε = V [εt] = γ0(1− φ0ρ1) = γ0(1− φ2

0) (11.43)

459

11.4.2 AR(p) Model

The zero-centered model equation for an AR(p) model includes the past p values.

zt+1 = φ0zt + φ1zt−1 + . . . + φp′zt−p′ + εt+1

The forecasted value for one step ahead (h = 1) is calculated as follows:

ẑt+1 = φ0zt + φ1zt−1 + . . . + φp′zt−p′

Using the reverse dot product the equation becomes,

ẑt+1 = φ ·← zt−p′:t (11.44)

This is depicted in Figure 11.2 that shows each subsequent parameter is paired with a value from the time

series which is farther back in time. The paired values are multiplied and their products are summed to

provide the next forecasted value.

z0 z1 z2 z3 z4 ẑ5

φ0 φ1 φ2

+

Figure 11.2: AR(p) Model with p = 3

As with convolutional filters, the parameter vector φ, can slide along the zero-centered time series zt to

compute forecasted values ẑt. To obtain forecasted values for the original time series, simply add back the

mean,

yt+1 = zt+1 + µ (11.45)

Determining Parameter Values from the ACF

Working with the zero-centered equations, one can derive a system of linear equations to solve for the

parameters. First, multiplying zt by zt−k gives

ztzt−k = φ0zt−1zt−k + φ1zt−2zt−k + . . . + φp−1zt−pzt−k + εtzt−2

and then taking the expectation produces

γk = φ0γk−1 + φ1γk−2 + . . . + φp−1γk−p

460

Dividing by γ0 yields equations relating the parameters and correlations,

ρk = φ0ρk−1 + φ1ρk−2 + . . . + φp−1ρk−p (11.46)

These equations contains p unknowns and by letting k = 1, 2, . . . , p, it can be used to generate p equations,

or one matrix equation.

Yule-Walker Equations

The equations below are known as the Yule-Walker equations. Note that ρ−j = ρj , ρ0 equals 1, and k

advances row by row.

ρ1 = φ0ρ0 + φ1ρ1 + . . . + φp−1ρp−1

ρ2 = φ0ρ1 + φ1ρ0 + . . . + φp−1ρp−2

. . .

ρp = φ0ρp−1 + φ1ρp−2 + . . . + φp−1ρ0

Letting ρ be the p-dimensional vector of lag auto-correlations and φ be the p-dimensional vector of param-

eters/coefficients, we may concisely write

ρ = Rφ (11.47)

where R is a p-by-p symmetric Toeplitz (one value per diagonal) matrix of correlations with ones on the

main diagonal.

R =

1 ρ1 . . . ρp−2 ρp−1

ρ1 1 . . . ρp−3 ρp−2

.

ρp−2 ρp−3 . . . 1 ρ1

ρp−1 ρp−2 . . . ρ1 1

 (11.48)

One way to solve for the parameter vector φ is to take the inverse (or use related matrix factorization

techniques).

φ = R−1 ρ (11.49)

The noise variance σ2
ε is given by (see exercises)

σ2
ε = γ0(1− ρ · φ) = γ0(1− ρ

ᵀ

R−1ρ) (11.50)

Due to the special structure of the R matrix, more efficient techniques may be used, see the next subsection.

461

Equations for AR(2)

The ρ = Rφ equation for an AR(2) model becomes the following:

[
ρ1

ρ2

]
=

[
1 ρ1

ρ1 1

][
φ0

φ1

]
An easy way to solve for φ is to apply LU Factorization using the augmented matrix below.[

1 ρ1 ρ1

ρ1 1 ρ2

]

11.4.3 Training

The steps in training include computing the Auto-Correlation Function, executing the Durbin-Levinson

algorithm, and zero-centering the response. The train method of the AR class is implemented as follows:

1 def train (x_null: MatrixD , y_ : VectorD): Unit =

2 m = y_.dim // length of relevant time series

3 resetDF (pnq , m - pnq) // reset the degrees of freedom

4 makeCorrelogram (y_) // correlogram computes psi matrix

5 φ = psiM(p)(1 until p+1) // coefficients = p-th row , columns 1..p

6 δ = statsF.mu * (1 - φ.sum) // compute drift/intercept

7 end train

The drift δ is computed from the mean and the values of the φ. The parameter/coefficient vector φ can be

estimated using multiple training algorithms/estimation procedures [194]:

1. Method of Moments (MoM). The first two moments, mean and covariance, are used in the Yule-

Walker Method. In particular the auto-correlations in ACF are used.

2. Maximum Likelihood Estimation (MLE). Minimize the negative log-likelihood. See the ARMA

section.

3. Least Squares Estimation (LSE). Minimize the conditional sum of squared errors. See the ARMA

section.

In ScalaTion, the coefficients φ are estimated using the Durbin-Levinson algorithm and extracted from

the pth row of the ψ (psi) matrix. Define ψkj to be φj for an AR(k) model. Letting k range up to p allows

the φj parameters to be calculated. Letting k range up to the maximum number of lags (ml) allows the

Partial Auto-Correlation Function (PACF) to be computed.

Invoke the durbinLevinson method [151] passing in the auto-covariance vector γ (g) and the maximum

number of lags (ml). From 1 up to the maximum number of lags, iteratively compute the following:

ψkk =
γk − Σk−1

j=1ψk−1,j γk−j

rk−1

ψkj = ψk−1,j − ψkk ψk−1,k−j

rk = rk−1(1− ψ2
kk)

462

1 def durbinLevinson (g: VectorD , ml: Int): MatrixD =

2 val ψ = new MatrixD (ml+1, ml+1) // psi matrix (ml = max lags)

3 val r = new VectorD (ml+1); r(0) = g(0)

4

5 for k <- 1 to ml do // range up to max lags

6 var sum = 0.0

7 for j <- 1 until k do sum += ψ(k-1, j) * g(k-j)

8 val a = (g(k) - sum) / r(k-1)

9 ψ(k, k) = a

10 for j <- 1 until k do ψ(k, j) = ψ(k-1, j) - a * ψ(k-1, k-j)

11 r(k) = r(k-1) * (1 - a * a)

12 end for

13 ψ

14 end durbinLevinson

In particular, ψkk is the k-lag partial auto-correlation and the parameter vector is

φ = ψp the pth row of the Ψ matrix (11.51)

Partial Auto-Correlation Function

The Partial Auto-Correlation Function (PACF) that is extracted from the main diagonal of the Ψ matrix and

can be used along with ACF to select the appropriate type of model. As k increases, the k-lag auto-correlation

ρk will decrease and eventually adding more parameters/coefficients will become of little help.

Deciding where to cut off the model based on ρk from the ACF is somewhat arbitrary, but the k-lag

partial auto-correlation ψkk drops toward zero more abruptly giving a stronger signal as to what model

to select. The partial auto-correlation differs from auto-correlation in that it removes indirect correlation.

For example, if ρ1 = .7, one would expect ρ2 to equal ρ2
1 = .49 as yt−2 is correlated with yt−1 and yt−1 is

correlated with yt. The 2-lag partial auto-correlation ψ22 measures whether there is any direct correlation

between yt−2 and yt. For this example, when p2 = .49, ψ22 = 0 indicating no direct correlation and implying

that the φ1zt−1 term need not be included in the model.

zt+1 = φ0zt + φ1zt−1 + εt+1

See the exercises and the ARMA section for more details.

11.4.4 Forecasting

After the parameters/coefficients have been estimated as part of the train method, the AR(p) model can

be used for forecasting.

1 @main def aRTest4 (): Unit =

2

3 val m = y.dim // number of data points

4 val hh = 2 // maximum forecasting horizon

5

6 banner (s"Test Forecasts: AR(1) on LakeLevels Dataset")

7 val mod = new AR (y) // create time series AR(1) model

8 mod.trainNtest ()() // train -test model on full dataset

9

463

10 val yf = mod.forecastAll (y, hh) // forecast h-steps ahead (1..hh)

11 println (s"y.dim = ${y.dim}, yp.dim = ${yp.dim}, yf.dims = ${yf.dims}")

12 assert (yf(?, 0)(0 until m) == y) // col 0 must agree with actual values

13 differ (yf(?, 1)(1 until m), yp)

14 assert (yf(?, 1)(1 until m) == yp) // col 1 must agree with 1 step pred.

15

16 for h <- 1 to hh do

17 val (yfh , qof) = mod.testF (h, y)

18 val yy = y(h until m)

19 println (s"Evaluate QoF for horizon $h:")

20 println (FitM.fitMap (qof , QoF.values.map (_.toString)))

21 println (s"Fit.mae (y, yfh , h) = ${Fit.mae (y, yfh , h)}")

22 println (s"Fit.mae_n (y, 1) = ${Fit.mae_n (y, 1)}")

23 println (s"Fit.mase (y, yfh , h) = ${Fit.mase (y, yfh , h)}")

24 end for

25

26 end aRTest4

Prediction may be thought of as a one-step ahead forecast.

ŷt+1 = φ0yt + . . . + φp′yt−p′ (11.52)

ScalaTion will not predict a value corresponding to y0 (although some packages offer the option of back-

casting). When p is greater than 1, it repeats the y0 value into negative times, hence the y (max (0, t-j))

factor.

1 @param t the time point from which to make prediction

2 @param y_ the actual values to use in making predictions

3

4 def predict (t: Int , y_ : VectorD): Double =

5 var sum = δ // intercept

6 for j <- 0 until p do sum += φ(j) * y_(max (0, t-j)) // add φjyt−j
7 sum

8 end predict

Multi-horizon forecasting is more challenging than one-step ahead predictions. When the forecasting

horizon h > 1,

ŷt+h = φ0ŷt+h−1 + . . . + φh−1yt + . . . + φp′yt+h−p (11.53)

As h increases, fewer actual values are used to make the forecast. The forecastAt method makes forecasts

for horizon h. It uses the last p actual values to make the first forecast, and then uses the last p− 1 actual

values and the first forecast to make the next forecast. As expected, the quality of the forecast will degrade

as h gets larger.

1 @param yf the forecasting matrix (time x horizons)

2 @param y_ the actual values to use in making forecasts

3 @param h the forecasting horizon , number of steps ahead to produce forecasts

4

5 def forecastAt (yf: MatrixD , y_ : VectorD , h: Int): VectorD =

6 if h < 1 then flaw ("forecastAt", s"horizon h = $h must be at least 1")

7 for t <- y_.indices do // make forecasts over time horizon h

8 val t1 = t + h - 1 // time point prior to horizon

9 var sum = δ

464

10 for j <- 0 until p do sum += φ(j) * yf(max (0, t1-j), max (0, h-1-j))

11 yf(t+h, h) = sum // forecast down the diagonal

12 end for

13 yf(?, h) // return h-step ahead forecast vector

14 end forecastAt

The forecasting matrix yf is required since the next horizon’s forecasts depends on those from the previous

horizon (the forecastAll method in the Forecaster traits sorts all this out).

11.4.5 AR Class

Class Methods:

1 @param y the response vector (time series data)

2 @param tt the time vector , if relevant (time index may suffice)

3 @param hparam the hyper -parameters

4

5 class AR (y: VectorD , tt: VectorD = null , hparam: HyperParameter = SARIMAX.hp)

6 extends Forecaster (y, tt, hparam)

7 with Correlogram (y)

8 with Fit (dfm = hparam("p").toInt , df = y.dim - hparam("p").toInt):

9

10 def train (x_null: MatrixD , y_ : VectorD): Unit =

11 def test (x_null: MatrixD , y_ : VectorD): (VectorD , VectorD) =

12 def testF (h: Int , y_ : VectorD): (VectorD , VectorD) =

13 override def parameter: VectorD = φ :+ δ

14 def predict (t: Int , y_ : VectorD): Double =

15 def forecast (t: Int , yf: MatrixD , y_ : VectorD , h: Int): VectorD =

16 def forecastAt (yf: MatrixD , y_ : VectorD , h: Int): VectorD =

11.4.6 Exercises

1. Compute ACF for the Lake Level time series dataset. For AR(1) set parameter φ0 to ρ1, the first lag

auto-correlation. Compute ŷt by letting ŷ0 = y0 and for k <- 1 until y.dim

zt = yt − µ

ŷt = ρ1zt−1 + µ

Plot ŷt and yt versus t.

2. Consider the following AR(2) Model.

zt = φ0zt−1 + φ1zt−2 + εt

Derive the following equation:

465

ρk = φ0ρk−1 + φ1ρk−2

Setting k = 1 and then k = 2 produces two equations which have two unknowns φ0 and φ1. Solve

for φ0 and φ1 in terms of the first and second lag auto-correlations, ρ1 and ρ2, by completing the LU

Factorization of the Augmented Yule-Walker Matrix. Given these two formulas, plug in values for (a)

ρ1 and ρ2 for the Lake Level Dataset, see Table 11.1, (b) ρ1 = .7 and ρ2 = .6.

For both (a) and (b), compute ŷt by letting ŷ0 = y0, ŷ1 = y1 and for k <- 2 until y.dim

zt = yt − µ

ŷt = φ0zt−1 + φ1zt−2 + µ

Plot ŷt and yt versus t.

3. Use the ScalaTion class AR to develop Auto-Regressive Models for p = 1, 2, 3, for the Lake Level time

series dataset. Plot ŷt and yt versus t for each model. Also, compare the first two models with those

developed in the previous exercises.

4. Generate a dataset for an AR(p) model as follows:

1 val y = makeTSeries ()

Now create an AR(1) model, train it and show its report.

1 val mod = new AR (y)

2 mod.trainNtest ()()

Also, plot ŷt and yt versus t. Look at the ACF and PACF to see if some other AR(p) might be better.

1 mod.plotFunc (ar.acF , "ACF")

2 mod.plotFunc (ar.pacF , "PACF")

Choose a value for p and create an AR(p) model. Explain your choice of p. Also, plot ŷt and yt versus

t.

5. The k-lag auto-covariance is useful when the stochastic process {yt | t ∈ {0,m − 1}} is covariance

stationary.

γk = C [yt, yt−k]

When yt is covariance stationary, the covariance is only determined by the lag between the variables and

not where they occur in the time series, e.g., C [y4, y3] = C [y2, y1] = γ1. Thus, the covariance matrix

Γ is Toeplitz. Covariance stationarity also requires that E [yt] = µ, i.e., the mean is time invariant.

Repeat the previous exercise, but generate a time series from a process that is not covariance stationary.

What can be done to transform such a process into a covariance stationary process? Hint: read ahead

to the section on ARIMA models or additional reading such as [168], Chapter 23.

466

6. For a covariance stationary process yt, derive the relationship between the drift parameter δ and the

mean µ. Further, given an AR(p) model,

yt = δ + φ0yt−1 + φ1yt−2 + . . . + φp−1yt−p + εt

Show that δ drops out of the equation when zt + µ is substituted for yt in the above equation.

zt = φ0zt−1 + φ1zt−2 + . . . + φp−1zt−p + εt

7. Assume the time indexed, m dimensional vector y is a zero-centered, covariance stationary Gaussian

process N(0,Γ) having the following probability density function (pdf),

f(y;φ, σ2) = [(2π)mdetΓ]
− 1

2 e−
1
2y

tΓ−1y

Recall, that the covariance matrix for a covariance stationary process is Toeplitz, meaning

Γ = [γi−j]i,j=0,m−1

Write the likelihood and log-likelihood functions. Discuss how to create an algorithm for Maximum

Likelihood Estimation. Be sure to exploit the special structure of the covariance matrix.

8. Derive the formula for the noise variance σ2
ε = V [zt] = E [ztzt],

σ2
ε = γ0(1− ρ · φ)

from the following equation:

γ0 = φ0γ1 + φ1γ2 + . . . + φp−1γp + E [εtεt]

9. Create a process with φ0 and φ1 nonzero, such that ρ1 is approximately zero, while ρ2 is large. Compare

the Quality of Fit (QoF) of an AR(2) model versus an AR(1) model for this process. Must complete

the code before running.

1 val m = 100

2 val y = new VectorD (m)

3 val noise = Normal (0, 1)

4 val φ = VectorD (?, ?)

5 y(0) = noise.gen; y(1) = noise.gen

6 for t <- 2 until m do y(t) = φ(0) * y(t-1) + φ(1) * y(t-2) + noise.gen

Plot the ACF to view the auto-correlations.

10. An AR(1) process

yt+1 = δ + φ0yt + εt+1

is stationary, unit-root, or explosive, if |φ0| is less than, equal to, or greater than 1, respectively. Letting

y0 = 10, δ = 0, and noise = Normal (0, 1), examine the time evolution of the process for φ0 = .7,

1, and 2. Explain what is happening. Which ones are covariance stationary?

467

11. For the Lake Level Dataset, the first ten values for the ACF ρk and PACF ψkk are given in Table 11.1.

Table 11.1: Correlogram (ACF ρk, PACF ψkk) for the Lake Level Dataset

k ρk ψkk

0 1.000000 0.000000

1 0.840488 0.840488

2 0.622644 -0.285357

3 0.472722 0.147962

4 0.386269 0.032072

5 0.343057 0.069543

6 0.303435 -0.026385

7 0.285146 0.108148

8 0.287510 0.047882

9 0.283758 0.003677

10 0.203506 -0.237926

As AR extends Correlogram the ACF and PACF functions may be plotted. Any points inside the two

lines (upper and lower bounds) are of lesser significance.

1 @main def aRTest3 (): Unit =

2

3 banner (s"Test Predictions: AR(1) on LakeLevels Dataset ")

4 val mod = new AR (y) // create model for time series data AR(1)

5 mod.trainNtest ()() // train and test on full dataset

6

7 banner (" Select model based on ACF and PACF")

8 mod.plotFunc (mod.acF , "ACF") // Auto -Correlation Function (ACF)

9 mod.plotFunc (mod.pacF , "PACF") // Partial Auto -Correlation Function (PACF)

10

11 end aRTest3

Based on the values in Table 11.1 and the ACF and PACF plots, explain your choices of p for candidate

AR(p) models. Make a loop for p <- 1 to 10 do and check the QoF (R2, MAE, and sMAPE) for

your choices versus the other models. Justify your choices.

468

11.5 Moving-Average (MA) Models

The Auto-Regressive (AR) models predict future values based on past values. Let us suppose the daily values

for a stock are 100, 110, 120, 110, 90. To forecast the next value, one could look at these values or focus on

each days errors or shocks. Whether previous values of the time series (AR) or unexpected changes (MA)

(e.g., while predictions indicated that the Dow-Jones Industrial Average would continue its slow rise, news

of the its large drop has investor nervous) are more important depends on the situation. In the simplest case

an MA model is of the following form,

yt+1 = µ + θ0εt + εt+1

To make the data zero-centered, again let zt+1 = yt+1 − µ

zt+1 = θ0εt + εt+1 (11.54)

Errors are computed in the usual way.

εt+1 = yt+1 − ŷt+1

The forecast for the next time point t+1 is

ŷt+1 = µ+ θ0εt (11.55)

ẑt+1 = θ0εt (11.56)

that is, the mean of the process plus some fraction of yesterday’s shock. Let us assume that µ = 100 and

the parameter/coefficient θ0 had been estimated to be 0.8. Now, if the mean is 100 dollars and yesterday’s

shock was that stock went up an extra 10 dollars, then the new forecast would be 100 + 8 = 108 (day 2).

This can be seen more clearly in the Table 11.2.

Table 11.2: MA(1) Forecast Chart (to one decimal place)

t yt zt εt−1 ẑt = θ0εt−1 ŷt εt ε2t

0 100.0 0.0 - - - 0.0 0.0

1 110.0 10.0 0.0 0.0 100.0 10.0 100.0

2 120.0 20.0 10.0 8.0 108.0 12.0 144.0

3 110.0 10.0 12.0 9.6 109.6 0.4 0.2

4 90.0 -10.0 0.4 0.3 100.3 -10.3 106.1

The question of AR(1) versus MA(1) may be viewed as which column zt−1 or εt−1 leads to better forecasts.

It depends on the data, but considering the GDP example again, zt−1 indicates how far above or below the

mean the current GDP is. One could imagine shocks εt−1 to GDP, such as new tariffs, tax cuts or bad

weather being influencial shocks to the economy. In such cases, an MA model may provide better forecasts

than an AR model.

469

11.5.1 MA(q) Model

The model equation for an MA(q) model includes the past q values of εt.

yt+1 = δ + θ ·← εt−q′:t + εt+1 (11.57)

where q′ = q− 1, the parameter vector θ = [θ0, . . . , θq−1], the drift δ = µ, and the error/noise is represented

by εt+1. This may be expanded out into

yt+1 = µ + θ0εt + . . . + θq′εt−q′ + εt+1

Zero-Centered

Zero-centering the data zt = yt − µ produces

zt = θ0εt−1 + . . . + θq−1εt−q + εt (11.58)

In order to estimate the parameter vector θ = [θ0, . . . , θq−1], we would like to develop a system of

equations like the Yule-Walker equation. Proceeding likewise, the auto-covariance function for MA(q) is

γk = C [zt, zt−k] = E [zt, zt−k]

γk = E [(θ0εt−1 + . . . + θq−1εt−q + εt)(θ0εt−k−1 + . . . + θq−1εt−k−q + εt−k)] (11.59)

When k = 0

Letting k = 0 will give the variance γ0 = V [zt]

γ0 = E [(θ0εt−1 + . . . + θq−1εt−q + εt)(θ0εt−1 + . . . + θq−1εt−q + εt−k)]

Since the noise shocks are independent, i.e., C [εt, εu] = 0 unless t = u, many of the terms in the product

drop out.

γ0 = θ2
0E
[
εt−1

2
]

+ . . . + θ2
q−1E

[
εt−q

2
]

+ E
[
εt

2
]

The variance of the noise shocks is defined, for any t, to be V [εt] = E
[
εt

2
]

= σ2
ε , so

γ0 = (θ2
0 + θ2

1 + . . . + θ2
q−1 + 1)σ2

ε (11.60)

When k ≥ 1

For k ∈ [1, . . . , q], similar equations can be created, only with parameter index shifted so the noise shocks

match up.

γ1 = E [(θ0εt−1 + θ1εt−2 + . . . + θq−1εt−q + εt)(θ0εt−1−1 + θ1εt−1−2 + . . . + θq−1εt−1−q + εt−1)]

γ1 = (θ0 + θ1θ0 + θ2θ1 + . . . + θq−1θq−2)σ2
ε

470

γk = E [(θ0εt−1 + θ1εt−2 + . . . + θq−1εt−q + εt)(θ0εt−k−1 + θ1εt−k−2 + . . . + θq−1εt−k−q + εt−k)]

γk = (θk−1 + θkθ0 + θk+1θ1 + . . . + θq−1θq−k−1)σ2
ε (11.61)

As before the equation for the k-lag auto-correlation (part of the Auto-Correlation Function (ACF)) is simply

γk/γ0,

ρk = (θk−1 + θkθ0 + θk+1θ1 + . . . + θq−1θq−k−1)
σ2
ε

γ0
(11.62)

Notice that when k > q, the ACF will be zero. This is because only the last q noise shocks are included in

the model, so any earlier noise shocks before that are forgotten. MA processes will tend to exhibit a more

rapid drop off of the ACF compared to the slow decay for AR processes.

Unfortunately, the system of equations that can be generated from these equations are nonlinear. Con-

sequently, training is more difficult and less efficient.

11.5.2 Training

Training for MA(1)

Training for Moving-Average models is easiest to understand for the case of a single parameter θ0. In general,

training is about errors and so rearranging the MA equation gives the following:

et = zt − θ0et−1 (11.63)

Given a value for parameter θ0, this is a recursive equation that can be used to compute subsequent errors

from previous ones. Unfortunately, the equation cannot be used to compute the first error e0. One approach

to deal with indeterminacy of e0 is to assume (or condition on) it being 0.

e0 = 0 (11.64)

Note, this affects more than the first error, since the first affects the second and so on. Next, we may compute

a sum of squared errors, in this case called Conditional Sum of Squared Errors (denoted in ScalaTion as

csse.

csse =

m−1∑
t=0

e2
t =

m−1∑
t=1

(zt − θ0et−1)2 (11.65)

One way to find a near optimal value for θ0 is to minimize the Conditional Sum of Squared Error.

argminθ0

m−1∑
t=1

(zt − θ0et−1)2 (11.66)

As the parameter θ0 ∈ (−1, 1), an optimal value minimizing csse may be found using Grid Search. A more

efficient approach is to use the Newton method for optimization.

θi0 = θi−1
0 − d csse

dθ0
/
d2csse

dθ2
0

(11.67)

471

where

d csse

dθ0
= − 2

m−1∑
t=1

et−1(zt − θ0et−1)

d2 csse

dθ2
0

= 2

m−1∑
t=1

e2
t−1

Substituting gives

θi0 = θi−1
0 +

m−1∑
t=1

et−1(zt − θ0et−1)/

m−1∑
t=1

e2
t−1 (11.68)

Maximum Likelihood Estimation (MLE) is also used for MA(q) parameter estimation.

11.5.3 Exercises

1. For an MA(1) model, solve for θ0 using the equation for the noise variance and the equation for the

correlation.

γ0 = (1 + θ2
0)σ2

ε

ρ1 = (θ0)
σ2
ε

γ0
=

θ0

1 + θ2
0

Solve for θ0 in terms of ρ1.

2. Develop an MA(1) model for the Lake Level time series dataset using the solution you derived in the

previous question. Plot yt and ŷt vs. t. Estimate the mean Lake level and then plot zt and εt.

3. Use the MA(1) solution you derived above for θ0 and the fact that φ0 = ρ1 for AR(1) to produce two

Forecast Charts for the first 10 values in the Lake-Level Dataset, one for MA(1) and one for AR(1).

ẑt = θ0εt−1 + εt MA(1)

ẑt = φ0yt−1 + εt AR(1)

Compute R2 and sMAPE from information in the charts. Which model has a better Quality of Fit

(QoF)?

4. Use ScalaTion to assess the quality of an MA(1) model versus an MA(2) model for the Lake Level

time series dataset.

5. The position in the ACF plot where ρk drops off can be used for q, the order of the model. What does

this plot suggest for the Lake Level time series dataset?

6. Deduce the fact the drift δ = µ for all MA(q) models.

472

11.6 Auto-Regressive, Moving-Average (ARMA) Models

The ARMA class provides basic time series analysis capabilities for Auto-Regressive (AR) and Moving-Average

(MA) models. In an ARMA(p, q) model, p and q refer to the order of the Auto-Regressive and Moving-

Average components of the model. ARMA models are often used for forecasting.

Recall that a pth-order Auto-Regressive AR(p) model predicts the next value yt+1 from a weighted

combination of prior values and that a qth-order Moving-Average MA(q) model predicts the next value yt+1

from the combined effects of prior noise/disturbances.

A combined pth-order Auto-Regressive, qth-order Moving-Average ARMA(p, q) model predicts the next

value yt+1 from both a weighted combination of prior values and the combined effects of prior noise/distur-

bances.

yt+1 = δ + φ ·← yt−p′:t + θ ·← εt−q′:t + εt+1 (11.69)

This can be expanded into

yt+1 = δ + φ0yt + . . . + φp′yt−p′ + θ0εt + . . . + θq′εt−q′ + εt+1 (11.70)

where p′ = p− 1, q′ = q − 1, and δ is the drift.

11.6.1 Selection Based on ACF and PACF

The Auto-Correlation Function (ACF) and Partial Auto-Correlation Function (PACF) may be used for

choosing values for the hyper-parameters p and q, for AR(p), MA(q) and ARMA(p, q) models. The ACF is

computed to a maximum number of lags and when plotted shows the auto-correlation ρk versus the number

of lags. When the ACF as a function of k drops in value toward zero, one may select a value for q around

this k.

ρk =
C [zt, zt−k]

V [zt]
=

E [ztzt−k]

E [ztzt]
=

γk
γ0

(11.71)

Similarly, the PACF is computed to a maximum number of lags and when plotted shows the partial auto-

correlation ψkk versus the number of lags. When the PACF as a function of k drops in value toward zero,

one may select a value for p around this k.

ψkk =
[
R−1ρ1:k

]
k

(11.72)

Figure 11.3 shows the ACF ρk and PACF ψkk values versus the number of lags k. The PACF indicates

the correlation between zt and zt−k beyond the chaining effect. For example, zt and zt−2 would naturally

be correlated at the level ρ2
1, since the correlation between zt and zt−1 is ρ1, and zt−1 and zt−2 is ρ1. Thus,

partial correlation is a better indication of whether a term φkzt−k contributes to the model.

From Figure 11.3 three partial correlations are worthy of consideration: ρ1 = 0.831911, ρ2 = −0.285357,

and maybe ρ10 = −0.237926. From this perspective, candidate models are AR(1), AR(2) and AR(10). Of

course, AR(10) will include several terms that contribute very little, so if a software package supports feature

selection, they can be removed so that only three terms will be included in the model. Other options include

maximizing R̄2 or minimizing AIC. See the exercise.

473

0 5 10 15 20 25 30

0

0.5

1

k

co
rr

ACF(-) and PACF(+) vs lags k

Figure 11.3: Auto-Correlation Function (ACF) and Partial Auto-Correlation Function (PACF)

11.6.2 Training

Training for ARMA models involves simultaneously finding p values for the AR part and q values for the MA

part. We have seen that are multiple optimization algorithms for finding the φ parameters for AR models.

Table 11.3: AR Optimization Algorithms

Technique Description

MoM Durbin-Levinson Solution to Yule-Walker Equations

OLS Ordinary Least Squares

WLS Weighted Least Squares

GLS Generalized Least Squares

MLE Maximum Likelihood Estimation

Similarly, there are also multiple, more complex, optimization algorithms for finding the θ parameters for

MA models.

The train method in the ARMA class shown below uses conditional sum of squared errors (csse) as the

loss function. The parameter vector b collects all the parameters, φ,θ, and δ and passes then into a BFGS

optimizer. The optimal values are determined and unpacked back into φ, θ, and δ.

474

Table 11.4: MA Optimization Algorithms

Technique Description

MoI Method of Innovations

cSSE Conditional Sum of Squares

MLE Maximum Likelihood Estimation

1 override def train (x_null: MatrixD , y_ : VectorD): Unit =

2 m = y_.dim // length of relevant time series

3 resetDF (pnq , m - pnq) // reset the degrees of freedom

4 makeCorrelogram (y_) // correlogram computes ψ matrix

5

6 val mu = y_.mean // sample mean of y_

7 val z = y_ - mu // opt. is better using zero -centered

8 φ = new VectorD (p) // zeros for AR part

9 θ = new VectorD (q) // zeros for MA part

10 δ = 0.0 // drift for z (should be near zero)

11 val b = φ ++ θ :+ δ // all parameters -> vector to optimize

12

13 def csse (b: VectorD): Double = // conditional sum of squared errors

14 φ = b(0 until p); θ = b(p until p+q); δ = b(b.dim -1) // pull parameters from b

15 ssef (z, predictAll (z)) // compute loss function

16 end csse

17

18 val optimizer = new BFGS (csse) // apply Quasi -Newton BFGS optimizer

19 val (fb, bb) = optimizer.solve (b) // optimal solution and parameters

20

21 φ = bb(0 until p); θ = bb(p until p+q); δ = bb(b.dim -1) // recover parameters for z

22 δ += mu * (1 - φ.sum) // uncenter

23 end train

The predict method gives a one-step ahead forecast ŷt+1 using the past p time series values and the

most recent q errors/shocks. Note that errors before the start of the time series do not exist and cannot be

predicted, hence the if in the second loop. Also, errors must be computed sequentially as predictions are

made.

1 override def predict (t: Int , y_ : VectorD): Double =

2 var sum = δ

3 for j <- 0 until p do sum += φ(j) * y_(max (0, t-j))

4 for j <- 0 until q if t-j >= 0 do sum += θ(j) * e(t-j)

5 if t < y_.dim -1 then e(t+1) = y_(t+1) - sum

6 sum

7 end predict

11.6.3 ARMA Class

Class Methods:

1 @param y the response vector (time series data)

2 @param tt the time vector , if relevant (time index may suffice)

3 @param hparam the hyper -parameters

475

4

5 class ARMA (y: VectorD , tt: VectorD = null , hparam: HyperParameter = SARIMAX.hp)

6 extends Forecaster (y, tt, hparam)

7 with Correlogram (y)

8 with Fit (dfm = pq (hparam), df = y.dim - pq (hparam)):

9

10 override def cap: Int = max (p, q)

11 def train (x_null: MatrixD , y_ : VectorD): Unit =

12 def test (x_null: MatrixD , y_ : VectorD): (VectorD , VectorD) =

13 def testF (h: Int , y_ : VectorD): (VectorD , VectorD) =

14 override def parameter: VectorD = φ ++ θ :+ δ

15 override def predict (t: Int , y_ : VectorD): Double =

16 override def forecast (t: Int , yf: MatrixD , y_ : VectorD , h: Int): VectorD =

17 override def forecastAt (yf: MatrixD , y_ : VectorD , h: Int): VectorD =

11.6.4 Exercises

1. Plot the PACF for the Lake Level time series dataset and use it to pick a value for p based on rule 1:

“stop at the drop” and rule 2: “pull all peaks”. Run AR for p ranging from 1 to 10. Assess the Quality

of Fit (QoF) for each AR(p) model over this range. What would R̄2, AIC, and MAPE/sMAPE pick,

respectively?

2. Rule 1 and especially rule 2 should be done within the context of significance, based on the following

critical values,

ρ∗k =
z∗α/2√
m− k

(11.73)

where m is the length of the time series, k is the lag, and α is the significance level (e.g., for α = .95,

z∗α/2 = 1.96). Determine all peaks (both positive and negative) that are outside the interval [−ρ∗k, ρ∗k].

3. Plot the ACF for the Lake Level time series dataset and use it to pick a value for q. Assess the quality

of an MA(q) with this value for q. Try it for q being one lower and one higher.

4. Using the selected values for p and q from the two previous exercises, assess the quality of an ARMA(p,

q). Try the four possibilities around the point (p, q).

5. For an ARMA (p, q) model, explain why the Partial Auto-correlation Function (PACF) is useful in

choosing a value for the p AR hyper-parameter.

6. For an ARMA (p, q) model, explain why the Auto-correlation Function (ACF) is useful in in choosing

a value for the q MA hyper-parameter.

476

11.7 Rolling-Validation

Although cross-validation is very useful for prediction and classification problems, there is no direct analog

for time series data. Instances cannot be randomly selected for training and testing, because the instances

are now time ordered and dependency is high between instances that are close in time (e.g., as measured by

auto-correlation).

In time series, a rolling-validation can be used as a replacement for cross-validation. Rolling-validation

works by defining two adjacent, non-overlapping time windows: the first containing training data and the

second containing testing data. These two windows are rolled forward in time together.

11.7.1 1-Fold Rolling-Validation

The simplest form of rolling-validation is one-fold. The first time window is for training and has length l,

while the second time window is for testing and has length λ = m− l.

W(r) = {t0, . . . , tl−1} training (11.74)

W(e) = {tl, . . . , tm−1} testing (11.75)

Based on these time windows, the response vector y is chopped into two sub-vectors:

y(r) = y[W(r)] training (11.76)

y(e) = y[W(e)] testing (11.77)

An algorithm for rolling validation may start by training the model on y(r). Then iterate through y(e)

making a forecast for each element in this vector, producing a forecast vector ŷ. The forecast error is then

ε = y(e) − ŷ (11.78)

This basic algorithm will only work for very short testing windows and thus the quality assessment may be

unreliable.

Retraining

If the testing window is long, training may not be up to date, so one would expect the forecasts to degrade as

the algorithm iterates through the testing data. This would argue for periodic retraining within the testing

loop. Depending on the runtime efficiency of the training algorithm, the retaining may be more or less

frequent. ScalaTion defines a retraining cycle rc that causes retraining to be performed after every rc

forecasts. See the RollingValidation object in the scalation.modeling.forecasting package for details.

Multi-Horizon Forecasting

Although one step ahead forecasting is the most accurate, today’s forecasting models are capable of producing

useful forecasts for several steps ahead. As an example, Numerical Weather Prediction (NWP) produces

14-day forecasts. With a time-step on 6 hours, this would imply 56 step ahead forecasts. In this case, the

477

forecasting horizon h = 56. Note, among other techniques, NWP uses Ensemble Kalman Filters, see the

chapter on State-Space Models.

There are three main techniques available for multi-horizon forecasting [187]:

1. The Direct Method applies a trained forecasting function f to recent data to obtain an h-step ahead

forecast.

ŷt+h = f(yt−p′:t;φ) (11.79)

ŷt+h = f([yt−p′ , . . . , yt−2, yt];φ) (11.80)

Clearly, the training must be based upon minimizing the h-step ahead forecast error (or maximizing the

likelihood). For a single output model like ARMA, a separate model could be built for each forecasting

horizon 1 through h. For a multiple output like a Neural Network, each output node would correspond

to a particular horizon 1 through h.

2. The Recursive Method builds up forecasts one step at a time. For efficiency it is implemented in an

iterative rather than recursive manner. For example, for h = 3 and p ≥ h, forecasts would be produced

as follows:

ŷt+1 = f([yt−p′ , yt−p′+1, . . . , yt−1, yt];φ) (11.81)

ŷt+2 = f([yt−p′+1, yt−p′+2, . . . , yt, ŷt+1];φ) (11.82)

ŷt+3 = f([yt−p′+2, yt−p′+3, . . . , ŷt+1, ŷt+2];φ) (11.83)

Notice that the farther into the future the forecast is made, the more it depends on prior forecasts (not

actual data). As errors can compound, longer term forecast may degrade.

Warning Concerning Multi-Horizon Forecasting with MA(q) Models

Predicting future shocks/errors is precarious, so order q needs to be at least the maximum forecasting

horizon h for MA(q) models. When h > q, all the errors will need to be forecasted and the best

estimate for future noise is zero, so MA(q) forecasts will quickly degenerate to the mean of the time

series (like the NullModel).

3. Hybrid Methods try to combine the best the direct and recursive methods. One way to do this is to

have a model for each forecasting horizon as with the direct method, but utilize forecasts from previous

models (1 through h− 1) in the model for horizon h. See [187, 186] for more details.

11.7.2 Rolling Validation and the Forecasting Matrix

Consider the following time series yt with m = 24 elements. The forecastAll method will produce forecasts

for all time points and horizons, see yf in Table 11.5. The rollValidate method divides the training and

testing set by splitting the time series in half (an adjustable value). At the start the first 12 values are used

478

for training in order to predict the first value in the testing set. For the next value in testing, the actual first

value in the testing set can be used for its prediction. This process continues until the end of the testing

set. To keep the parameters from becoming stale, retraining occurs for every rc predictions (rc = 4 in the

example below). All of the previous values are used for retraining. In this way both (training and testing)

roll forward.

1 val y = VectorD.range (1, 25)

2 val (rc, h) = (4, 2) // horizon , retraining cycle

3 val mod = new RandomWalk (y) // create an RW model

4 mod.train (null , y) // train the model on full dataset

5 val (yp, qof) = mod.test (null , y) // test the model on full dataset

6 println (mod.report (qof)) // report on Quality of Fit (QoF)

7 val yf = mod.forecastAll (y, h) // produce all forecasts up horizon h

8 println (s"yf = $yf") // print forecast matrix

9 FitM.showQofStatTable (RollingValidation.rollValidate (mod , rc, h))

Table 11.5: Multi-Horizon (h = 2) Forecasting Matrix yf for RW

yt ŷt@h = 1 ŷt@h = 2 t

1.00000 0.00000 0.00000 0.00000

2.00000 1.00000 0.00000 1.00000

3.00000 2.00000 1.00000 2.00000

4.00000 3.00000 2.00000 3.00000

5.00000 4.00000 3.00000 4.00000

6.00000 5.00000 4.00000 5.00000

7.00000 6.00000 5.00000 6.00000

8.00000 7.00000 6.00000 7.00000

9.00000 8.00000 7.00000 8.00000

10.0000 9.00000 8.00000 9.00000

11.0000 10.0000 9.00000 10.00000

12.0000 11.0000 10.0000 11.00000

13.0000 12.0000 11.0000 12.00000

14.0000 13.0000 12.0000 13.00000

15.0000 14.0000 13.0000 14.00000

16.0000 15.0000 14.0000 15.00000

17.0000 16.0000 15.0000 16.00000

18.0000 17.0000 16.0000 17.00000

19.0000 18.0000 17.0000 18.00000

20.0000 19.0000 18.0000 19.00000

21.0000 20.0000 19.0000 20.00000

22.0000 21.0000 20.0000 21.00000

23.0000 22.0000 21.0000 22.00000

24.0000 23.0000 22.0000 23.00000

0.00000 24.0000 23.0000 24.00000

0.00000 0.00000 24.0000 25.00000

479

Lines in the Table 11.5 indicate the points at which training (or retraining) occurs:

• Training at time point times 12 (using 0-11) is used for forecasting values for 12 to 15.

• Training at time point times 16 (using 0-15) is used for forecasting values for 16 to 19.

• Training at time point times 20 (using 0-19) is used for forecasting values for 20 to 23.

Forecasts are produced for times 24 and 25, but as no actual values are available at these times, they cannot

be used for quality assessment. In general, the last h rows of the yf matrix must be excluded from quality

assessment. Do to the regular nature of the values in Table 11.5, calculation of QoF measures are easily

carried out, as shown below.

• Sum of Squares Total:

sst =

23∑
t=12

(t+ 1− 18.5)2 = 83

• Sum of Squared Errors (h = 1):

sse =

23∑
t=12

(t+ 1− t)2 = 12 R2 = 1− 12/83 = 0.855

• Sum of Squared Errors (h = 2):

sse =

23∑
t=12

(t+ 1− t− 1)2 = 48 R2 = 1− 48/83 = 0.422

Notice: (1) Random Walk has no training involved and was picked to make the patterns obvious. (2)

The dataset is too small and regular to be anything but a toy example. (3) QoF measures get worse as

the forecasting horizon becomes larger and for baseline models this may happen rapidly. (4) If the testing

set is small, sst will be substantially reduced, which will make R2 look very poor (this is one reason other

QoF measures are preferred over R2 for time series). For example, for this problem MAE = h (i.e., 1 or

2), independently of the size of testing set. See the exercises for application of other forecasting models to

longer datasets.

Rolling Validation Algorithm

The rollValidate method in the RollingValidation object in the scalation.modeling.forecasting

package implements the rolling validation algorithm.

1 @param mod the forecasting model being used (e.g., ‘ARMA ‘)

2 @param rc the retraining cycle (number of forecasts until retraining occurs)

3

4 def rollValidate (mod: Forecaster & Fit , rc: Int): Unit =

5 val y = mod.getY // get response vector

6 val tr_size = trSize (y.dim) // size of training set

7 val te_size = y.dim - tr_size // size of testing set

480

8 debug ("rollValidate", s"train: tr_size = $tr_size; test: te_size = $te_size , rc = $

rc")

9

10 val yp = new VectorD (te_size) // testing set y-predicted

11 for i <- 0 until te_size do // iterate over testing set

12 val t = tr_size + i // next time to forecast

13 if i % rc == 0 then mod.train (null , y(0 until t)) // retrain on sliding set

14 yp(i) = mod.predict (t-1, y) // predict the next value

15 end for

16

17 val (t, yy) = align (tr_size , y) // align vectors

18 val df = max (0, mod.parameter.size - 1) // degrees of freedom model

19 mod.resetDF (df, te_size - df) // reset degrees of freedom

20 new Plot (t, yy, yp , "Plot yy, yp vs. t", lines = true)

21 println (FitM.fitMap (mod.diagnose (yy, yp), QoF.values.map (_.toString)))

22 end rollValidate

An overloaded version handles the multi-horizon forecasting case.

1 @param mod the forecasting model being used (e.g., ‘ARMA ‘)

2 @param rc the retraining cycle (number of forecasts until retraining occurs)

3 @param h the forecasting horizon (h-steps ahead)

4

5 def rollValidate (mod: Forecaster & Fit , rc: Int , h: Int): Unit =

6 val y = mod.getY // get response vector

7 val yf = mod.forecastAll (y, h) // get forecasting matrix

8 val tr_size = trSize (y.dim) // size of training set

9 val te_size = y.dim - tr_size // size of testing set

10 debug ("rollValidate", s"train: tr_size = $tr_size; test: te_size = $te_size , rc = $

rc")

11

12 val yp = new VectorD (te_size) // testing set y-predicted

13 for i <- 0 until te_size do // iterate over testing set

14 val t = tr_size + i // next time to forecast

15 if i % rc == 0 then mod.train (null , y(0 until t)) // retrain on sliding set

16 yp(i) = mod.predict (t-1, y) // predict the next value

17 val yd = mod.forecast (t-1, yf, y, h) // forecast next h-values

18 // yf updated on diagonals

19 assert (yp(i) =~ yd(0)) // forecasts =? predictions

20 end for // yf updated on diagonals

21

22 val (t, yy) = align (tr_size , y) // align vectors

23 val df = max (0, mod.parameter.size - 1) // degrees of freedom model

24 mod.resetDF (df, te_size - df) // reset degrees of freedom

25 new Plot (t, yy, yp , "Plot yy, yp vs. t", lines = true)

26

27 for k <- 1 to h do

28 val yfh = yf(tr_size until y.dim , k)

29 new Plot (t, yy , yfh , s"Plot yy, yfh vs. t (h = $k)", lines = true)

30 banner (s"rollValidate: for horizon h = $k:")

31 println (FitM.fitMap (mod.diagnose (yy, yfh), QoF.values.map (_.toString)))

32 end for

33 end rollValidate

The first algorithm is subsumed by the second. The main differences occur in the for loop that iterates

through the testing set.

481

1 for i <- 0 until te_size do // iterate over testing set

2 val t = tr_size + i // next time to forecast

3 if i % rc == 0 then mod.train (null , y(0 until t)) // retrain on sliding set

4 yp(i) = mod.predict (t-1, y) // predict the next value

5 val yd = mod.forecast (t-1, yf, y, h) // forecast next h-values

6 // yf updated on diagonals

7 assert (yp(i) =~ yd(0)) // forecasts =? predictions

8 end for // yf updated on diagonals

The time t is the training set size tr size plus the index i into the testing set. If the index i modulus rc

is zero retraining occurs. The predict method returns a one-step ahead prediction for time t using past

known values. For an AR(p) model, here’s the predict method.

1 @param t the time point from which to make prediction

2 @param y_ the actual values to use in making predictions

3

4 def predict (t: Int , y_ : VectorD): Double =

5 var sum = δ // intercept

6 for j <- 0 until p do sum += φ(j) * y_(max (0, t-j)) // add φjyt−j
7 sum

8 end predict

The forecast method returns a vector containing forecasts for horizons 1 to h. It uses the recursive method

and requires the forecasting matrix yf that it updates as it goes making modifications down diagonals. The

updated values are captured in vector called yd and returned. For an AR(p) model, here’s the forecast

method.

1 @param t the time point from which to make forecasts

2 @param yf the forecasting matrix (time x horizons)

3 @param y_ the actual values to use in making predictions

4 @param h the forecasting horizon , number of steps ahead to produce forecasts

5

6 def forecast (t: Int , yf: MatrixD , y_ : VectorD , h: Int): VectorD =

7 if h < 1 then flaw ("forecast", s"horizon h = $h must be at least 1")

8 val yd = new VectorD (h) // hold forecasts

9 for k <- 1 to h do

10 val t1 = t + k - 1 // time point prior to horizon

11 var sum = δ

12 for j <- 0 until p do sum += φ(j) * yf(max (0, t1-j), max (0, k-1-j))

13 yf(t+k, k) = sum // forecast down diagonal

14 yd (k-1) = sum // record diagonal values

15 end for

16 yd // return forecast vector

17 end forecast

Note the switch, predict uses y , while forecast uses yf. The first column of the yf matrix contains actual

values, while the rest contain forecasts. Obviously, actual values are preferred over forecasted values, but for

multi-horizon forecasting, prior forecasts are used when actual values are not available (or would constitute

cheating). Values are extracted from the yf matrix by tracking back up the diagonal until the first column

is reached and then moving up that column. Until the first column is reached, only forecasted are available.

Furthermore, for AR(p) if h > p, some forecasts will be based solely upon prior forecasts and not directly

on any actual values. The assert statement makes sure the prediction agrees with the one-step forecast.

482

Example: Rolling Validation for an AR(3) Model

Consider how rolling validation would work for an AR(3) model for the Lake Levels dataset that consists of

98 years worth of time series data. Using the default rule that initially the first half (49) is used for training

and second half (49) is used for testing, Table 11.6 shows the forecasting matrix around this split (made the

same size as the previous table for easy of understanding).

Table 11.6: Multi-Horizon (h = 2) Forecasting Matrix yf for AR(3)

yt ŷt@h = 1 ŷt@h = 2 t

578.670 578.284 578.786 37.0000

579.550 578.945 578.512 38.0000

578.920 579.645 578.966 39.0000

578.090 578.617 579.431 40.0000

579.370 578.096 578.688 41.0000

580.130 579.809 578.379 42.0000

580.140 579.970 579.610 43.0000

579.510 579.832 579.641 44.0000

579.240 579.233 579.594 45.0000

578.660 579.212 579.204 46.0000

578.860 578.588 579.207 47.0000

578.050 579.030 578.725 48.0000

577.790 577.946 579.047 49.0000

576.750 578.045 578.220 50.0000

576.750 576.873 578.326 51.0000

577.820 577.298 577.436 52.0000

578.640 578.345 577.759 53.0000

580.580 578.789 578.458 54.0000

579.480 580.760 578.750 55.0000

577.380 578.783 580.220 56.0000

576.900 577.202 578.777 57.0000

576.940 577.436 577.775 58.0000

576.240 577.383 577.940 59.0000

576.840 576.509 577.793 60.0000

576.850 577.500 577.128 61.0000

576.900 577.140 577.870 62.0000

Again, rolling validation is used to roll forward through the testing set, with fresh data and periodic

retraining, making out-of-sample multi-horizon forecasts. The first 2-steps ahead, out-of-sample forecast is

for time-unit 49. It uses three previous values to make a 2-steps ahead forecast for 49 (shown in bold). The

most reliable values are actual values (shown in the first column). Actual values are available for times 47

and 46. Using the actual value for 48 is not appropriate since this is tantamount to soothsaying (knowing the

future). Although the data is yearly, suppose it is daily and today is Wednesday and you want for forecast

two days ahead (Friday). It is fine to use actual values from Tuesday and Wednesday, but not Thursday

483

(since it is tomorrow). When actual values are not appropriate, use forecasts from the least horizon that

is appropriate (in this case the one-day ahead forecast for Thursday). Therefore, multi-horizon forecasting

involves moving up the diagonal until column 0 is reached and then moving up column 0 (as indicated by

the pattern of values in bold).

11.7.3 Exercises

1. Compute the following additional QoF measure for rolling-validation on the dataset given in Table

11.5: RMSE, sMAPE and MASE.

2. Rolling-Validation results were given for the Lake Levels Dataset for the three baseline models: Random

Walk, Null and Trend models. See the Baseline Models section. Compare these to the modeling

techniques of intermediate complexity covered so far in this text: Simple Exponential Smoothing

(SES), Auto-Regressive (AR) and Auto-Regressive, Moving-Average (ARMA).

3. Find the optimal values for p and q in ARMA(p, q) models for the Lake Levels Dataset for each

forecasting horizon h = 1, 2, 3. Compare in-sample and out-of-sample QoF measures. How do these

results relate to suggestions implied by the Correlogram?

4. An alternative to the rolling validation algorithm would be to keep the size of training set the same

size throughout, by discarding values at the beginning of the time series. Although in general this

means less data for training, it could reduce staleness (where values from the distant pass have undue

influence on parameters estimation). Try making this change to the code and assess it impact.

5. To further reduce staleness one could use a restricted training that is a user specified distance back

from the testing window. Try making this change to the code and assess it impact.

6. Compare recursive and direct multi-horizon forecasting under rolling-validation for Auto-Regressive,

Moving-Average (ARMA) models.

7. Compare two recursive-direct hybrid multi-horizon forecasting methods found in the literature. Find

papers that compare the relative quality of recursive, direct and hybrid methods.

8. The complete forecasting matrix yf created, for example, by calling forecastAll is not needed for

rolling-validation. Only cap values from training set combined with the testing set are needed. Make

this change to the forecast method to improve its efficiency.

9. Design a k-fold rolling-validation algorithm by dividing the testing set into multiple folds and by using

j ∈ {0, . . . , k − 1} to keep track of the current fold. Now each fold has two adjacent, non-overlapping

time windows. The first time window is for training and has length l, while the second time window is

for testing and has length λ = bm−lk c.

W(r)
j = {tλj , . . . , tl+λj−1} training (11.84)

W(e)
j = {tl+λj , . . . , tl+λ(j+1)−1} testing (11.85)

For example, let m = 200, k = 10, l = 100, then λ = 10 and the ten pairs of time windows are shown

below.

484

W(r)
: = {t0, . . . , t99}, {t10, . . . , t109}, . . . , {t90, . . . , t189} (11.86)

W(e)
: = {t100, . . . , t109}, {t110, . . . , t119}, . . . , {t190, . . . , t199} (11.87)

(11.88)

485

11.8 ARIMA (Integrated) Models

In cases where a time series is not stationary, an ARIMA (p, d, q) may be used. The new hyper-parameter

d is the number of times the time series is differenced. When there is a significant trend in the data (e.g.,

the values or levels are increasing/decreasing over time), an ARIMA (p, 1, q) may be effective. This model

can take a first difference of the values in the time series, i.e.,

y′t = ∆yt = yt − yt−1 (11.89)

This new ‘differenced’ time series can then be put into an ARMA(p, q) model to predict the next difference

y′t+1 from both a weighted combination of prior values and the combined effects of prior noise/disturbances.

y′t+1 = δ + φ ·← y′t−p′:t + θ ·← εt−q′:t + εt+1 (11.90)

This can be expanded into

y′t+1 = δ + φ0y
′
t + . . . + φp′y

′
t−p′ = θ0εt + . . . + θq′εt−q′ + εt+1 (11.91)

Recall p′ = p− 1 and q’ = q − 1 where p is the AR order and q is the MA order.

A second difference (d = 2) is computed as the difference of the first difference.

y′′t = y′t − y′t−1 = yt − 2yt−1 + yt−2 (11.92)

Higher differencing is possible, but is not commonly used. Think of the original/level time series as values,

the first difference as rates of change, and the second difference as changes in rates (e.g., position, velocity,

and acceleration).

Training for an ARIMA model can apply one of the optimization algorithms used for ARMA models.

Note, the “I” in ARIMA could interpreted to mean, once you have taken a difference (like a derivative), it

should be “Integrated” back to get the final forecast (see the subsection below).

11.8.1 Differencing

The del method (also ∆ in the code) in AR1MA.scala in the forecasting package takes a time series y

as a vector and returns the first difference. Note that the ‘differenced’ series has one less element than the

original series.

1 def del (y: VectorD): VectorD = VectorD (for t <- 0 until y.dim - 1 yield y(t+1) - y(t))

The first element in the original time series y0 must be maintained to enable the original time series to be

exactly restored from the ‘differenced’ series. Restoration of the original times-series is achieved using the

undel (inverse difference) method.

1 def undel (v: VectorD , y0: Double): VectorD =

2 val y = new VectorD (v.dim + 1)

3 y(0) = y0

4 for t <- 1 until y.dim do y(t) = v(t-1) + y(t-1)

5 y

6 end undel

486

11.8.2 Forecasting

Forecasts for the differenced time series may be produced using an ARMA model.

ŷ′t+1 = δ + φ ·← y′t−p′:t + θ ·← εt−q′:t (11.93)

The level forecast then simply undoes the differencing.

ŷt+1 = ŷ′t+1 + yt (11.94)

11.8.3 Backshift Operator

For more complex models, it become convenient to define the backshift (or lag) operator Bk,

Bkyt = yt−k (11.95)

that moves back k positions in the time series. Consequently, an AR(p) model may be written as

yt = δ + [φ0B
1 + · · ·+ φp−1B

p]yt + εt (11.96)

Note the change from forecasting yt+1 to yt as it is more convenient with the backshift operator. In vector

notation φ = [φ0, . . . φp−1] and using a dot product, this becomes

yt = δ + φ · [B1, . . . , Bp]yt + εt (11.97)

Similarly, an MA(q) model may be written as

yt = δ + θ · [B1, . . . , Bq]εt + εt (11.98)

yt = δ + [1,θ] · [1, B1, . . . , Bq]εt (11.99)

Combining these two gives an ARMA(p, q) model.

yt = δ + φ · [B1, . . . , Bp]yt + [1,θ] · [1, B1, . . . , Bq]εt (11.100)

Notice that (1−B1)yt = yt − yt−1, i.e., the first difference and in general, (1−B1)d is the dth difference.

The backshift operator can be used to reformulate an ARIMA(p, 0, q) model as follows:

[1,φ] · [1,−B1, . . . ,−Bp]yt = δ + [1,θ] · [1, B1, . . . , Bq]εt (11.101)

This is just the ARMA model with the AR part collected on the right and the MA collected on the left. In

particular, yt is not repeated. So why the more obscure formulation. Well, it makes it easy to apply the

differencing in an ARIMA(p, d, q) model.

[1,φ] · [1,−B1, . . . ,−Bp](1−B)dyt = δ + [1,θ] · [1, B1, . . . , Bq]εt (11.102)

487

11.8.4 Stationarity Process

A general assumption for ARMA models is that time series yt is covariance (or weakly) stationary, meaning

that the first two moments are time invariant, i.e,

E [yt] = µ(t) = µ (11.103)

V [yt] = γ0(t) = γ0 (11.104)

C [yt, yt−k] = γk(t) = γk (11.105)

If the time series violates these conditions strongly enough, several approaches may be tried including

transformations, detrending and differencing.

Unit-Root Process

It is not uncommon to have a stochastic process where the variance grows over time, The Random Walk

process is an example. Interesting, for an AR(1) model, a slight change to the parameter/coefficient will

change a process from a stationary process, to a unit-root process, and then to an explosive process (see the

exercises). Although for an AR(1) process, this demarcation is obvious, a process is stationary, unit-root or

explosive, if |φ0| is less than, equal to, or greater than 1, respectively. As an analogy, think of exponential

decay vs. growth with e.9, e1, and e1.1. For AR(p) processes, the case is not so obvious, however, by finding

the roots of the characteristic equation for a given model equation, the answer can be obtained.

Characteristic Equation

Starting with the boxed equation for ARIMA model equations with δ = 0 formulated using the backshift

operator,

[1,φ] · [1,−B1, . . . ,−Bp](1−B)dyt = [1,θ] · [1, B1, . . . , Bq]εt

let (p, d, q) = (1, 0, 0) to obtain an AR(1) model.

[1, φ0] · [1,−B1]yt = [1] · [1]εt (11.106)

Carrying out the dot products gives,

(1− φ0B
1)yt = εt (11.107)

Similarly, for an AR(2) model,

(1− φ0B
1 − φ1B

2)yt = εt (11.108)

In general, these can be rewritten in terms of characteristic polynomials,

φ(B)yt = εt (11.109)

where for an AR(p) model the characteristic polynomial is

φ(B) = 1− φ0B
1 − φ1B

2 − · · · − φp−1B
p (11.110)

488

Table 11.7: Characteristic Polynomials for ARIMA (p, d, q) Models

Characteristic Polynomial Notation Formula

AR(p) φ(B) 1− φ0B
1 − φ1B

2 − · · · − φp−1B
p

MA(q) θ(B) 1 + θ0B
1 + θ1B

2 + · · ·+ θq−1B
q

An AR(p) process is covariance stationary, if all the root of the following characteristic equation,

φ(B) = 0 (11.111)

φ(ζ) = 0 (11.112)

are outside the unit circle. As roots of a polynomial function may be complex numbers, we replace B with

a complex variable ζ ∈ C.

For example, for an AR(1) process, the characteristic equation is

1− φ0ζ = 0 (11.113)

The root of this equation is clearly

ζ =
1

φ0
(11.114)

Based upon the magnitude of the complex number |ζ|, three cases exist.

• When |ζ| > 1, the coefficient φ0 < 1 and the process will be covariance stationary,

• When |ζ| = 1, the coefficient φ0 = 1 and it will be a unit root process, and

• When |ζ| < 1, the coefficient φ0 > 1 and the process will be explosive.

Note, unit circle denotes a circle with radius one in the complex plane.

For an AR(2) process, the characteristic equation is

1− φ0ζ − φ1ζ
2 = 0 (11.115)

The roots of this equation is given by the quadratic equation,

ζ =
φ0 ±

√
φ2

0 + 4φ1

−2φ1
(11.116)

Trend Stationary Process

A (linear) trend stationary process can be constructed by combining a deterministic linear trend µ(t) with

a covariance stationary process zt.

yt = µ(t) + zt (11.117)

where the mean varies with time t, i.e., µ(t) = b0 + b1t. Simple Regression can be used to determine the

coefficients b0 and b1.

489

Trend stationary processes have an advantage over unit-root processes in that a shock’s influence will

diminish over time and the process will revert to the mean [217]. Detrending can be accomplished by

subtracting the deterministic trend µ(t) or by differencing. Note, for nonlinear trends (not considered here),

differencing may not remove the trend.

Tests for Classifying Processes

In order to classify a process as covariance stationary, trend stationary or non-stationary, the following tests

are available in ScalaTion.

The Augmented Dickey-Fuller (ADF) Test can be used to test whether a times-series has a unit root

(alternatively, is covariance stationary)

H0 : yt has a unit root

H1 : yt is covariance stationary

The Kwiatkowski–Phillips–Schmidt–Shin (KPSS) Test can be used to test whether a time series is trend

stationary (alternatively, has a unit root).

H0 : yt is trend stationary

H1 : yt has a unit root

These two popular tests can be applied in combination to classify a process as one of the following:

1. Covariance Stationary: ADF gives H1 and KPSS gives H0.

2. Trend Stationary: ADF gives H0 and KPSS gives H0 (may warrant further investigation).

3. Non-Stationary: ADF gives H0 and KPSS gives H1.

Unless the process is classified as Covariance Stationary, one may difference the time series and apply the

tests again. For more information on on testing processes for stationarity, see [217].

As many real-world time series are not initially covariance stationary and differencing can lose some

pattern information, there is ongoing research on analyzing non-stationary or locally stationary processes

directly [38].

11.8.5 ARIMA Class

Class Methods:

1 @param y the original input vector (time series data)

2 @param tt the time vector , if relevant (time index may suffice)

3 @param hparam the hyper -parameters

4

5 class ARIMA (y: VectorD , tt: VectorD = null , hparam: HyperParameter = SARIMAX.hp)

6 extends ARMA (y, tt, hparam):

7

490

8 protected def init (v: VectorD): Unit =

9 def setPQ (pq: VectorI): Unit =

10 def showParameterEstimates (): Unit =

11 override def train (x_null: MatrixD , y_ : VectorD): Unit =

12 protected def nll (b: VectorD): Double =

13 protected def updateFittedValues (): Double =

14 override def test (x_null: MatrixD , y_ : VectorD): (VectorD , VectorD) =

15 override def predictAll (y_ : VectorD): VectorD =

16 override def forecast (t: Int = y.dim , h: Int = 1): VectorD =

17 override def forecastAll (y_ : VectorD , h: Int): MatrixD =

18 def residuals: VectorD = if differenced then y - predictAll (y) else e

11.8.6 Exercises

1. Use the del method to create a version that takes the number of differences d as a second parameter.

Do this (a) iteratively, (b) recursively.

2. Take a first difference of the Lake Level time series dataset and plot the values versus time.

3. Look at the ACF and PACF plots for the Lake Level ‘differenced series’ to determine values for p and

q. Create an ARIMA (p, 1, q) model. Plot its in-sample forecast ŷ versus the actual value y and

determine its in-sample Quality of Fit (QoF) measures.

4. Use Grid Search on 0 to 19 for p and q to find the hyper-parameter values that (a) minimize AIC, (b)

minimize sMAPE, (c) minimize MAE, (d) minimize RMSE, (e) maximize R2, and (f) maximize R̄2.

How do these compare?

5. Take the best model according to the consensus in the last question and determine its out-of-sample

Quality of Fit (QoF) measures for forecasting horizon h = 1. Plot its out-of-sample forecast ŷ versus

the actual value y. Try this for a training to testing ratio of (a) 60-40 and (b) 70-30.

6. Determine the out-of-sample Quality of Fit (QoF) measures for forecasting horizons h = 2 to 14 (two

weeks ahead). How rapidly do the QoF measures decline.

7. Repeat the questions on the Lake-Level dataset for the COVID-19 dataset.

8. Compare an ARIMA (0, 1, 0) model and a Random Walk with Drift model. Remove the constant/drift

from this ARIMA model and determine what other model type it matches.

9. Compare an ARIMA (0, 1, 1) model and Simple Exponential Smoothing with Growth model. Remove

the constant/drift from this ARIMA model and determine what other model type it matches.

10. Generate and plot the following four types of stochastic processes: covariance stationary process, unit

root process, explosive process, and (linear) trend stationary process.

yt+1 = 0.99 yt + εt

yt+1 = 1.00 yt + εt

yt+1 = 1.01 yt + εt

yt+1 = 1 + 0.1(t+ 1) + εt

491

11.9 SARIMA (Seasonal) Models

In this context, the word “seasonal” is used to mean any time period longer than one. For example, vehicle

traffic may exhibit periodic behavior every 24 hours. For Caltrans PeMS data, the time resolution is 5

minutes (smoothed to 15), so the period or seasonal length s = 288 time units (96 for the smoothed data).

In COVID-19 pandemic forecasting there is a strong weekly period in daily reported deaths, so the seasonal

period s = 7.

11.9.1 Determination of the Seasonal Period

The two cases mentioned above have obvious periods that are apparent due to knowledge of the process,

plotting the time series, or examination of the correlelogram. For example, the Auto-Correlation Function

(ACF) may have peaks at lags of 7, 14 and 21 days (diminishing with increasing lag length).

11.9.2 Seasonal Differencing

Seasonal ARIMA allows for seasonal differences, so a SARIMA(p, d, q)×(0, D, 0)s is

[1,φ] · [1,−B1, . . . ,−Bp](1−B)d(1−Bs)Dyt = δ + [1,θ] · [1, B1, . . . , Bq]εt (11.118)

The seasonal differencing (1−Bs)D happens first, followed by regular differencing (1−B)d and then essentially

an ARMA model.

Considering the COVID-19 daily data, when s = 7, (seven days), D = 1 (one seasonal difference), and

d = 0 (no regular difference), the differenced series would be

zt = (1−Bs)Dyt = yt − yt−7 (11.119)

This differenced time series would indicate how (yt changes each day from what it was last week on the same

date (e.g., Monday to Monday). Although one might think it would be more useful to know the change from

the day before, the strong seasonal pattern may override the basic principle that the most recent data is the

most useful. A case study of COVID-19 is given later in the section to illustrate this.

11.9.3 Seasonal AR and MA Terms

In addition to the regular Auto-Regressive (AR) and Moving-Average (MA) terms, Seasonal Auto-Regressive

parameter vector Φ ∈ RP and Seasonal Moving-Average parameter vector Θ ∈ RQ may be included to form

a SARIMA(p, d, q)×(P,D,Q)s model.

[
[1,φ] · [1,−B1, . . . ,−Bp]

] [
[1,Φ] · [1,−Bs, . . . ,−BPs]

]
(1−B)d(1−Bs)Dyt = (11.120)

δ +
[
[1,θ] · [1, B1, . . . , Bq]

] [
[Θ, 1] · [1, Bs, . . . , BQs]

]
εt (11.121)

The expression
[
[1,φ] · [1,−B1, . . . ,−Bp]

]
may be viewed as a polynomial and the polynomials are multiplied.

Because of this, it is referred to as a multiplicative SARIMA model. Other types of SARIMA models include

additive and subset [183].

Breaking this into steps gives zt after seasonal and regular differencing.

492

zt = (1−B)d(1−Bs)Dyt (11.122)

φ(B) Φ(Bs)zt = δ + θ(B) Θ(Bs) εt (11.123)

Table 11.8: Characteristic Polynomials for SARIMA Models

Characteristic Polynomial Notation Formula

Regular AR(p) φ(B) 1− φ0B
1 − φ1B

2 − · · · − φp−1B
p

Seasonal AR(P) Φ(Bs) 1− φ0B
s − φ1B

2s − · · · − φP−1B
Ps

Regular MA(q) θ(B) 1 + θ0B
1 + θ1B

2 + · · ·+ θq−1B
q

Seasonal MA(Q) Θ(Bs) 1 + Θ0B
s + Θ1B

2s + · · ·+ ΘQ−1B
Qs

11.9.4 Case Study: COVID-19

The following case study will focus on forecasting COVID-19 Daily Deaths yt. In this chapter, the forecasts

will be based solely in previous values of yt and shocks εt. The next chapter on multivariate time series will

consider several related variables such as positive-test-rate, hospitalizations, patients-in-ICU, etc.

First, models built using the original times-series yt will be considered, followed first regular differences,

and finally first seasonal differences. Combining both differences is left as an exercise.

Modeling yt

Modeling (1−B)yt

Modeling (1−B2)yt

11.9.5 SARIMA Class

Class Methods:

1 @param y the original input vector (time series data)

2 @param dd the order of seasonal differencing

3 @param period the seasonal period (at least 2)

4 @param tt the time vector , if relevant (time index may suffice)

5 @param hparam the hyper -parameters

6

7 class SARIMA (y: VectorD , dd: Int = 0, period: Int = 2,

8 tt: VectorD = null , hparam: HyperParameter = SARIMAX.hp)

9 extends ARIMA (y, tt, hparam):

10

11 override def modelName: String =

12 protected override def init (v: VectorD): Unit =

13 override def setPQ (pq: VectorI): Unit =

14 override def train (x_null: MatrixD , y_ : VectorD): Unit =

15 protected override def nll (b: VectorD): Double =

16 protected override def updateFittedValues (): Double =

17 override def parameter: VectorD = φ ++ θ ++ FF ++ TH

493

18 override def predictAll (y_ : VectorD): VectorD =

19 override def forecast (t: Int = y.dim , h: Int = 1): VectorD =

11.9.6 Exercises

1. Write out a SARIMA(5, 1, 3)×(4, 1, 2)7 model, with and without using the backshift operator.

2. In predicting a value for yt+1 how far back in time would the above SARIMA model need to go?

494

11.10 Further Reading

1. Forecasting: Principles and Practice [84]

https://otexts.com/fpp3

2. A Course in Time Series Analysis [151]

https://web.stat.tamu.edu/~suhasini/teaching673/time_series.pdf

3. Time Series Analysis: Forecasting and Control [20]

495

https://otexts.com/fpp3
https://web.stat.tamu.edu/~suhasini/teaching673/time_series.pdf

496

Chapter 12

Multivariate and Nonlinear Time

Series

Univariate Time Series (UTS) models only consider how a time series is influenced by past values of the time

series itself. Some such models also allow for a trend as a simple function (e.g., linear, quadratic) of time t

to be included. Still, UTS modeling and forecasting might be considered myopic, ignoring other potentially

important variables or factors.

Multivariate Time Series (MTS) models consider the interaction of multiple related time series. MTS

models consider endogenous and exogenous variables. A variable is considered to be exogenous when it is not

correlated with the error term. This ideal implies that the values of predictor exogenous variables will not

influence the errors. See the exercises in the Auto-Regressive with eXogenous Variables (ARX) section for

further discussion of this issue and the notion weak exogeneity. Values from exogenous variables are recorded

in the datasets and may be used by models that utilize exogenous variables, such as ARX, SARIMAX, VARX

and VARMAX models. However, generally exogenous values are not predicted nor forecasted by the models.

Consider the following simple model equation,

yt = δ + φ0yt−1 + β0xt + εt (12.1)

While xt being exogenous is uncorrelated with εt, yt is influenced by the value of the error term and is

hence, endogenous. In time series, it is the endogenous variables that are predicted or forecasted. The

discussion in this chapter will start with models that allow only one endogenous variable, the ARX and

SARIMAX models. Next up are Vector Auto-Regressive (VAR) models that only have endogenous variables

and face the challenge in multi-horizon forecasting of compounding errors across time and series, e.g., errors

in forecasts of hospitalizations feed into future forecasts of new deaths and their errors. A recent survey

of Multivariate Time Series [122] discusses the evolution of such modeling techniques.

Nonlinear Time Series models allow additional functional forms to be fit and therefore, forecast the time

series. Linear models are defined, as they were for regression, to be linear in the parameters. Hence the

inclusion of quadratic terms does not make the model nonlinear. Note that while linear regression allows

for efficient optimization using matrix factorization, having an MA components in the time series model

(e.g., θ0εt−1) will necessitate the use of nonlinear optimization. The discussion will start with Nonlinear

Auto-Regressive (NAR) models and extend into various types of Neural Network architectures.

497

12.1 Auto-Regressive with eXogenous variables (ARX) Models

Suppose there is another time series xt that may be a leading indicator for yt. An example in pandemic

modeling would when xt is hospitalizations and yt is deaths. Shifting the xt curve to the right, will tend

to make it match up (somewhat) with the yt. This time shift indicates how much the hospitalizations lead

deaths. Note, this tendency may be diffuse, e.g., 8 to 10 days. In this case three lags from xt could help in

predicting yt.

An Auto-Regressive with eXogenous variables (ARX) model allows for this type of connection, where

actual values from xt can be used to help make yt forecasts. The X indicates that one or more eXogenous

variables are included in the model. Other variables may include the number of patients in ICU, number of

positive cases, etc. Related modeling techniques include SARIMAX, VAR, VARX, VARMA and VARMAX

models; these are discussed in the next two sections.

12.1.1 The ARX(p) Model

The simplest such model ARX(p) has a model equation that extends the AR(p) model by adding the most

recently available value for one exogenous variable.

yt = δ + φ0yt−1 + φ1yt−2 + . . . + φp′yt−p + β0xt−1 + εt (12.2)

This is the same as the AR(p) model equation from the last chapter with the β0xt−1 term added in. Recall

that p′ = p− 1.

12.1.2 The ARX(p, [a, b]) Model

A more useful model is to pick an interval of lags [a, b] over which the exogenous variable has the greatest

influence or affect on yt.

yt = δ + φ0yt−1 + φ1yt−2 + . . . + φp′yt−p + β0xt−a + . . . + βb−a+1xt−b + εt (12.3)

As xt may be a leading indicator, starting at xt−a may be more effective than starting at xt=1. Note, if

a = 0, xt−a = xt is called a contemporaneous variable, e.g., for two daily time series, one may be made public

before the other and therefore, be put to use in forecasting.

12.1.3 The ARX(p, n, [a, b]) Model

Limiting the number of exogenous variable to one, excludes potentially useful information that may improve

the forecasting accuracy of the model. Therefore, the next generalization is to allow n exogenous variables

that follow the same lag pattern. (Of course, this simplification could be relaxed as well.) The model

equation for an ARX(p, n, [a, b]) may be written by vectorizing the exogenous part xt = [xt0, xt1, . . . xt,n−1],

yt = δ + φ0yt−1 + φ1yt−2 + . . . + φp′yt−p + β0 · xt−a + . . . + βb−a+1 · xt−b + εt (12.4)

where parameter/coefficient βj ∈ Rn.

498

12.1.4 Determining the Exogenous Lag Interval [a, b]

While the Partial AutoCorrelation Function (PACF) can be used to establish a value for the number of

endogenous lags p (although hyper-parameter search may be more effective), cross-correlation (or measures

derived derived from it) may be used to select the interval [a, b].

12.1.5 Time Series Regression

From another perspective, rather than starting with an AR model and extending it, one may start with a

Regression model and extend it. Given a predictor time series xt and a response time series yt, a simple

times-series regression model may use the current value of xt to predict yt.

yt = β0 + β1xt + εt (12.5)

Knowing previous values of xt often helps with the predictions, so it is common to introduce a lagged

predictor variable xt−1

yt = β0 + β1xt + β2xt−1 + εt (12.6)

One may also introduce a lagged response variable yt−1.

yt = β0 + φ1yt−1 + β1xt + β2xt−1 + εt (12.7)

Note, when contemporaneous values are not known, xt should be dropped from the model equation. The

parameters can estimated using the efficient Ordinary Least Squares (OLS) algorithm. Doing so may intro-

duce estimation problems for OLS due to temporal dependencies (we are not in the IID world anymore). It

may be beneficial to use regularized regression or Generalized Least Square (GLS) [92].

12.1.6 ARXA(p, n, k) Model

For multi-horizon forecasting, the previous versions of ARX suffer from not being able to use recent values for

exogenous variables. The solution of using models from the VAR family introduces more ways in which errors

can compound on each other. One intermediate solution is to utilize simple forecasting for the exogenous

variables. An ARX Averaged (ARXA) model allows exogenous variables to be forecasted using Simple

Moving Averages.

x̄t =
1

k

k−1∑
i=0

xt−i (12.8)

Such forecasts tend to be conservative and do not require any parameters to be estimated for the exogenous

variables. Then the modeling equation becomes,

yt = δ + φ0yt−1 + φ1yt−2 + . . . + φp′yt−p + β0 · x̄t−1 + . . . + βp′ · x̄t−p + εt (12.9)

Suppose that t represents today, and one wants a two-day ahead forecast (i.e., the forecasting horizon

h = 2). First a forecast for tomorrow is made ŷt+1 to be used with older actual values as follows:

yt+2 = δ + φ0yt+1 + φ1yt + . . . + φp′yt+2−p + β0 · x̄t+1 + . . . + βp′ · x̄t+2−p + εt+2 (12.10)

499

When k = 1, the averaging will correspond to using a Random Walk Model for each exogenous variable,

while when k is large, it will approximate the Null (or Mean) Model.

12.1.7 ARXA MV Model

The ARXA MV Model uses RegressionMV to directly forecast multiple future values, e.g., yt+2, yt+1. Unlike

the recursive method that first forecasts ŷt+1 and uses it to forecast ŷt+2, the direct method fits separate

parameters for each future value.

yt+1 = δ(1) + φ
(1)
0 yt + φ

(1)
1 yt−1 + . . . + φ

(1)
p′ yt−p′ + β

(2)
0 · x̄t + . . . + β

(2)
p′ · x̄t−p′ + εt+1 (12.11)

yt+2 = δ(2) + φ
(2)
0 yt + φ

(2)
1 yt−1 + . . . + φ

(2)
p′ yt−p′ + β

(2)
0 · x̄t + . . . + β

(2)
p′ · x̄t−p′ + εt+2 (12.12)

Note, when k = 1, the ARXA MV Model reduces to a ARX MV Model where each x̄t is replaced with xt.

12.1.8 ARX Class

Class Methods:

1 @param x the input/predictor matrix built out of lags of y

2 (and optionally from exogenous variables ex)

3 @param yy the output/response vector trimmed to match x.dim

4 @param lags the maximum lag included (inclusive)

5 @param fname the feature/variable names

6 @param hparam the hyper -parameters (use Regression.hp for default)

7

8 class ARX (x: MatrixD , yy: VectorD , lags: Int , fname: Array [String] = null ,

9 hparam: HyperParameter = Regression.hp)

10 extends Regression (x, yy, fname , hparam)

11 with ForecasterX (lags):

12

13 def forecast (t: Int , yf: MatrixD , h: Int): VectorD =

14 def forecastAt (yf: MatrixD , yx: MatrixD , h: Int): VectorD =

15 def testF (h: Int , y_ : VectorD , yx: MatrixD): (VectorD , VectorD) =

As stated, yy is a trimmed version of the given endogenous time series y. This is because the first response

cannot be forecasted due to missing past values, as there is no value at time t = −1 or earlier. Therefore,

the size of the yy vector is reduced to y.dim - 1. Note, some forecasting packages perform back-casting

to make a forecast ŷ0, while others will require all p past values to be available and therefore do not start

making forecasts until ŷp. Thus, care needs to be taken when comparing results from different forecasting

packages.

Rather than passing in a user supplied predictor matrix built out of lags of the endogenous variable yt,

the apply method in the companion object may be called.

1 @param y the original un-expanded output/response vector

2 @param lags the maximum lag included (inclusive)

3 @param hparam the hyper -parameters (use Regression.hp for default)

4

5 def apply (y: VectorD , lags: Int , hparam: HyperParameter = Regression.hp): ARX =

500

When there are exogenous variables, xt = [xt0, xt1, . . . xt,n−1], the following method should be called.

1 @param y the original un-expanded output/response vector

2 @param lags the maximum lag included (inclusive)

3 @parax ex the input matrix for exogenous variables (one per column)

4 @param hparam the hyper -parameters (use Regression.hp for default)

5 @param elag1 the minimum exo lag included (inclusive)

6 @param elag2 the maximum exo lag included (inclusive)

7

8 def exo (y: VectorD , lags: Int , ex: MatrixD , hparam: HyperParameter = Regression.hp)

9 (elag1: Int = max (1, lags / 5), elag2: Int = max (1, lags)): ARX =

12.1.9 ARX MV Object

Object Methods:

1 object ARX_MV:

2

3 @param y the original un-expanded output/response vector

4 @param lags the maximum lag included (inclusive)

5 @param h the forecasting horizon (1, 2, ... h)

6 @param intercept whether to add a column of all ones to the matrix (intercept)

7 @param hparam the hyper -parameters (use Regression.hp for default)

8

9 def apply (y: VectorD , lags: Int , h: Int , intercept: Boolean = true ,

10 hparam: HyperParameter = Regression.hp): RegressionMV =

11 val (x_, yy) = buildMatrix4TS (y, lags , h) // column per lag

12 val x = if intercept then VectorD.one (yy.dim) +ˆ: x_ else x_ // add column of ones

13

14 val mod = new RegressionMV (x, yy, null , hparam)

15 mod.modelName = s"ARX_MV$lags"

16 mod

17 end apply

When averaging is to used, the corresponding class and object are ARXA and ARXA MV.

12.1.10 Exercises

1. Compare ARX(p, 0, []) to AR(p) models for the Lake Level dataset. This is the case when there

are no exogenous variables. The two models will likely differ slightly, since AR uses the Method of

Moments for estimation, while ARX uses either OLS via the Regression class or regularized OLS via

the RidgeRegression class.

2. Compare ARX(p, 0, []) to AR(p) models for the COVID-19 dataset.

3. When errors are correlated, e.g., E [εt−1εt] 6= 0, the significance of relationships may be over-estimated.

This is referred to spurious regression [60]. Discuss the ramifications of this problem.

4. Weak Exogeneity. OLS results rely on the error at time t being uncorrelated with the current value

of the exogenous variable. See https://www.reed.edu/economics/parker/s12/312/notes/Notes9.

pdf, https://www.reed.edu/economics/parker/312/tschapters/S13_Ch_2.pdf.

501

https://www.reed.edu/economics/parker/s12/312/notes/Notes9.pdf
https://www.reed.edu/economics/parker/s12/312/notes/Notes9.pdf
https://www.reed.edu/economics/parker/312/tschapters/S13_Ch_2.pdf

E [εt|xt] = 0 (12.13)

Estimate the conditional expectation of errors given hospitalizations for COVID-19 dataset. Recall

that new deaths is the endogenous variables.

5. For the previous problem, use GLS for parameter estimation, standard errors and forecasting. Compare

with the results given by OLS.

502

12.2 SARIMAX Models

The natural scale up from an ARX model is a Seasonal Auto-Regressive, Integrated, Moving-Average, with

eXogenous variables (SARIMAX) model. It adds the ability to consider the effects of shocks and some

long-term periodic effects. In addition, it allows differencing of the time series.

The specification of a SARIMAX model subsumes the ARX specification,

SARIMAX(p, d, q)× (P,D, P)s[a, b] (12.14)

where

• p is the number of Auto-Regressive (AR) terms/lagged endogenous values, e.g., temperature for five

(p = 5) previous days used to estimate tomorrow’s temperature;

• d is the number of stride-1 Differences (Integrations (I)) to take, e.g., focus on the daily change in

temperature rather than the temperature itself;

• q is the number of Moving-Average (MA) terms/lagged shocks, e.g., a shock (unexpected change that

induces forecast errors) due to the emergence of a new more virulent strain;

• P is the number of Seasonal (stride-s) Auto-Regressive (AR) terms/lagged endogenous values, e.g., for

traffic forecasts, values from the previous Mondays will likely work better that values from the previous

days;

• D is the number of Seasonal (stride-s) Differences to take; e.g., for daily time series data, taking a

difference based on one week may work better that one day;

• Q is the number of Seasonal (stride-s) Moving-Average (MA) terms/lagged shocks; e.g., the start of

college football season is a dramatic shock for Saturday traffic forecasts;

• s is the Seasonal period (e.g., week, month, or whatever time period best captures the pattern), e.g.,

COVID-19 daily data exhibit a strong weekly pattern, so setting s = 7 tends to improve the accuracy

of the model; and

• [a, b] is the range of eXogenous (X) lags to include (where as a shorthand [b] = [1, b]), e.g., as hospi-

talization data tends to lead new deaths by several days, finding appropriate values for a and b can

improve model accuracy.

12.2.1 Model Equations

The SARIMAX model equations extend those given for SARIMA models.

zt = (1−B)d(1−Bs)Dyt (12.15)

φ(B) Φ(Bs)zt = δ + θ(B) Θ(Bs) εt + β(B)xt (12.16)

Again, there may be multiple exogenous variables, i.e., replace xt with a vector xt. For COVID-19 forecasting

of new deaths as the endogenous variable, potentially useful exogenous variables include icu patients,

hosp patients, new tests, people vaccinated, see the exercises.

503

12.2.2 SARIMAX Object

Class Methods:

1 @param y the original endogenous input vector (time series data)

2 @param x the exogenous time series data as an input matrix

3 @param dd the order of seasonal differencing

4 @param period the seasonal period (at least 2)

5 @param tt the time vector , if relevant (time index may suffice)

6 @param hparam the hyper -parameters

7

8 class SARIMAX (y: VectorD , x: MatrixD , dd: Int = 0, period: Int = 2,

9 tt: VectorD = null , hparam: HyperParameter = SARIMAX.hp)

10 extends SARIMA (y, dd , period , tt , hparam):

12.2.3 Exercises

1. Start with a SARIMA model for forecasting weekly new death and find the best exogenous vari-

able to add to improve the accuracy of the forecasts. Pick the best variable from icu patients,

hosp patients, new tests, people vaccinated,

504

12.3 Vector Auto-Regressive (VAR) Models

Multivariate Time Series Analysis extends univariate time series by analyzing multiple variables. It works

on multiple interrelated time series,

yt = [yt0, yt1, . . . yt,n−1] (12.17)

with one time series for each of the n variables [201]. By convention in this text, the time series are oriented

in a matrix so that the jth variable is held in the jth column and the tth time point is held in the tth row.

This way the matrix holding the data will correspond to how data is typically organized in a csv data file.

The forecasted value for the jth variable at time t, ytj , can depend on the previous (or lagged) values

of all the variables. This notion is captured in Vector Auto-Regressive Models [176, 218]. A Vector Auto-

Regressive Model of order p with n variables, VAR(p, n), will utilize the most recent p values for each variable

to produce a forecast.

12.3.1 VAR(p, 2)

When n = 1, VAR(p, n) becomes AR(p), so the simplest actual vector case is VAR(p, 2) also known as

a bivariate VAR(p) model. Such models can be useful in traffic forecasting as flow and speed are related

variables for which time series data is maintained for each, i.e., yt0 is the traffic flow at a particular sensor

at time t and yt1 is the traffic speed at that sensor at time t.

For each lag, each of the lag variables is used to predict each response variable, so the complete set of

parameters forms a tensor consisting of p matrices.

Φ = [Φ(0),Φ(1), . . . ,Φ(p−1)] where Φ(l) ∈ Rn×n (12.18)

Written in matrix-vector form [80], a bivariate (n = 2) order (p = 3), VAR(3, 2) model is

yt = δ + Φ(0)yt−3 + Φ(1)yt−2 + Φ(2)yt−1 + εt (12.19)

and the forecast ŷt is

ŷt = δ + Φ(0)yt−3 + Φ(1)yt−2 + Φ(2)yt−1 (12.20)

where δ ∈ Rn is a constant, Φ(0) ∈ Rn×n is the parameter matrix (first row of tensor) for first lags,

Φ(1) ∈ Rn×n is the parameter matrix (second row of tensor) for second lags, Φ(2) ∈ Rn×n is the param-

eter matrix (third row of tensor) for third lags, and εt ∈ Rn is the residual/error/shock vector. Notice

that Φ(0)yt−3 is a matrix-vector product yielding an n-dimensional vector. Also see the note about index

(superscript/subscript) ordering in the section on AR models.

The equations for each component of the vector yt = [yt0, yt1] are

yt0 = δ0 + φ
(0)
0 · yt−3 + φ

(1)
0 · yt−2 + φ

(2)
0 · yt−1 + εt1 flow

yt1 = δ1 + φ
(0)
1 · yt−3 + φ

(1)
1 · yt−2 + φ

(2)
1 · yt−1 + εt1 speed

where for example, the vector φ
(1)
0 = [φ

(1)
00 , φ

(1)
01] is the first row of matrix Φ(1). The two equations may be

combined and rewritten in expanded matrix-vector notation.

505

yt =

[
yt0

yt1

]
=

[
δ0

δ1

]
+

[
φ

(0)
00 φ

(0)
01

φ
(0)
10 φ

(0)
11

]
yt−3 +

[
φ

(1)
00 φ

(1)
01

φ
(1)
10 φ

(1)
11

]
yt−2 +

[
φ

(2)
00 φ

(2)
01

φ
(2)
10 φ

(2)
11

]
yt−1 + εt

Convention: known values are shown in black and unknown values are shown in blue. For example,

given values from the past (e.g., yt−1,yt−2), before the beginning of day t, make a forecast for the value of

yt. Note, the forecast is known ŷt, but the actual value yt is not yet known.

12.3.2 VAR(p, n)

A general Vector Auto-Regressive VAR(p, n) model with n variables each with p lags will have p parameter

matrices. The equation for the response vector yt ∈ Rn may be written in matrix-vector form as follows:

yt = δ + Φ(0)yt−p + Φ(1)yt−p+1 + . . . + Φ(p−1)yt−1 + εt (12.21)

where constant vector δ ∈ Rn, parameter matrices Φ(l) ∈ Rn×n (l = 0, . . . p− 1), and error vector εt ∈ Rn.

12.3.3 Training

One way to train a VAR model is to treat each variable as a separate regression problem and use least squares

to estimate the parameters, e.g., the parameters for ytj are matrix Φ:j . A more efficient approach taken by

ScalaTion is to use the RegressionMV class that fits multiple responses to multiple predictor variables.

12.3.4 VAR Object

The apply method in the VAR object takes a multivariate time series as a y matrix and created predictor

variables by taking lagged values for each of the variables to form the input matrix x. For example, in

the bivariate case where y has 2 columns, lags = 3, and intercept = true the x matrix will consist of 7

columns.

1 object VAR:

2

3 @param y the original un-expanded output/response matrix

4 @param lags the maximum lag included (inclusive)

5 @param h the forecasting horizon (1, 2, ... h)

6 @param intercept whether to add a column of all ones to the matrix (intercept)

7 @param hparam the hyper -parameters (use Regression.hp for default)

8

9 def apply (y: MatrixD , lags: Int , h: Int , intercept: Boolean = true ,

10 hparam: HyperParameter = Regression.hp): RegressionMV =

11

12 var x = ARX.makeExoCols (lags , y, 1, lags +1) // add cols for each lagged vars

13 val yy = y(1 until y.dim) // trim y to match x

14 if intercept then x = VectorD.one (yy.dim) +ˆ: x // add first column of all ones

15

16 val mod = new RegressionMV (x, yy, null , hparam)

17 mod.modelName = s"VAR_$lags"

18 mod

19 end apply

506

For example, when run on the GasFurnace dataset that consists of 296 rows (time steps) and 2 columns

(gas flow rate and Carbon Dioxide concentration variables), the VAR (3, 2) produces the following results

for In-Sample testing.

MatrixD (210.004, 1467.40, // intercept

-0.170147, 0.243170, // lag 3 for y_0

-0.0755910, -0.454592, // lag 2 for y_0

1.14269, 0.0743863, // lag 1 for y_0

0.0152980, 0.416977, // lag 3 for y_1

-0.0660577, -1.60076, // lag 2 for y_1

0.0589660, 2.17496) // lag 1 for y_1

The above matrix captures all the parameters as follows:

δ = [δ0, δ1] = [210.004, 1467.40]

Φ(0) =

[
φ

(0)
00 φ

(0)
01

φ
(0)
10 φ

(0)
11

]
=

[
−0.170147 0.243170

0.0152980 0.416977

]

Φ(1) =

[
φ

(1)
00 φ

(1)
01

φ
(1)
10 φ

(1)
11

]
=

[
−0.0755910 −0.454592

−0.0660577 −1.60076

]

Φ(2) =

[
φ

(2)
00 φ

(2)
01

φ
(2)
10 φ

(2)
11

]
=

[
1.14269 0.0743863

0.0589660 2.17496

]

12.3.5 AR∗(p, n)

An AR∗(p, n) model is a VAR(p, n) model where all of the parameter matrices are diagonal. Thus, each

variable/time series ytj is modeled independently, so for an AR∗(3, n) model, the jth equation is

ytj = δj + φ
(0)
jj yt−3,j + φ

(1)
jj yt−2,j + φ

(2)
jj yt−1,j + εtj

12.3.6 Exercises

1. Plot the flow yt0 and speed yt1 given in the Traffic Sensor Dataset (traffic.csv). Estimate values for

the four parameters contained in the one parameter matrix Φ(0) of a VAR (1, 2) model (p = 1, n = 2).

Compute the Quality of Fit (QoF).

2. Use the Traffic Sensor Dataset (traffic.csv) to estimate values for the three parameter matrices Φ(0),

Φ(1) and Φ(2) of a VAR (3, 2) model (p = 3, n = 2). Compute the Quality of Fit (QoF) and compare

with the VAR(1, 2) model.

3. Consider what happens if two times series {yt0} and {yt1} are following similar trends. What difficulties

could this cause in a VAR model.

507

4. How could a Vector Error Correction Model (VECM) handle the above problem?

5. Compare an ARX model with a VAR model for the COVID-19 weekly dataset.

508

12.4 Nonlinear Time Series Models

12.4.1 Nonlinear Auto-Regressive (NAR)

As was the case for Nonlinear Regression, Nonlinear Time Series models have the potential for better fitting

models.

A pth order Nonlinear Auto-Regressive NAR(p) model is a generalization of an AR(p) model. The

forecasted value at time t, y, is a function of previous values of y, e.g.,

xt = [yt−p, . . . , yt−1] (12.22)

yt = f(xt;φ) + εt (12.23)

where φ is a vector of p parameters and p is also taken the number of lagged values to use. In general, for

nonlinear models the number of lags may or may not equal the number of parameters p.

12.4.2 Auto-Regressive Neural Network (ARNN)

A special case of a NAR(p) is an Auto-Regressive Neural Network ARNN(p) model. It is a three-layer (one

hidden) neural network, where the input layer has a node for each of the p lags, the hidden layer also has p

nodes, and the output layer has 1 node.

xt = [yt−p, . . . , yt−1] (12.24)

yt = w · f(Φ xt) + εt (12.25)

The p × p matrix Φ holds the parameters/weights connecting the input and hidden layers, while the p

dimensional vector w holds the parameters/weights connecting the hidden and output layers. There is only

an activation function (vectorized f) for the hidden layer. Note that Φ xt is matrix-vector multiplication. Of

course, the basic ARNN model can be embellished.

12.4.3 Nonlinear Auto-Regressive, Moving-Average (NARMA)

A (p, q) order Nonlinear Auto-Regressive, Moving-Average NARMA(p, q) model, is a generalization of an

ARMA(p, q) model.

xt = [yt−p, . . . , yt−1] input : past values (12.26)

et = [εt−p, . . . , εt−1] input : past shocks (12.27)

yt = f(xt, et;φ,θ) + εt output (12.28)

509

12.5 Recurrent Neural Networks (RNN)

Regular neural networks are often referred to as feed-forward neural networks, as there is no feedback in the

calculations. Recurrent Neural Networks (RNN) provide a straightforward mechanism that uses feedback to

allow the past to be captured (metaphorically remembered).

As exponential smoothing maintains a state variable that summarizes the past, with the importance of

past values decaying with age, recurrent neural networks maintain a hidden state vector ht. The new state

vector is computed as a combination of the prior state vector and the current input vector. The forecasted

value (output) is determined from the state vector. For simplicity, here it is assumed the dimensionality of

the output vector (k = 1).

A single hidden layer RNN (p, nh) has one input layer, one hidden layer, and one output layer, much like

a 3-layer Fully-Connected Neural Network. The difference is that the hidden state vector is fed back into

the calculation for the next time step. The hyper-parameter p can denote the dimensionality of the input

vector, while nh can denote the number of hidden units (or the dimensionality of the hidden state vector).

The size (and shape) of the input depends on the modeling approach. The size p (as in AR(p) models)

could be used to indicate the number of lags. One may say that the past is captured by the hidden state, but

it may be helpful to explicitly include lags. Now in multi-variate time-series, there will be multiple variables,

so p could denote the number of variables (e.g., new deaths, hosp patients for Covid-19 forecasting) Often,

it will be useful to include both, so here we use p for lags and nv for variables, and then the input at time t

becomes a matrix Xt Thus, the input over time becomes a 3D tensor X (time × lags × variables).

12.5.1 RNN(1, 1)

The simplest Recurrent Neural Network has input dimension one and hidden dimension one, i.e., it has one

hidden unit/node and makes forecasts based on the most recent information. For such models, the hidden

state vector is one dimensional (i.e., scalar). In order to forecast a value for yt, denoted ŷt, a weighted

combination of the previous value xt = yt−1 and the previous state ht−1 are passed to an activation function

f .

xt = yt−1 input scalar

ht = f(φxt + w ht−1 + β(h)) hidden state scalar

ŷt = vht + β(y) output scalar

where φ and w are scalar parameters/weights and β(h) and β(y) are the scalar biases. The above RNN model

is a NARMA(1, 1) model [33].

The hidden state variable ht is defined recursively and as such provides memory to the model, since its

value results from all previous values [124].

Notice that if the activation function f is the identity function, v = 1, and β(y) = 0, then the middle

equation becomes,

ht = β(h) + φxt + w ht−1 (12.29)

so in this case it is an ARMA(1, 1) model, since ht−1 = yt−1 − εt−1.

510

12.5.2 RNN(p, nh)

A single hidden layer Recurrent Neural Network of order (p, nh) makes forecasts based on information

going back p lags, with a nh-dimensional hidden state vector. The scalar parameters φ and w now become

parameter matrices Φ (renamed U) and W . They are given in pre-transposed form to facilitate the direct

application of matrix multiplication with the need to take a transpose.

xt = [yt−p, . . . , yt−1] input vector

ht = f(Uxt +Wht−1 + β(h)) hidden state vector

ŷt = g(V ht + β(y)) output scalar

where the variables are

• xt ∈ Rp holds the collected inputs (time series values from the recent past)

• ht ∈ Rnh holds the current hidden state

• ŷt ∈ Rk holds the 1-step to k-steps ahead forecasts (assumed k = 1)

and the parameters (weights and biases) are

• U ∈ Rnh×p is the input to hidden layer (auto-regressive) weight matrix

• W ∈ Rnh×nh is the hidden unit to hidden unit weight matrix

• V ∈ Rk×nh is the hidden to output layer weight matrix

• β(h) ∈ Rnh is the nh-dimensional hidden layer bias vector

• β(y) ∈ Rk is the k-dimensional (assumed k = 1) output layer bias vector

and the activation functions are

• f : Rnh → Rnh hidden layer activation function defaults to the tanh function (vectorized)

• g : Rnh → Rk output layer activation function defaults to the identity function (scalar when k = 1)

Note, the hidden layer is recurrent, while the output layer may be dense. This RNN model is a NARMA

model [33].

The computation of the forecasted value ŷt is depicted in Figure 12.1 where the recurrent unit is within

the purple box.

The hidden layer is typically implemented by looping through all of the time steps, taking the next input

xt and the prior hidden state vector ht−1 into the unit for calculation.

Figure 12.2 show a small, yet complete Recurrent Neural Network (RNN) with p = 2 (two lags), nh = 2

(two hidden nodes/units), and k = 1 (size of output). As the RNN iterates over time t the calculations are

repeated with new inputs xt and the hidden state ht−1 saved from the last iteration. This saved vector is

shown in the orange box.

511

ht−1 f ht

xt

ŷt

Figure 12.1: Recurrent Neural Network (RNN)

As vector equations, the hidden layer calculations are the following:

ht0 = f(u0 · xt + w0 · ht−1 + β
(h)
0) (12.30)

ht1 = f(u1 · xt + w1 · ht−1 + β
(h)
1) (12.31)

Similarly, the output layer calculation is the following:

ŷt = g(v0 · ht + β(y)) (12.32)

xt0

xt1

ht0

f

ht1

yt0

g

ht−1

u00

u10

u01

u11

v00

v01

w0

w1

Figure 12.2: Three-Layer (input, hidden, output) Recursive Neural Network (RNN) with Biases Removed

Unfortunately, such neural networks may have stability problems, so work moved unto units with gates

that add stability (e.g., to avoid vanishing or exploding gradients). Gates are used to control how much of

the previous state is preserved as signals propagate through the units. This allows gated units to have longer

memories that simple RNNs.

512

12.5.3 RNN(p, nh, nv)

When there are multiple variables (e.g., nv = 2 with one for COVID new hospitalizations and one for

new deaths) the situation becomes more complex. In this case, the input input is a matrix Xt and the

output/response is a vector, yt = [yt0, yt1, . . . , yt,nv−1].

Xt = [yt−p, . . . ,yt−1] input matrix

ht = f(U flatten(Xt) +Wht−1 + β(h)) hidden state

ŷt = g(V ht + β(y)) output vector

where the variables are

• Xt ∈ Rnv×p holds the collected inputs (time series values from the recent past)

• ht ∈ Rnh holds the current hidden state

• ŷt ∈ Rk holds the 1-step to k-steps ahead forecasts

and the parameters (weights and biases) are

• U ∈ Rnh×nvp is the input to hidden layer (auto-regressive) weight matrix

• W ∈ Rnh×nh is the hidden unit to hidden unit weight matrix

• V ∈ Rk×nh is the hidden to output layer weight matrix

• β(h) ∈ Rnh is the nh-dimensional hidden layer bias vector

• β(y) ∈ Rk is the k-dimensional output layer bias vector

and the activation functions are

• f : Rnh → Rnh hidden layer activation function defaults to the tanh function (vectorized)

• g : Rnh → Rk output layer activation function defaults to the identity function (vectorized)

12.5.4 Training

Below is a simple gradient descent implementation for train the RNN on a dataset (full or training).

1 def train (): Unit =

2 for it <- 1 to max_epochs do

3 forward () // forward propagate: get intermediate and output results

4

5 println (s"train: for epoch $it: loss function L = $L")

6 banner (s"train: for epoch $it: total loss function L.sum = ${L.sum}")

7

8 backward () // back propagate: calculate gradients (partial derivatives)

9

10 update_params () // update parameters (weights and biases)

11 end for

12 end train

513

12.5.5 Optimization

Forward Pass

The forward method performs forward propagatiion to calculate yp, loss and intermediate variables for each

step.

1 def forward (): Unit =

2 for t <- 0 until n_seq do

3 val h_pre = if t == 0 then h_m1 else h(t-1) // get previous hidden state

4 h(t) = tanh_ (U * x(t) + W * h_pre + b_h) // compute new hidden state

5 if CLASSIF then

6 yp(t) = softmax_ (V * h(t) + b_y) // act: softmax for classif

7 L(t) = (-y(t) * log_ (yp(t))).sum // cross -entropy loss funct

8 else

9 yp(t) = V * h(t) + b_y // act: id for forecasting

10 L(t) = (y(t) - yp(t)).normSq // sse loss function

11 end if

12 end for

13 end forward

Backward Pass

The backward method performs back-propagation to calculate gradients using chain rules.

1 def backward (): Unit =

2

3 import ActivationFun.tanhD

4

5 // start back -propagation with the final/feed -forward (ff) layer (uses id)

6

7 val e = yp - y // negative error matrix

8 db_y = e.sumVr // vector of row sums

9 for t <- 0 until n_seq do dV += outer (e(t), h(t)) // outer vector product

10 val dh_ff = e * V // partial w.r.t. h

11 var dh = new VectorD (dh_ff.dim2) // hold partial dh @ time t

12 var dIn: VectorD = null

13

14 // calculate the derivative contribution of each step and add them up

15

16 for t <- n_seq -1 to 1 by -1 do // move back in time to t=1

17 dh += dh_ff(t) // update partial for dh @ t

18 dIn = dh * tanhD (hg(t)) // input to tanh for hidden

19 hg += (dIn , x(t), h(t-1)) // update partials for hidden

20 dh = W.T * dIn // T => matrix transpose

21 end for

22

23 // end case @ time t = 0 -> use h_m1 for hidden state

24

25 dh += dh_ff (0) // update partial for dh @ t=0

26 dIn = dh * tanhD (hg(0))

27 hg += (dIn , x(0), h_m1) // update hidden gate @ t=0

28 dh_m1 = W.T * dIn

29 end backward

514

Parameter Update

Based on the calculated partial derivatives, update the parameters (weights and biases).

1 def update_params (): Unit =

2 // hidden state (h)

3 U -= hg.dU * eta

4 W -= hg.dW * eta

5 b_h -= hg.db * eta

6

7 // output layer

8 V -= dV * eta

9 b_y -= db_y * eta

10 end update_params

12.5.6 Exercises

1. Use ScalaTion’s RNN class to make forecasts based on the Lake Level dataset given in Example LakeLevels.

2. Create a SimpleRNN model using Keras, Guide: https://keras.io/guides/working_with_rnns/,

https://faroit.com/keras-docs/2.0.5/layers/recurrent, API: https://keras.io/api/layers/

recurrent_layers/simple_rnn/ for Lake Level dataset. Compare the results to those obtained with

ScalaTion.

3. Create a RNN model using PyTorch, https://pytorch.org/docs/stable/generated/torch.nn.RNN.

html for Lake Level dataset. Compare the results to those obtained with ScalaTion.

515

https://keras.io/guides/working_with_rnns/
https://faroit.com/keras-docs/2.0.5/layers/recurrent
https://keras.io/api/layers/recurrent_layers/simple_rnn/
https://keras.io/api/layers/recurrent_layers/simple_rnn/
https://pytorch.org/docs/stable/generated/torch.nn.RNN.html
https://pytorch.org/docs/stable/generated/torch.nn.RNN.html

12.6 Gated Recurrent Unit (GRU) Networks

Gated units have alleviated some of the problems with traditional RNNs. As the simplest gated unit, a

Minimal Gated Unit (MGU) has a single gate and a minimal number of parameters compared to other gated

units.

A Gated Recurrent Unit (GRU) [30, 29] is slightly more complex, but is more commonly use than an

MGU. It adds a second gate, a third pair of parameter matrices and a third bias vector. The two gates in

a GRU are the reset gate and the update gate. These are used to control the degree to which the previous

state ht−1 factors, along with the current input xt, into the calculation of the new state ht, which will

be a mixture of the previous state ht−1 and new candidate state h̃t (or c(t) in the code) coming out of

the activation function f . Figure 12.3 shows how signals propagate through one unit. This unit would be

connected to one on the left taking input xt−1 and one on the right taking input xt+1. The state provides

memory for the next unit.

reset

update

activate

mix

ht−1 ht

xt

ŷt

rt

zt

h̃t

Figure 12.3: Gated Recurrent Unit (GRU)

The elements in the control vectors, reset rt and update zt, come through sigmoid activation so they are

always between 0 (open circuit) and 1 (closed circuit) and are shown in purple.

The following two equations indicate one way that a GRU could be set up to handle univariate time

series data, e.g., a NAR(p) model.

xt = [yt−1, . . . , yt−p] input

ŷt = g(ht) forecast

516

Other forms of feature selection or engineering could be done as well; one could include time t, shocks, etc.

or extend to multivariate time series analysis.

GRU Equations

The equations below show how information flows through a gated recurrent unit [30, 215, 211].

Reset Gate. The degree to which the previous state ht−1 influences the new candidate state h̃t is

controlled by the reset gate. When the reset gate is open (rt is close to zero) the previous state is all but

ignored, whereas, when the gate is closed, its influence will be strong.

rt = fσ(Urxt +Wrht−1 + β(r)) (12.33)

Update Gate. The update gate controls the relative mixture of the previous state ht−1 and the new

candidate state h̃t used to form the new state ht. When the update gate is open (zt is close to zero) the

previous state is passed through almost intact, whereas, when the gate is closed, the new state is essentially

the candidate state.

zt = fσ(Uzxt +Wzht−1 + β(z)) (12.34)

Activate. A candidate state h̃t can be created by applying the activation function f (e.g., tanh or reLU)

to the weighted combination of the previous state ht−1 and the current input xt. However, the reset control

rt can be used to cut off the influence of the previous state.

h̃t = f(Ucxt +Wc[rt ∗ ht−1] + β(c)) (12.35)

Mix. The new state ht is created as a mixture of the previous state ht−1 and the newly created candidate

state h̃t. The update control zt determines how much of each are put into the new state ht.

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t (12.36)

When the update gate is nearly open (zt near 0), the new state preserves much of previous state, while when

it is nearly closed (zt near 1), the new state is mainly given by the candidate state. Notice that when both

rt and zt = 1, the GRU equations reduce to those of the simple RNN given in the last section (see exercises).

Recall that ∗ (or �) is the element-wise vector product.

GRU Variables and Parameters

A Gated Recurrent Unit introduces a greater number of variables and parameters than a dense Feed Forward

Neural Network. The variables for a GRU unit consist of one variable that serves as input xt, one that

represents state and is modified by the unit having before ht−1 and after ht values, a candidate state h̃t,

and two control variables, rt and zt. These five vector-valued variables are listed in Table 12.1. All but

one the variables have dimension nh (or n mem in the code), the dimensionality of state variables (memory

size). That one, xt has dimension p corresponding to the number of lags in univariate time series (or course

feature engineering can be used to add more). For multi-variate time series it corresponds to the number of

variables nv (n var in the code). Note, using both multiple lags and multi-variate time series will require xt

to be a 2-dimensional matrix.

517

Xt ∈ Rnv×p input matrix at time t (12.37)

Table 12.1: GRU Variables

variable dimensions name

xt Rp input vector

rt Rnh reset control vector

zt Rnh update control vector

h̃t Rnh candidate state vector

ht Rnh hidden state vector

The parameters for a GRU unit consist of six weight/parameter matrices (in three pairs) and three bias

vectors as listed in Table 12.2.

Table 12.2: GRU Parameters (Weight Matrices and Bias Vectors)

parameter dimensions name

Ur Rnh×p input-to-reset weight matrix

Wr Rnh×nh state-to-reset weight matrix

β(r) Rnh reset bias vector

Uz Rnh×p input-to-update weight matrix

Wz Rnh×nh state-to-update weight matrix

β(z) Rnh update bias vector

Uc Rnh×p input-to-activate matrix

Wc Rnh×nh state-to-activate weight matrix

β(c) Rnh activate bias vector

The matrices may be thought of a pre-transposed to facilitate application of matrix multiplication without

the need to transpose.

12.6.1 A GRU Layer

So far, a GRU has been discussed in isolation. To better visualize the role of GRUs in a neural network,

first consider the three-layer Dense Feed-Forward Neural Network consisting of an input, hidden and output

layer as shown in 12.4.

Now, swap a GRU layer in for the dense hidden layer. Let the number of lags p = 2. Then at time t, the

network maps input xt = [yt−2, yt−1] to output yt.

The U weights shown in Figure 12.5 are meant to represent the weights in the three weight matrices, Ur,

Uz and Uc, while the W weights are meant to represent the weights in the three weight matrices, Wr, Wz

and Wc. Each of the two gates has its own weight matrices and the candidate state has it own as well.

518

x0

x1

z0

f0

z1

y0

f1

a00

a01

a10

a11

b00

b10

Figure 12.4: Three-Layer (input, hidden, output) Neural Network with Biases Removed

Each of the two units takes the input vector xt and the previous state ht−1 and computes the next state

ht. Computations, are performed over all nh units in the form of matrix-vector multiplications, e.g., Wrht−1,

as depicted in Figure 12.3. The states coming out of the GRU layer are feed into a final dense layer to make

one step-head forecasts ŷt. (This treatment can be extended for multi-horizon forecasts.)

yt−2

xt

yt−1

h0

f

h1

yt

g

ht−1

u00

u10

u01

u11

v00

v01

w0

w1

Figure 12.5: Three-Layer (input, hidden, output) Neural Network with a GRU Layer

The GRU iterates through time (using a loop in implementation). A useful way to visualize the execution is

to duplicate the unit for each of the m timestamps in the time series. Figure 12.6 illustrates this, imagining

h0 and h1 executing at time 0, t − 1, t, t + 1, and m − 1. Note, unless imputation or back-casting is used,

there is no input for time 0. Consequently, for this example, one would set x0 = 0 and h0 = 0.

See [44, 211] for additional details.

12.6.2 Training

Below is a simple gradient descent implementation for train the GRU on a dataset (full or training).

1 def train (): Unit =

2 for it <- 1 to max_epochs do

3 forward () // forward propagate: get intermediate and output results

4

519

h0@t = 0 h0@t− 1 h0@t h0@t+ 1 h0@m− 1

h1@t = 0 h1@t− 1 h1@t h1@t+ 1 h1@m− 1

xt−1

[yt−3, yt−2]

xt

[yt−2, yt−1]

xt+1

[yt−1, yt]

xm−1

[ym−3, ym−2]

... h0,t−1 h0,t ...

...
h1,t−1 h1,t

...

Figure 12.6: GRU in Execution over Time

5 println (s"train: for epoch $it: loss function L = $L")

6 banner (s"train: for epoch $it: total loss function L.sum = ${L.sum}")

7

8 backward () // back propagate: calculate gradients (partial derivatives)

9

10 update_params () // update parameters (weights and biases)

11 end for

12 end train

See the exercises for how to replace gradient descent with stochastic gradient descent using mini-batches.

12.6.3 Optimization

As shown in the code above, there are three parts: a forward pass, a backward pass and a parameter update.

Forward Pass

Using the identity activation function for the hidden to output layer yields the following forward propagation

equations.

rt = fσ(Urxt +Wrht−1 + β(r))

zt = fσ(Uzxt +Wzht−1 + β(z))

h̃t = f(Ucxt +Wc[rt ∗ ht−1] + β(c))

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t

ŷt = V ht + β(y)

This case is for univariate times series, i.e., yt = [y0, y1, . . . ym−1], in which case V ∈ R1×nh .

1 def forward (): Unit =

2 for t <- 0 until n_seq do

3 val h_pre = if t == 0 then h_m1 else h(t-1) // get previous hidden state

4 r(t) = sigmoid_ (Ur * x(t) + Wr * h_pre + b_r) // reset gate

5 z(t) = sigmoid_ (Uz * x(t) + Wz * h_pre + b_z) // update gate

6 c(t) = tanh_ (Uc * x(t) + Wc * (r(t) * h_pre) + b_c) // candidate state

7 h(t) = (_1 - z(t)) * h_pre + z(t) * c(t) // hidden state

520

8 if CLASSIF then

9 yp(t) = softmax_ (V * h(t) + b_y) // act: softmax for classif

10 L(t) = (-y(t) * log_ (yp(t))).sum // cross -entropy loss function

11 else

12 yp(t) = V * h(t) + b_y // act: id for forecasting

13 L(t) = (y(t) - yp(t)).normSq // sse loss function

14 end if

15 end for

16 end forward

Consequently, the sse (or divide by m− 1 for mse) loss function on the training (or full) dataset of size m is

L =

m−1∑
t=1

(yt − ŷt)2 (12.38)

As there is no data for predicting ŷ0, it is not considered. The following are the trainable parameters: weight

matrices: Ur,Wr, Uz,Wz, Uc,Wc, V , and bias vectors: β(r), β(z), β(c), β(y).

Backward Pass

The Gate case class holds information on the gate’s value and its partial derivatives.

1 @param n_seq the length of the time series

2 @param n_mem the size for hidden state (h) (dimensionality of memory)

3 @param n_var the number of variables

4

5 case class Gate (n_seq: Int , n_mem: Int , n_var: Int):

6

7 val v = new MatrixD (n_seq , n_mem) // gate value: time x state

8 var dU = new MatrixD (n_mem , n_var) // partial w.r.t. weight matrix U

9 var dW = new MatrixD (n_mem , n_mem) // partial w.r.t. weight matrix W

10 var db = new VectorD (n_mem) // partial w.r.t. bias vector b

11

12 def apply (t: Int): VectorD = v(t)

13

14 def update (t: Int , vv: VectorD): Unit = v(t) = vv

15 def += (dIn: VectorD , x_t: VectorD , h_tm1: VectorD): Unit =

16 { dU += outer (dIn , x_t); dW += outer (dIn , h_tm1); db += dIn }

17

18 end Gate

∂UL += din ⊗ xt

∂WL += din ⊗ ht−1

∂bL += din

521

Candidate c Mixin

dhbk = ∂htL

din = ∂htL ∗ (1− zt) ∗ tanh′(h̃t)

h̃t += (din,xt,ht−1 ∗ rt)

dhr = W
ᵀ

c ∗ din

∂htL = dhr ∗ rt

Reset r Gate

din = dhr ∗ ht−1 ∗ sigmoid′(rt)

rt += (din,xt,ht−1)

∂htL += W
ᵀ

r ∗ din + dhbk ∗ zt

Update z Gate

din = dhbk ∗ (h̃t − ht−1) ∗ sigmoid′(zt)

zt += (din,xt,ht−1)

∂htL += W
ᵀ

z ∗ din + dhbk ∗ zt

The backward method has three parts: (1) start back-propagation with the final/feed-forward (ff) layer (uses

id for activation); (2) loop back in time adding to the partials for U , W and b, as well as for the state at

time t, ht; (3) handle the end case for t = 0 where h−1 becomes h m1.

1 def backward (): Unit =

2 val e = yp - y // negative error matrix

3 db_y = e.sumVr // vector of row sums

4 for t <- 0 until n_seq do dV += outer (e(t), h(t)) // outer vector product

5 val dh_ff = e * V // partial w.r.t. h: n_seq by n_mem

6 var dh = new VectorD (dh_ff.dim2) // hold partial for hidden state

7 var dIn , dhr: VectorD = null

8

9 for t <- n_seq -1 to 1 by -1 do // move back in time to t = 1

10 dh += dh_ff(t) // update partial: hidden state @ t

11 val dh_bk = dh // save dh

12

13 dIn = dh * (_1 - z(t)) * tanhD (c(t)) // input to tanh: candidate mixin c

14 c += (dIn , x(t), h(t-1) * r(t)) // update partials: c mixin

15 dhr = Wc.T * dIn // matrix transpose

16 dh = dhr * r(t)

17

18 dIn = dhr * h(t-1) * sigmoidD (r(t)) // input to sigmoid: reset gate r

19 r += (dIn , x(t), h(t-1)) // update partials: r gate

20 dh += Wr.T * dIn + dh_bk * z(t)

21

22 dIn = dh_bk * (c(t) - h(t-1)) * sigmoidD (z(t)) // input to sigmoid: update gate z

23 z += (dIn , x(t), h(t-1)) // update partials: z gate

522

24 dh += Wz.T * dIn

25 end for

26 ...

27 end backward

For completeness the code (corresponding to the ... above) for the end case (t = 0) is show below.

1 dh += dh_ff (0) // update partial: h hidden @ t = 0

2

3 dIn = dh * (_1 - z(0)) * tanhD (c(0))

4 c += (dIn , x(0), h_m1 * r(0)) // update partials: c mixin @ t = 0

5 dhr = Wc.T * dIn

6 dh_m1 += dhr * r(0)

7

8 dIn = dhr * h_m1 * sigmoidD (r(0))

9 r += (dIn , x(0), h_m1) // update partials: r gate @ t = 0

10 dh_m1 += Wr.T * dIn + dh * z(0)

11

12 dIn = dh * (h_m1 - c(0)) * sigmoidD (z(0))

13 z += (dIn , x(0), h_m1) // update partials: z gate @ t = 0

14 dh_m1 += Wz.T * dIn

Parameter Update

After computing values for the variables in the forward pass and computing partial derivatives in the back-

ward pass, the partials moderated by the learning rate η (or eta) can be subtracted from the current values

for the parameters (weight matrices and bias vectors).

1 def update_params (): Unit =

2 // update gate (z)

3 Uz -= z.dU * eta

4 Wz -= z.dW * eta

5 b_z -= z.db * eta

6

7 // reset gate (r)

8 Ur -= r.dU * eta

9 Wr -= r.dW * eta

10 b_r -= r.db * eta

11

12 // candidate state (c)

13 Uc -= c.dU * eta

14 Wc -= c.dW * eta

15 b_c -= c.db * eta

16

17 // output layer

18 V -= dV * eta

19 b_y -= db_y * eta

20 end update_params

12.6.4 Exercises

1. Use ScalaTion’s GRU class to make forecasts based on the Lake Level dataset given in Example LakeLevels.

523

2. Create a GRU model using Keras, Guide: https://keras.io/guides/working_with_rnns/, https://

faroit.com/keras-docs/2.0.5/layers/recurrent, API: https://keras.io/api/layers/recurrent_

layers/gru/ for Lake Level dataset. Compare the results to those obtained with ScalaTion.

3. Create a GRU model using PyTorch, https://pytorch.org/docs/stable/generated/torch.nn.GRU.

html for Lake Level dataset. Compare the results to those obtained with ScalaTion.

4. When both the reset gate rt and the update gate zt are fixed at 1, show that the GRU equations

reduce to those of the simple RNN given in the last section.

5. Show that the weight matrices Ur and Wr can be combined into one to make a slightly more concise

formula for the reset gate rt (same for the update gate).

rt = fσ(Urxt +Wrht−1 + β(r))

Given Ur ∈ Rnh×p, Wr ∈ Rnh×nh , ht−1 ∈ Rnh , and xt ∈ Rp, show that if W = [Ur,Wr] ∈ Rnh×(p+nh),

then

W

[
xt

ht−1

]
= Urxt + Wrht−1 (12.39)

6. Use the above identity to rewrite the GRU equations using three parameter matrices and three bias

vectors.

7. Write a formula for the total number of trainable parameters in a GRU where the state vector is

nh-dimensional and the input vector is p-dimensional.

8. Replace gradient descent with stochastic gradient descent using mini-batches.

9. Explain the difference between stateless and stateful training of a GRU (or MGU, LSTM) [44].

524

https://keras.io/guides/working_with_rnns/
https://faroit.com/keras-docs/2.0.5/layers/recurrent
https://faroit.com/keras-docs/2.0.5/layers/recurrent
https://keras.io/api/layers/recurrent_layers/gru/
https://keras.io/api/layers/recurrent_layers/gru/
https://pytorch.org/docs/stable/generated/torch.nn.GRU.html
https://pytorch.org/docs/stable/generated/torch.nn.GRU.html

12.7 Minimal Gated Unit (MGU) Networks

A Minimal Gated Unit (MGU) [215] has a single gate and a minimal number of parameters compared to

other gated units. Note, the GRU reset and update gates as well as their corresponding vectors are unified

into the forget gate in an MGU. An MGU has a forget gate and its purpose is to weigh accumulated past

information versus new information. The greater the forgetting the greater the reliance on recent data.

forget activate

mixht−1 ht

xt

ŷt

fot

h̃t

Figure 12.7: Minimal Gated Unit (MGU)

The input can be engineered like it was for GRUs, e.g.,

xt = [yt−1, . . . , yt−p]

MGU Equations

The equations below show how information flows through a minimal gated unit [215, 211].

fot = fσ(Ufoxt +Wfoht−1 + β(fo)) forget gate

h̃t = f(Ucxt +Wc[fot ∗ ht−1] + β(c)) candidate state

ht = (1− fot) ∗ ht−1 + fot ∗ h̃t state

Notice that when fot is essentially 1, the equations reduce to those of a simple RNN.

MGU Variables and Parameters

The variables for an MGU unit consist of one variable that serves as input xt, one that represents state and

is modified by the unit having before ht−1 and after ht values, a candidate state h̃t, and one control variable,

fot. These four vector-valued variables are listed in Table 12.3.

525

Table 12.3: MGU Variables

variable dimensions name

xt Rp input vector

fot Rnh forget control vector

h̃t Rnh candidate state vector

ht Rnh hidden state vector

The parameters consist of two pairs of weight/parameter matrices along with the biases, see Table 12.4.

Table 12.4: MGU Parameters (Weight Matrices and Bias Vectors)

parameter dimensions name

Ufo Rnh×p input-to-forget weight matrix

Wfo Rnh×nh state-to-forget weight matrix

β(fo) Rnh forget bias vector

Uc Rnh×p input-to-activate matrix

Wc Rnh×nh state-to-activate weight matrix

β(c) Rnh activate bias vector

The first activation function serves as a switch (typically sigmoid) and the second activation function

defaults to tanh, but other activation functions (e.g., reLU) may be used.

In the above formulation, the dimensions of the vectors are follows: xt ∈ Rp, fot, h̃t and ht ∈ Rnh , where

p is the number features engineered into the input and nh is the number of units.

Forget Gate. The purpose of the forget gate is to determine how much of the previous state to forget.

When the forget gate is open (fot is close to zero) the previous state ht−1 is passed through almost intact,

whereas, when the gate is closed, the new state is essentially the candidate state. The value of fot also

determines the influence of the previous state ht−1 has over the new candidate state h̃t.

526

12.8 Long Short Term Memory (LSTM) Networks

Long Short Term Memory (LSTM) [75] Networks provide increased memory by introducing another state

variable called the cell state ct that works in parallel with the hidden state ht. For additional control of how

past information is propagated, three gates are used: a forget gate, an input gate, and an output gate. The

corresponding vectors, fot, int, and out, hold values in (0, 1) and thus act as switches to control the flow.

An LSTM has advantages over a GRU when its longer memory is beneficial and the time series is long

enough for effective training. An LSTM has more parameters to train than a GRU, so it takes longer to

train.

LSTM Equations

The equations below show how information flows through a Long Short-Term Memory network [75, 211].

Forget Gate. The new cell state takes a fraction of the previous cell state and a fraction of the new

candidate cell state (see below). The forget gate determines how much of the previous cell state is kept;

when it is open (near zero) this information is forgotten, while when it is closed (near one) it is strongly

remembered. (It may be more intuitive to think of this as a remember gate.)

fot = fσ(Ufoxt +Wfoht−1 + β(fo)) (12.40)

Input Gate. The new candidate cell state (see below) as a weighted combination of the input xt and

the previous hidden state ht−1 is a key calculation in an LSTM. The input gate controls how much of the

new candidate cell state goes into the actual new cell state. When the input gate is open (near zero) the

new candidate cell state has little influence, while when it is closed, the new candidate cell state enters the

calculation at full strength.

int = fσ(Uinxt +Winht−1 + β(in)) (12.41)

Output Gate. The output gate comes into play at the end of the unit calculations and is used to

moderate the activated cell state before it assigned to the hidden state. Open dampens it, while closed does

not. This provides additional stability in the hidden state ht, which is important as it widely fed back into

most of the LSTM equations.

out = fσ(Uouxt +Wouht−1 + β(ou)) (12.42)

Candidate Cell State. As with a GRU, an LSTM first calculates a candidate state, a candidate for

the cell state (the computed values in an LSTM are on the cell state, and at the end a final calculation

is performed to determine the hidden state). The candidate cell state cct is computed by applying the

activation function f (e.g., tanh or reLU) to the weighted combination of the current input xt and previous

state ht−1.

cct = f(Uccxt +Wccht−1 + β(cc)) (12.43)

Cell State. The actual cell state ct is a combination of the previous cell state ct−1 and the candidate

cell state cct, where the fraction of ct−1 included is determined by the forget gate, while the fraction of cct

included is determined by the input gate.

527

ct = fot ∗ ct−1 + int ∗ cct (12.44)

Hidden State. As the principal output of LSTM units, the hidden state ht may be thought of the cell

state ct with an activation function applied to it. For added stability (remember an RNN has problems with

calculations blowing up), this value is moderated since the value of the output gate is in (0, 1).

ht = out ∗ f(ct) (12.45)

For more details on how information flows through an LSTM, see [75, 52, 44].

LSTM Variables and Parameters

The variable for a LSTM unit consist of three control variables, two state variables and one internal candiate

state variable described in Table 12.5.

Table 12.5: LSTM Variables

variable dimensions name

xt Rp input vector

fot Rnh forget control vector

int Rnh input control vector

out Rnh output control vector

cct Rnh candidate cell state vector

ct Rnh cell state vector

ht Rnh hidden state vector

The parameters for a LSTM unit consist of six weight/parameter matrices (in three pairs) and three bias

vectors as listed in Table 12.6.

Table 12.6: GRU Parameters (Weight Matrices and Bias Vectors)

parameter dimensions name

Ufo Rnh×p input-to-forget gate weight matrix

Wfo Rnh×nh state-to-forget gate weight matrix

β(fo) Rnh forget gate bias vector

Uin Rnh×p input-to-input gate weight matrix

Win Rnh×nh state-to-input gate weight matrix

β(in) Rnh input gate bias vector

Uou Rnh×p input-to-output gate weight matrix

Wou Rnh×nh state-to-output gate weight matrix

β(ou) Rnh output gate bias vector

Ucc Rnh×p input-to-candiate cell matrix

Wcc Rnh×nh state-to-candiate cell weight matrix

β(c) Rnh candiate cell bias vector

528

12.8.1 Exercises

1. Use ScalaTion’s LSTM class to make forecasts based on the Lake Level dataset given in Example LakeLevels.

2. Create a LSTM model using Keras, Guide: https://keras.io/guides/working_with_rnns/, https:

//faroit.com/keras-docs/2.0.5/layers/recurrent, API: https://keras.io/api/layers/recurrent_

layers/lstm/ for Lake Level dataset. Compare the results to those obtained with ScalaTion.

3. Create a LSTM model using PyTorch, https://pytorch.org/docs/stable/generated/torch.nn.

LSTM.html for Lake Level dataset. Compare the results to those obtained with ScalaTion.

529

https://keras.io/guides/working_with_rnns/
https://faroit.com/keras-docs/2.0.5/layers/recurrent
https://faroit.com/keras-docs/2.0.5/layers/recurrent
https://keras.io/api/layers/recurrent_layers/lstm/
https://keras.io/api/layers/recurrent_layers/lstm/
https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html
https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html

12.9 Encoder-Decoder Architectures

One may consider ways to improve LSTM (or GRU) networks and incremental improvement may be obtained

by adding LSTM and/or Feed-Forward layers. It may be beneficial to replace or augment the Feed-Forward

layer with a decoder, for example one containing LSTM units.

The purpose of the encoder it to create a context vector that captures the input in a summarized/encoded

form. This may simply be the hidden state at time t or ht produced by LSTM units. It may be more complex

and include multiple hidden state vectors.

The context vector serves as the initial state vector for the decoder/second portion of the network archi-

tecture. In order to adjust the dimensionality of the data (inputs vs. outputs), a single layer Feed-Forward

layer may be used (in line with the V matrix discussed in prior sections).

While the encoder can be thought of as encoding the past, the decoder uses this encoding to forecast the

future. The hope is that the two parts can specialize their skill, with the encoder striving to better capture

the patterns in data and the decoder at using patterns to make accurate forecasts.

12.9.1 Simple Encoder-Decoder Consisting of Two GRU Cells

Let us define cell to mean all the units used in the computation of ht over time. For example, the figure in

the GRU section had two units (in practice it could 64 or more). Figure 12.8 compresses the figure in the

GRU section to the cell level. Although the two figures share much in common, there are two cells and each

has its own set of trainable parameters. (Remember the figure shows the cells unrolled over time, there are

only two with each executed in a loop.)

h0 ht−1 ht ht+1 ht+2

xt−1

[yt−3, yt−2]

xt

[yt−2, yt−1]

xt+1

[yt−1, yt]

xt+2

[yt, ŷt+1]

ŷt+1 ŷt+2

...
ht−1 ht ht+1

Figure 12.8: Encoder(yellow)-Decoder(orange) Inference over Time

The intuition is that training the parameters in the first GRU (the encoder) will be optimized to capture

patterns in the data, while parameters in the second GRU will optimized on making accurate forecasts given

the encoding saved in the context vector. Depending on the number of lags making up the input xt, forecasts

at later horizons will need prior forecasts to be feed into them as shown by the red line in the figure.

530

12.9.2 Teacher Forcing

The figure shows what happens during inferencing (actual forecasting). Training is a bit different. First

there is Back-Propagation Through Time (BPTT), ... Second, actual values, such as yt+1 may be used

rather than forecasted values ŷt+1. This is not possible (or allowed) during actual forecasting, as it would

constitute knowing the future. However, some degree of teacher forcing, using actual for forecasted values,

has been shown potential [204].

12.9.3 Attention Mechanisms

Notice that the decoder, as discussed so far, only uses the last hidden state vector ht from the encoder.

Furthermore, the longer the time series (or sequence), the more challenging it is for ht to stand in for what

the encoder “knows”. Of course, with an LSTM, the cell state ct could be used as well. However, the vast

majority of all the calculated state vectors are simply ignored. Taking all this information may overwhelm

the decoder with marginally relevant information. If there was only a way to choose the most relevant

information. This can be cast as another learning problem that involves computing alignment scores and

normalizing them as attention weights.

Alignment Scores

An alignment score between encoder state hτ and decoder state st (renamed to distinguish it from an encoder

states) is given by aτt

aτt = va · tanh(Uast−1 +Wahτ) (12.46)

The vector va and matrices Ua, and Wa are trainable parameters.

Attention Weights

The attention weights are found by normalizing the alignments scores to the range (0, 1) using the softmax

function.

ατt =
eaτt∑
τ e

aτt
(12.47)

Context Vector

The context vector used by the decoder at time t is then

ct =

m∑
τ=1

ατthτ (12.48)

i.e., it uses state vectors from the encoder hτ weighted by their importance in calculating st as specified by

their attention weights. Define the function context to consist of the above three equations,

ct = context(st−1, H) (12.49)

where the matrix H maintains the hidden state vectors from the encoder GRU, such that the τ th row of H

stores hτ .

531

Modifications to GRU Equations

A slight modification to the GRU equations for the decoder is needed [213]. There is useful state information

from the previous time as well as the from context vector. These need to be combined in some fashion, for

example, by vector concatenation.

cst = [ct | st] (12.50)

The simple change is just to replace the state vector from the GRU section h with the concatenated state

vector cs in the GRU equations.

rt = fσ(Urxt +Wrcst−1 + β(r))

zt = fσ(Uzxt +Wzcst−1 + β(z))

h̃t = f(Uh̃xt +Wh̃[rt ∗ cst−1] + β(h̃))

ct = context(st−1, H)

st = (1− zt) ∗ st−1 + zt ∗ h̃t

cst = [ct | st]

ŷt = V cst + β(y)

12.9.4 Exercises

1. Notice in the equations above, the context vector and state vector are treated the same way through-

out, e.g., both the context vector and state vector are regulated by the reset control vector rt when

computing h̃t. It may be beneficial to only do this to the state vector and not the control vector.

Rewrite the above equations to achieve this.

Hint: keep the context and state vectors separate and do not use cst; also introduce new parameter

matrices to include ct into the equations.

2. Consider other ways of combining the context and state vectors, besides concatenation.

532

12.10 Transformer Models

Transformers [197] are well-suited to finding patterns in sequential data, including natural language and

time series. While Recurrent Neural Networks utilize a hidden state vector that summarizes what happened

in the past, a transformer can utilize temporal relationships/dependencies between any two elements in the

time series. This enriched view of dependencies is referred to as the self-attention mechanism.

12.10.1 Self-Attention

Given a multi-variate time series Y consisting of m time steps and nv variables,

Y = [ytj] (12.51)

the inputs xt ∈ Rnv into the transformer can be defined as follows:

xt = [yt−1,0, yt−1,1, . . . yt−1,nv−1] (12.52)

The goal now is to create a sequence of context vectors ct. Recall for encoder-decoder architectures,

these were formed from state vectors ht weighted by attentions scores/weights. The state vectors were based

on the input sequence xt. As there is no recurrence to compute state vectors in Transformers, the following

equation/linear transformation may be used instead,

vt = Wvxt (12.53)

where Wv ∈ Rnu×nv is the value matrix (its dimensions are number of units × size of input vector). Note

that the transformation can have two effects: the new values are likely to be in an higher dimensional space

(controlled by the user) and the values are rescaled (more suitable for neural computation).

Now attention weights [αtτ] are applied to produce a context vector at time t, ct,

ct =

m−1∑
τ=0

αtτvτ = αtV (12.54)

where V = [v0,v1, . . .vm−1]
ᵀ

is the value vectors captured in a matrix. The question remains of how

determine the attention scores/weights. We start by defining the following two learned views of the input

sequence,

qt = Wqxt

kt = Wkxt

where Wq and Wk ∈ Rnk×nv are learned weight matrices. As with nu, nk is chosen by the user. (Note, in

Natural Language Processing (NLP) the dimension of word vector xt is typically very high, so the matrices

are referred to projection matrices (project to a lower dimensional space), while for time series they would

typically do the opposite.)

Let us consider how input xt is related to the other inputs xτ . In the transformed space qt is its

representative in making such an inquiry (query). One simple way to measure relatedness of two vectors is

to take their dot product (proportional to the cosine of the angle between them).

533

ωtτ = qt · kτ (12.55)

These are referred to as the unnormalized attention scores. Notice that the other vector is represented by

transformed vector kt. Using separate vectors qt and kt makes it possible for the attention scores to be

asymmetric, meaning the influence (and therefore need for attention) between input xt and xτ need not be

the same in both direction. (Recall as measures of dependence correlation is symmetric, while conditional

entropy is not).

The scores may be efficiently computed for all τ using matrix-vector multiplication,

ωt = Kqt (12.56)

where K = [k0,k1, . . .km−1]
ᵀ

is the key vectors captured in a matrix.

The following equation is used for computing (normalized) attention scores.

αt = softmax

[
ωt√
nk

]
(12.57)

The unnormalized attention scores are first divided by
√
nk and then passed through the softmax function to

put the elements in the interval (0, 1). Dividing by
√
nk (or

√
dk in other papers) may improve the stability

of calculations. According to [197], “We suspect that for large values of dk, the dot products grow large in

magnitude, pushing the softmax function into regions where it has extremely small gradients. To counteract

this effect, we scale the dot products by
√
dk.”

Single-Head Self-Attention

Putting the formulas together yields a means for computing a context vector ct.

ct = V
ᵀ

softmax

[
Kqt√
nk

]
(12.58)

This is implemented in ScalaTion as follows:

1 @param q_t the query vector at time t (based on input vector x_t)

2 @param k the key matrix K

3 @param v the value matrix V

4

5 def context (q_t: VectorD , k: MatrixD , v: MatrixD): VectorD =

6 val root_n = sqrt (q_t.dim)

7 v.transpose * f_softmax.f_ (k * (q_t / root_n))

8 end context

Actually, all the context vectors (also referred to as an attention matrix) can be computed together using

matrix multiplication.

C = attention(Q,K, V) = softmax

[
QK

ᵀ

√
nk

]
V (12.59)

The attention method computes attention weights.

1 @param q the query matrix Q (q_t over all time)

2 @param k the key matrix K

3 @param v the value matrix V

534

4

5 def attention (q: MatrixD , k: MatrixD , v: MatrixD): MatrixD =

6 val root_n = sqrt (q.dim2)

7 f_softmax.fM (q * (k.transpose / root_n)) * v

8 end attention

The context and attention methods are provided by the Attention trait.

1 @param n_var the size of the input vector x_t (number of variables)

2 @param n_mod the size of the output (dimensionality of the model , d_model)

3 @param heads the number of attention heads

4 @param n_v the size of the value vectors

5

6 trait Attention (n_var: Int , n_mod: Int = 512, heads: Int = 8, n_v: Int = -1):

7

8 def queryKeyValue (x: MatrixD , w_q: MatrixD , w_k: MatrixD , w_v: MatrixD):

9 (MatrixD , MatrixD , MatrixD) =

10 def context (q_t: VectorD , k: MatrixD , v: MatrixD): VectorD =

11 def attention (q: MatrixD , k: MatrixD , v: MatrixD): MatrixD =

12 def attentionMH (q: MatrixD , k: MatrixD , v: MatrixD ,

13 w_q: TensorD , w_k: TensorD , w_v: TensorD ,

14 w_o: MatrixD): MatrixD =

Multi-Head Self-Attention

This self-attention mechanism is said to be bundled into an attention head. The transformer architecture

allows for the use of multiple attention heads. For example, [197] suggests having 8 heads.

attentionMH(Q,K, V ; Wq,Wk,Wv,W o) = concatheads−1
i=0

[
attention(QWq

i ,KWk
i , VWv

i)
]
W o (12.60)

The attentionMH method in the Attention trait computes multi-head attention weights.

1 @param q the query matrix Q (q_t over all time)

2 @param k the key matrix K

3 @param v the value matrix V

4 @param w_q the weight tensor for query Q (w_q(i) matrix for i-th head)

5 @param w_v the weight tensor for key K (w_k(i) matrix for i-th head)

6 @param w_v the weight tensor for value V (w_v(i) matrix for i-th head)

7 @param w_o the overall weight matrix to be applied to concatenated attention

8

9 def attentionMH (q: MatrixD , k: MatrixD , v: MatrixD ,

10 w_q: TensorD , w_k: TensorD , w_v: TensorD ,

11 w_o: MatrixD): MatrixD =

12 var aw = attention (q * w_q (0), k * w_k(0), v * w_v(0))

13 for i <- 1 until heads do aw = aw ++ˆ attention (q * w_q(i), k * w_k(i), v * w_v(i))

14 att * w_o

15 end attentionMH

12.10.2 Positional Encoding

Rather than having a Recurrent Neural Network where information flows over time and the input is processed

in time order, an alternative would be to turn each value yt in the time series into a pair (t, yt). A natural

way to do this in a neural environment is through positional encoding.

535

Sinusoidal positional encoding is often used ... Given a time value t, a positional vector of length d is

created by alternately calling sin and cos functions,

pt = [sin(ω1t), cos(ω1t), sin(ω2t), cos(ω2t), . . . , sin(ωd/2t), cos(ωd/2t)] (12.61)

where the wavelengths 2πωk decrease exponentially.

Absolute Positional Encoding

Relative Positional Encoding

Although, the commonly used sinusoidal positional encoding could be used, some studies have shown that

other approaches may be better for time series forecasting [125].

12.10.3 Encoder-Decoder Architecture for Transformers

A common architecture for a Transformer consists of an encoder side and an decoder side with each side

typically having multiple (around 6 [197]) encoder and decoder layers, allowing the input to be refined in

phases.

Encoder

An encoder layer consists of (1) a multi-head self-attention module (shown in orange), followed by (2) a

feed-forward neural network that leads this layer’s output (shown in lime). This output is feed into the next

encoder layer as input. The input to the first encoder layer is [xt] (typically adjusted based upon positional

encoding). In addition, after completion of each module, upstream information is added in (skip connection)

followed by layer normalization (see exercises). Addition and normalization are shown in yellow as depicted

in Figure 12.9.

Each of these steps is described below:

1. Attention: For a single head, attention(Q,K, V) computes ... For multi-head attention, ...

2. Add-In: [xt] NEED DETAILS

3. Layer Normalization: Suppose a layer in a network outputs a vector z whose size is the number of units

in the layer. This vector is then normalized by subtracting the mean and dividing by the standard

deviation. In Scalation, this is provided by the standardize method in VectorD or the more robust

standardize2 method (takes a Normal random variable to a Standard Normal random variable). See

exercise about pre-layer and post-layer normalization.

4. Feed-Forward Neural Network: A basic configuration is to have a Linear Layer (no activation function),

followed by a reLU/geLU layer (see the Percepton section), followed by another linear layer, and finally

a dropout layer.

5. Add-In: [zt] NEED DETAILS

6. Layer Normalization: The addition in the last step may throw off normalization, so it needs to be done

again.

536

x0 xt−1 xt xt+1 xm−1

Q K V

attention (Q,K, V)

→ add in input [xt]

normalize

feed-forward neural network

→ add in [zt]

normalize again

[zt]

Figure 12.9: Transformer First Encoder Layer for a Single Head

Decoder

A decoder layer includes the modules from a encoder with the following changes and additions. The self-

attention is modified by using using masking to prevent the decoder (i.e., the forecaster) from seeing the

future. In addition, the decoder takes the output from its corresponding encoder, and processes it with

another multi-head self-attention module. In other words, it contains three modules: (1) multi-head self-

attention module applied to input, (2) multi-head self-attention module applied to encoder output, and (3)

a feed-forward neural network to produce its output. The final decoder layer produces the forecasts.

NEED DETAILED FIGURE (using tikz)

12.10.4 Exercises

1. The Scaled Dot Product of vectors x and y is defined as

x sdot y =
x · y√
n

(12.62)

where n is the dimensionality (number of elements) of each vector. Explain why dividing by the square

root of dimensionality improves the stability of gradient calculations.

2. What are advantages of pre-layer over post-layer normalization?

537

12.10.5 Further Reading

• “Understanding and Coding the Self-Attention Mechanism of Large Language Models From Scratch,”

Sebastian Raschka, https://sebastianraschka.com/blog/2023/self-attention-from-scratch.

html

538

https://sebastianraschka.com/blog/2023/self-attention-from-scratch.html
https://sebastianraschka.com/blog/2023/self-attention-from-scratch.html

Chapter 13

Dimensionality Reduction

When data matrices are very large with high dimensionality, analytics becomes difficult. In addition, there is

likely to be co-linearity between vectors, making the computation of inverses or pseudo-inverses problematic.

In such cases, it is useful to reduce the dimensionality of the data.

539

13.1 Reducer

The Reducer trait provides a common framework for several data reduction algorithms.

Trait Methods:

1 trait Reducer

2

3 def reduce (): MatrixD

4 def recover (): MatrixD

540

13.2 Principal Component Analysis (PCA)

The PrincipalComponents class computes the Principal Components (PCs) for data matrix X with the

following dimensions

X ∈ Rm×n (13.1)

where the number of rows m is the number of instances/samples and the number of columns n is the number

of predictor variables.

Principal Component Analysis (PCA) can be used to reduce the dimensionality of the data matrix. Using

the PrincipalComponents class, first find the PCs by calling ‘findPCs’ and then call ‘reduce’ to reduce the

data (i.e., reduce matrix X to a lower dimensionality matrix).

13.2.1 Representation

PCA will replace the data matrix X ∈ Rm×n with a lower-dimensional reduced matrix Z ∈ Rm×k for k ≤ n.

Z = XEk (13.2)

The matrix E is the full eigen-decomposition of the covariance matrix of X [1].

C [X] =
X

ᵀ

cXc

m− 1
(13.3)

where Xc = X − µX is the centered data matrix.

E = eigendecomp

[
X

ᵀ

cXc

m− 1

]
(13.4)

The matrix Ek is the first k columns of E where the columns of E are ordered by the magnitude of the

eigenvalues. The columns with the largest eigenvalues will explain most of the covariance. See the exercises

to understand why the covariance matrix is used as the basis for the dimensionality reduction.

For a given vector x of dimension n, its reduced representation z will have dimension k.

z = Ekx (13.5)

Note, that each element of vector z is a linear combination of elements in the original vector x.

Example Problem:

Class Methods:

@param x the data matrix to reduce, stored column-wise

class PrincipalComponents (x: MatrixD)

def meanCenter (): VectorD =

def computeCov (): MatrixD =

def computeEigenVectors (eVal: VectorD): MatrixD =

541

def findPCs (k: Int): MatrixD =

def reduceData (): MatrixD =

def recover (): MatrixD = reducedMat * featureMat.t + mu

def solve (i: Int): (VectorD, VectorD) =

13.2.2 Exercises

1.

542

13.3 Autoencoder (AE)

An Autoencoder (AE) is a fully-connected neural network that contains a middle layer of lower dimensionality

than the input layer. The output layer has the same dimensionality as the input layer, as shown in figure

13.1. The loss function then simply measures the difference between the input vectors and output vectors.

If the loss is small, then the middle layer may be used as a lower-dimensional representation of the input.

x0

x1

x2

z0

f0

α0

z1

α1

y0

f1

β0

y1

β1

y2

β1

a00

a01

a10

a11a20

a21

b00

b01

b01
b10b11

b12

Figure 13.1: Three-Layer Autoencoder Neural Network

A common choice for the loss function is the sum of squared reconstruction errors,

sse = ‖X − Ŷ ‖F (13.6)

where X is the input data matrix and Ŷ is the reconstruction of X.

13.3.1 Representation

For a three layer autoencoder, the lower dimensional representation vector z corresponds to the values at

the middle hidden layer and is given by the following equation,

z = f0(A
ᵀ

x + β) (13.7)

where x is the input vector, A is the parameter/weight matrix, β is the bias vector and f0 is the vectorized

activation function.

Notice that if f0 is the identity function, then z becomes a linear transformation of x, as is the case for

PCA.

13.3.2 Denoising Autoencoder (DEA)

543

544

Chapter 14

Clustering

Clustering is related to classification, except that specific classes are not prescribed. Instead data points

(vectors) are placed into clusters based on some similarity or distance metric (e.g., Euclidean or Manhattan

distance). It is also related to prediction in the sense that a predictive model may be associated with each

cluster. Points in a cluster, are according to some metric, closer to each other than to points not in their

cluster. Closeness or similarity may be defined in terms of `p distance ‖x−z‖p, correlation ρ(x, z), or cosine

cos(x, z). Abstractly, we may represents any of these by distance d(x, z). In ScalaTion, the function dist

in the clustering package computes the square of Euclidean distance between two vectors, but may easily

be changed (e.g., (x - z).norm1 for Manhattan distance).

def dist (x: VectorD, z: VectorD): Double = (x - z).normSq

Consider a general modeling equation, where the parameters b are estimated based on a dataset (X, y).

y = f(x; b) + ε

Rather than trying to approximate the function f over the whole data domain, one might think that given

point z, that points similar to (or close to) z, might be more useful in making a prediction f(z).

A simple way to do this would be to find the κ-nearest neighbors to point z,

topκ(z) = {xi ∈ X |xi is among the κ closest points to z}

and simply average the responses or y-values.

Instead of surveying the responses from the κ-nearest neighbors, one could instead survey an entire group

of similar points and take their averaged response (or utilize a linear model where each cluster c has its own

parameters bc). The groups may be pre-computed and the averages/parameters can be maintained for each

group. The groups are made by clustering the points in the X matrix into say k groups.

Clustering will partition the m-points {xi ∈ X} into k groups/clusters. Group membership is based on

closeness or similarity between the points. Commonly, algorithms form groups by establishing a centroid (or

center) for each group/cluster. Centroids may defined as means (or medians) of the points in the group. In

this way the data matrix X is partitioned into k sub-matrices

{Xc | c ∈ {0, . . . , k − 1}}

545

each with centroid ξc = µ(Xc). Typically, point xi is in cluster c because it is closer to its centroid than any

other centroid, i.e.,

xi ∈ Xc =⇒ d(xi, ξc) ≤ d(xi, ξh)

Define the cluster assignment function ξ to take a point xi and assign it to the cluster with the closest

centroid ξc, i.e.,

ξ(xi) = c

The goal becomes to find an optimal cluster assignment function by minimizing the following objective/cost

function:

minξ

m−1∑
i=0

d(xi, ξξ(xi))

If the distance d is ‖xi − ξξ(xi)‖
2
2 (the default in ScalaTion), then above sum may be viewed as a form of

sum of squared errors (sse).

If one knew the optimal centroids ahead of time, finding an optimal cluster assignment function ξ would

be trivial and would take O(kmn) time. Unfortunately, k centroids must be initially chosen, but then as

assignments are made, the centroids will move, causing assignments to need re-evaluation. The details vary

by clustering algorithm, but it is useful to know that finding an optimal cluster assignment function is

NP-hard [7].

Other factors that can be considering in forming clusters include, balancing the size of clusters and

maximizing the distance between clusters.

546

14.1 KNN Regression

Similar to the KNN Classifier class, the KNN Regression class makes predictions based on individual pre-

dictions of its κ-nearest neighbors. For prediction, its function is analogous to using clustering for prediction

and will be compared in the exercises in later sections of this chapter.

Training in KNN Regression is lazy and is done in the predict method, based on the following equation:

ŷ =
1

κ
1 · y(topκ(z)) (14.1)

Given point z, find κ points that are the closest, sum there response values y, and return the average.

override def predict (z: VectorD): Double =

kNearest (z) // set top-kappa to kappa nearest

var sum = 0.0

for i <- 0 until kappa do sum = y(topK(i)._1) // sum the individual predictions

sum / kappa // divide to get average

end predict

The kNearest method is same as the one in KNN Classifier.

14.1.1 KNN Regression Class

Class Methods:

@param x the vectors/points of predictor data stored as rows of a matrix

@param y the response value for each vector in x

@param fname_ the names for all features/variables (defaults to null)

@param hparam the number of nearest neighbors to consider

class KNN_Regression (x: MatrixD, y: VectorD, fname_ : Array [String] = null,

hparam: HyperParameter = KNN_Regression.hp)

extends Predictor (x, y, fname_, hparam)

with Fit (dfm = x.dim2 - 1, df = x.dim - x.dim2):

def distance (x: VectorD, z: VectorD): Double = (x - z).normSq

def train (x_ : MatrixD = x, y_ : VectorD = y): Unit = {}

def test (x_ : MatrixD = x, y_ : VectorD = y): (VectorD, VectorD) =

def testNoSpy (xe: MatrixD = x, ye: VectorD = y, i_no: IndexedSeq [Int]): (VectorD, VectorD) =

override def predict (z: VectorD): Double =

def predictNoSpy (z: VectorD, i_no: IndexedSeq [Int]): Double =

override def validate (rando: Boolean = true, ratio: Double = 0.2)

(idx : IndexedSeq [Int] =

testIndices ((ratio * y.dim).toInt, rando)): VectorD =

override def buildModel (x_cols: MatrixD): KNN_Regression =

Note that the train method has nothing to do, so it need not be called.

547

14.1.2 Exercises

1. Apply KNN Regression to the following combined data matrix.

// x1 x2 y

val xy = MatrixD ((10, 3), 1, 5, 1, // joint data matrix

2, 4, 1,

3, 4, 1,

4, 4, 1,

5, 3, 0,

6, 3, 1,

7, 2, 0,

8, 2, 0,

9, 1, 0,

10, 1, 0)

val mod = KNN_Regression (xy)()

mod.trainNtest ()()

val yp = mod.predict (xy.not (?, 2))

new Plot (xy(?, 0), y, yp, lines = true)

548

14.2 Clusterer

The Clusterer trait provides a common framework for several clustering algorithms.

Clusterer Trait

Trait Methods:

trait Clusterer:

def name_ (nm: Array [String]): Unit = _name = nm

def name (c: Int): String =

def setStream (s: Int): Unit = stream = s

def train (): Unit

def cluster: Array [Int]

def csize: VectorI

def centroids: MatrixD

def initCentroids (): Boolean = false

def calcCentroids (x: MatrixD, to_c: Array [Int], sz: VectorI, cent: MatrixD): Unit =

def classify (z: VectorD): Int

def distance (u: VectorD, cn: MatrixD, kc_ : Int = -1): VectorD =

def sse (x: MatrixD, to_c: Array [Int]): Double =

def sse (x: MatrixD, c: Int, to_c: Array [Int]): Double =

def sst (x: MatrixD): Double =

def checkOpt (x: MatrixD, to_c: Array [Int], opt: Double): Boolean = sse (x, to_c) <= opt

For readability, names may be given to clusters (see name and name). To obtain a new (and likely different)

cluster assignment, setStream method may be called to change the random number stream. The train

methods in the implementing classes will take a set of points (vectors) and apply iterative algorithms to find

a “good” cluster assignment function. The cluster method may be called after train to see the cluster

assignments. The centroids are returned as rows in a matrix by calling centroids, whose cluster sizes are

given by csize. The initCentroid method initializes the centroids, while the calcCentroids calculates

the centroids based in the points contained in the each cluster.

def calcCentroids (x: MatrixD, to_c: Array [Int], sz: VectorI, cent: MatrixD): Unit =

cent.setAll (0.0) // set cent matrix to all zeros

for i <- x.indices do

val c = to_c(i) // x_i currently assigned to cluster c

cent(c) = cent(c) + x(i) // add the next vector in cluster

end for

for c <- cent.indices do cent(c) = cent(c) / sz(c) // divide to get averages/means

end calcCentroids

Given a new point/vector z, the classify method will indicate which cluster it belongs to (in the range

0 to k-1). The distances between a point and the centroids is computed by the distance method. The

549

objective/cost function is defined to be the sum of squared errors (sse). If the cost of an optimal solution

is known, checkOpt will return true if the cluster assignment is optimal.

550

14.3 K-Means Clustering

The KMeansClustering class clusters several vectors/points using k-means clustering. The user selects the

number of clusters desired (k). The algorithm will partition the points in X into k clusters. Each cluster

has a centroid (mean) and each data point xi ∈ X is placed in the cluster whose centroid it is nearest to.

14.3.1 Initial Assignment

There are two ways to initialize the algorithm: Either (1) randomly assign points to k clusters or (2) randomly

pick k points as initial centroids. Technique (1) tends to work better and is the primary technique used in

ScalaTion. Using the primary technique, the first step is to randomly assign each point xi to a cluster.

ξ(xi) = random integer from {0, . . . , k − 1}

In ScalaTion, this is carried out by the assign method, that uses the Randi random integer generator.

It also uses multiple counters for determining the size sz of each cluster (i.e., the number of points in each

cluster).

protected def assign (): Unit =

val ran = new Randi (0, k-1, s) // for random integers: 0, ..., k-1

for i <- x.indices do

to_c(i) = ran.igen // randomly assign x(i) to a cluster

sz(to_c(i)) += 1 // increment size of that cluster

end for

end assign

See the exercises for more details on the second technique for initializing clusters/centroids.

Handling Empty Clusters

If any cluster turns out to be empty, move a point from another cluster. In ScalaTion this is done by

removing a point from the largest cluster and adding it to the empty cluster. This is performed by the

fixEmptyClusters method.

protected def fixEmptyClusters (): Unit =

After the assign and fixEmptyClusters methods have been called, the data matrix X will be logically

partitioned into k non-empty sub-matrices Xc with cluster c having nc (sz(c)) points/rows.

Calculating Centroids

The next step is to calculate the centroids using the calcCentroids method. For cluster c, the centroid is

the vector mean of the rows in submatrix Xc.

ξc =
1

nc

∑
xi∈Xc

xi

ScalaTion iterates over all points and based on their cluster assignment adds them to one of the k centroids

(stored in the cent matrix). After the loop, these sums are divided by the cluster sizes sz to get means.

The calcCentroids method is defined in the base trait Clusterer.

551

14.3.2 Reassignment of Points to Closest Clusters

After initialization, the algorithm iteratively reassigns each point to the cluster containing the closest cen-

troid. The algorithm stops when there are no changes to the cluster assignments. For each iteration, each

point xi needs to be re-evaluated and moved (if need be) to the cluster with the closest centroid. Reas-

signment is based on taking the argmin of all the distances to the centroids with ties going to the current

cluster.

ξ(xi) = argminc d(xi, ξc)

In ScalaTion, this is done by the reassign method which iterates over each xi ∈ X computing the distance

to each of k centroids. The cluster (c2) with the closest centroid is found using the argmin method. The

distance to c2’s centroid is then compared to the distance to its current cluster c1’s centroid, and if the

distance to c2’s centroid is less, xi will be moved and a done flag will be set to false, indicating that during

this reassignment phase at least one change was made.

protected def reassign (): Boolean =

var done = true // done indicates no changes

for i <- x.indices do // standard order for index i

val c1 = to_c(i) // c1 = current cluster for point x_i

if sz(c1) > 1 then // if size of c1 > 1

val d = distance (x(i), cent) // distances to all centroid

val c2 = d.argmin () // c2 = cluster with closest centroid to x_i

if d(c2) < d(c1) then // if closest closer than current

sz(c1) -= 1 // decrement size of current cluster

sz(c2) += 1 // increment size of new cluster

to_c(i) = c2 // reassign point x_i to cluster c2

done = false // changed clusters => not done

if immediate then return false // optionally return after first change

end if

end if

end for

done

end reassign

The exercises explore a change to this algorithm by having it return after the first change.

14.3.3 Training

The train method simply uses these methods until the reassign method returns true (internally the done

flag is true). The method is set up to work for this and derived classes. It assigns points to clusters and

then either initializes/picks centroids or calculates centroids from the first cluster assignment. Inside the

loop, reassign and calcCentroid are called until there is no change to the cluster assignment. After the

loop, an exception is thrown if there are any empty clusters (a useful safe-guard since this method is used

by derived classes). Finally, if post-processing is to be performed (post = true), then the swap method is

called. This method will swap two points in different clusters, if the swap results in a lower sum of squared

error (sse).

552

def train (): Unit =

sz.set (0) // cluster sizes initialized to zero

raniv = PermutedVecI (VectorI.range (0, x.dim), stream) // for randomizing index order

assign () // randomly assign points to clusters

fixEmptyClusters () // move points into empty clusters

if ! initCentroids () then calcCentroids (x, to_c, sz, cent) // pick points for initial centroids

breakable {

for l <- 1 to MAX_IT do

if reassign () then break () // reassign points (no change => break)

calcCentroids (x, to_c, sz, cent) // re-calculate the centroids

end for

} // breakable

val ce = sz.indexOf (0) // check for empty clusters

if ce != -1 then throw new Exception (s"Empty cluster c = $ce")

if post then swap () // swap points to improve sse

end train

14.3.4 KMeansClusterer Class

The KMeansClusterer class and its derived classes take a data matrix, the desired number clusters and

an array of flags as input parameters. The array of flags are used to make adjustments to the algorithms.

For this class, there are two: flags(0) or post indicates whether to use post-processing, and flags(1) or

immediate indicates whether return upon the first change in the reassign method.

Class Methods:

@param x the vectors/points to be clustered stored as rows of a matrix

@param k the number of clusters to make

@param flags the array of flags used to adjust the algorithm

default: no post processing, no immediate return upon change

class KMeansClusterer (x: MatrixD, k: Int, val flags: Array [Boolean] = Array (false, false))

extends Clusterer:

def train (): Unit =

def cluster: Array [Int] = to_c

def centroids: MatrixD = cent

def csize: VectorI = sz

protected def assign (): Unit =

protected def fixEmptyClusters (): Unit =

protected def reassign (): Boolean =

protected def swap (): Unit =

def classify (z: VectorD): Int = distance (z, cent).argmin ()

def show (l: Int): Unit = println (s"($l) to_c = ${to_c.deep} \n($l) cent = $cent")

553

14.3.5 Exercises

1. Plot the following points.

// x0 x1

val x = MatrixD ((6, 2), 1.0, 2.0,

2.0, 1.0,

4.0, 5.0,

5.0, 4.0,

8.0, 9.0,

9.0, 8.0)

new Plot (x(?, 0), x(?, 1), null, "x0 vs. x1")

For k = 3, determine the optimal cluster assignment ξ. What is the sum of squared errors sse for this

assignment?

2. Using the data from the previous exercise, apply the K-Means Clustering Algorithm by hand to com-

plete the following cluster assignment function table. Let the number of clusters k be 3 (clusters 0, 1

and 2). The ξ0 column is the initial random cluster assignment, while the next two columns represent

the cluster assignments for the next two iterations.

Table 14.1: Cluster Assignment Function Table

point (x0, x1) ξ0 ξ1 ξ2

0 (1, 2) 0 ? ?

1 (2, 1) 2 ? ?

2 (4, 5) 0 ? ?

3 (5, 4) 1 ? ?

4 (8, 9) 1 ? ?

5 (9, 8) 2 ? ?

3. The test function in the Clusterer object is used test various configurations of classes extending

Clusterer, such as the KMeansClusterer class.

@param x the data matrix holding the points/vectors

@param fls the array of flags

@param alg the clustering algorithm to test

@param opt the known optimum for see (ignore if not known)

def test (x: MatrixD, fls: Array [Boolean], alg: Clusterer, opt: Double = -1.0): Unit =

Explain the meaning of each of the flags: post and immediate. Call the test function, passing in x

and k from the last exercise. Also, let the value opt be the value determined in the last exercise. The

test method will give the number of test cases out of NTESTS that are correct in terms of achieving

the minimum sse.

554

4. The primary versus secondary techniques for initializing the clusters/centroids are provided by the

KMeansClusterer class and the KMeansClusterer2 class, respectively. Test the quality of these two

techniques.

5. Show that the time complexity of the reassign method is O(kmn). The time complexity of K-Means

Clustering using Lloyd’s Algorithm [113] is simply the complexity of the reassign method times the

number of iterations. In practice, the number of iterations tends to be small, but in the worst case

only upper and lower bounds are known, see [9] for details.

6. Consider the objective/cost function given in ISL equation 10.11 in [85]. What does it measure and

how does it compare to sse used in this book?

555

14.4 K-Means Clustering - Hartigan-Wong

An alternative to the Lloyd algorithm that often produces more tightly packed clusters is the Hartigan-Wong

algorithm [69]. Improvement is seen in the fraction of times that optimal clusters are formed as well as the

reduction in sum of squared errors (sse). The change to the code is minimal in that only the reassign

method needs to be overridden.

The basic difference is that rather than simply reassigning each point to the cluster with the closest

centroid (the Lloyd algorithm), the Hartigan-Wong algorithm weights the distance by the relative changes

in the number of points in a cluster. For example, if a point is to be moved into a cluster with 10 points

currently, the weight would be 10/11. If the point is to stay in its present cluster with 10 points currently,

the loss in removing it would be weighted as 10/9. The weighting scheme has two effects: First it makes it

more likely to move a point out of its current cluster. Second it makes it more likely to join a small cluster.

Mathematically, the weighted distance d′ to cluster c when the point xi /∈ Xc is given by

d′(xi, ξc) =
nc

nc + 1
d(xi, ξc) (14.2)

When the point xi ∈ Xc, the weighted distance d′ to cluster c is given by

d′(xi, ξc) =
nc

nc − 1
d(xi, ξc) (14.3)

The code for the reassign method is similar to the one in KMeansClusterer, except that the private

method closestByR2 calculates weighted distances to return the closest centroid.

protected override def reassign (): Boolean =

var done = true // done indicates no changes

for i <- raniv.igen do // randomize order of index i

val c1 = to_c(i) // c1 = current cluster for point x_i

if sz(c1) > 1 then // if size of c1 > 1

val d = distance2 (x(i), cent, c1) // adjusted distances to all centroid

val c2 = d.argmin () // c2 = cluster with closest centroid to x_i

if d(c2) < d(c1) then // if closest closer than current

sz(c1) -= 1 // decrement the size of cluster c1

sz(c2) += 1 // increment size of cluster c2

to_c(i) = c2 // reassign point x_i to cluster c2

done = false // changed clusters => not done

if immediate then return false // optionally return after first change

end if

end if

end for

done

end reassign

Besides switching from distance d to weighted distance d′, the code also randomizes the index order and has

the option of returning immediately after a change is made.

556

14.4.1 Adjusted Distance

The distance2 method computes the adjusted distance of point u to all of the centroids cent, where cc is

the current centroid that u is assigned to. Notice the inflation of distance when c == cc, and its deflation,

otherwise.

def distance2 (u: VectorD, cent: MatrixD, cc: Int): VectorD =

val d = new VectorD (cent.dim)

for c <- 0 until k do

d(c) = if c == cc then (sz(c) * dist (u, cent(c))) / (sz(c) - 1)

else (sz(c) * dist (u, cent(c))) / (sz(c) + 1)

end for

d

end distance2

14.4.2 KMeansClusteringHW Class

Class Methods:

@param x the vectors/points to be clustered stored as rows of a matrix

@param k the number of clusters to make

@param flags the flags used to adjust the algorithm

class KMeansClustererHW (x: MatrixD, k: Int, flags: Array [Boolean] = Array (false, false))

extends KMeansClusterer (x, k, flags)

protected override def reassign (): Boolean =

def distance2 (u: VectorD, cent: MatrixD, cc: Int): VectorD =

14.4.3 Exercises

1. Compare KMeansClustererHW with KMeansClusterer for a variety of datasets, starting with the six

points given in the last section (Exercise 1). Compare the quality of the solution in terms the fraction

of optimal clusterings and the mean of the sse over the NTESTS test cases.

557

14.5 K-Means++ Clustering

The KMeansClustererPP class clusters several vectors/points using a k-means++ clustering algorithm [10].

The class may be derived from a K-Means clustering algorithm and in ScalaTion it is derived from the

Hartigan-Wong algorithm (KMeansClustererHW). The innovation for KMeansClustererPP is to pick the

initial centroids wisely, yet randomly. The wise part is to make sure points are well separated. The random

part involves making a probability mass function (pmf) where points farther away from the current centroids

are more likely to be selected as the next centroid. Picking the initial centroids entirely randomly leads

to KMeansClusterer2 which typically does not perform as well KMeansClusterer. However, maintaining

randomness while giving preference to more distant points becoming the next centroid has been shown to

work well.

14.5.1 Picking Initial Centroids

In order to pick k initial centroids, the first one, cent(0), is chosen entirely randomly, using the ranI

random variate generator object. The method call ranI.igen will pick one of the m = x.dim points as the

first centroid.

val ranI = new Randi (0, x.dim-1, stream) // uniform random integer generator

cent(0) = x(ranI.igen) // pick first centroid uniformly at random

The rest of the centroids are chosen following a distance-derived discrete distribution, using the ranD random

variate generator object. The probability mass function (pmf) for this discrete distribution is produced so

that the probability of a point being selected as the next centroid is proportional to its distance to the closest

existing centroid.

for c <- 1 until k do // pick remaining centroids

val ranD = update_pmf (c) // update distance derived pmf

cent(c) = x(ranD.igen) // pick next centroid according to pmf

end for

Each time a new centroid is chosen, the pmf must be updated as it is likely to be the closest centroid for

some of the remaining as yet unchosen points. Given that the next centroid to selected is the cth centroid,

the update pmf method will update the pmf and return a new distance-derived discrete distribution.

def update_pmf (c: Int): Discrete =

for i <- x.indicea do pmf(i) = distance (x(i), cent, c).min // shortest distances

pmf /= pmf.sum // divide by sum

Discrete (pmf, stream = (stream + c) % NSTREAMS) // distance-derived generator

end update_pmf

The pmf vector initially records the shortest distance from each point xi to any of the existing already

selected centroids {0, . . . , c−1}. These distances are turned into probabilities by dividing by their sum. The

pmf vector then defines a new distance-derived random generator that is returned.

558

14.5.2 KMeansClustererPP Class

Class Methods:

@param x the vectors/points to be clustered stored as rows of a matrix

@param k the number of clusters to make

@param flags the flags used to adjust the algorithm

class KMeansClustererPP (x: MatrixD, k: Int, flags: Array [Boolean] = Array (false, false))

extends KMeansClustererHW (x, k, flags)

override def initCentroids (): Boolean =

def update_pmf (c: Int): Discrete =

14.5.3 Exercises

1. Compare KMeansClustererPP with KMeansClustererHW and KMeansClusterer for a variety of datasets,

starting with the six points given in the KMeansClusterer section (Exercise 1). Compare the quality

of the solution in terms the fraction of optimal clusterings and the mean of the sse over the NTESTS

test cases.

559

14.6 Clustering Predictor

The ClusteringPredictor class is used to predict a response value for new vector z. It works by finding the

cluster that the point z would belong to. The recorded response value for y is then given as the predicted

response. The per cluster recorded response value is the consensus (e.g., average) of the response values yi

for each member of the cluster. Training involves clustering the points in data matrix X and then computing

each cluster’s response. Assuming the closest centroid to z is ξc, the predicted value ŷ is

ŷ =
1

nc

∑
ξ(xi)=c

yi (14.4)

where nc is the number points in cluster c and ξ(xi) = c means that the ith point is assigned to cluster c.

14.6.1 Training

The train method first clusters the points/rows in data matrix X by calling the train method of a clustering

algorithms (e.g., clust = KMeansClusterer (...)). It then calls the assignResponse method to assign a

consensus (average) response value for each cluster.

def train (xx: MatrixD = x, yy: VectorD = y): Unit =

clust.train ()

val clustr = clust.cluster

assignResponse (clustr)

end train

The computed consensus values are stored in yclus, so that the predict method may simply use the

underlying clustering algorithm to classify a point z to indicate which cluster it belongs to. This is then

used to index into the yclus vector.

override def predict (z: VectorD): Double = yclus (clust.classify (z))

14.6.2 ClusteringPredictor Class

Class Methods:

@param x the vectors/points of predictor data stored as rows of a matrix

@param y the response value for each vector in x

@param fname_ the names for all features/variables (defaults to null)

@param hparam the number of nearest neighbors to consider

class ClusteringPredictor (x: MatrixD, y: VectorD, fname_ : Array [String] = null,

hparam: HyperParameter = ClusteringPredictor.hp)

extends Predictor (x, y, fname_, hparam)

with Fit (dfm = x.dim2 - 1, df = x.dim - x.dim2):

def train (xx: MatrixD = x, yy: VectorD = y): Unit =

private def assignResponse (clustr: Array [Int]): Unit =

560

override def test (xx: MatrixD = x, yy: VectorD = y): (VectorD, VectorD) =

def classify (z: VectorD): Int = clust.classify (z)

override def predict (z: VectorD): Double = yclus (clust.classify (z))

def reset (): Unit =

override def buildModel (x_cols: MatrixD): Predictor =

14.6.3 Exercises

1. Apply ClusteringPredictor to the following combined data matrix.

// x0 x1 y

val xy = MatrixD ((10, 3), 1, 5, 1, // joint data matrix

2, 4, 1,

3, 4, 1,

4, 4, 1,

5, 3, 0,

6, 3, 1,

7, 2, 0,

8, 2, 0,

9, 1, 0,

10, 1, 0)

val cp = ClusteringPredictor (xy)()

cp.trainNtest ()()

val (x, y) = (xy.not(?, 2), xy(?, 2))

val yp = cp.predict (x)

new Plot (xy(?, 0), y, yp, lines = true)

Compare its results to that of KNN Regression.

2. Compare Regression, KNN Regression and ClusteringPredictor on the AutoMPG dataset.

561

14.7 Hierarchical Clustering

One critique of K-Means Clustering is that the user chooses the desired number of clusters (k) beforehand.

With modern computing power, several values for k may be tried, so this is less of an issue now. There is,

however, a clustering technique called Hierarchical Clustering [87] where this a non-issue.

In ScalaTion the HierClusterer class starts with each point in the data matrix X forming its own

cluster (m clusters). For each iteration, the algorithm will merge two clusters into a one larger cluster,

thereby reducing the number of clusters by one. The two clusters that are closest to each other are chosen

as the clusters to merge. The train method is shown below.

def train (): Unit =

sz.set (0) // initialize cluster sizes to zero

initClusters () // make a cluster for each point

for kk <- x.dim until k by -1 do

val (si, sj) = bestMerge (kk) // find the 2 closest clusters

clust += si | sj // add the union of sets i and j

clust -= si // remove set i

clust -= sj // remove set j

end for

finalClusters () // make final cluster assignments

calcCentroids (x, to_c, sz, cent) // calculate centroids for clusters

end train

After reducing the number of clusters to the desired number k (which defaults to 2), final cluster assignments

are made and centroids are calculated. Intermediate clustering results are available making it easier for the

user to pick the desired number of clusters after the fact. The algorithm can be rerun with this value for k.

14.7.1 HierClusterer Class

Class Methods:

@param x the vectors/points to be clustered stored as rows of a matrix

@param k stop when the number of clusters equals k

class HierClusterer (x: MatrixD, k: Int = 2)

extends Clusterer:

def train (): Unit =

def cluster: Array [Int] = to_c

def centroids: MatrixD = cent

def csize: VectorI = sz

def classify (z: VectorD): Int = distance (z, cent).argmin ()

562

14.7.2 Exercises

1. Compare HierClusterer with KMeansClustererHW and KMeansClusterer for a variety of datasets,

starting with the six points given in the KMeansClusterer section (Exercise 1). Compare the quality

of the solution in terms the fraction of optimal clusterings and the mean of the sse over the NTESTS

test cases.

2. K-Means Clustering techniques often tend to produce better clusters (e.g., lower sse) than Hierarchical

Clustering techniques. For what types of datasets might Hierarchical Clustering be preferred?

3. What is the relationship between Hierarchical Clustering and Dendrograms?

563

14.8 Markov Clustering

The MarkovClusterer class implements a Markov Clustering Algorithm (MCL) and is used to cluster nodes

in a graph. The graph is represented as an edge-weighted adjacency matrix (a non-zero cell indicates nodes

i and j are connected).

The primary constructor takes either a graph (adjacency matrix) or a Markov transition matrix as input.

If a graph is passed in, the normalize method must be called to convert it into a Markov transition matrix.

Before normalizing, it may be helpful to add self loops to the graph. The matrix (graph or transition) may

be either dense or sparse. See the MarkovClusteringTest object at the bottom of the file for examples.

14.8.1 MarkovClusterer Class

Class Methods:

@param t either an adjacency matrix of a graph or a Markov transition matrix

@param k the strength of expansion

@param r the strength of inflation

class MarkovClusterer (t: MatrixD, k: Int = 2, r: Double = 2.0)

extends Clusterer:

def train (): Unit =

def cluster: Array [Int] = clustr

def centroids: MatrixD = throw new UnsupportedOperationException ("not applicable")

def csize: VectorI = throw new UnsupportedOperationException ("not applicable")

def addSelfLoops (weight: Double = 1.0): Unit =

def normalize (): Unit =

private def expand (): Unit = t~^^k

private def inflate (): Boolean =

def processMatrix (): MatrixD =

def classify (y: VectorD): Int = throw new UnsupportedOperationException ()

14.8.2 Exercises

1. Draw the directed graph obtained from the following adjacency matrix, where g(i, j) == 1.0 means

that a directed edge exists from node i to node j.

val g = MatrixD ((12, 12),

0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0,

1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,

0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,

0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 1.0, 0.0,

0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0,

564

1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0,

1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0,

0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0,

0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0,

1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0,

0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 1.0,

0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0)

Apply the MCL Algorithm to this graph and explain the significance of the resulting clusters.

val mg = new MarkovClusterer (g)

mg.addSelfLoops ()

mg.normalize ()

println ("result = " + mg.processMatrix ())

mg.train ()

println ("cluster = " + mg.cluster.deep)

565

566

Part III

Simulation

567

Chapter 15

Simulation Foundations

ScalaTion supports multi-paradigm modeling that can be used for simulation, optimization and analytics.

The focus of this chapter is simulation modeling. Viewed as a black-box, a simple model maps an input

vector x and a scalar time t to an output/response vector y,

y = f(x, t) + ε (15.1)

where ε is the error/residual vector.

A simulation model typically adds to these the notion of state, represented by a vector-valued function

of time x(t). External input (e.g., an external driving force) is now renamed to u(t) and the error vector

is replaced with a noise process w(t) (e.g., a Gaussian while noise process). Commonly, simulations model

systems that evolve over time.

y(t) = f(x(t),u(t), t) + w(t) (15.2)

state: x(t)u(t) y(t)
input output

Figure 15.1: Conceptual Framework for Simulation Models

Knowledge about a system or process is used to define state as well as how state can change over time.

Theoretically, this should make such models more accurate, more robust, and have more explanatory power.

Ultimately, we may still be interested in how inputs affect outputs, but to increase the realism of the model

with the hope of improving its accuracy, much attention must be directed in the modeling effort to state

and state transitions. This is true to a degree with most simulation modeling paradigms or world views.

Once a simulation model has been validated, one of its strengths is that it can be used to address what-if

questions. What if we add another lane to an interstate highway. Will this lead to reduced traffic congestion

569

and reduced travel times? Such capabilities allow simulation models to play a larger role in perspective

analytics. This can be taken farther with simulation optimization, which can seek improvements to systems.

This chapter focuses on foundations necessary for creating simulation models. as well as some simulation

modeling techniques that can be performed without substantial software.

The following textbooks on Discrete-Event Simulation are recommended:

1. Discrete-Event System Simulation, 5th Edition, J. Banks, J. Carson, B. Nelson and D. Nicol, 2010 [12].

2. Simulation Modeling and Analysis, 5th Edition, A. Law, 2015 [105].

570

15.1 Basic Concepts

The following basic concepts are common to many types of simulation models.

• Simulation Model: A simulation model consists of collection of entities that interact with each other.

The model may be view as simplified version of a system (existing or imagined). The model should

be useful for description, prediction, and/or prescription. For improved explainability, the it is often

desirable that the model mimics the behavior the real system.

• Entity: An entity is an identifiable object in a simulation model, e.g., a customer entering a bank, or

a vehicle traveling on a road. One may think of an entity having a trajectory in time and space.

• Attribute: An attribute is a property of an entity that is relevant for the model, e.g., the speed and

weight of the vehicle.

• State: The current values for all the variable in the model (or attribute values for all entities). These

may be collected into a state vector x(t) that evolves over time. The Restorable State of the model may

be thought of a sufficient recording of the execution of the model so far. This would allow a snapshot

to be saved and later restored for continued execution. For some models, recent history needs to be

maintained along with the current state. For a Markov Models, the state only depends on current

values, i.e., the future conditioned on the present is independent of the past. For such models, the two

notions of state are identical.

• Event: An event is an instantaneous occurrence that has the potential to change the state of the

system being modeled, e.g., the arrival of customer at a bank. It may also trigger other events to occur

in the future.

• Simulation Clock: To keep track of the advancement of time, a simulation clock is maintained. For

continuous-time simulation, time smoothly advances in small increments. For discrete-time simulation,

time advances by one time-unit (e.g., set to 1) for each tick of the clock. For discrete-event simulation,

time jumps from the “event time of the current event” to the “event time of the next event” (any

intermediate time is skipped).

• Activity: Entities in a model undergo activities that start on one event, have a duration described by

a random variable, and end on another event, e.g., a customer being served by a bank teller.

• Indefinite Delay: An entity must wait for a server or other resource to become available. As this

delay depends on other entities, the delay in not definite as it is for activities, e.g., waiting time in a

queue.

571

15.2 Types of Models

While many modeling techniques, such as Regression, focus on predicting expected values,

ŷ = E [y|x] (15.3)

simulation models generate data. Then techniques discussed in this text, can be used to analyze the data

instances produced as output of the simulation model.

15.2.1 Example: Modeling an M/M/1 Queue

A single server queue is characterized by an arrival process and a service distribution. For an M/M/1 Queue

the inter-arrival time distribution and service distribution are both Exponential,

iaj ∼ Exponential(λ) (15.4)

sj ∼ Exponential(µ) (15.5)

where λ is the arrival rate and µ is the service rate (not to be confused the mean).

The queue can be modeled as a Continuous-Time Markov Chain and the expected waiting time in the

queue can be determined. Unfortunately, as queuing systems become more complex, analytic solution may

not be available.

A more general, although less efficient approach is to simulate customers making their way through the

queue. They arrive a certain time ta, begin service at time ts and depart at time td. Averages for m

customers may then be used to estimate expected waiting times Tq and service times Ts.

The construction of such simulation models is straightforward. One approach is based on the observation

that the number of customers in a queueing system remained constant, except at special points in time,

where an event occurs. Changes of the state of systems (e.g., number of customers) can only occur at events.

The simulation therefore consists of programming logic that indicates what happens when an event occurs.

This is the first major paradigm for simulation modeling and is referred to as event-scheduling.

For complex simulations, the logic may become fragmented, so an alternative is to track active entities

in the systems and give the logic that they follow. For example, one may think of a customer entering a

bank as an actor following a script. The programming logic for the simulation model then becomes writing

scripts of each type of actor. This is the second major paradigm for simulation modeling and is referred to

as process-interaction.

There are additional paradigms for simulation modeling that will be discussed later.

572

15.3 Random Number Generation

Let us imagine you are one of the actors following the script that you were given and you notice that all

actors are doing exactly the same thing, following the same steps, take the same routes through the system

and experiencing the same service times. Clearly, such simulations would not mimic reality. There should

be uncertainty or variability in behavior. This is accomplished by introducing randomness.

The question becomes how to introduce randomness in a deterministic digital computer. In particular,

one wants to generate a sequence of random numbers of the following form.

ri ∼ UID(0, 1) (15.6)

The random numbers should be Uniformly and Independently Distributed. A Random Number Generator

(RNG) may be used to produce such numbers.

15.3.1 Example RNG: Random0

Random number generators work by producing a long sequence of integers (Int or Long) that do not repeat.

An obvious way to do this is to pick a large modulus M, increment an integer x and take the mod. Such a

sequence of numbers will not repeat until M are generated. The Random0 class implements this approach.

@param stream the random number stream index

case class Random0 (stream: Int = 0)

extends RNG (stream):

private val M = 2147483647 // modulus for a popular 32-bit generator (2^31 - 1)

private val NORM = 1.0 / M.toDouble // normalization to (0, 1)

private var x = stream // set stream value to its seed = stream index here

//:::

/** Return the modulus used by this random number generator.

*/

def getM: Double = M.toDouble

//:::

/** Return the next random number as a ‘Double‘ in the interval (0, 1).

* Compute x_i = (x_i-1 + 1) % m using x = (x + 1) % m

*/

inline def gen: Double = { x = (x + 1) % M; x * NORM }

//:::

/** Return the next stream value as a ‘Int‘ in the set {1, 2, ... , m-1}.

* Compute x_i = (x_i-1 + 1) % m using x = (x + 1) % m

*/

inline def igen: Int = { x = (x + 1) % M; x }

end Random0

573

The Random0 class will produce numbers in the interval [0, 1) when the gen method is called. The period of

the generator (before it repeats itself) is equal to M. So far, so good. Before using this generator, a battery

of tests should be applied to check its suitability.

15.3.2 Testing Random Number Generators

Means Test

The Means Test simply computes several means by averaging sub-sequences of the random number stream.

Suppose the test has a sample of n means from sub-sequences of length m.

µi =
1

m

m−1∑
j=0

rim+j for i = 0, . . . n− 1 (15.7)

Due to the Central Limit Theory, the means should be Normally distributed and the sample should have

the following expected value and variance.

E [µi] =
1

m
mE [ri] = 0.5 (15.8)

V [µi] =
1

m2
mV [ri] =

1

12m
(15.9)

Distribution Test

The Distribution Test determines how well sub-streams of the generated random numbers are distributed over

the unit interval. Are they uniformly spread out over the interval or concentrated in certain regions. This can

be assessed by a Goodness-of-Fit Test, e.g., the Chi-square Goodness-of-Fit Test or the Kolmogorov-Smirnov

Goodness-of-Fit Test (see the exercises).

The Chi-square Goodness-of-Fit Test checks how well a histogram from a subsequence of length m

matches the density function of the Uniform(0, 1) distribution. Each interval, say Ij , in the histogram will

have an observed oj and expected ej number of generated random numbers within interval Ij .

oj = ν{ri ∈ Ij : i ∈ {0, . . .m− 1}}

ej = m · f(middle(Ij))

f is the probability density function (pdf) and in this case it is the pdf for the Uniform (0, 1) distribution.

Suppose there are n intervals, then ej = m/n, while oj is determined by a counter that is incremented

whenever a random number ri is generated that is within interval Ij . The Chi-square test statistic is then

χ2 =

n−1∑
j=0

(oj − ej)2

ej
(15.10)

When χ2 > χ2
α,n−1, the sample suggests the distribution is not Uniform, where α is the significance level

(e.g., .95).

574

Auto-Correlation Test

The are many tests related to checking correlation. As with time series, the auto-correlation may be exam-

ined by looking at a Correlogram that indicates the Auto-Correlation Function (ACF) and Partial Auto-

Correlation Function (PACF) for increasing lags. The k-lag auto-correlation ρk is given by

ρk =
C [rj , rj+k]

V [rj]
for any j (15.11)

Ideally, ρ0 = 1 and the rest are close to zero, indicating lack of correlation. Note, the above fomula for ρk

assumes stationarity (see the chapter on time series).

The Random0 class fails all three tests, see the exercises.

15.3.3 Example RNG: Random3

Rather than adding one each time before using the mod operator (%), it will work better to multiply the

stream value by a constant.

def gen: Double = { x = A * x % M; x * NORM }

Extensive testing has been used to find good values for the constant A. One example is A = 16807. Random

number generators of this form are know as Multiplicative Linear Congruential Generators (MLCG). This

value for A is an example of primitive-element modulo M, allowing the generator to exhibit a full period,

period = M-1. In other words, the generator will produce all stream values from 1 to M-1, inclusive, before

repeating itself. In ScalaTion, this generator is available in the Random3 class.

xi = Axi−1 %M stream value (15.12)

ri = xi/M random number (15.13)

where A = 75 = 16807 and M = 231 − 1 = 2147483647.

In general, a Linear Congruential Generators (LCG) take the following form,

xi = (Axi−1 + C) %M stream value (15.14)

ri = xi/M random number (15.15)

The next step up (longer period and better properties) is a Multiple Recursive Generator (MRG). These can

be combined for further improvement into a Combined Multiple Recursive Generator (CMRG). ScalaTion’s

Random class is an example of an CMRG developed by L’Ecuyer and Touzin [107].

15.3.4 Exercises

1. Apply the above three tests to the Random0, Random and Random3 random number generators. See the

RNGTester object in the scalation.random package for the test methods: meansTest, distributionTest,

and correlationTest.

2. Discuss additional tests that are applied to assess the quality of a random number generator.

575

3. Explain how Multiple Recursive Generators (MRG) work and what advantages they may have over

Linear Congruential Generators (LCG).

4. Explain how Kolmogorov-Smirnov Goodness-of-Fit tests work.

5. Finish the implementation of the distributionTest KS function to implement the Kolmogorov-Smirnov

Goodness-of-Fit test.

576

15.4 Random Variate Generation

With a good quality random number generator as a foundation, Random Variate Generators (RVG) for a

variety of probability distributions can be created.

15.4.1 Inverse Transform Method

One of the simplest methods for converting random numbers into random variates following some distribution

F is the inverse transform method that uses the iCDF F−1 to transform the random number.

General Uniform Distribution

Suppose y ∼ F and r ∼ Uniform(0, 1). Now let F be a general uniform distribution, Uniform(a, b).

2 2.5 3 3.5 4

0

0.2

0.4

0.6

0.8

1

y

F
(y

)

CDF for Uniform Distribution on [2, 4]

Conceptually, the Inverse Transform Method generates a random number r and use it select the height of

a horizontal line in the diagram. Drop a vertical line from where it intersects the Cumulative Distribution

Function (CDF) F . The position in the horizontal axis is the value for the random variate y. For example,

if r = 0.5, then y = 3.0.

Mathematically, the relationship is

F (y) = r (15.16)

y = F−1(r) (15.17)

The CDF for the general uniform distribution is F (y) =
y − a
b− a

, so

y = a+ (b− a)r (15.18)

577

Exponential Distribution

The Inverse Transform Method also works well for the Exponential(λ) distribution where the CDF F (y) =

1− e−λy. Setting F (y) = r and solving for the inverse yields,

F (y) = 1− e−λy = r

e−λy = 1− r

e−λy = r

−λy = ln(r)

y = − ln(r)

λ

The third step relies on the fact that 1− r and r have the same distribution.

To illustare its use, for example with λ = 1, if the generated random number r = 0.5, then generated

random variate y = 0.693.

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

y

F
(y

)

CDF for Exponential Distribution with λ = 1 on [0, 5]

There are numerous Random Variate Generators in ScalaTion that extend the Variate abstract class,

including the Exponential class.

@param mu the mean

@param stream the random number stream

case class Exponential (mu: Double = 1.0, stream: Int = 0)

extends Variate (stream):

if mu <= 0.0 then flaw ("constructor", "parameter mu must be positive")

private val l = 1.0 / mu // lambda, the rate parameter

val mean = mu

578

def pf (z: Double): Double = if z >= 0 then l * exp (-l*z) else 0.0

def gen: Double = -mu * log (r.gen)

def gen1 (z: Double): Double = -z * log (r.gen)

end Exponential

Note, since the mean is the reciprocal of the rate, µ =
1

λ
, the simple gen method -mu * log (r.gen)

produces exponentially distributed random variates.

15.4.2 Convolution Method

Another simple method for generating random random variates is the convolution method that involves the

summation of multiple simpler random variates.

For example, a Binomial random variate may be created by adding n Bernoulli random variates. The

Bernoulli(p) distributions models the flip of coin where the probability of head (success) is p (and q = 1−p).
The probability mass function (pmf) is shown below.

px(x) = pxq1−x where x ∈ {0, 1}

The Binomial(p, n) distribution models the number of heads (successes) in flipping n coins (y = x1+· · ·+xn).

py(y, n) =

(
n

y

)
pyqn−y where y ∈ {0, 1, . . . n}

The gen method in the Binomial class therefore simply adds up the results of n coin flips where a head is 1

and a tail is 0.

@param p the probability of success

@param n the number of independent trials

@param stream the random number stream

case class Binomial (p: Double = .5, n: Int = 10, stream: Int = 0)

extends Variate (stream):

if p < 0.0 || p > 1.0 then flaw ("constructor", "parameter p must be in [0, 1]")

if n <= 0 then flaw ("constructor", "parameter n must be positive")

_discrete = true

private val q = 1.0 - p // probability of failure

private val p_q = p / q // the ratio p divided by q

private val coin = Bernoulli (p, stream) // coin with prob of success of p

val mean = p * n

def pf (z: Double): Double = { val k = z.toInt; if z == k then pf (k) else 0.0 }

def pf (k: Int): Double = if k in (0, n) then choose (n, k) * p~^k * q~^(n-k) else 0.0

579

override def pmf (k: Int): Array [Double] =

val d = Array.ofDim [Double] (n+1) // array to hold pmf distribution

d(0) = q~^n

for k <- 1 to n do d(k) = d(k-1) * p_q * (n-k+1) / k.toDouble

d

end pmf

def gen: Double = summation (n)(coin.gen)

def gen1 (z: Double): Double = summation (z.toInt)(coin.gen)

end Binomial

Note, the summation top-level function is defined in Util.scala.

inline def summation (n: Int)(formula: => Double): Double =

var sum = 0.0

for i <- 0 until n do sum += formula

sum

end summation

It evaluates the given formula a total of n times and returns the sum.

15.4.3 Acceptance-Rejection Method

The Acceptance-Rejection method for generating random variates may be used for complex distributions.

Given the density function f(y) for a complex distribution, find a simpler (or rather easier to generate)

distribution with density function g(y), such that

f(y) ≤ cg(y) for y ∈ Dy (15.19)

where the reciprocal of the constant c ≥ 1 indicates the probability of acceptance. The procedure is to

generate a random value y from the simple distribution and depending on the following ratio

f(y)

cg(y)
(15.20)

randomly keep it the closer the ratio is to 1, i.e.,

if
f(y)

cg(y)
≥ r then accept else reject (15.21)

where r is a random number. Rejection means to keep trying.

15.4.4 Exercises

1. Consider a distribution where the density linearly increases on the interval [0, b]. The pdf for this

distribution is the following:

580

f(y) =
2y

b2
on [0, b]

Use the Inverse Transform Method (ITM) to generate random variates following this distribution.

(a) Determine the Cumulative Distribution Function (CDF) F (y).

(b) Determine the inverse Cumulative Distribution Function (iCDF) F−1(r).

(c) Write code for the gen method.

(d) Create a case class to contain the gen method and produce a Histogram that shows how the

generated random variates are distributed.

2. Use the convolution method to generate random variates following the Erlang(λ, k) distribution, where

λ is the rate parameter and k is the number of events. The random variable can be used to measure the

time for k events to occur. When k = 1, it reduces to the Exponential distribution. Since an Erlang

random variable is the sum of k independent exponential random variables, the convolution method

may be applied. The pdf for the Erlang distribution is shown below.

f(y) =
λkyk−1e−λy

(k − 1)!
on [0,∞)

3. Test the Convolution Method for generating Binomial random variates for p = .5 and n = 4. Generate

10,000 random variates and show the histogram.

4. Consider the Standard Normal distribution for positive values of y. Its density function can be bounded

using c times an Exponental density function. Flipping a coin allows the generation of negative values.

Apply the Acceptance-Rejection method to generate Standard Normal random variates.

Hint: see http://www.columbia.edu/~ks20/4703-Sigman/4703-07-Notes-ARM.pdf [171].

5. Consider a distribution with density on the interval [0, 2]. Let the probability density function (pdf)

for this distribution be the following:

fy(y) =
y

2
on [0, 2]

Use the Inverse Transform Method (ITM) to generate random variates following this distribution.

(i) Determine the inverse Cumulative Distribution Function (iCDF) F−1
y (r). Recall r denotes a random

nymber.

(ii) Write code for the gen method for its Random Variate Generator (RVG).

(iii) Draw the CDF Fy(y) vs. y and illustrate how the ITM works in this case.

581

http://www.columbia.edu/~ks20/4703-Sigman/4703-07-Notes-ARM.pdf

15.5 Poisson Process

In this section, the relationships between three random variables are examined. Consider a system in which

events (e.g., arrivals) occur randomly, but at a constant rate λ. It is further assumed that the time to the

next arrival is independent of the previous arrival.

• Inter-arrival Time. T = the time interval between subsequent arrivals/events. As the time duration

∆t becomes arbitrarily small, the probability of an arrival equals the arrival rate multiplied by the

time span.

FT (∆t) = P (T ≤ ∆t) = λ∆t (15.22)

• Time of nth Arrival. Sn = the time span for n arrivals/events to occur.

Sn =

n∑
i=1

Ti (15.23)

• Counting Process. N(t) = the counter of the number events (e.g., arrivals) by time t.

N(t) < n iff Sn > t (15.24)

N(t) = 0 iff T > t (15.25)

Define the complementary CDF (cCDF) as follows:

F̄T (t) = P (T > t) = 1− FT (t) (15.26)

Due to the independence assumption, the probability of no arrivals by time t + ∆t, is the product of the

following two probabilities.

F̄T (t+ ∆t) = F̄T (t)F̄T (∆t) (15.27)

Since F̄T (∆t) = 1− λ∆t, the following holds.

F̄T (t+ ∆t) = F̄T (t)(1− λ∆t) (15.28)

Multiplying out the rhs and rearranging gives,

F̄T (t+ ∆t)− F̄T (t) = − λ∆tF̄T (t) (15.29)

Dividing both sides by ∆t results in

F̄T (t+ ∆t)− F̄T (t)

∆t
= − λF̄T (t) (15.30)

A derivative is produced by taking the limit as ∆t→ 0

d

dt
F̄T (t) = − λF̄T (t) (15.31)

582

Both sides may now be integrated.

∫
dF̄T (t)

F̄T (t)
= −

∫
λdt (15.32)

The integral of a reciprocal introduces a natural logarithm.

ln F̄T (t) = − λt (15.33)

Taking the exp function of both sides yields,

F̄T (t) = e−λt (15.34)

See thr exercises for more details. Switching back to the regular CDF, shows that inter-arrival time follows

the Exponential distribution.

FT (t) = 1− e−λt (15.35)

Consequently, Sn follows the Erlang distribution (see the exercises from the last section).

The counting process, N(t), is a Poisson Process with the following pmf:

pN(t)(n) =
(λt)n

n!
e−λt (15.36)

The probability of no arrivals by time t, which is

pN(t)(0) = e−λt = F̄T (t) (15.37)

corresponds to the probability that the inter-arrival time is greater time t.

15.5.1 Generating a Poisson Process

In ScalaTion, the PoissonProcess class is used to simulate a Poisson Process. For such processes, there is

often interest in generating three things: arrival times, the counting process itself, and flow per time interval.

@param t the terminal time

@param lambda the arrival rate

@param stream the random number stream to use

class PoissonProcess (t: Double, lambda: Double = 1.0, stream: Int = 0)

extends VariateVec (stream):

def mean: VectorD = VectorD.fill (1)(lambda * t) // mean of N(t)

def pf (z: VectorD): Double = ???

def igen: VectorI = gen.toInt

def gen: VectorD =

def num (tt: Double): Int =

def flow (t_span: Double): VectorI =

583

First is the event/arrival times, e.g., the times that vehicles pass a road sensor. The gen method will

produce the arrival times from time zero up to the terminal/end time of the simulation t. These arrival

times are returned in a vector. As the inter-arrival time t ia distribution is Exponential (mu, stream)

where mu = 1.0 / lambda, it is used to generate each time increment.

def gen: VectorD =

val atime = ArrayBuffer [Double] ()

var now = 0.0

while now <= t do

now += t_ia.gen

atime += now

end while

t_a = VectorD (atime)

t_a

end gen

Note that arrival time t a(k) will be distributed as Erlang(λ, k).

Second is the counting process as a function of time N(t), e.g., the number of vehicles passing a sensor

since the beginning of the simulation. Given that the arrival times have been generated, the num method

returns the index value where the next arrival time exceeds the specified time tt.

def num (tt: Double): Int =

if t_a == null then gen

for i <- t_a.indices if t_a(i) > tt do return i

t_a.dim

end num

Note that count num(tt) follows a PoissonProcess(t, λ).

Third is the incremental counts per an interval of time, e.g., the number of vehicles passing a sensor over

a 5 minute interval of time. The flow method counts the number arrivals for each time interval (of length

t span) by taking the difference between the count at the end of interval n2 and the beginning of the interval

n1.

def flow (t_span: Double): VectorI =

if t_a == null then gen

val flw = ArrayBuffer [Int] ()

var now = 0.0

var n1 = 0

while now <= t do

val n2 = num (now)

flw += n2 - n1

now += t_span

n1 = n2

end while

VectorI (flw)

end flow

The distribution of the flow is left as an exercise.

584

15.5.2 Generating a Non-Homogeneous Poisson Process

A simulation using a constant arrival rate to model traffic flow will be of low fidelity. Vehicle arrival rates

vary dramatically over a day, with low vehicle counts at night and high spikes during morning and late

afternoon rush hours.

To create more realistic, or higher fidelity, simulation models, a Non-Homogeneous Poisson Process

(NHPP) may be used. The extension can be accomplished by converting the constant λ to a function of

time λ(t). In ScalaTion, the NH PoissonProcess can be used to generate arrivals where the arrival rate

is given by the lambdaf function.

* @param t the terminal time

* @param lambdaf the arrival rate function, lambda(t)

* @param stream the random number stream to use

*/

class NH_PoissonProcess (t: Double, lambdaf: FunctionS2S, stream: Int = 0)

extends PoissonProcess (t, 1.0, stream):

override def mean: VectorD = VectorD.fill (1)(lambdaBar * t) // mean of N(t)

override def pf (z: VectorD): Double = ???

override def gen: VectorD =

The gen must be overridden to adjust the time jump based on the current arrival rate. Fortunately, this

can be done dividing an Exponential (1) random variate by the current arrival rate.

override def gen: VectorD =

val atime = ArrayBuffer [Double] ()

var now = 0.0

while now <= t do

val lamb = lambdaf (now) // current value of the lambda function

now += t_ia.gen / lamb // adjust by dividing current lambda

atime += now

end while

t_a = VectorD (atime)

t_a

end gen

15.5.3 Exercises

1. Plot the pdf of the Erlang(1, k) distribution, for k = 2 and k = 3.

2. Compare the above pdf with a histogram of the time for the second arrival (k = 2) and the third arrival

(k = 3). See the Histogram class in the mathstat package.

3. Call the num method for several time points and plot it (N(t)) versus time t.

4. For the vehicle arrival process simulation, collect data on the number of arrivals every 5 minutes.

Create a histogram to show the distribution.

585

5. One way to create a time-dependent lambda function lambdaf is to take a data file, say consisting

of traffic counts, e.g., travelTime.csv in the data directory. Then create a Polynomial Regression

model using PolyRegression from the modeling package. Finally, define a lambdaf that calls the

Polynomial Regression model predict method.

6. The following equation states that

d

dt
F̄T (t) = − λF̄T (t)

the rate of decrease in the cCDF is proportional to its value. This is analogous to the phenomena of

radioactive decay, where the rate of decay is proportional to the amount of radioactive material. Both

are described to the above Ordinary Differential Equation (ODE). The following steps may be followed

to solve the ODE.

Step 1: Separation of Variables

dF̄T
F̄T

= − λdt

Step 2: Integrate Both Sides

∫
dF̄T
F̄T

=

∫
−λdt

Step 3: Use the Fact that the Derivative of lnx =
1

x

ln F̄T + C = − λt

Step 4: Determine Constant of Integration C using the Initial Condition (IC): F̄T (0) = 1

ln 1 + C = 0

Since C = 0, we have,

ln F̄T = − λt

Step 5: Take the exp Function on Both Sides

F̄T = e−λt

Verify that the solution is correct by showing that it satisfies both the ODE and the IC.

586

15.6 Monte Carlo Simulation

Many problems can be addressed by drawing a sample and determining whether it satisfies some criterion.

For example, draw five cards and determine whether the hand is a full house (three-of-a-kind and pair/two-

of-a-kind). If this process is repeated enough times, an estimate for the probability of a full house may be

obtained.

15.6.1 Simulation of Card Games

Many card games such as Poker and Blackjack can be simulated to determine probabilities or expected

earning/losses. A deck of 52 playing cards can be simulated using an array of cards. Initially, card i will

have the number i associated with it. The card ordinal number (0 to 51) is mapped to the (face-value, suit)

using the value method.

• The face-value is 1 (Ace), 2, 3, 4, 5, 6, 7, 8, 9, Jack, Queen, or King. The rank (low to high) usually

moves Ace to high end of the list.

• The suit is ordered (low to high) in some games like bridge: Clubs (♣), Diamonds (♦), Hearts (♥),

and Spades (♠).

The deck will be shuffled using the shuffle method to randomize the positions of cards in the deck. The

draw method pulls the next card from the top of the deck. Calling it five times yields a poker hand. A

counter can be incremented in case the hand is a full house. The ratio of this counter to the number of

hands dealt becomes and estimate for the probability of a full-house.

class Cards:

private val NUM_CARDS = 52 // number of cards in deck

private val card = Array.range (0, NUM_CARDS) // the cards themselves

private val rn = Randi (0, NUM_CARDS - 1) // random number generator

private var top = 0 // index of top card

private val suit = Array (’C’, ’D’, ’H’, ’S’) // Clubs, Diamonds, Hearts, Spades

//::

/** Draw the top card from the deck and return it. Return -1 if no cards are

* left in the deck.

*/

def draw (): Int = if top == NUM_CARDS then -1

else { val c = card(top); top += 1; c }

//::

/** Shuffle the deck of cards.

*/

def shuffle (): Unit =

for i <- card.indices do swap (card, i, rn.igen)

top = 0

end shuffle

587

//::

/** Convert the card number c (0 to 51) to the face value (1 to 13) and

* suit (0(C), 1(D), 2(H), 3(S)).

* @param c the card ordinal number

*/

def value (c : Int): (Int, Char) = (c % 13 + 1, suit (c / 13))

//::

/** Convert the card deck to a string.

*/

override def toString: String = "Cards (" + stringOf (for c <- card yield value (c)) + ")"

end Cards

Probability of Drawing a Particular Hand

The estimate of the probability of a full house can be checked against probability theory. The total number

of hands consisting of five cards is

(
52

5

)
=

52 · 51 · 50 · 49 · 48

1 · 2 · 3 · 4 · 5
= 2, 598, 960

The number of ways nways for get a full house may be determined as follows: (a) choose 1 of 13 face values

for the three-of-a-kind, (b) choose 1 of 12 remaining face values for the pair, (c) choose 3 of 4 suits for the

three-of-a-kind, and (d) choose 2 of 4 suits for the pair, i.e.,

(
13

1

)(
12

1

)(
4

3

)(
4

2

)
= [13] [12]

[
4 · 3 · 2
1 · 2 · 3

] [
4 · 3
1 · 2

]
= 78 · 4 · 6 = 3, 744

Letting y be the random draw of five cards, the probability of a full house is simply the ratio of the two

numbers.

P (y = full house) =
3, 744

2, 598, 960
= 0.00144

15.6.2 Integral of a Complex Function

As discussed earlier, there is no closed-form formula for the Cumulative Distribution Function (CDF) for the

Normal distribution. As the integral of the probability density function (pdf), the Numerical Integration can

be used to compute the CDF. Monte Carlo integration offers one approach for doing this, which is practically

effective for multiple integrals in higher dimensions.

To illustrate, consider the following one dimensional function defined on the domain [0, 1].

y = f(x) =
√

(1− x2)

588

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

x

y
=
f

(x
)

Integration: Area Under the Curve

The integral is the area under the curve. This is the same as the mean height of the curve times the

length/size of the domain (1 in this case). The mean height of a function may be estimated by computing

the height at many randomly selected points and taking the average.

ȳ =
1

m

m−1∑
i=0

f(xi) =
1

m

m−1∑
i=0

√
(1− x2

i)

In ScalaTion, this capability is provided by the MonteCarloIntegration.integrate method.

def integrate (f: FunctionS2S, a: Double, b: Double, m: Int, s: Int = 0): Double =

val length = b - a

val x = Uniform (a, b, s)

var sum = 0.0

for it <- 0 until m do sum += f(x.gen)

sum * length / m

end integrate

The particular function f is passed into integrate in the code below. As the function traces the unit circle

in the first quadrant, multiplying by 4 allows π to be approximated.

@main def monteCarloIntegrationTest (): Unit =

import MonteCarloIntegration.integrate

def f(x: Double): Double = sqrt (1 - x~^2)

for k <- 1 to 9; s <- 0 to 1 do

val pi = 4 * integrate (f, 0, 1, 10~^k, s)

println (s"for k = $k, s = $s: pi = $pi")

end for

end monteCarloIntegrationTest

589

The case class Uniform is a random variate generator from the random package. Uniform (a, b, s) gen-

erates (via the gen method) uniformly distributed random numbers in the interval [a, b] using random

number stream s.

15.6.3 Grain Dropping Experiment

The RandomVec class may be used to produce random vectors. As a simpler cousin to the Buffon Needle

experiment, the Grain Dropping experiment provides a very simple way to compute π. The first paramater

for the RandomVec class is the dimensionality of the space (so use 2 here). The idea is to generate many

grains and drop them falling at x-y coordinates inside a square centered at the origin having sides of length

2. The grains at a distance of one or less from the origin will also be inside the unit circle (radius = 1)

centered at the origin.

@param stream the random number stream to use

class GrainDrop (stream: Int):

private val grain = RandomVecD (2, max = 1, min = -1, stream = stream)

//::

/** Return the fraction of grains found inside the unit circle.

* @param n the number of grains to generate

*/

def fraction (n: Int): Double =

var count = 0

for i <- 0 until n do if grain.gen.normSq <= 1.0 then count += 1

count / n.toDouble

end fraction

end GrainDrop

The fraction method counts the number of generated grains that that are inside the unit circle and

divides that count by the total number of grains generated. For a good random number generator, this

fraction should correspond to the ratio of the areas for the unit circle versus the bounding square {(x, y) :

x ∈ [−1, 1], y ∈ [−1, 1]}. The area of the square is 4 so the fraction times 4 should provide an estimate for π.

@main def grainDropTest (): Unit =

for stream <- 0 to 5 do

val bn = new GrainDrop (stream)

banner (s"Grain Drop for stream = $stream")

for k <- 1 to 8 do

val n = 10~^k

println (s"for n = $n: pi = ${4 * bn.fraction (n)}")

end for

end for

end grainDropTest

590

15.6.4 Simulation of the Monty Hall Problem

Imagine you are a contestant on the Let’s Make a Deal game show and host, Monty Hall, asks you to select

door number 0, 1 or 2, behind which are two worthless prizes and one luxury car. Whatever door you pick,

he randomly opens one of the other non-car doors and asked if you want to stay with you initial choice or

switch to the remaining door. What are the probabilities of winning if you (a) stay with your initial choice,

or (b) switch to the other door? Finish the code below to validate your results.

@main def montyHall (): Unit =

val stream = 0 // random number stream (0 to 999)

val rg = Randi (0, 2, stream) // door selection (0, 1 or 2) random generator

val coin = Bernoulli (stream + 1) // coin flip generator

val stream = 0 // random number stream, try up to 999

var winStay = 0 // count wins with stay strategy

var winSwitch = 0 // count wins with switch strategy

for it <- 1 to 100000 do // test the strategies 100,000 times

// car randomly placed behind this door

// contestant randomly picks a door

// Monty Hall shows other non-car door (if choice, make randomly)

if pick == car then winStay += 1 // stay with initial pick

else winSwitch += 1 // switch to the other door

end for

println (s"winStay = $winStay")

println (s"winSwitch = $winSwitch")

end MontyHall

Note, since the opened door never has the car behind it, the car must be behind either the originally picked

door (stay) or the remaining door (switch). Hence, the form of the above if then else statement.

15.6.5 Exercises

1. The hands in Five-Card Draw Poker are the following: (1) high card, (2) pair, (3) two pair, (4) three-

of-a-kind, (5) straight, (6) flush, (7) full house, (8) four-of-a-kind, (9) straight flush, and (10) royal

flush.

Use probability theory to determine the probabilities of each Poker hand. Do the same thing using

Monte Carlo simulation and compare the results. Let the number of repetitions (hands drawn) increase

until the estimates stabilize. Hint: use a large number of samples.

2. Use Monte Carlo simulation to integrate the CDF for the Standard Normal Distribution at 1, Fy(1).

Note, the distribution is symmetric around zero, so the following integral may be computed.

area =

∫ 1

0

1√
2π
e−y

2/2

591

0 0.2 0.4 0.6 0.8 1

0.25

0.3

0.35

0.4

x

y
=
f

(x
)

Integration: Area Under the Curve

The solution for Fy(1) will be 1
2 + area. Check your answers by calling CDF.normalCDF (1) in the

random package.

3. Finish the coding of the Simulation of the Monte Hall Problem. Determine the winning percentages

for the Stay and Switch strategies as the number of game simulations increases. Do they converge?

Explain why one strategy is better than the other.

4. Estimate the probability distribution for rolling three 6-sided dice and taking their sum

y = x1 + x2 + x3

where xi ∼ Randi(1, 6), i.e., pxi(k) = 1/6 for k = 1, 2, 3, 4, 5, 6. The probability mass function (pmf)

for y has a range from 3 to 18. Use Monte Carlo Simulation to estimate py(k) =? for k = 3, 4, . . . , 17, 18

Draw/plot the pmf py(k) vs. k.

5. When rolling nd six-sided dice, how many ways can four be rolled, for nd = 1, 2, 3, 4 dice.

Table 15.1: Counting the Number of Ways to Roll a Four (sum of nd dice)

nd list of ways nways configurations ratio probability py(k)

1 [4] 1 6 1/6 .1667

2 [1,3], [2,2], [3,1] 3 36 1/12 .08333

3 [1,1,2], [1,2,1], [2,1,1] 3 216 1/72 .01389

4 [1,1,1,1] 1 1296 1/1296 .007880

Use Monte Carlo simulation to estimate the number of nways and the probability mass function py(k)

for nd = 1, 2, 3, 4 dice.

6. The number of ways nways can also be solved using the following recursive function for the sum s from

nd to 6nd.

592

nways(nd, s) =

6∑
k=1

nways(nd − 1, s− k)

The base case for the recursion is when nd = 1, in which case nways(1, s) = 1 for s = 1, . . . , 6.

Write a program to calculate nways for nd = 1, 2, 3, 4 dice. Note, the recursive function may be

computed more efficiently using dynamic programming.

7. Question 1: Develop a Monte Carlo simulation to estimate the volume of a unit sphere (radius eqaul

to one). What is your estimate? Also, provide your code. Hint: a point is inside the sphere when

x2 + y2 + z2 ≤ 1.

593

15.7 Hand Simulation

Before using or developing software to perform simulation, it is instructive to carry out a simple simulation

by hand.

This can be done as follows: Generate random variates for inter-arrival and service times for m = 10

customers. Fill in these two columns in Table 15.2. Use Exponential(1/λ) for inter-arrival times and

Exponential(1/µ) for service times. Let λ = 10 and µ = 12 per hour, giving means of 6 and 5 minutes,

respectively. Also, fill in the zeroth row, for a non-existent customer, with all zeros.

Table 15.2: Hand Simulation of M/M/1 Queue

customer iarrival t arrival t begin-service t waiting t service t departure t system t

0 0 0 0 0 0 0 0

1 6 . . . 5 . .

2 3 . . . 6 . .

3 5 . . . 4 . .

4 4 . . . 3 . .

5 3 . . . 5 . .

6 8 . . . 7 . .

7 5 . . . 2 . .

8 7 . . . 4 . .

9 9 . . . 5 . .

10 6 . . . 8 . .

total 56 . . . 49 . .

mean 5.6 . . . 4.9 . .

Notice that the sample mean inter-arrival time and sample mean service time shown in the last row should

correspond the theoretical means of 6 and 5 (keeping the mind the inaccuracy of small samples)

The hand simulation part now begins. Filling in the table row-by-row requires the event logic to be

followed. A customer cannot begin service until the previous customer has departed. They must wait in the

queue until the server is available. The time between arrival and beginning of service is the wait time. The

inter-arrival time indicates the time gap for the next arriving customer.

Given the inter-arrival (iarrival) times (ιi) and service times (si), the equations below may be applied to

provide values for the empty columns.

ai = ai−1 + ιi arrival time (15.38)

bi = max(ai, di−1) begin service (15.39)

wi = bi − ai waiting time (15.40)

di = bi + si departure time (15.41)

ti = di − ai time in system (15.42)

Note, the columns in bold correspond to events. Before looking at the completed table, try to fill in the

previous one.

594

Table 15.3: Completed Hand Simulation of M/M/1 Queue

customer iarrival t arrival t begin-service t waiting t service t departure t system t

0 0 0 0 0 0 0 0

1 6 6 6 0 5 11 5

2 3 9 11 2 6 17 8

3 5 14 17 3 4 21 7

4 4 18 21 3 3 24 6

5 3 21 24 3 5 29 8

6 8 29 29 0 7 36 7

7 5 34 36 2 2 38 4

8 7 41 41 0 4 45 4

9 9 50 50 0 5 55 5

10 6 56 56 0 8 64 8

total 56 278 291 13 49 340 62

mean 5.6 27.8 29.1 1.3 4.9 34.0 6.2

Define Σq,Σs and Σy to be the sums of the waiting, service and system times, repectively. As shown in the

table, the average times in the Queue, Service and sYstem are given by the formulas below.

Tq = Σq/m = 1.3 Number in Queue (15.43)

Ts = Σs/m = 4.9 Number in Service (15.44)

Ty = Σy/m = 6.2 Number in sYstem (15.45)

15.7.1 Little’s Law

The start of simulation is 0.0, while the end of simulation is 64.0 (for a duration (τ) of 64.0 time units/min-

utes). During this time m = 10 customers arrived, giving an effective arrival rate of

λe =
m

τ
=

10

64.0
= 0.1563 per minute = 9.375 per hour (15.46)

Little’s Law relates time averages to occupancy averages. As waiting queues get longer, one would expect

expect the waiting time to increase. Using Little’s Law (see the section on Markov Chains for more details),

the occupancy (number in the system) Ly is proportional to the time in the system Ty (and the same is true

for sub-components).

Ly = λeTy (15.47)

The proportionality constant is λe. Little’s Law allows the following summary results for our M/M/1 Queue

simulation to be collected into Table 15.4.

595

Table 15.4: Formulas for M/M/1 Queueing Models

part length result time result

Queue Lq = 0.203 Tq = 1.3 minutes

Service Ls = 0.766 Ts = 4.9 minutes

System Ly = 0.969 Ty = 6.2 minutes

15.7.2 Event Times

Rather than computing the number in the Queue (q), Service (s) or System (y) using Little’s Law, they may

be computed directly as the areas under the curves of Lq(t), Ls(t) and Ly(t), where for example,

Ly =
1

τ

∫ τ

0

Ly(t)dt (15.48)

Notice that the function Ly(t) can only change at event times (the state of the system can only change at

these times). The event times are the following:

VectorD(0.0, 6.0, 9.0, 11.0, 14.0, 17.0, 18.0, 21.0, 24.0, 29.0,

34.0, 36.0, 38.0, 41.0, 45.0, 50.0, 55.0, 56.0, 64.0)

Event time 0.0 has the start simulation event, times 6.0 and 9.0 have arrival events, time 11.0 has a departure

event, times 21.0 and 29.0 have both arrival and departure events, time 64.0 has the last departure event.

As there is 1 start simulation event, 8 arrival events, 8 departure events and 2 dual events, there should be

a total of 19 event times.

For the above simulation, Ly(t) takes on the values 0, 1 or 2. When Ly(t) = 0 the server is idle, Ly(t) = 1

there is one customer in service and none waiting, and Ly(t) = 2 there is one customer in service and one

waiting.

Start with Ly(0) = 0, then ”:” means no change, + means add 1, - means subtract 1. In this way the

value of Ly(t) can be determined for all event times.

0:, 6+, 9+, 11-, 14+, 17-, 18+, 21:, 24-, 29:,

34+, 36-, 38-, 41+, 45-, 50+, 55-, 56+, 64-)

Check that the number of arrivals (+) equals the number of departures (-). Tracing through the list, one

can deduce the occupancy for the time intervals between the events.

• Ly(t) = 0: [0, 6], [38, 41], [45, 50], [55, 56]

• Ly(t) = 1: [6, 9], [11, 14], [17, 18], [24, 34], [36, 38], [41, 45], [50, 55], [56, 64]

• Ly(t) = 2: [9, 11], [14, 17], [18, 24], [34, 36],

Plot Ly(t) vs. t from 0.0 to 64.0 and use it to determine the area under the curve. The subtotals for each

are 15, 36, 13 the integral sums to 0 ·15 + 36 ·1 + 13 ·2 = 62. Similar calculations yield results for Lq and Ls.

Lq = Σq/τ = 13/64 = 0.203

Ls = Σs/τ = 49/64 = 0.766

Ly = Σy/τ = 62/64 = 0.969

596

Note, for 15 minutes there were no customers in the system, so the server idle time is 15 minutes, while the

server busy time is 64 - 15 = 49 minutes.

15.7.3 Spreadsheet Simulation

To allow a longer simulation with more customers, essentially the same approach can be carried out using

spreadsheet software (spreadsheet simulation). To reproduce the above hand simulation, copy the first table

into a spreadsheet. This will have the iarrival-t and service-t columns filled in. The top row (row 0)

will contain all zeros. Use spreadsheet formulas for filling in all the rest of columns for row 1. Now use

copy-paste to fill in the rest of the m rows. Compute all of the column sums. Below the column sums row,

compute all the sample averages (divide by m). Make a row below the sample averages row for time averages

(divide by τ). Your spreadsheet should look like the hand simulation table, with one more row for the time

averages.

Spreadsheet software provides Random Number Generators (RNGs) such as RAND in Excel. Several

Random Variate Generators (RVGs) can easily be produced using the Inverse Transform Method (ITM).

Try creating Exponential random variates using ITM and then use these to fill in the pre-filled columns

(iarrival-t and service-t). These column can now be filled in one row at a time. Letting the arrival rate

λ = 10 per hour and the service rate µ = 12 per hour, run the speadsheet simulation for m = 10, 20 and

100 customers/entities.

A slightly more automated approach is provided by the ScalaTion’s tableau package. To handle more

complex event logic, the event-scheduling paradigm should be followed. Process-interaction and agent-based

simulation are higher-level, more resource intensive alternative ways to develop simulation models.

15.7.4 Exercises

1. Use a spreadsheet to plot Lq(t), Ls(t) and Ly(t) versus time from 0.0 to τ for the M/M/1 Queue.

Directly compute the area under the curve and then the average height.

2. Do the same plot for the M/M/1 Queue using PlotM from ScalaTion’s mathstat package.

3. Suppose there are now two severs and the arrival rate λ = 20 per hour. Redo all the calculations for

this M/M/2 Queue.

4. Redo the plots for the M/M/2 Queue simulation.

5. Write code that takes the arrival and departure columns and produces all the event times in time order.

Hint: set up an i-cursors for the arrival list and j-cursor for the departure list, if the values at i and j

are the same, copy that value into the event list and advance both cursors, otherwise copy the smaller

value and advance its cursor. Do this in a while loop.

6. Recall that λe = m/τ . For the definitions given in this section for Lq, Ls, Ly, and Tq, Ts, Ty, show the

following forms of Little’s Law hold.

Lq = λeTq (15.49)

Ls = λeTs (15.50)

Ly = λeTy (15.51)

597

7. Spreadsheet Simulation: A Small Fast Food Restaurant has two severs and enough space for three

customers to wait (at most five customers total at any given time). For the case of a single queue,

perform a spreadsheet simulation for m = 20 customer arrivals. Assume each server can process µ = 30

customers per hour and that the customer arrival rate λ = 75 customers per hour (assume Exponential

distributions). Each completed order gives a net profit (before paying the servers) of 2.00 dollars. Each

server makes 11.00 dollars per hour. Should the restaurant hire a third server? Explain in terms of

profit (after paying the servers) per hour. Give the simulation table and summary results produced by

the spreadsheet.

598

15.8 Tableau-Oriented Simulation

In tableau-oriented simulation models, each simulation entity’s event times are recorded in a row of a

matrix/tableau. For example in a Bank simulation, each row would store information about a particular

customer, e.g., when they arrived, how long they waited, their service time duration, etc. If 20 customers

are simulated, the matrix will have 20 rows (actually 24 since there are always 4 special rows). Average

waiting and service times can be easily calculated by summing columns and dividing by the number of

customers. This approach is similar to, but not as flexible as Spreadsheet simulation. The complete code

for this example may be found in Ex Bank.scala in the scalation.simulation.tableau package.

@main def runEx_Bank (): Unit =

val stream = 0 // random number stream (0 to 999)

val lambda = 6.0 // customer arrival rate (per hour)

val mu = 7.5 // customer service rate (per hour)

val maxCusts = 20 // stopping rule: simulate maxCusts

val iArrivalRV = Exponential (HOUR / lambda, stream)

val serviceRV = Exponential (HOUR / mu, (stream + 1) % N_STREAMS)

// Run the simulation of the model Bank.

val mm1 = new Model ("Bank", maxCusts, Array (iArrivalRV, serviceRV))

mm1.simulate ()

mm1.report ()

end runEx_Bank

Imports: scalation.random.Exponential, scalation.random.RandomSeeds.N STREAMS. From outside Sca-

laTion also import: scalation. , scalation.simulation.tableau. .

Note that it is important that the various random variate generators use “different random number streams”

to keep them independent. The stream number (0 to 999) specifies the combinations of seeds to use for the

random number generator. In this model, iArrivalRV uses stream, while serviceRV uses stream + 1.

15.8.1 Iterating through Tableau Equations

The logic of the hand simulation is coded into equations for computing the value of each column. The

tableau/matrix called tab is built up row-by-row.

• The zeroth row is a placeholder for the previous non-existent entity (the values are all zero).

• Rows 1 to m are for the entity timings, i.e., row i records times for the ith entity.

• The last three rows hold the column sums, sample averages and time averages, respectively.

The simulate method is used to evaluate the equations, row-by-row. A basic set of equations is provided in

the Model class that works for a collection of simple, related models. Other models will require the simulate

method to be overridden.

599

for i <- 1 to m do tab(i, 0) = i // ID-0

def simulate (startTime: Double = 0.0): Unit =

for i <- 1 to m do

tab(i, 1) = rv(0).gen // IArrival-1

tab(i, 2) = tab(i-1, 2) + tab(i, 1) // Arrival-2

tab(i, 3) = tab(i, 2) max tab(i-1, 6) // Begin-3

tab(i, 4) = tab(i, 3) - tab(i, 2) // Wait-4

tab(i, 5) = rv(1).gen // Service-5

tab(i, 6) = tab(i, 3) + tab(i, 5) // Departure-6

tab(i, 7) = tab(i, 6) - tab(i, 2) // Total-7

end for

end simulate

The columns are the same as those given in the Hand Simulation section.

15.8.2 Reproducing the Hand Simulation

The example from the hand simulation example is replicated by the following tableau model.

@main def runQueue_MM1 (): Unit =

val iArrivalArr = Array [Double] (6, 3, 5, 4, 3, 8, 5, 7, 9, 6)

val serviceArr = Array [Double] (5, 6, 4, 3, 5, 7, 2, 4, 5, 8)

val maxCusts = 10 // stopping rule: at maxCusts

val iArrivalRV = Known (iArrivalArr) // inter-arrival time random variate

val serviceRV = Known (serviceArr) // service time random variate

// Run the simulation of the model Queue_MM1.

val mm1 = new Model ("Queue_MM1", maxCusts, Array (iArrivalRV, serviceRV))

mm1.simulate ()

mm1.report () // show the table/matrix

mm1.summary () // show summary performance statistics

end runQueue_MM1

The Known Random Variate Generator (RVG) simply repeats the given sequence of numbers.

15.8.3 Customized Logic/Equations

For models where the event logic is different, as mentioned, the simulate method will need to overridden,

For example, in a Ex CallCenter model with a single server (tele-service representative) and no call-waiting,

the logic now requires an if statement to check if the phone line is busy. It requires the departure time (call

hang up) of the last completed call (call l) to be less than or equal to the arrival time of the current call

(call i).

600

override def simulate (startTime: Double): Unit =

var l = 0 // last established call

for i <- 1 to m do

tab(i, 1) = rv(0).gen // IArrival-1

tab(i, 2) = tab(i-1, 2) + tab(i, 1) // Arrival-2

if tab(l, 6) <= tab(i, 2) then // call established

tab(i, 3) = tab(i, 2); l = i // Begin-3

tab(i, 4) = tab(i, 3) - tab(i, 2) // Wait-4

tab(i, 5) = rv(1).gen // Service-5

tab(i, 6) = tab(i, 3) + tab(i, 5) // Departure-6

tab(i, 7) = tab(i, 6) - tab(i, 2) // Total-7

end if

end for

end simulate

Model developers may wish to copy the base simulate method code from Model and make minimal modifi-

cations to the equations. The only changes above are the introduce of the variable l, the addition of the if

statement, and modification to the Begin-3 equation.

15.8.4 Tableau.scala

The Model class support tableau-oriented simulation models in which each simulation entity’s events are

recorded in tabular form (in a matrix). This is analogous to Spreadsheet Simulation (http://www.informs-

sim.org/wsc06papers/002.pdf).

Class Methods:

@param name the name of simulation model

@param m the number entities to process before stopping

@param rv the random variate generators to use

@param label_ the column labels for the matrix

class Model (name: String, m: Int, rv: Array [Variate], label_ : Array [String])

extends Modelable:

def simulate (startTime: Double = 0.0): Unit =

def report (): Unit =

def summary (): Unit =

def timeLine (): (VectorD, VectorD) =

def save (): Unit =

The report method displays the tab matrix and should be called after simulate. The last two rows

display useful averages such as average inter-arrival, waiting, service and system times. The summary method

displays averages for lengths of queues and waiting times, etc. It summarizes the number and time in

the queue (q), service (s) and system (y), i.e., L q, L s, L y, T q, T s, T y. The Model.occupancy

601

(mm1.timeLine ()) line gives the event times and corresponding values for Ly(t). The save method saves

the matrix in a .csv file that may be loaded into a spreadsheet for further processing.

The report method for the hand simulation problem outputs the following table where the last three

rows show the sums, sample averages and time averages.

ID-0 IArrival-1 Arrival-2 Begin-3 Wait-4 Service-5 Departure-6 Total-7

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1.000 6.000 6.000 6.000 0.000 5.000 11.000 5.000

2.000 3.000 9.000 11.000 2.000 6.000 17.000 8.000

3.000 5.000 14.000 17.000 3.000 4.000 21.000 7.000

4.000 4.000 18.000 21.000 3.000 3.000 24.000 6.000

5.000 3.000 21.000 24.000 3.000 5.000 29.000 8.000

6.000 8.000 29.000 29.000 0.000 7.000 36.000 7.000

7.000 5.000 34.000 36.000 2.000 2.000 38.000 4.000

8.000 7.000 41.000 41.000 0.000 4.000 45.000 4.000

9.000 9.000 50.000 50.000 0.000 5.000 55.000 5.000

10.000 6.000 56.000 56.000 0.000 8.000 64.000 8.000

55.000 56.000 278.000 291.000 13.000 49.000 340.000 62.000

5.500 5.600 27.800 29.100 1.300 4.900 34.000 6.200

0.859 0.875 4.344 4.547 0.203 0.766 5.313 0.969

ID-0 IArrival-1 Arrival-2 Begin-3 Wait-4 Service-5 Departure-6 Total-7

15.8.5 Exercises

1. Run the bank simulation for many more customers and see if the averages begin to stablize.

2. Suppose there are now two severs and the arrival rate λ = 20 per hour. Override the simulate method

for this M/M/2 Queue. The logic will need to handle the fact that there are now two statistically

identical servers. What do the new results indicate?

3. Now suppose the second server works 20% faster than the first server. What do the new results

indicate?

4. Rework the previous exercise using a spreadsheet.

5. An M/M/1/1 Queue has one server and a system capacity of one (no space for waiting). Develop and

run a Tableau simulation for λ = 10 per hour and µ = 12 per hour. Redo for an M/M/2/2 Queue and

λ = 20 per hour.

602

Chapter 16

State Space Models

In dynamic models, the state of a system may be described by a state vector x(t). For example, a particle

may be tracked over time. In two-dimensional space, one might be interested in the height and down range

distance of the particle over time,

x(t) = [x0(t), x1(t)] (16.1)

where x0(t) is the height of the particle and x1(t) is the horizontal distance travelled at time t.

The dynamics of the particle may be described by a n-dimensional vector-valued function of time.

f : R+ → Rn (16.2)

Such a function may be developed using physical laws that are expressed as a system of Ordinary Differential

Equations (ODEs) consisting of first-order time derivatives. When the system is linear, the time derivative

ẋ(t) equals an affine transformation of the current state x(t), i.e., the sum of a linear transformation of the

current state and a constant vector.

ẋ(t) = Fx(t) + c (16.3)

where the dot signifies a time derivative (ddt), and F ∈ Rn×n is a matrix of coefficients and c ∈ Rn is a vector

of constants.

603

16.1 Example: Trajectory of a Ball in One-Dimensional Space

Consider the application of Newton’s Laws of Motions to determine the trajectory of a ball in one dimension.

Suppose someone hits a golf ball with a driver straight up in the air and wishes to know how high it will go

and how long it will be in the air. Let x(t) = [y(t), v(t)] be the height of the ball y(t) and its velocity v(t)

at time t. Also, let the initial conditions be [0 m, 60 m/s], corresponding to almost hitting the ball from the

ground with initial upward velocity of 60 mps (approximately 134.2 mph).

16.1.1 Ordinary Differential Equations

Newton’s Second Law of Motion (force = mass times acceleration), F = ma) and the Law of Gravity (force =

mass times minus the gravitational constant, FG = −mg) yield a system of Ordinary Differential Equations

(ODEs),

ẏ(t) = v(t) time derivative of position

v̇(t) = − g time derivative of velocity

where the gravity of Earth g = 9.807 m/s2 and v̇(t) = a (constant acceleration).

The system of differential equations may be written using vector and matrix notation, with all the columns

being treated as column vectors.

[
ẏ(t)

v̇(t)

]
=

[
0 1

0 0

]
x(t) +

[
0

−g

]

This system of differential equations may be solved by integration. Integrating both sides of the second

equation/row produces,

v(t)− v(0) =

∫ t

0

−g dτ = − gt

Thus, ẏ(t) = v(0)− gt, so

y(t) = y(0) + v(0)t− 1

2
gt2

v(t) = v(0)− gt

Substituting in the initial conditions, x(0) = [y(0), v(0)] = [0 m, 60 m/s], gives

y(t) = − 1

2
gt2 + 60t

v(t) = − gt+ 60

604

16.1.2 Discretization

Typically, it is not so easy to solve a system of ODEs, so iterative algorithms (called integrators, e.g., Euler,

Verlet, Runge-Kutta, Dormand-Prince) are used to provide approximate solutions. Using the Verlet Method

[198, 67, 165] with a time gap of ∆t, the ODEs can discretized to the following form,

y(t) = y(t−∆t) + v(t−∆t)∆t− 1

2
g(∆t)2

v(t) = v(t−∆t)− g∆t

where the current value is computed from the previous value. This also allows a continuous-time system to

treated as a discrete-time system. Here to maintain notational compatibility with the notation previously

used for time series analysis, t in xt has two interpretation: (1) time index and (2) the actual discrete

time/timestamp. Therefore, the above equation can written as follows.

yt = yt−1 + vt−1∆t− 1

2
g(∆t)2

vt = vt−1 − g∆t

16.1.3 Trajectory Simulation

The trajectory of the ball can be simulated using ScalaTion’s DynamicEq class in the scalation.dynamics

package.

val g = 9.807

val mps = 60.0

def f (t: Double): VectorD = VectorD (-0.5 * g * t~^2 + mps * t, -g * t + mps)

val dyn = new DynamicEq (f)

val n = 100

val te = 12.0

val t = VectorD.range (0, n) * (te / n.toDouble)

val trj = dyn.trajectory (0.0, te, n)

new Plot (t, trj(?, 0), trj(?, 1), "Plot (x_t0, x_t1) vs. t")

To determine the maximum height, simply set the velocity to zero (x1(t) = 0), solve for the time τ when

velocity becomes zero, and calculate the height x0(t) at time τ .

τ = 60/g = 6.118 s

x0(t) = −0.5 ∗ g ∗ 6.1182 + 60 ∗ 6.118 = 183.5 m

Can a golf ball hit with the swing speed of an average golfer really go so high? To seek the answer a

theorist and an experimentalist may be consulted. The theorist explains that the model ignores other

forces (e.g., drag due to air resistance) and therefore, the state equation needs to have an error term. The

experimentalist explains that measurements (e.g., using RADAR/LIDAR) need to be taken and of course

there will be measurement errors (another error term). These errors can be modeled as noise and, as such,

605

turn the deterministic state vector into a random one x(t). Furthermore, since measurements are not made

continuously, discrete time is introduced. The measurements may be recorded as time series data yt.

Now there are two stochastic processes: {x(t)| t ∈ [0, te]}, the actual process, and {yt| t ∈ {0, te}} the

observed process. Simplicity argues for merging the two stochastic processes. Unfortunately, it is commonly

the case that the actual process is only partially observable (some of the state variables are not directly

measurable). Therefore, merging the two may result in less accurate and/or less explainable models.

Dynamic models consisting of state equations and observation/measurement equations come in several

varieties:

Table 16.1: Types State-Observation Models

state state time model type

continuous continuous Kalman-Bucy Filter

continuous discrete Kalman Filter

discrete continuous CT Hidden Markov Chain

discrete discrete Hidden Markov Model

Note: Kalman-Bucy Filter has continuous-time for the state and discrete time for the observations. Similarly,

CT Hidden Markov Model has continuous-time for the state and discrete time for the observations. The

next section discusses Dynamic Linear Models as Kalman Filters where the forcing/control vector is missing.

Kalman filters are models that are particularly useful for dealing with/filtering out noise.

16.1.4 Exercises

1. The diameter and mass of modern golf balls are approximately 4.268 cm and 45.93 grams, respectively.

Combine Newton’s Second Law of Motion (F = ma) and the Law of Gravity (FG = −mg) to deduce

the following equation:

v̇(t) = − g

2. Consider the effect of wind/air resistance (drag) as another force, drag force FD (in addition to gravity

FG)

FD =
ρCDA

2
v(t)2

where ρ = density of air (1.225 kg/m3), CD = drag coefficient (0.4), and A = cross sectional area of

the golf ball (14.3 cm2).

Recompute the time in the air and maximum height considering the effects of both FG and FD.

606

16.2 Markov Chains

A Markov Chain [173] is a simple type of Markov Model where one is interested in tracking the state of a

system over time. Consider the following Markov Chain with n = 6 states, corresponding to the number of

dollars one currently has. At each discrete time point, flip a coin, heads (with probability p) gives a dollar,

while tails (with probability q = 1 − p) takes a dollar. There are two terminal states, 0 (lose) and 5 (win).

One pays x0 ∈ {1, 2, 3, 4} dollars to start the game. The Markov Chain that models this game is shown in

Figure 16.1.

0 1 2 3 4 5

1

p p p p

1

qqqq

Figure 16.1: State Transition Diagram for Six-State Markov Chain

Consider a discrete-valued, discrete-time stochastic processes that represents the state of a system over

time t.

{xt : t ∈ {0, 1, . . . }} where xt ∈ S (16.4)

The state space S is discrete (finite with n states or countable inifinite).

Since xt is a stochastic process, its trajectory needs to be described probabilistically. For tractability

and because it often suffices, the assumption is made that the state xt is only significantly influenced by its

previous state xt−1.

P (xt|xt−1, xt−2, . . . x0) = P (xt|xt−1) (16.5)

This is the Markov Property: the transitions from state to state are governed by a discrete-time Markov

chain and characterized by a state-transition probability matrix A = [aij] ∈ [0, 1]n×n, where

aij = P (xt = j|xt−1 = i) (16.6)

The transition from state i to state j is depicted in Figure 16.2.

i j

aij

Figure 16.2: Transition from State i to State j

The Markov Property can be generally stated as the future given the present is conditionally independent

of the past.

607

16.2.1 Probability Mass Function

The probability mass function (pmf) for the state at time t as a vector may be given as follows:

πt = [P (xt = 0), P (xt = 1), . . . P (xt = n− 1)] (16.7)

Due to the Markov Property, the next state vector (as a row vector) may be computed by vector-matrix

multiplication.

πt = πt−1A (16.8)

Suppose p = .6 and the initial state is 3 (3 dollars to enter the game). Probabilistically the initial state is

given by π0 = [0, 0, 0, 1, 0, 0], so the RHS of the above equation is

[
0 0 0 1 0 0

]

1 0 0 0 0 0

.4 0 .6 0 0 0

0 .4 0 .6 0 0

0 0 .4 0 .6 0

0 0 0 .4 0 .6

0 0 0 0 0 1

Then probabilistically the next state is π1 = π0A = [0, 0, .4, 0, .6, 0]. The dot product of the row vector π0

with each column of A is used to compute π1.

In ScalaTion, advancing to the next state is carried out by the next method.

def next (pi: VectorD): VectorD = pi *: a

where the right-associative *: operator is for vector-matrix multiplication (and complements the left asso-

ciate * operator for matrix-vector multiplication).

This recurrence can be unfolded to yield the following equation,

πt = πt−1A

= πt−2A
2

= π0A
t

i.e., π0 times A to the tth power.

The only choice in optimizing one’s game is to determine the number of dollars to spend to start the

game to, for example, maximize expected earnings, depending on the weight (value of p) of the coin. If p = 1,

always start with one dollar, but if p = 0, do not play the game. In the first case, the expected earning are 4

dollars per game, while in the second playing the game will ensure some level of loss, so 0 dollars of expected

earnings is optimal.

For other values of p, a simple way to estimate the expected earnings is to simulate playing the game

many times for a given start state, and determining the average earnings. See MarkovChainTest2 and

MarkovChainTest3 in the scalation.simulation.state package for two ways to estimate the earnings.

608

16.2.2 Reducible Markov Chains

State j is reachable from state i if

a
(t)
ij > 0 (16.9)

for some discrete time t, where a
(t)
ij is the i, j element in At.

Based on reachability a Markov Chain may decomposed in into multiple subschains, where all the states

in each subchain are reachable from each other. If states i and j are mutually reachable, they are said to

communicate. Since communication forms an equivalence class (reflexive, symmetric and transitive), each

subchain is a equivalence class. The six-state Markov Chain shown in the figure has three equivalence classes.

1. S1 = {0} Lost

2. S1 = {1, 2, 3, 4} Still Playing the Game

3. S1 = {5} Won

States 0 and 5 are absorbing states, since once in such a state, it will never be left. A Markov Chain that

has just one communication/equivalence class is called an Irreducible Markov Chain.

A state i if said the recurrent if the probability of returning some time in the future is one, otherwise

it said to be transient (may never return). A recurrent state is either positive (finite return time) or null

recurrent (infinite return time).

16.2.3 Limiting/Steady-State Distribution

For an Irreducible, Positive Recurrent Markov Chain, πt may converge to a limiting probability distribution,

π = lim
t→∞

πt (16.10)

After convergence, π may be substituted for both πt and πt−1, so the previous boxed equations becomes,

π = πA (16.11)

where π is the probability vector (non-negative and sums to 1) and A is the transition probability matrix.

When this equation has a solution, π is the limiting/steady-state probability vector.

Interpretation

If the Markov Chain is

• aperiodic, π can be viewed as a long-term probability for t large enough, otherwise, if it is

• periodic, π is interpreted as as an average over time.

For example, a Markov Chain that oscillates between two states, the long-term probabilities will depend on

the initial conditions.

609

Solving for the Limiting Probabilities

Subtracting π from the above boxed equation (π = πA) yields,

πA− π = 0 (16.12)

with 0 as a row vector. Using an identity matrix I, this may be rewritten,

π(A− I) = 0 (16.13)

Taking the transpose produces

(A− I)
ᵀ

π
ᵀ

= 0
ᵀ

(16.14)

The vector π is the eigenvector solution to the left eigenvalue problem for eigenvalue λ = 1 (see the

chapter on Linear Algebra). This can be solved by computing the nullspace of (A− I)
ᵀ

. In ScalaTion,

the limiting distribution can be found using QR Factorization (see the exercises).

def limit: VectorD =

val fac = new Fac_QR ((a - eye (a.dim, a.dim)).\mathcal{T}, true)

fac.nullspace (a.dim-1)(?, 0).toProbability

end limit

The solution for π also may be found by first computing (A− I)
ᵀ

and then solving for π using for example LU

factorization. One of the equations will turn out to be redundant and can be replaced with the normalization

equation (probabilities sum to 1). The example below illustrates three ways to solve for π.

Example: Computing the Limiting Probabilities

Consider the example problem from Introduction to Probability Models, 3rd Ed., Ross, p. 146 [160, 161]

having the following transition probability matrix A. Solve for the stationary (steady-state) distribution

three ways:

1. Start with state probability vector π = [π0, π1, π2] = [.5, .5, 0] and repeatedly compute πA.

2. Solve the eigenvector problem π = πA, i.e.,

[π0, π1π2] = [π0, π1π2]

.5 .4 .1

.3 .4 .3

.2 .3 .5

Since the A matrix is stochastic, one of the equations is redundant and may be replaced with the

normalization equation ‖π‖1 = 1.

π0 = .5π0 + .3π1 + .2π2

π1 = .4π0 + .4π1 + .3π2

π2 = 1− π0 − π1

610

3. This may be rewritten as an augmented matrix and solved using LU Factorization.

−.5 .3 .2 0

.4 −.6 .3 0

1 1 1 1

Note, the matrix above is simply (A − I)

ᵀ
with the last row replaced with 1s from the normalization

equation.

Software Solution

The following ScalaTion code uses all three solution techniques.

/** The ‘markovChainTest4‘ function tests the ‘MarkovChain‘ class.

* @see Introduction to Probability Models, 3rd Ed., Ross, p. 146.

* > runMain scalation.simulation.state.markovChainTest4

*/

@main def markovChainTest4 (): Unit =

val a = MatrixD ((3, 3), .5, .4, .1, // 3-by-3 matrix

.3, .4, .3,

.2, .3, .5)

val mc = new MarkovChain (a)

println ("Discrete-Time Markov Chain mc = " + mc + "\n")

banner ("Discrete-Time Markov Chain: transient solution:")

var pi = VectorD (.5, .5, 0)

println ("on epoch 0,\tpi = " + pi)

for k <- 1 to 10 do

pi = mc.next (pi)

println (s"on epoch $k,\tpi = $pi")

end for

banner ("eigenvector solution for steady-state \tpi = " + mc.limit)

val aa = MatrixD ((3, 3), -.5, .3, .2,

.4, -.6, .3,

1, 1, 1)

val b = VectorD (0, 0, 1)

val lu = new Fac_LU (aa).factor ()

banner ("lu factorization for steady-state \tpi = " + lu.solve (b))

end markovChainTest4

The MarkovChain class in the scalation.simulation.state package provides both transient (via the

next method) and steady-state (via the limit method) solutions.

611

16.2.4 MarkovChain Class

Class Methods:

@param a the transition probability matrix

class MarkovChain (a: MatrixD):

def next (pi: VectorD): VectorD = pi *: a

def next (pi: VectorD, k: Int): VectorD =

def limit: VectorD =

def simulate (i0: Int, endTime: Int): Unit =

def animate (): Unit =

def isStochastic: Boolean =

override def toString: String = s"MarkoveChain($a)"

16.2.5 Continuous-Time Markov Chains

Continuous-Time Markov Chains are analogous to their discrete-time counterparts, except that transitions

can occur at any time. This makes the notion of transition probability hard to define, so it is replaced with

the notion of transition rate. Therefore, the transition probability matrix A (denoted P in some textbooks)

is replaced with a transition rate matrix Q = [qij] ∈ (R+)n×n.

Consider a Markov model for a single-server queue with room for four customers. Arrivals are assumed

to come at a rate of λ customers per unit time and can be serviced at a rate of µ customers per unit time.

If the system is empty, the server is idle, while if it is full of customers, the new arrival is turned away. This

can be modeled as an n = five state Continuous-Time Markov Chain, as shown in Figure 16.3.

0 1 2 3 4

λ λ λ λ

µµµµ

Figure 16.3: State Transition Diagram for Five-State Continuous-Time Markov Chain

Self-loops are not included, since the state is unchanged until there is an out transition. One may view this

as an event that changes the state (here there are arrival and service completion events).

The transient solution for Continuous-Time Markov Chains can be found by solving Kolmogorov differ-

ential equations, see Ross, Chapter 6 [160].

612

16.2.6 Limiting/Steady-State Distribution

The limiting/steady-state solution can be given by,

πQ = 0 (16.15)

See https://mast.queensu.ca/~stat455/lecturenotes/set5.pdf for a derivation (where Q is called the

generator matrix G).

When the system (single-server queue) opens, there will be no customers, but they will arrive at rate λ

until the system closes. The server can process customers at rate of µ per unit time. The stationary/steady-

state solution can be found by solving the following equations.

[
π0 π1 π2 π3 π4

]

−λ λ 0 0 0

µ −(λ+ µ) λ 0 0

0 µ −(λ+ µ) λ 0

0 0 µ −(λ+ µ) λ

0 0 0 µ −µ

 =
[
0 0 0 0 0

]

The diagonal elements are set so that the rows of matrix Q sum to 0 (inflow = output).

Total Balance Equations

Multiplying the vector π by the matrix Q produces the following five equations.

−λπ0 + µπ1 = 0

λπj−1 − (λ+ µ)πj + µπj+1 = 0 for j = 1, 2, 3

λπ3 − µπ4 = 0

These equations are referred to as the total balance equations.

Partial Balance Equations

In this case a simpler approach is possible, as the solution can be developed using partial balance equations

that equates up-flow with down-flow, so

µπj = λπj−1 for j = 0, 1, 2, 3, 4 (16.16)

Therefore, π1 = λ
µπ0, π2 = λ

µπ1, π3 = λ
µπ2, and π4 = λ

µπ3.

Traffic Intensity: The traffic intensity is the ratio of the arrival rate to the service rate. The higher the

traffic intensity, the more the chain is pushed to the right (toward more congestion).

ρ =
λ

µ
(16.17)

The partial balance equations can be expressed with ρ replacing λ and µ.

πj = ρπj−1 for j = 0, . . . 4 (16.18)

613

https://mast.queensu.ca/~stat455/lecturenotes/set5.pdf

This recursive equation can be unfolded to give,

πj = ρjπ0 (16.19)

Furthermore, the probabilities must add to one (normalization equation), so

[1 + ρ+ ρ2 + ρ3 + ρ4]π0 = 1 (16.20)

Solving for π0 (see the exercises) yields

π0 =
1− ρ
1− ρn

(16.21)

Finally, the state-probabilities may be determined.

πj =
1− ρ
1− ρn

ρj (16.22)

This is the solution for an M/M/1/K Queue (with K = 4 and n = K + 1 = 5). The notation M/M/1/K

means the arrival process is Markovian (Poisson or Exponential inter-arrival times), the service distribution

is Exponential, the number of servers is 1 and customer capacity is K (one in service and the rest waiting).

The MarkovChainCT class in the scalation.simulation.state package provides both transient (via the

next method) and steady-state (via the limit method) solutions. Currently, the transient solution has not

been implemented (hence = ???).

16.2.7 MarkovChainCT Class

Class Methods:

@param tr the transition rate matrix

class MarkovCT (tr: MatrixD):

def next (p: VectorD, t: Double = 1.0): VectorD = ???

def limit: VectorD =

def simulate (i0: Int, endTime: Double): Unit =

def animate (): Unit =

override def toString: String = s"MarkovCT($tr)"

16.2.8 Queueing Models

The solution for an M/M/1/K Queue my be written

πj =
1− ρ

1− ρK+1
ρj (16.23)

This solution works when ρ = 0 (π0 = 1), ρ ∈ (0, 1), ρ = 1 (via L’Hospital’s Rule) and when ρ > 1.

614

As the waiting capacity K (and therefore the number of states n) goes to infinity, stability requires traffic

intensity ρ < 1. In which case ρK+1 goes to zero. Therefore, the solution for an M/M/1 Queue can be

obtained.

πj = (1− ρ)ρj (16.24)

Note that π0 = 1− ρ is the probability the server is idle.

Expected Number in the System

Given that πj = P (x = j) indicates the probability there are j customers in the system, the expected number

in the system is given as follows.

E [x] =

∞∑
j=0

j πj = (1− ρ)

∞∑
j=0

jρj (16.25)

As indicated in the exercises, the result becomes,

L = E [x] =
ρ

1− ρ
(16.26)

The number in service Ls corresponds to probability the server is busy = 1−π0 = ρ. Therefore, the expected

length of the queue is

Lq = L− Ls =
ρ

1− ρ
− ρ =

ρ2

1− ρ
(16.27)

Application of Little’s Law

The expected time in service Ts = 1
µ is one over the service rate, so

Ls = λTs =
λ

µ
= ρ (16.28)

This relationship between length (number in) and time carries over to the queue

Lq = λTq (16.29)

and the system.

L = λT (16.30)

Summary of Results

In summary, the formulas for an M/M/1 Queue are collected into Table 16.2.

The MMc Queue class in the scalation.simulation.queueingnet package produces steady-state solutions

for M/M/1 and M/M/c queues, where c is the number of servers.

615

Table 16.2: Formulas for M/M/1 Queueing Models

part length formula time formula

Queue Lq =
ρ2

1− ρ
Tq =

ρ/µ

1− ρ
Service Ls = ρ Ts =

1

µ

System L =
ρ

1− ρ
T =

1/µ

1− ρ

16.2.9 MMc Queue Class

Class Methods:

@param lambda the arrival rate

@param mu the service rate

@param c the number of servers

class MMc_Queue (lambda: Double, mu: Double, c: Int = 1):

def prob_0: Double =

def t_wait: Double = (prob_0 * rho * rhoc / _1_a~^2) / lambda

def view (): Unit =

def report (): Unit =

The MMcK Queue class produces steady-state solutions for M/M/1/K and M/M/c/K queues, where c is the

number of servers and K is the system capacity.

16.2.10 MMcK Queue Class

Class Methods:

@param lambda the arrival rate

@param mu the service rate

@param c the number of servers

@param k the capacity of the queue

class MMck_Queue (lambda: Double, mu: Double, c: Int = 1, k: Int = 1):

def prob_0: Double =

def prob_k: Double = pr_0 * rho~^k / (c~^k_c * c_fac)

def view (): Unit =

def report (): Unit =

616

16.2.11 Exercises

1. For the given six-state discrete-time Markov Chain, advance the state probability πt over the next 20

time points.

2. For the six-state Markov Chain, what happens to the probabilities of states 1 to 4 as time increases.

3. Consider the middle subchain, states 1 to 4. Do they form a irreducible Markov Chain and admit a

stationary/steady state solution? Compute the value for this solution π.

4. A square matrix is stochastic if all its elements are non-negative and all the columns sums equal 1.

Show that a stochastic matrix has an eigenvalue equal to 1. Hint: see https://textbooks.math.

gatech.edu/ila/stochastic-matrices.html

5. For discrete-time Markov chains, explain how the limit method works for computing π.

6. Show the following formula holds.

sn =

∞∑
j=n

ρj =
ρn

1− ρ

Use this to deduce that

[1 + ρ+ ρ2 + ρ3 + ρ4]π0 = [s0 − s5]π0 = 1

and finally that

π0 =
1− ρ
1− ρ5

7. Develop the steady-state solution πj for an M/M/c/K Queue where c is the number of servers and K

is the system capacity.

8. Derive the formula for the expected number in the system L for an M/M/1 Queue. Hint: d
dρρ

j = jρj−1.

9. The relationship L = λT is called Little’s Law. Sketch Stidham’s proof of the law. See [174]

10. Use the MMc Queue class to address the one line versus two line question. Let λ = 20 and µ = 12 per

hour. What is the mean time in the queue Tq for an M/M/2 queue? Compare this with Tq for two

M/M/1 queues, where customers are randomly split between the two lines/servers, i.e., the arrival rate

to each is λ/2. Note, if customers join the shorter line, the analysis of this problem becomes difficult,

but simulation is still straightforward.

11. In the above problem, let λ take on all integer values from 4 to 23 and plot Tq (the mean waiting time)

over these values for both the one line and two line solutions. Note, for λ = 24 or higher the queues

will be unstable.

617

https://textbooks.math.gatech.edu/ila/stochastic-matrices.html
https://textbooks.math.gatech.edu/ila/stochastic-matrices.html

12. Explain what the Kolmogorov backward equations are and how they can be used to solve for transient

solutions to Continuous-Time Markov Chains [172].

13. One simple way to model a epidemic such as the COVID-19 Pandemic is to use a Discrete-Time Markov

Chain (DTMC). One could start with an SEIR compartmental model and relate subpopulations of

individuals to probabilities of being in a given state. Consider the discrete-time Markov Chain model

shown in Figure 16.4.

S E I R

p01 p12 p23

p00 p11 p22 p33

Figure 16.4: State Transition Diagram for SEIR Markov Chain

Assume the population of the state Georgia that is susceptible to COVID-19 is N = 10, 000, 000. The

basic SEIR model assumes there are four subpopulations of individuals.

S = Nπ0 Susceptible

E = Nπ1 Exposed

I = Nπ2 Infected

R = Nπ3 Recovered

Further assume that on average it takes 20 days to transition from state S to state E, 8 days from E

to I, and 10 days from I to R. Let the transition probabilities correspond to the reciprocals of the

days. Remember the probabilities in each row of the transition probability matrix must add to 1. The

discrete time unit is one day. Each day, an individual may transition to the next state (e.g., S to E)

or remain in the same state (e.g., S to S). Again the probabilities must add to one.

(a) Construct the transition probability matrix A.

(b) Let the initial probability vector π0 = [0.99, 0.0, 0.01, 0.0], i.e., 99% in state S and 1% in state I.

Compute πt for the next two weeks (14 days). Show πt for each of these days.

14. The above DTMC model is too simple to exhibit high accuracy in forecasting COVID-19. Discuss a

more accurate simulation/modeling technique for COVID-19.

618

15. Question 2: Consider a CTMC for the M/M/2 queue (i.e., Exponential inter-arrival times with rate

λ, Exponential service times with rate µ, and two service units). The rate µ is for each server. The

traffic intensity ρ = λ
2µ .

(a) Solve for the steady-state probabilities πj , using the partial balance equations.

λπj−1 = 2µπj for j ≥ 2

λπ0 = µπ1

Hint:

π0 =
1− ρ
1 + ρ

, πj = ? for j ≥ 1

(b) Use this result to solve for the expected number in the system.

L = E [x] =

∞∑
j=0

j πj

(c) Using the formula for L, logic and Little’s Law, create a formula summary table for the M/M/2

queue having six formulas (Lq, Ls, L, Tq, Ts, T). The summary will have the form of Table 15.2.

Table 16.3: Formulas for M/M/2 Queueing Models

part length formula time formula

Queue Lq = ? Tq = ?

Service Ls = ? Ts =
1

µ
System L = ? T = ?

(d) Suppose λ = 12 per hour (overall arrival rate) and µ = 7.5 per hour (per server service rate);

compute values for π0 and the six formulas (for times in minutes).

619

16.3 Dynamic Linear Models

As with a Hidden Markov Model (HMM), a Dynamic Linear Model (DLM) may be used to represent a

system in terms of two stochastic processes, the state of the system at time t, xt and the observed values

from measurements of the system at time t, yt. The main difference from an HMM is that the state and

its observation are treated as continuous quantities. For time series analysis, it is natural to treat time as

discrete values.

As background, consider the following system of homogeneous ODEs that only includes a linear trans-

formation (no constant term). The transition matrix F (c) has been renamed to emphasize that it is for the

continuous time problem.

ẋ(t) = F (c)x(t) (16.31)

The corresponding discrete-time system is defined as

xt = e∆t F (c)

xt−∆t (16.32)

where ∆t is time gap between consecutive time points. It is assumed here that the time gaps are uniform.

The matrix exponential (eX =
∑

1
k!X

k) can be calculated using the Al-Mohy & Higham algorithm [4]. We

define matrix F as follows:

F = e∆t F (c)

(16.33)

Substituting in the matrix F gives,

xt = Fxt−∆t (16.34)

Again to maintain notational compatibility with the notation previously used for time series analysis, t in

xt has two interpretation: (1) time index and (2) the actual discrete time/timestamp. Therefore, the above

equation can written as follows.

xt = Fxt−1 (16.35)

To deal with uncertainty in the system a noise term may be added. In addition, the state and observation

equations distinguished.

For a basic DLM, the dynamics of the system are described by two equations: The State Equation

indicates how the next state vector xt is dependent on the previous state vector xt−1 and a process noise

vector wt ∼ Normal(0, Q)

xt = Fxt−1 + wt (16.36)

where Q is the covariance matrix for the process noise. If the dynamics are deterministic, then the covariance

matrix is zero, otherwise it can capture uncertainty in the relationships between the state variables (e.g.,

simple models of the flight of a golf ball often ignore the effects due to the spin on the golf ball).

The Observation/Measurement Equation indicates how at time t, the observation vector yt is dependent

on the current state xt and a measurement noise vector vt ∼ Normal(0, R)

yt = Hxt + vt (16.37)

620

where R is the covariance matrix for the measurement noise/error. The process noise and measurement noise

are assumed to be independent of each other. The state transition matrix F indicates the linear relationships

between the state variables, while the H matrix establishes linear relationships between the state of system

and its observations/measurements.

16.3.1 Example: Traffic Sensor

Consider the operation of a road sensor that records traffic flow (vehicles per 15 minutes) and average speed

(km per hour). Let xt = [xt0, xt1] be the flow of vehicles xt0 and their average speed xt1 at time t. Assume

that the flow is high enough that it can be treated as a continuous quantity and that the covariance matrices

are diagonal (uncertainty of flow and speed are independent). The dynamics of the system then may be

described by the following state equations:

xt0 = f00xt−1,0 + f01xt−1,1 + wt0

xt1 = f10xt−1,0 + f11xt−1,1 + wt1

The sensor tries to capture the dynamics of the system, but depending on the quality of the sensor there

will be measurement errors. The observation/measurement variables yt = [yt0, yt1] may correspond to the

state variables in a one-to-one correspondence or by some linear relationship. The observation of the system

then may be described by the following observation equations:

yt0 = h00xt0 + h01xt1 + vt0

yt1 = h10xt0 + h11xt1 + vt1

Further assume that estimates for the F and H parameters of the model have been found (see the subsection

on Training).

State Equations

xt0 = 0.9xt−1,0 + 0.2xt−1,1 + wt0

xt1 = − 0.4xt−1,0 + 0.8xt−1,1 + wt1

xt =

[
xt0

xt1

]
=

[
0.9 0.2

−0.4 0.8

]
xt−1 + wt

These state equations suggest that the flow will be a high percentage of the previous flow, but that higher

speed suggests increasing flow. In addition, the speed is based on the previous speed, by higher flow suggests

that speeds may be decreasing (e.g., due to congestion).

Observation/Measurement Equations

yt0 = 1.0xt0 − 0.1xt1 + vt0

yt1 = − 0.1xt0 + 1.0xt1 + vt1

621

yt =

[
yt0

yt1

]
=

[
1.0 −0.1

−0.1 1.0

]
xt + vt

These observation/measurement equations suggest that higher speed makes it more likely for a vehicle to

pass the sensor without being counted and higher flow makes under-estimation of speed to be greater.

16.3.2 Exercises

1. For a DLM, consider the case where m = n = 1. The state equations and measurement equations

become

xt = axt−1 + wt

yt = cxt + vt

where wt ∼ Normal(0, σ2
q) and vt ∼ Normal(0, σ2

r). Compare this model with an AR(1) model.

2. For the Traffic Sensor Example, let Q = σ2
qI and R = σ2

rI. Develop a DLM model using ScalaTion

and try low, medium and high values for the variances σ2
q and σ2

r (9 combinations). Let the initial

state of the system be x00 = 100.0 vehicles per 15 minutes and x01 = 100.0 km per hour. How does

the relative amount of process and measurement error affect the dynamics/observation of the system?

3. Consider the state and observation equations given in the Traffic Sensor Example and assume that the

state equations are deterministic (no uncertainty in system, only in its observation). Reduce the DLM

to a simpler type of time series model. Explain.

4. Use the Traffic Sensor Dataset (traffic.csv) to estimate values for the 2-by-2 covariance matrices Q

and R.

5. Use the Traffic Sensor Dataset (traffic.csv) to estimate values for the parameters of a DLM model,

i.e., for the F and H 2-by-2 matrices.

622

16.4 Kalman Filter

A Kalman Filter (KF) is a Dynamic Linear Model that incorporates an outside influence on the system. If

a driving force or control is applied to the system, an additional term Gut is added to the state equation

[202, 154],

xt = Fxt−1 +Gut + wt (16.38)

where ut is the (assumed deterministic) force/control vector and the B matrix establishes as linear relation-

ships between the force/control vector and the state vector. An example of a force/control is the constant

vector that includes the force of gravity as discussed in the golf ball trajectory problem,

ut = [−g]

The observation/measurement equation remains the same.

yt = Hxt + vt

The process noise wt and the measurement noise vt also remain the same. The Kalman Filter model,

therefore includes five matrices.

Table 16.4: Matrices Used in Kalman Filter Model

matrix dimensions description

F n-by-n state transition matrix

G n-by-l state-control matrix

H m-by-n observation matrix

Q n-by-n process noise covariance matrix

R m-by-m measurement noise covariance matrix

The Kalman Filter model at time t includes five vectors:

Table 16.5: Vectors Used in Kalman Filter Model

vector dimension description

xt n state vector

ut l force/control vector

yt m measurement vector

wt n process noise vector

vt m measurement noise vector

16.4.1 Example: Golf Ball Trajectory

Returning to problem posed at the beginning of the chapter of modeling the trajectory of a golf ball hit

straight up with an initial velocity of 60 meters per second (mps), the discretized form of the system of

Ordinary Differential Equations is copied below.

623

yt = yt−1 + vt−1∆t− 1

2
g(∆t)2

vt = vt−1 − g∆t

In matrix-vector form, the equation for xt may be written as

xt =

[
yt

vt

]
=

[
1 ∆t

0 1

]
xt−1 +

[
1
2 (∆t)2

∆t

]
[−g]

When noise is added, the variables will become random variables (blue font). The discrete-time system then

serves as the basis to formulate the Kalman filter state equations [154].

xt =

[
yt

vt

]
=

[
1 ∆t

0 1

]
xt−1 +

[
1
2 (∆t)2

∆t

]
[−g] + wt

In this case, the force/control is the one-dimensional vector ut = [−g]. Again the initial conditions are

x0 = [0 m, 60 m/s]. For simplicity, the process noise wt is assumed to be on scale with the measurement

noise (see below).

Q = C [wt] = 0.05 I =

[
0.05 0.0

0.0 0.05

]

The measurement equation indicate what variables are measured and how they relate to the state vari-

ables. When are the state variables are directly measurable and one if interested all the state variables, the

observation matrix will be the 2-dimensional identity matrix H = I.

yt = Ixt + vt

The last step is to determine the covariance R of the measurement noise vt

vt ∼ Normal(0, R)

Modern golf ball tracking devices have standard deviations as low as σ0 = 0.25 meters for position in a

particular dimension and σ1 = 0.2 meters per second for velocity. These are rough estimates based on

sources such as [106]. These may be used to for the variances (diagonal elements) in the covariance matrix.

Remaining is to determine the correlation ρ01 between vt0 and vt1 to get the covariance σ01 = ρ01σ0σ1. Such

information is hard to come by, but it makes sense that they would be positively correlated, so let ρ01 = 0.5.

R = C [vt] =

[
σ2

0 σ01

σ01 σ2
1

]
=

[
0.0625 0.00125

0.00125 0.04

]

See the next section for alternative approaches for estimating Q and R.

Note that if only the height is of interest, then observation matrix H = [1, 0].

624

16.4.2 Training

The main goal of training is to minimize the error in estimating the state. At time t, a new measurement

yt becomes available. The errors before and after this event are the differences between the actual state xt

and the estimated state before x̂−t (predicted) and after x̂t (corrected) [202].

e−t = xt − x̂−t

et = xt − x̂t

Since wt has a zero mean, the covariance matrices (P−t and Pt) for the before and after state errors may be

computed as expectations of their outer products.

P−t = C
[
e−t
]

= E
[
e−t ⊗ e−t

]
before errors (16.39)

Pt = C [et] = E [et ⊗ et] after errors (16.40)

The essential insight by Kalman was that the after estimate should be the before estimate adjusted by a

weighted difference between the actual measured value yt and its before estimate Hx̂−t .

x̂−t = F x̂t−1 + Gut predicted (16.41)

x̂t = x̂−t + Kt[yt −Hx̂−t] corrected (16.42)

The n-by-m Kt matrix is called the Kalman Gain and the above equations may be referred to as the Kalman

state update equations. If the actual measurement is very close to its predicted value, little adjustment to

the predicted state value is needed. On the other hand, when there is a disagreement, the adjustment based

upon the measurement should be tempered based upon the reliability of the measurement. A small gain will

dampen the adjustment, while a high gain may result in large adjustments. The trick is to find the optimal

gain Kt.

Using a Minimum Variance Unbiased Estimator (MVUE) for parameter estimation for a Kalman Filter

means that the trace of the error covariance matrix should be minimized (see exercises for details).

V [‖et‖] = E
[
‖et‖2

]
= trace C [et] (16.43)

Plugging the Kalman Gain equation into the above equation gives the following optimization problem:

min trace E
[
(x̂−t +Kt[yt −Hx̂−t)⊗ (x̂−t +Kt[yt −Hx̂−t)

]
(16.44)

This optimization will produce (see exercises) the following equation that can be used to update the Kalman

Gain.

P−t = FPt−1F
ᵀ

+Q (16.45)

Kt = P−t H
ᵀ

[HP−t H
ᵀ

+R]−1 (16.46)

Pt = [I −KtH]P−t (16.47)

625

16.4.3 Exercises

1. Suppose that fog negatively affects traffic and speed. Use the Traffic Sensor with Fog Dataset (traffic fog.csv)

to estimate values for the 2-by-2 covariance matrices Q and R.

2. Use the Traffic Sensor with Fog Dataset (traffic fog.csv) to estimate values for the parameters of

a Kalman Filter model, i.e., for the F , G and H 2-by-2 matrices.

3. Show that if ŷ is an unbiased estimator for y (i.e., E [ŷ] = E [y]) then the minimum error variance

V [‖y − ŷ‖] is

E
[
‖y − ŷ‖2

]
= trace E [(y − ŷ)⊗ (y − ŷ)]

4. Explain why minimizing the trace of the covariance C [et] leads to optimal Kalman Gain K.

626

16.5 Extended Kalman Filter

When some of the relationships between state variables are nonlinear, the simplest option is to use an

Extended Kalman Filter (EKF). The linear combinations in the equations for Kalman Filters are now

replaced with differentiable (nonlinear) vector functions f and h.

State Transition Function

The dynamics of the state are governed by a (nonlinear) state transition function f : Rn → Rn and specified

in the state equation,

xt = f(xt−1,ut) + wt (16.48)

where ut is the (assumed deterministic) control vector, if relevant.

Observation/Measurement Function

The observation/measurement equation may also include a (nonlinear) observation function h : Rn → Rm

of the state.

yt = h(xt) + vt (16.49)

The process noise wt and the measurement noise vt should be close to Gaussian (Normally distributed).

They are also assumed to be additive, otherwise they need to be incorporated into the f and h functions.

Table 16.6: Functions Used in Extended Kalman Filter Model

function description

f : Rn → Rn state transition function

h : Rn → Rm observation function

For the example in the next subsection of a SEIHRD epidemic/pandemic model, the state vector is 6-

dimensional (n = 6), while the measurement/observation vector is 4-dimensional (m = 4).

16.5.1 Training

Extended Kalman Filters operate much like Kalman filters [154]. The only change to the Kalman update

equations is to use the f and h functions in place of the multiplications involving the F , G and H matrices

(for simplicity in previous section, these were taken to be constant matrices, but in a more general treatment

they would vary with time Ft, Gt and Ht).

The Kalman state update equations for EKF are as follows:

x̂−t = f(x̂t−1,ut) predicted (16.50)

x̂t = x̂−t + Kt[yt − h(x̂−t)] corrected (16.51)

The Kalman Gain for EKF may be updated as follows:

627

P−t = Ft−1Pt−1F
ᵀ

t−1 +Q (16.52)

Kt = P−t H
ᵀ

t [HtP
−
t H

ᵀ

t +R]−1 (16.53)

Pt = [I −KtHt]P
−
t (16.54)

where now the matrices Ft and Ht are slopes of the f and h functions, respectively.

Ft =
∂f

∂xt
(16.55)

Ht =
∂h

∂xt
(16.56)

In other words, at each discrete time step t, the nonlinear vector-valued functions f and h are approximated

by their local slopes the at predicted state x̂−t , computed as Jacobian matrices. Note, F
ᵀ

t and H
ᵀ

t are the

transposes of Ft and Ht, respectively.

Recall that the Jacobian of a vector function f : Rn → Rl, is an l-by-n matrix.

Jf (x) =

[
∂fi
∂xj

]
0≤i<l,0≤j<n

=

∂f0

∂x0

∂f0

∂x1
. . .

∂f0

∂xn−1
∂f1

∂x0

∂f1

∂x1
. . .

∂f1

∂xn−1

.
∂fl−1

∂x0

∂fl−1

∂x1
. . .

∂fl−1

∂xn−1

16.5.2 Example: SEIHRD Model

This subsection presents a detailed example of how an Extended Kalman Filter (EKF) can be used to model

epidemics and pandemics. An SEIHRD model as an extension of the SEIR model [110] can be used to

forecast the number of infections, hospitalizations and deaths in epidemics.

The EKF model will derived from a system of Ordinary Differential Equations (ODEs). The time varying

variables/functions are specified below. At this point, time is treated continuously.

1. The number of Susceptible individuals at time t is denoted by S(t).

2. The number of Exposed individuals at time t is denoted by E(t).

3. The number of Infected and not Hospitalized individuals at time t is denoted by I(t).

4. The number of Infected and Hospitalized individuals at time t is denoted by H(t).

5. The number of Recovered individuals at time t is denoted by R(t).

6. The number of Deaths time t is denoted by D(t).

To make this more clear, suppose the study is the spread of COVID-19 during the year 2020 in the United

States. The population of individuals is given by N = 330 million.

628

State Transition Rates

The dynamics of the system are governed by the state transition rates. These will become parameters in the

differential equations to be estimated from the data. Assuming the birth rate matches the COVID-19 death

rate, the population not change over time (a short time span approximation).

N = S(t) + E(t) + I(t) +H(t) +R(t) (16.57)

The model is begun when there is a minimal level of infection. Assuming that the whole population is

susceptible, the initial conditions are S(0) = N − I(0). For this model, time 0 is set to when United States

has at least one infection. Each of the other variables at time 0 is 0.

The state transition rates are explained in the table below.

Table 16.7: State Transition Rates

Rate From To Description

q0 S E exposure rate

q1 E I infection rate

q2 I H hospitalization rate

q3 I R recovery rate for mild cases

q4 H R recovery rate for severe cases

q5 H D death rate

. D S birth = death rate = Ḋ(t)

State Transition Diagram

The state transition diagram is shown in Figure 16.5. If there is a significant reinfection rate, an edge can

be added from state R to state S.

S E I H

DR

q0 q1 q2

q3 q4 q5
.

Figure 16.5: State Transition Diagram for SEIHRD Models

Ordinary Differential Equations

The six time variables are interrelated through ordinary differential equations, where a dot above the variable

denotes a time derivative,

629

Ṡ(t) = Ḋ(t)− q0S(t) Susceptible

Ė(t) = q0S(t)− q1E(t) Exposed

İ(t) = q1E(t)− (q2 + q3)I(t) only Infected

Ḣ(t) = q2I(t)− (q4 + q5)H(t) Infected and Hospitalized

Ṙ(t) = q3I(t) + q4H(t) Recovered

Ḋ(t) = q5H(t) Died

The LHS is the rate of change of the variable, while the RHS is the sum of incoming edges minus the sum

of the outgoing edges. From epidemiology, the first transition rate q0 can be further dissected. Exposure

depends on members in S(t) coming in contact with an infected individual in I(t) or H(t) in terms of their

fraction of the population N and is proportional to the new parameter α.

q0 = α
I(t) +H(t)

N
(16.58)

Replacing q0 and Ḋ(t) in the differential equations results in

Ṡ(t) = q5H(t)− αI(t) +H(t)

N
S(t) Susceptible

Ė(t) = α
I(t) +H(t)

N
S(t)− q1E(t) Exposed

İ(t) = q1E(t)− (q2 + q3)I(t) only Infected

Ḣ(t) = q2I(t)− (q4 + q5)H(t) Infected and Hospitalized

Ṙ(t) = q3I(t) + q4H(t) Recovered

Ḋ(t) = q5H(t) Died

In order for the six equations to be useful for forecasting, the six parameters, α, q1, q2, q3, q4, q5, q6, must be

estimated from data.

Notice that a further simplification is possible: One of the variables may be removed since all the variables

sum up to N .

Discretization

As was done with the golf ball example, the ODEs may be discretized. In this case, since all the differential

equations are first-order, the performance of the Euler Method should be acceptable, although more advanced

numerical integration methods could be applied. (Note that Newton’s Second Law is a second-order ODE

(converted into two coupled first order equations) so the Verlet Method was superior to the Euler Method

for the golf ball trajectory problem.) Recall that ∆t is the time gap in the discrete-time system and time

can now be used as subscript since it is discrete.

630

St = St−1 + ∆t

[
q5Ht−1 − α

It−1 +Ht−1

N
St−1

]
Susceptible

Et = Et−1 + ∆t

[
α
It−1 +Ht−1

N
St−1 − q1Et−1

]
Exposed

It = It−1 + ∆t [q1Et−1 − (q2 + q3)It−1] only Infected

Ht = Ht−1 + ∆t [q2It−1 − (q4 + q5)Ht−1] Infected and Hospitalized

Rt = Rt−1 + ∆t [q3It−1 + q4Ht−1] Recovered

Dt = Dt−1 + ∆t [q5Ht−1] Died

Similar discretized system of ODEs are given in the literature for SEIR models and their extensions [27].

Formulation as an Extended Kalman Filter

The discretized system of ODEs may be now formulated as an Extended Kalman Filter model. For this

model, there is no forcing/control vector, i.e., ut is removed. Also, the observation function h is assumed to

be linear. Therefore, the state and observation/measurement vector equations take the following form:

xt = f(xt−1) + wt

yt = Hxt + vt

State Equations

The state vector includes random variables for each of the variables in the discrete-time system of equations.

xt = [St, Et, It, Ht, Rt, Dt]

For this model, the nonlinear function f is quadratic so it can be written in matrix form.

St

Et

It

Ht

Rt

Dt

= x

ᵀ

t− 1

0 0 − α
N

∆t − α
N

∆t 0 0

0 0 α
N

∆t α
N

∆t 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

xt−1 +

1 0 0 q5∆t 0 0

0 1− q1∆t 0 0 0 0

0 q1∆t 1− q23∆t 0 0 0

0 0 q2∆t 1− q45∆t 0 0

0 0 q3∆t q4∆t 1 0

0 0 0 q5∆t 0 1

xt−1 + wt

where x
ᵀ
t− 1 is the transpose of xt−1 (making it a row vector), q23 = q2 + q3 and q45 = q4 + q5.

Observation/Measurement Equations

The observation/measurement vector includes random variables for the observable state variable, i.e., those

variables for which time series data exists.

yt = [Iot , H
o
t , R

o
t , D

o
t]

631

For this model, there is a direct relationship between the state and measurement variables, so the observa-

tion/measurement vector is as follows:

Iot
Ho
t

Rot
Do
t

 =

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

xt + vt

Jacobian Matrices

Ft ∈ R6×6 is given by the Jacobian matrix for the state transition function f .

Ft =
∂f

∂xt

Ft =

1− α It−1+Ht−1

N ∆t 0 St−1

N ∆t (q5 + St−1

N)∆t 0 0

α It−1+Ht−1

N ∆t 1− q1∆t St−1

N ∆t St−1

N ∆t 0 0

0 q1∆t 1− q23∆t 0 0 0

0 0 q2∆t 1− q45∆t 0 0

0 0 q3∆t q4∆t 1 0

0 0 0 q5∆t 0 1

Similarly, Ht ∈ R4×6 is given by the Jacobian matrix for the observation function h.

Ht =
∂h

∂xt

Ht =

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

Noise Covariance Matrices

The covariance of the process noise Q ∈ Rn×n and the covariance of the measurement noise R ∈ Rm×m can

be challenging to determine. These covariance matrices feed into the calculation of the Kalman Gain K, so

that reliance on process predictions versus measured quantities is partially based on how low their respective

covariances are.

There are three basic approaches for assigning values to Q and R: (1) Use knowledge of the process for

Q and of the measurement devices for R. The covariance of the process noise Q may be roughly determined

based on inherent uncertainty in the model (unpredictably changing wind conditions) or missing model

elements (e.g., the force of drag). The covariance of the measurement noise R may be roughly determined

based on characteristics of the measurement device(s). (2) Use hyper-parameters and Hyper-Parameter

Optimization (HPO) as discussed below. (3) Use Adaptive (Extended) Kalman Filters that adjust Qt and

Rt at each step based on calculated errors/residuals/innovations [3].

632

As approach (1) is very problem specific and approach (3) is complicated, approach (2) is a good alter-

native for a quick start. This alternative uses tunable hyper-parameters λQ and λR as multipliers of identity

matrices.

Q = λQI

R = λRI

where IQ an an n-by-n identity matrix and IR an an m-by-m identity matrix. The hyper-parameters are

problem specific, but λ = 0.1 or 1.0 are reasonable ballparks [179] for starting grid searches or more efficient

HPO techniques.

Note that approach (1) is used in the golf ball trajectory problem given in the last section and approach

(3) is explored in the exercises.

Initialization

Some initialization is needed before starting an Extended Kalman Filter. Due to lack of sensitivity, the

initial covariance of the process error can be set to an n-by-n identity matrix, i.e., P0 = I. The initial state

xo = [329999999, 0, 1, 0, 0, 0]. The time gap/increment ∆t = 1 day.

16.5.3 Exercises

1. Use the ScalaTion COVID-19 datasets found at https://github.com/scalation/data to train

an Extended Kalman Filter (EKF) and make four-week ahead forecasts. It is composed of data

collected from multiple datasets stored at https://github.com/CSSEGISandData/COVID-19/tree/

master/csse_covid_19_data. In particular, use the dataset that contains data about COVID-19

cases, hospitalizations, recoveries, and deaths in the United States for one full year since the first

confirmed case on January 22, 2020. The dataset is in a 367 row by 6 column CSV file containing the

data indicated in the table below. There are 367 rows since the first row contains column headers and

the year 2020 was a leap year.

Table 16.8: COVID-19 Dataset: United States

Column Description

d date: January 22, 2020 to January 21, 2021

t time: 0 to 365

Ct total (cumulative) number of confirmed cases by day t

Ht total (cumulative) number of hospitalized individuals by day t

Rt total (cumulative) number of recovered individuals by day t

Dt total (cumulative) number of deaths by day t

It deduced current number of infected individuals on day t (not counting hospitalizations)

IHt deduced current number of hospitalized individuals on day t

The data cover the last four states of the State Transition Diagram. The data also include the total

number of confirmed cases Ct and the total number of hospitalizations Ht that are not directly part

of the SEIHRD model, but are used to compute It and Ht.

633

https://github.com/scalation/data
https://github.com/CSSEGISandData/COVID-19/tree/master/csse_covid_19_data
https://github.com/CSSEGISandData/COVID-19/tree/master/csse_covid_19_data

It = Ct −Ht

Ht = Ht −Rt −Dt

2. Early Stage Approximation. In the early stage of an epidemic/pandemic, the number of Susceptible

individuals changes slowly, so that St−1

N is nearly a constant that can be rolled into α. This allows the

first two difference equations to be rewritten.

St = St−1 + ∆t [q5Ht−1 − α(It−1 +Ht−1)] Susceptible

Et = Et−1 + ∆t [α(It−1 +Ht−1)− q1Et−1] Exposed

The state equations are now linear (and the observation/measurement equations have been linear), so

an ordinary Kalman Filter may be used. Use the ScalaTion COVID-19 dataset for the year 2020 to

train a Kalman Filter (KF) and make four-week ahead forecasts. Compare with the results of using

the EKF.

3. St and Et are hard to measure. Use the following identity to eliminate St from the model.

St = N − Et − It −Ht −Rt

Use the ScalaTion COVID-19 dataset for the year 2020 to train a Kalman Filter (KF) and make

four-week ahead forecasts. Compare with previous results.

4. Based on the last exercise, there is only one unobserved variables Et. Use the early stage approximation

to eliminate Et. Now all the state variables are observable (n = m = 4). Create a new Kalman Filter

where both F and H are 4-by-4 matrices. Use the ScalaTion COVID-19 dataset for the year 2020

to train this new Kalman Filter (KF) and make four-week ahead forecasts. Compare with previous

results.

5. When all the state variables are observable and the state transition and observation functions are

linear, a Vector Auto-Regressive VAR(p, n) model may be applied. Use the ScalaTion COVID-19

dataset for the year 2020 to train a VAR model and make four-week ahead forecasts. In particular,

create a VAR(1, 4) model and a VAR(2, 4) model as shown below,

yt = δ + Φ(0)yt−2 + Φ(1)yt−1 + εt

where yt = [It, Ht, Rt, Dt], p = 2 and n = 4, with two parameter matrices: Φ0 ∈ R4×4 and Φ1 ∈ R4×4

Compare with previous results.

6. Create an AR∗(1, 4) model and a AR∗(2, 4) model. Recall that an AR∗(p, n) model is a VAR(p, n)

model where all the parameter matrices are diagnonal. Compare with previous results.

634

7. As the state transition function f or the observation function h are no longer well locally approxi-

mately by linear functions or the noise is no longer well approximated by Gaussian distributions, it is

recommended to use an Unscented Kalman Filter [199]. Use the ScalaTion COVID-19 dataset

for the year 2020 to train an Unscented Kalman Filter (UKF) and make four-week ahead forecasts.

Compare with previous results.

8. As the dimensionality of the problem becomes very large, such as in Numerical Weather Prediction

(NWP), it is recommended to use an Ensemble Kalman Filter [46, 91]. Use the ScalaTion

COVID-19 dataset for the year 2020 to train an Ensemble Kalman Filter (EnKF) and make four-week

ahead forecasts. Compare with previous results.

9. There are two techniques for estimating noise covariance matrices Qt and Rt for Adaptive (Extended)

Kalman Filters, one based innovations (errors before correction) the other based on residuals (errors

after correction). Read the following two papers [24, 3] and write a short essay on how the two

techniques work.

10. The discretization of the system of Ordinary Differential Equations (ODEs) for the SEIHRD model

used the Euler Method. For a system of ODEs, the vector equation is of the form:

ẏ(t) = f(t,y(t))

Discretization using the explicit, first-order Euler Method gives

yt = yt−1 + ∆t f(t−∆t,yt−1)

Try using an explicit, second-order Runge-Kutta Method (RK2) instead

ỹt = yt−1 + ∆t f(t−∆t,yt−1) predicted

yt = yt−1 +
∆t

2
[f(t−∆t,yt−1) + f(t, ỹt)] corrected

11. Mobility Aware SEIHRD Model

This next more realistic, although more complex, model looks at regions (e.g., states, counties) and

considers mobility/traffic between regions.

FIX

Mobility Aware Differential Equations

(a) The number of Susceptible individuals in region k at time t is denoted by Skt.

(b) The number of Exposed individuals in region k at time t is denoted by Ekt.

(c) The number of Infected and not Hospitalized individuals in region k at time t is denoted by Ikt.

(d) The number of Infected and Hospitalized individuals in region k at time t is denoted by Hkt.

(e) The number of Recovered individuals in region k at time t is denoted by Rkt.

635

(f) The number of Deaths in region k at time t is denoted by Dkt.

Since infections in one region can cause infections in other regions, use of mobility data can improve

forecasts. A simple approach is to add a connectivity/mobility matrix that indicates the amount of

travel between regions.

Cjk = number of individuals traveling from region j to region k in one time unit (16.59)

The diagonal in the matrix is minus the number of individuals leaving the region. The issue is to

determine, for each state the number of individuals entering region k in one time unit. For example,

for susceptibility the travel adjusted number is

τ(Skt) = Skt +

l−1∑
j=0

Sjt
nj
Cjk (16.60)

Therefore, the six space-time variables are now interrelated through a new set of ordinary differential

equations,

Ṡkt = q5τ(Hkt)− α
τ(Ikt) + τ(Hkt)

nk
τ(Skt) Susceptible

Ėkt = α
τ(Ikt) + τ(Hkt)

nk
τ(Skt)− q1τ(Ekt) Exposed

İkt = q1τ(Ekt)− (q2 + q3)τ(Ikt) only Infected

İHkt = q2τ(Ikt)− (q4 + q5)τ(Hkt) Infected and Hospitalized

Ṙkt = q3τ(Ikt) + q4τ(Hkt) Recovered

Ḋkt = q5τ(Hkt) Died

Parameter Estimation

A common way to estimate the parameters is to use Maximum Likelihood Estimation [109]. The

likelihood function is ...

Basic Difference Equations Approximation

The basic six differential equation can be approximated using six difference equations, where for ex-

ample ∆Skt = Skt − Sk,t−1. One time unit will correspond to one day.

636

∆Skt = q5Hk,t−1 − α
Ik,t−1 +Hk,t−1

nk
Sk,t−1 Susceptible

∆Ekt = α
Ik,t−1 +Hk,t−1

nk
Sk,t−1 − q1Ek,t−1 Exposed

∆Ikt = q1Ek,t−1 − (q2 + q3)Ik,t−1 only Infected

∆Hkt = q2Ik,t−1 − (q4 + q5)Hk,t−1 Infected and Hospitalized

∆Rkt = q3Ik,t−1 + q4Hkt Recovered

∆Dkt = q5Hk,t−1 Died

Again, the six parameters to estimate are α, q1, q2, q3, q4, q5, and q6. Each of the fifty states in the

United States may be solve separately or pooled together.

Note that the approximation above only uses first lags, utilizing more lags may lead to better results.

The dataset will consist of three time series, Ikt infected cases, Hkt hospitalizations, and Dkt deaths.

Mobility Aware Difference Equations Approximation

TBD.

637

16.6 ODE Parameter Estimation

y = x(t) + ε

dx(t)

dt
= f(x(t); b)

Nonlinear Least Squares (NLS)

Least Squares Approximation (LSA)

638

Chapter 17

Event-Oriented Models

The simulation modeling techniques discusses so far center around specifying a set of equations. The structure

or operation rules of actual systems may require logic that is hard to express in this fashion. A very flexible

way of expressing such logic is to focus what happens that may affect the state of system. This is the

approach that is followed by Event-Oriented Models. These are also called Event Scheduling Models that

suggests how the simulation engine would need to work. The engine needs to provide an means for creating,

scheduling and processing events over time.

Before discussing event oriented models in more detail, several simulation modeling paradigms will be

highlighted.

17.1 A Taxonomy/Ontology for Simulation Modeling

The most recent version of the Discrete-event Modeling Ontology (DeMO) lists five simulation modeling

paradigms or world-views for simulation (see the bullet items below). These paradigms are briefly discussed

below and explained in detail in [175].

• State-Oriented Models. State-oriented models focus states and state transitions. State-oriented

models include Markov Chains and their generalizations such as Generalized Semi-Markov Processes

(GSMPs) A GSMP can be defined using three functions,

– an activation function {e} = a(x(t)),

– a clock function t′ = c(x(t), e),

– a state-transition function x(t′) = d(x(t), e).

In simulation, advancing to the current state x(t) causes a set of events {e} to be activated according

to the activation function a. Events occur instantaneously and may affect both the clock and transition

functions. The clock function c determines how time advances from t to t′ and the state-transition

function determines the next state x(t′). One can also tie in the input and output vectors. The input

vector u is used to initialize a state at some start time t0 and the response vector y can be a function

of the state sampled at multiple times during the execution of the simulation model.

639

• Event-Oriented Models. State-oriented models may become unwieldy when the state-space becomes

very large. One option is to focus on state changes that occur by processing events in time order. An

event may indicate what other events it causes as well as how it may change the state. Essentially, the

activation and state transition functions are divided into several simpler functions, one for each event

e:

– {e} = ae(x(t)),

– x(t′) = de(x(t)).

Logic for each event type implements the ae, what other event to trigger and de how to change (or

transition) the state. Time advance is simplified to just setting the time t′ to the time of the most

imminent event on a Future Event List (activated events are placed on this list in time order).

• Process-Oriented Models. One of the motivations for process-oriented models is that event-oriented

models provide a fragmented view of the system or phenomena. As combinations of low-level events

determine behavior, it may be difficult to see the big picture or have an intuitive feel for the behavior.

Process-oriented or process-interaction models aggregate events by putting them together to form a

process. An example of a process is a customer in a store. As the simulated customer (as an active

entity) carries out behavior it will conditionally execute multiple events over time. A simulation

then consists of many simultaneously active entities and may be implemented using coroutines (or

threads/actors as a more heavyweight alternative). Typically, there is one coroutine for each active

entity. The overall state of a simulation then includes a combination of the states of each active entity

(each coroutine/thread has its own stack). The global shared state also includes a variety of resources

types.

• Activity-Oriented Models. There are many types of activity-oriented models including Petri-Nets

and Activity-Cycle Diagrams. The main characteristics of such models is a focus on the notion of

activity. An activity (e.g, customer checkout) corresponds to a distinct action that occurs over time

and includes a start event and an end event. Activities may be started because time advances to its

start time or a triggering condition becomes true. Activities typically involve one or more entities.

State information is stored in activities, entities and the global shared state.

• System Dynamics Models. System dynamics models have been added to DeMO, since hybrid

models that combine continuous and discrete aspects are becoming more popular. One may consider

modeling the flight of a golf ball once struck by a golf club. Let the response vector y = [y0 y1] where

y0 indicates the horizontal distance traveled, while y1 indicates the vertical height of the ball. Future

positions of y depend on the current position and time t. Using Newton’s Second Law of Motion, y

can be estimated by solving a system of Ordinary Differential Equations (ODEs) such as

ẏ = f(y, t), y(0) = y0.

The object uses the Dormand-Prince ODE solver to solve this problem. More accurate models for

estimating how far a golf ball will carry when struck by a driver can be developed based on inputs/fac-

tors such as club head speed, spin rate, smash factor, launch angle, dimple patterns, ball compression

characteristics, etc. There have been numerous studies of this problem, including [25].

640

https://cobweb.cs.uga.edu/~jam/scalation_2.0/src/main/scala/scalation/dynamics/BallFlight.scala

In addition to these main modeling paradigms, ScalaTion support a simpler approach called Tableau-

Oriented Models that can be thought of as an automated analog to Spreadsheet Simulation.

One may also classify models as supporting Object-Oriented Simulation where the advantages of

object-oriented programming are utilized. For example, some forms of process-oriented simulation (e.g.,

GPSS) require each process to strictly follow a sequence of blocks. This makes it easier to create models

(and they can be fully specified in a GUI), but reduces the flexibility with which simulation can be built

(see [155] for details). In ScalaTion, all of the simulation modeling techniques take advantage of object-

orientation, especially the process-interaction models. The importance of each actor running concurrently is

the reason it falls in the process-oriented category. In the sense that it has active entities that are objects

and concurrent, puts it in the lineage of Simula-67.

641

17.2 List Processing

Event-Oriented Models will require events and entities to be maintained in various types of lists or queues.

17.2.1 FCFS Queue

The most common type of queue is a First-Come, First-Serve (FCFS) Queue also known as a First-In,

First-Out (FIFO) Queue. As a data structure, they may be implemented as an array or linked list. Efficient

access to the front (head) and back (tail) of the queue are needed, as well as efficient methods for adding a

item to the back of the queue (enqueue) and removing an item from the front of the queue (dequeue).

The Queue class in the scala.collection.mutable package provides these capabilities. It extends the

ArrayDeque class from the same package. The ArrayDeque class is implemented using a resizable circular

array that allows efficient operations to both ends (front and back) of the queue. Deque stands for double

ended queue, see Figure 17.1.

ArrayDequefront back
prepend addOne

removeHead removeLast

Figure 17.1: Efficient Access to the Front and Back of ArrayDeque

The following methods are provided by ArrayDeque for adding and removing items from the ends of a

queue.

• prepend (alias +:) - add an item to the front of the queue.

• addOne (alias +=) - add an item to the back of the queue.

• removeHead - remove the item at the front of the queue.

• removeLast - remove the item at the back of the queue.

The Queue class implements its enqueue (with alias +=) and its dequeue methods as follows:

def enqueue (elem: A): this.type = this += elem // join the back of the line (addOne)

def dequeue (): A = removeHead () // remove from front

Note, specifying this.type means q.enqueue (elem) returns the type of q which could be Queue or a

subclass of Queue, e.g., MyQueue extends Queue.

See http://scalada.blogspot.com/2008/02/thistype-for-chaining-method-calls.html for an exam-

ple.

642

http://scalada.blogspot.com/2008/02/thistype-for- chaining-method-calls.html

17.2.2 LCFS Queue

Another type of queue is a Last-Come, First-Serve (LCFS) Queue also known as a Last-In, First-Out (LIFO)

Queue. As a data structure, they may also be implemented as an array or linked list. Efficient access to the

front (top) of the queue is needed, as well as efficient methods for adding a item to the front of the queue

(push) and removing an item from the front of the queue (pop).

The Stack class in the scala.collection.mutable package provides these capabilities. It slso extends

the ArrayDeque class from the same package.

The Stack class implements its push and its pop methods as follows:

def push (elem: A): this.type = prepend (elem) // join at the front

def pop (): A = removeHead () // remove fron front

17.2.3 Priority Queue

Priority Queues are essential for simulation engines as events need to be efficiently placed in a data structure

in time order. The time being when the event (e.g., next arrival or service completion) is to occur. How far

in the future the event is to occur determines its placement in the priority queue. In this way events are

processed in time order. The most imminent event is the one at the front of the queue. When it is removed,

the simulation clock is advanced to the time of this event.

ScalaTion uses the PriorityQueue class in the scala.collection.mutable package for scheduling

events. This class supports adding and removing items in logarithmic time by having an interval heap

data structure. A heap may be implemented using a resizable array for which the heap order is maintained,

i.e., heap(i) <= heap(2*i) and heap(i) <= heap(2*i+1). New events are added to the eventList as

follows:

eventList += anEvent

Note, += is alias for the addOne method. The most imminent event is removed from the eventList as

follows:

nextEvent = eventList.dequeue ()

17.2.4 Time Advance Mechanism

ScalaTion supports two types of event-oriented simulation modeling paradigms: Event Scheduling and its

extension, called Event Graphs. For both paradigms, the state of the system only changes at discrete event

times with the changes specified via event logic. Time is advanced (jumps forward) to the event time of the

next event, so unlike discrete-time models, discrete-event models have non-constant time increments.

(1) Event Scheduling models encode the event logic in classes that extend the Event class. The event

logic is written in each such class’ customized occur method. A scheduler within the model will execute the

events in time order. A time-ordered priority queue is used to hold the future events and is often referred to

as a Future Event List (F.E.L.), see Figure 17.2.

643

Future

Event List

nextEvent

anEvent

dequeue

+=

Figure 17.2: Time-Ordered Priority Queue: Future Event List (F.E.L.)

(2) Event Graph models capture the event logic related to triggering other events in causal links. In

this way, Event Graph models are more declarative (less procedural) than Event Scheduling models. They

also facilitate a graphical representation and animation. They can also serve as a design diagram for event

scheduling as they depict the relationships between events.

644

17.3 Event Scheduling

A simple, yet practical way to develop a simulation engine to support discrete-event simulation is to imple-

ment event-scheduling. This involves creating the following three classes: Event, Entity and Model. An

Event is defined as an instantaneous occurrence that can trigger other events and/or change the state of

the simulation. An Entity, such as a customer in a bank, flows through the simulation. The Model serves

as a container/controller for the whole simulation and carries out scheduling of event in time order. The

centerpiece class for event scheduling and the one model developers will be most concerned with is the Event

class.

17.3.1 Event Class

The abstract Event class provides a framework for defining types of simulation events. A subclass extending

Event needs to be created for each type of event.

A subclass (e.g., Arrival) of Event must provide event-logic in the implementation of its occur method.

The Event class also provides methods for comparing activation times (actTimes for events and converting

an event to its string representation. Note: unique identification is mixed in via the Identifiable trait.

Class Methods:

@param entity the entity involved in this event

@param director the controller/scheduler that this event is a part of

@param delay the time delay before this event’s occurrence

@param stat the object for collecting statistics about delay times

@param proto the prototype (serves as node in animation) for this event

abstract class Event (val entity: Entity, director: Model, delay: Double = 0.0,

stat: Statistic = null, val proto: EventNode = null)

extends Identifiable with Ordered [Event]:

def compare (ev: Event): Int = ev.actTime compare actTime

def cancel (): Unit = { _live = false }

def live: Boolean = _live

def occur (): Unit

override def toString: String = entity.toString + "\t" + me

An Event must be defined inside a Model referenced by director and have an Entity that is involved

in this event.

An important field in the Event class is actTime, which indicates the activation/occurrence time for the

event.

The methods in this class perform the following functions:

• The compare method compares the actTime of two events, thus allowing events to be placed in time

order in the F.E.L. (eventList). Since Scala’s PrioityQueue class is organized as Highest Priority

First (HPF), the logic of the above compare method is reversed.

645

• The cancel method allows scheduled events to be cancelled by marking them as not live.

• The live method returns whether an event has been cancelled.

• The occur method must be implemented in each subclass and it captures the event logic for a particular

type of event (e.g., Arrival). The method may (1) schedule other events and (2) specify state changes.

• The toString method converts internal information about an event into a string.

A frequently used method from the Model class is schedule. It will place the event on the eventList

in time order. The eventList is managed by the Model.

def schedule (event: Event): Unit =

Much of what is needed to develop simply event scheduling models has now been covered.

646

17.3.2 Example: Bank Model

To create a simple bank simulation model, one could use the classes defined in the event-scheduling engine

to create

• two subclasses of Event, called Arrival and Departure, and

• one subclass of Model, called BankModel.

The complete code for this Bank simulation example may be found in the scalation.simulation.event

package in Bank.scala.

The event logic is coded in the occur method which in general triggers future events and updates the

current state. It indicates what happens when the event occurs.

Arrival Class

The Arrival case class extends the abstract Event class. The class constructor takes two parameters:

The entity involved in the event and the time delay (how far in the future this event is to occur). These

parameters are passed into the base class (Event) along with the Model director (this) and a Statistic

object for recording statistics on inter-arrival times t ia stat.

@param customer the entity that arrives, in this case a bank customer

@param delay the time delay for this event’s occurrence

case class Arrival (customer: Entity, delay: Double)

extends Event (customer, this, delay, t_ia_stat):

def occur (): Unit = ???

end Arrival

Before implementing the logic of the occur methods, it is useful to create an Event Graph design diagram

(event if Event Graphs are not used for the implementation). Each type of event is depicted as a node and

the directed edges indicate event causality. For the Bank Model, two event types will suffice (Arrival and

Departure). There are three causal links (directed edges): an arrival event triggers the next arrival and

it may trigger a service completion/departure event, and a departure event may trigger the next service

completion event. Typically, the directed edges have conditions on them (i.e., the event is only triggered

when the condition is true). The events are also triggered to occur in the future based on the transition/delay

times associated with edges. Figure 17.3 depicts the event graph to the Bank Model (the delays time are

not placed in the graph, but in the caption to avoid clutter).

The first condition nArr < nStop− 1 will be true when the simulation stopping rule becomes true, the

second condition nIn = 0 being true allows the arriving customer to go directly into service as the server is

not busy, and the third condition allows a customer in the queue to begin service, by scheduling the end the

service activity.

647

Arrival Departure

nArr < nStop− 1

nIn = 0

nIn > 1

Figure 17.3: Bank Event Graph: with edge delay times of tia, ts, and ts, going left to right

The occur method will schedule the next arrival event (up to the limit), check to see if the teller is busy.

If so, it will place itself in the Wait Queue (W.Q.), otherwise it schedules its own departure to correspond to

its service completion time. Finally, it adjusts the state by incrementing both the number of arrivals (nArr)

and the number in the system (nIn).

def occur (): Unit =

if nArr < nStop-1 then

val toArrive = Entity (iArrivalRV.gen, serviceRV.gen, BankModel.this)

schedule (Arrival (toArrive, toArrive.iArrivalT))

end if

if nIn == 0 then

schedule (Departure (customer, customer.serviceT))

else

waitQueue.enqueue (customer) // collects time in Queue statistics

end if

nArr += 1 // update the current state

nIn += 1

end occur

Suppose nStop = 3 and that three arrival events, A0, A1, A2, with corresponding customers C0, C1, C2

occur before any departure events D0, D1, D2. The table below shows the situation at the end of each occur

method.

Table 17.1: Example Event Execution

Event F.E.L. W.Q. State

start [A0] [] [0, 0]

A0.occur [A1, D0] [] [1, 1]

A1.occur [A2, D0] [C1] [2, 2]

A2.occur [D0] [C1, C2] [3, 3]

D0.occur [D1] [C2] [3, 2]

D1.occur [D2] [] [3, 1]

D2.occur [] [] [3, 0]

648

Departure Class

For the Departure class, the occur method will check to see if there is another customer waiting in the

queue and if so, schedule that customer’s departure. It will then signal its own departure by updating the

state; in this case decrementing nIn and incrementing nOut.

@param customer the entity that departs, in this case a bank customer

@param delay the time delay for this event’s occurrence

case class Departure (customer: Entity, delay: Double)

extends Event (customer, this, delay, t_s_stat):

def occur (): Unit =

leave (customer) // collects time in sYstem statistics

if ! waitQueue.isEmpty then // nIn > 1

val nextService = waitQueue.dequeue () // first customer in queue

schedule (Departure (nextService, nextService.serviceT))

end if

nIn -= 1 // update the current state

end occur

end Departure

BankModel Class

The BankModel class defines a simple Event-Scheduling model of a Bank where service is provided by one

teller and models an M/M/1 queue. The parameters to the constructor are the name of the simulation model,

the number of independent replications to run (see the Simulation Output Analysis Chapter for details),

the number of entities to create before stopping the simulation, and the base random number stream to

use. Each random variate should use a difference stream for independence. The models need to initialize

the model constants, create the random variates and state variables, specify the event logic in subclasses for

Event, in this case, the Arrival and Departure events defined in the previous subsections, and finally, start

the simulation after scheduling the first priming event. Once the simulation stops, reports and summarizes

may be output.

@param name the name of the simulation model

@param reps the number of independent replications to run

@param nStop the number arrivals before stopping

@param stream the base random number stream (0 to 999)

class BankModel (name: String = "Bank", reps: Int = 1, nStop: Int = 100, stream: Int = 0)

extends Model (name, reps):

// Initialize Model Constants

val lambda = 6.0 // customer arrival rate (per hr)

val mu = 7.5 // customer service rate (per hr)

649

// Create Random Variables (RVs)

val iArrivalRV = Exponential (HOUR / lambda, stream)

val serviceRV = Exponential (HOUR / mu, (stream + 1) % N_STREAMS)

// Create State Variables

var nArr = 0.0 // number of customers that have arrived

var nIn = 0.0 // number of customers in the bank

val t_ia_stat = new Statistic ("t_ia") // time between Arrivals statistics

val t_s_stat = new Statistic ("t_s") // time in Service statistics

val waitQueue = WaitQueue (this) // waiting queue that collects stats

addStats (t_ia_stat, t_s_stat)

// Specify Logic for each Type of Simulation Event

case class Departure ...

case class Arrival ...

// Start the simulation after scheduling the first priming event

val firstArrival = Entity (iArrivalRV.gen, serviceRV.gen, this)

schedule (Arrival (firstArrival, firstArrival.iArrivalT)) // first priming event

simulate () // start simulating

report (("nArr", nArr), ("nIn", nIn))

reportStats ()

waitQueue.summary (nStop)

end BankModel

Note, to aid with debugging, it may be useful to add the following state variable.

var nOut = 0.0 // number of customers that departed

The three code segments may now be merged together and compiled. The following imports are required:

scalation.mathstat.Statistic, scalation.random.Exponential, and

scalation.random.RandomSeeds.N STREAMS. Outside of Scalation for example in my scalation, the fol-

lowing import is also required: scalation.simulation.event.

Model Execution

The BankModel can be invoked by calling a main function, such as runBank.

@main def runBank (): Unit = new BankModel ()

This function may be executed in sbt using runMain

> runMain scalation.simulation.event.example_1.runBank

650

Defining Simulation Scenarios

Some of the model preamble (before the Event subclasses) may be moved out of the BankModel to allow

trying multiple combinations of model parameters/constants.

@main def runBank2 (): Unit =

val mu = 7.5

for lambda <- 5 to 8 do new BankModel2 (lambda, mu)

end runBank2

class BankModel2 (lambda: Double = 6.0, mu: Double = 7.5,

name: String = "Bank", reps: Int = 1, nStop: Int = 100, stream: Int = 0)

extends Model (name, reps):

The scenario specification can also be extended to include the random variates as well, allowing different

arrival and service distributions to be readily tested.

Statistic Class

In order to collect statistical information, the constructor of the Event class calls the tally method from

the Statistic class in the scalation.mathstat package to obtain statistics on

• the time in queue t q stat (Tq),

• the time in service t s stat (Ts), and

• the time in system t y stat (Ty).

if stat != null then stat.tally (delay)

Class Methods:

@param name the name for this statistic (e.g., ’waitingTime’)

@param unbiased whether the estimators are restricted to be unbiased

class Statistic (val name: String = "stat", unbiased: Boolean = false):

def set (n_ : Int, sum_ : Double, sumAb_ : Double, sumSq_ : Double,

minX_ : Double, maxX_ : Double): Unit =

def reset (): Unit =

def tally (x: Double): Unit =

inline def num: Int = n

inline def nd: Double = n.toDouble

inline def min: Double = if n == 0 then 0.0 else minX

inline def max: Double = maxX

def mean: Double = if n == 0 then 0.0 else sum / nd

def variance: Double =

def stdev: Double = sqrt (variance)

def ms: Double = sumSq / nd

651

def ma: Double = sumAb / nd

def rms: Double = sqrt (ms)

def interval (p: Double = .95): Double =

def interval_z (p: Double = .95): Double =

def show: String = s"Statistic: $n, $sum, $sumAb, $sumSq, $minX, $maxX"

def statRow: Array [Any] = Array (name, num, min, max, mean, stdev, interval ())

override def toString: String =

Monitor Class

The Monitor class is used to trace the key actions in the execution of a model. This class works for both

event oriented and process oriented model. Information collected by calling the trace method is saved in

log file.

Class Methods:

@param project the project to be monitored

case class Monitor (project: String = "simulation"):

def toggle (): Unit = ew.toggle ()

def traceOff (): Unit = tracing = false

def traceOn (): Unit = tracing = true

def trace (who: Identifiable, what: String, whom: Identifiable, when: Double): Unit =

def finish (): Unit = ew.finish ()

Model developers may call trace anywhere in their code. The Model class calls trace mutilple times,

private [event] val log = Monitor ("simulation")

log.trace (this, "starts", this, _clock)

log.trace (this, s"executes ${nextEvent.me} on ${nextEnt.eid}", nextEnt, _clock)

log.trace (this, "terminates", this, _clock)

The traces are are written into a file located in for example log/simulation directory. If this directory

does not exist, it will need to be made for the model to run. Both scalation and my scalation have this

directory.

652

17.3.3 Example: Call Center Model

A simpler model is one for which there is no waiting queue. If a server is free/idle, service may begin,

otherwise, it can be attempted later. A simple call center can be modeled in this way. The CallCenter.scala

file contains event logic for the case of a call center with a staff of one. The Event Graph design diagram

is similar the one for the Bank Model. The major difference is that upon departure, as there is no queue,

the ending call cannot trigger the beginning of the next completed call, i.e., the Departure event does not

trigger any other events, it just updates the state.

Arrival Departure

nArr < nStop− 1

nIn = 0

Figure 17.4: Call Center Event Graph: with edge delay times of tia and ts, going left to right

Arrival Class

The Arrival class replaces waiting in a queue with incrementing a counter of the number of lost calls

(nLost).

@param call the entity that arrives, in this case a call

@param delay the time delay for this event’s occurrence

case class Arrival (call: Entity, delay: Double)

extends Event (call, this, delay, t_a_stat):

def occur (): Unit =

if nArr < nStop-1 then

val toArrive = Entity (iArrivalRV.gen, serviceRV.gen, CallCenterModel.this)

schedule (Arrival (toArrive, toArrive.iArrivalT))

end if

if nIn == 0 then

schedule (Departure (call, call.serviceT))

end if

nArr += 1 // update the current state

if nIn == 1 then nLost += 1 else nIn = 1

end occur

end Arrival

653

Departure Class

The logic for the Departure class simply records information and updates counters.

@param call the entity that departs, in this case a call

@param delay the time delay for this event’s occurrence

case class Departure (call: Entity, delay: Double)

extends Event (call, this, delay, t_s_stat):

def occur (): Unit =

leave (call) // collects time in sYstem statistics

nIn = 0 // update the current state

nOut += 1

end occur

end Departure

The remaining four of five classes used for creating simulation models following the Event Scheduling

paradigm are discussed in the next four subsections.

17.3.4 Entity Class

Conceptually, entities are the dynamic objects that populate a simulation model, e.g., customers in a bank

simulation or calls in a call center simulation. An instance of the Entity class represents a single simulation

entity for event oriented simulation. For each instance, it maintains information about that entity’s arrival

time and next service time.

Class Methods:

@param iArrivalT the time from the last arrival

@param serviceT the amount of time required for the entity’s next service

@param director the controller/scheduler that this event is a part of

case class Entity (val iArrivalT: Double, var serviceT: Double, director: Model)

extends Identifiable:

override def toString = "Entity-" + eid

Important fields in the Entity class are the entity id eid, the time at which the entity arrived arrivalT =

director.clock + iArrivalT, and the time it begins waiting startWait, if applicable.

In the BankModel, a new entity (called toArrive) for a future arrival event is created before being passed

to the event.

val toArrive = Entity (iArrivalRV.gen, serviceRV.gen, BankModel.this)

schedule (Arrival (toArrive, toArrive.iArrivalT))

654

17.3.5 WaitQueue Class

When entities are unable to begin service immediately, they are often placed in a wait queue. The WaitQueue

class provides a First-Come, First-Served (FCFS) queue and is implemented by extending Scala’s Queue class.

An entity is added to the back of the queue using the enqueue method and is removed from the front of the

queue using the dequeue method. By default it has infinite capacity, but may be restricted by passing a

value in the cap parameter. In this case, entities are barred from entering the queue when the queue is full.

The number of times it is called is returned by the barred method.

override def enqueue (ent: Entity): WaitQueue.this.type =

ent.startWait = director.clock

if length <= cap then super.enqueue (ent) else _barred += 1

this

end enqueue

The dequeue method collects both sample statistics (for Tq) and time-persistent statistics (for Lq) on queue

occupancy, see the exercises.

override def dequeue (): Entity =

val ent = super.dequeue ()

val timeInQ = director.clock - ent.startWait

waitTimes += timeInQ

director.log.trace (director, s"records $timeInQ wait for ${ent.eid}", ent,

director.clock)

t_q_stat.tally (timeInQ)

l_q_stat.accum (length + 1, director.clock)

ent

end dequeue

The summary method returns statistics about waiting times in the queue.

Class Methods:

@param director the controller/scheduler that this event is a part of

@param ext the extension to distinguish the wait queues

@param cap the capacity of the queue (defaults to unbounded)

case class WaitQueue (director: Model, ext: String = "", cap: Int = Int.MaxValue)

extends Queue [Entity]:

def barred: Int = _barred

def isFull: Boolean = length >= cap

override def enqueue (ent: Entity): WaitQueue.this.type =

override def dequeue (): Entity =

def summary (numEntities: Int): Unit =

655

17.3.6 WaitQueue LCFS Class

Again, entities in the model that are unable to begin service immediately are often placed in a wait queue. The

WaitQueue LCFS class provides a Last-Come, First-Served (LCFS) queue and is implemented by extending

Scala’s Stack class. An entity is added to the front (top) of the queue using the enqueue method and is

removed from the front (top) of the queue using the dequeue method. By default it has infinite capacity,

but may be restricted by passing a value in the cap parameter. In this case, entities are barred from entering

the queue, and need to stay where they are, go somewhere else or be lost to the simulation. The number of

times entities are barred is returned by the barred method. The summary method returns statistics about

waiting times in the LCFS queue.

Class Methods:

@param director the controller/scheduler that this event is a part of

@param ext the extension to distinguish the wait queues

@param cap the capacity of the queue (defaults to unbounded)

case class WaitQueue_LCFS (director: Model, ext: String = "", cap: Int = Int.MaxValue)

extends Queue [Stack]:

def barred: Int = _barred

def isFull: Boolean = length >= cap

def enqueue (ent: Entity): WaitQueue.this.type =

def dequeue (): Entity =

def summary (numEntities: Int): Unit =

See the exercises for how to add additional types of wait queues.

17.3.7 Model Class

As shown in the examples, the foundation class for event-oriented simulation models is the Model class. An

application model will extend this class and create an instance called director. The director schedules

events and implements the time advance mechanism for event-oriented simulation models. Two important

methods in the Model class are the schedule and simulate methods. Scheduled events are placed in

the Future Event List (F.E.L.) in time order. In ScalaTion, the F.E.L. is called the eventList and is

implemented using Scala’s priority queue.

• The schedule method is used to add events to the eventList so they may be processed in time order.

To preempt a scheduled event, the cancel method may be called.

• The simulate method repeatedly removes and processes events in the eventList. The simulate

method will cause the main simulation loop to execute, which will remove the most imminent event

from the eventList and invoke its occur method.

The main loop in the Model class is the following while with the line controlling animation removed.

656

while simulating && ! eventList.isEmpty do

nextEvent = eventList.dequeue ()

if nextEvent.live then

_clock = nextEvent.actTime

nextEnt = nextEvent.entity

log.trace (this, s"executes ${nextEvent.me} on ${nextEnt.eid}", nextEnt, _clock)

debug ("simulate", s"$nextEvent \t" + "%g".format (_clock))

nextEvent.occur ()

end if

end while

The simulation will continue until a stopping rule evaluates to true (either the simulating flag becomes

false or the eventList becomes empty). The nextEvent is removed from the front of the priority queue and

checked to make sure it is still live (not cancelled). If it is live, the director’s simulation clock is set to

the this event’s activation time actTime. For tracing purposes, this event’s associated entity is referenced.

Then this event’s occur method is called that carries out the event logic based on the type of event it is.

Methods to getStatistics and report statistical results are also provided.

Class Methods:

@param name the name of the model

@param animation whether to animate the model (only for Event Graphs)

class Model (name: String, animating: Boolean = false)

extends Modelable with Identifiable:

def addStats (stat: Statistic*): Unit = for st <- stat do stats += st

def schedule (event: Event): Unit =

def cancel (event: Event): Unit = event.cancel ()

def leave (entity: Entity): Unit = t_y_stat.tally (clock - entity.arrivalT)

def simulate (startTime: Double = 0.0): Unit =

def report (vars: (String, Double)*): Unit =

def reportStats (): Unit =

def getStatistics: ListBuffer [Statistic] = stats

def animate (who: Identifiable, what: CommandType, color: Color, shape: Shape, at: Array [Double]): Unit =

def animate (who: Identifiable, what: CommandType, color: Color,

shape: Shape, from: Event, to: Event, at: Array [Double] = Array ())

The animate methods are used with Event Graphs (see the next section).

As a starting point for developing simulation models following the event scheduling paradigm, a model

developer may copy the Ex Template.scala file in the scalation.simualation.event package.

17.3.8 Example: Machine Shop Model

Before ending this section, consider the following more complex model: Parts arrive at a two-stage machine

shop with an arrival rate of λ = 10 hr−1. The first machine reshapes the part, while the second machine

657

polishes the part. The service rate for the first machine is µ1 = 12 hr−1 and is µ2 = 15 hr−1 for the second

machine. Both machines have space to store three parts waiting to be machined. When there is a backup

of parts, flow from other departments must continue, so these parts are removed to be sold for scrap. The

company wishes to conduct a simulation study to see which policy is better.

• Policy One: Block machine 1 when machine 2’s queue is full.

• Policy Two: Do not block machine 1 when machine 2’s queue is full, rather send the partially finished

part to scrap.

The cost of a raw part is 100 dollars, the value of partially finished part is 50 dollars and value of finished

part is 200 dollars. The operational cost of machine is 60 dollars an hour and is 30 dollars for machine 2.

The management has argued that machine 1 should be blocked since 50 dollars are lost whenever a

partially finished part is sold for scrap, while if it a raw part it can be resold for 100 dollars. Others say

stopping/forced idling of machine 1 is costly.

Figure 18.1 shows the flow of parts through the machine shop. Use simulation to estimate performance

characteristics and determine the better policy. How sensitive is the decision to the relative service rates of

the two machines.

Queue 1 Mac 1 Queue 2 Mac 2
raw partial finished

Figure 17.5: Machine Shop Schematic Diagram: Each Queue Has Capacity Three

The Machine.scala file in the event.example 1 package contains a partial implementation of the ma-

chine shop model. The Event Graph design diagram now requires three event types: Arrival, FinishMachine1,

and FinishMachine2. The Event Graph is depicted in Figure 17.6.

Arrival FinishMachine1 FinishMachine2

nArr < nStop− 1

nIn1 = 0

nIn1 > 1

nIn2 = 0

nIn2 > 1

Figure 17.6: Machine Shop Event Graph

658

The state variable are the following:

• the number of part arrivals at machine 1, nArr,

• the current number of parts at machine 1 (queue + service), nIn1,

• the current number of parts at machine 2, nIn2,

• the number of completed parts, nOut,

• the number of scrapped raw parts, nScrap1

• the number of scrapped partially finished parts, nScrap2

Blocking. Note that one policy may require machine station 1 to be blocked due to no room in machine

station 2. The blocking occurs when machine 1 finishes a part and it is ready to move onto machine station

2, but cannot. This part will be stuck at machine 1 and machine 1’s operator will be idle, until machine 2

completes the part it is working on. An additional edge should be added to the Event Graph to indicate

this causal connection. As the blocked part is not in a queue and not in the F.E.L., it needs to be held

somewhere, e.g., in model variable called heldAtMachine1.

659

17.4 Event Graphs

Event Graphs operate in a fashion similar to Event Scheduling. Originally proposed as a graphical conceptual

modeling technique (Schruben, 1983) for designing event oriented simulation models, modern programming

languages now permit more direct support for this style of simulation modeling.

In ScalaTion, the simulation engine for Event Graphs consists of the following seven classes:

The first five classes are shared with Event Scheduling.

1. An Entity, such as a customer in a bank, flows through the simulation.

2. An Event represents an instantaneous occurrence that affects the simulation.

3. An WaitQueue allows entities to wait for service in a FCFS Queue.

4. An WaitQueue LCFS allows entities to wait for service in an LCFS Queue.

5. The Model serves as a container/controller for the whole simulation.

The last two classes are specific to Event Graphs.

1. An EventNode (subclass of Event), defined as an instantaneous occurrence that can trigger other events

and/or change the state of the simulation, is represented as a node in the event graph.

2. A CausalLink emanating from an event/node is represented as an outgoing directed edge in the event

graph. It represents causality between events. One event can conditionally trigger another event to

occur some time in the future.

17.4.1 Example: Bank Model

For example, to create a simple bank simulation, one could use the four classes provided by the Event Graph

simulation engine to create subclasses of EventNode, called Arrival and Departure, and one subclass of

Model, called BankModel. The complete code for this example may be found in Bank2.scala. In more

complex situations, one would typically define a subclass of Entity to represent the customers in the bank.

class BankModel2 (name: String, nStop: Int, iarrivalRV: Variate, serviceRV: Variate)

extends Model (name, true) // true => animation on

The Scala code below was made more declarative than typical code for event-scheduling to better mirror

event graph specifications, where the causal links specify the conditions and time delays. For instance,

() => nArr < nStop-1

is a anonymous function/closure returning Boolean that will be executed when arrival events are handled.

In this case, it represents a stopping rule; when the number of arrivals exceeds a threshold, the arrival event

will no longer schedule the next arrival. The serviceRV is a random variate to be used for computing service

times.

In the BankModel class, the logic in the Event classes is simplified somewhat due to the specification of

CauasalLinks. Before the Event classes are specified, the following four types for definitions are required:

statistical accumulators, event nodes, causal links/edges, and the state variables.

First the statistical accumulators are defined, one for inter-arrivals and one for service. A wait queue is

given and it maintains its own statistics.

660

val t_ia_stat = new Statistic ("t_ia") // time between Arrivals statistics

val t_s_stat = new Statistic ("t_s") // time in Service statistics

addStats (t_ia_stat, t_s_stat)

val waitQueue = WaitQueue (this) // waiting queue that collects stats

For animation of the event graph, a prototype for each type of event is created and displayed as a node.

Locations are required for each EventNode.

val aLoc = Array (150.0, 200.0, 50.0, 50.0) // Arrival event node location

val dLoc = Array (450.0, 200.0, 50.0, 50.0) // Departure event node location

val aProto = new EventNode (this, aLoc) // prototype for all Arrival events

val dProto = new EventNode (this, dLoc) // prototype for all Departure events

The edges connecting these prototypes represent the casual links. The aLink array holds two causal links

emanating from Arrival, the first a self link representing triggered arrivals and the second representing an

arrival finding an idle server, so it can schedule its own departure. The dLink array holds one causal link

emanating from Departure, a self link representing the departing customer causing the next customer in the

waiting queue to enter service (i.e., have its departure scheduled).

val aLink = Array (CausalLink ("l_A2A", this, () => nArr < nStop-1, aProto),

CausalLink ("l_A2D", this, () => nIn == 0, dProto))

val dLink = Array (CausalLink ("l_D2D", this, () => nIn > 1, dProto))

aProto.displayLinks (aLink)

dProto.displayLinks (dLink)

The state variables, nArr, nIn and nOut, are defined as vars since they will change during the simulation.

var nArr = 0.0 // number of customers that have arrived

var nIn = 0.0 // number of customers in the bank

var nOut = 0.0 // number of customers that finished & left

An animation of the Event Graph consisting of two EventNodes Arrival and Departure and three

CausalLinks is depicted in Figure 17.7.

Figure 17.7: Event Graph Animation of a Bank.

661

The main thing to write within each subclass of Event is the occur method. To handle arrival events,

the occur method of the Arrival class first checks the aLinks to see if it needs to trigger additional events.

It then updates the current state by incrementing both the number of arrivals (nArr) and the number in the

system (nIn).

case class Arrival (customer: Entity, delay: Double)

extends Event (customer, this, delay, t_ia_stat, aProto):

def occur (): Unit =

if aLink(0).condition () then

val toArrive = Entity (iArrivalRV.gen, serviceRV.gen, BankModel2.this)

schedule (Arrival (toArrive, toArrive.iArrivalT))

end if

if aLink(1).condition () then

schedule (Departure (customer, customer.serviceT))

else

waitQueue.enqueue (customer) // collects time in Queue statistics

end if

nArr += 1 // update the current state

nIn += 1

end occur

end Arrival

To handle departure events, the occur method of the Departure class first checks the dLink to see if

it needs to trigger additional events. It then updates the state by decrementing the number in the system

(nIn) and incrementing the number of departures (nOut).

case class Departure (customer: Entity, delay: Double)

extends Event (customer, this, delay, t_s_stat, dProto):

def occur (): Unit =

leave (customer) // collects time in sYstem statistics

if dLink(0).condition () then

val nextService = waitQueue.dequeue () // first customer in queue

schedule (Departure (nextService, nextService.serviceT))

end if

nIn -= 1 // update the current state

nOut += 1

end occur

end Departure

Four of the classes used for creating simulation models following the Event Scheduling paradigm can

be used for Event Graphs, namely Entity, Event, Model, and WaitQueue. In addition, EventNode is also

required as they form the nodes in the Event Graphs. An edge in the Event Graph is an instance of the

CausalLink class. These two new classes (EventNode and CausalLink) are described in the subsections

below.

662

17.4.2 EventNode Class

The EventNode class provides facilities for defining simulation events. Subclasses of Event provide event-

logic in their implementation of the occur method. The main purpose of EventNode is to associate a type of

event with a node in the event graph.

Class Methods:

@param director the controller/scheduler that this event node is a part of

@param at the location of this event node

class EventNode (director: Model, at: Array [Double] = Array ())

extends Event (EventNode.makePrototype (director), director, -1.0, null):

def occur (): Unit = throw new NoSuchMethodException ("this occur should not be called")

def displayLinks (links: Array [CausalLink]): Unit =

17.4.3 CausalLink Class

The CausalLink class provides casual links between events. Before an event updates the state, it checks its

causal links to schedule/cancel other events. Events graphs make the linkage between types of events more

explicit, e.g., an arrival triggers the next arrival some time in the future. If a server is available, it can also

trigger the entity’s own service completion/departure event.

Class Methods:

@param label the name/label of the causal link

@param director the controller/scheduler that this causal link is a part of

@param condition the condition under which the link is triggered

@param causedEvent the event caused by this causal link

case class CausalLink (label: String, director: Model, val condition: () => Boolean,

causedEvent: Event)

extends Identifiable:

def display (from: Event, to: Event): Unit =

override def toString: String = s"CausalLink(${getClass.getSimpleName ()}, $name)"

Events graphs support a more declarative means for specifying a simulation, allow the relationships

between events to be seen visually and provide basic animation of simulation model execution.

663

17.5 Exercises

1. It is common practice to implement an eventList as a Heap-Based Priority Queue. The most imminent

event is at the top of the heap data structure in a priority queue. Processing this event involves removing

and returning this event, swapping in the event in the last position in the heap, and reestablishing the

heap order. Draw pictures to illustrate what happens to the heap.

2. As mentioned, the dequeue in the WaitQueue class collects both sample and time-persistent statistics.

The Statistic class in the mathstat packge is used to collect via tally sample statistics, while the

TimeStatistic class is used to collect accum time-persistent statistics.

@param name the name for this statistic (e.g., ’numberInQueue’ or ’tellerQ’)

@param _lastTime the time of last observation

@param _startTime the time observation began

class TimeStatistic (override val name: String = "p-stat",

private var _lastTime: Double = 0.0,

private var _startTime: Double = 0.0)

extends Statistic (name):

How do the tally and accum methods differ? Why is it necessary to have two such methods?

3. Explain what each line of the main while loop does in the simulate method of the Model class.

4. Draw an event graph for the simulation of an M/M/c/K Queue. Let the arrival rate λ = 7 per hour and

the service rate µ = 8 per hour. Write and execute an event scheduling model for this Queue System.

Compare the results with the theoretical results from Queueing Theory. Consider the following cases:

c = 1,K = 1; c = 1,K =∞; c = 2,K = 10; c = 2,K =∞.

5. Wendy’s vs. McDonald’s Lines. Given two servers, is it better to have a line/queue for each server

or one common line for both servers. Analyze the waiting times and standard deviation of the waiting

times. Let λ = 20 hr−1 and µ = 12 hr−1.

Hint: To compare the two waiting times, compute the adjusted waiting time. For example, with a

single queue, suppose Wq is the average time in queue for the nq customers that had to wait. The

overall adjusted waiting time is then

Tq =
nqWq + (m− nq)0

m

When there are two queues with waiting times Wq1 and Wq2 the formula becomes

Tq =
nq1Wq1 + nq2Wq2 + (m− nq1 − nq2)0

m

6. Machine Shop. Explain the edge conditions given in the Event Graph design diagram for the Machine

Shop. Specify the random variates for the transition/delay times for the edges in the Event Graph.

7. Machine Shop. Complete the implementation of the Machine Shop simulation and determine which

policy is better.

664

8. Two-Stage Queueing System Simulation. Consider modeling a system with two stages of service:

In stage one a patient registers, and in stage two the patient receives treatment. The line for registration

is unbounded, while patients waiting for treatment must be within a room with a total capacity of

K. The first stage has one server, while the second stage has two. Based on the cases in the previous

exercise, simulate a two-stage service system where the first stage has a queue with c = 1,K =∞ and

the second stage has a queue with c = 2,K = 10. When the second queue is full, the server in the first

stage will be blocked. (i.e, must be idle until space is available).

9. Emergency Department Simulation. Create and execute an event scheduling model for an emer-

gency department/room based on the specifications given in the following paper, “Modeling and Im-

proving Emergency Department Systems using Discrete Event Simulation,” by Christine Duguay and

Fatah Chetouane, https://journals.sagepub.com/doi/10.1177/0037549707083111.

10. ScalaTion uses Scala’s Priority Queue class for its time ordered F.E.L. (eventList), but that class

could also be used for priority based waiting queues. Add a new class to the event package called

WaitQueue PQ to provide this capability.

11. Use the new WaitQueue PQ class along with WaitQueue and WaitQueue LCFS to test various job schedul-

ing algorithms: FCFS, LCFS, Shortest Job First (SJF) and Highest Priority First (HPF).

12. Event Scheduling (ES) Simulation: A Small Fast Food Restaurant has two severs and enough

space for three customers to wait (at most five customers total at any given time). For the case of a

single queue, perform an ES simulation for m = 20 customer arrivals. Assume each server can process

µ = 30 customers per hour and that the customer arrival rate λ = 75 customers per hour (assume

Exponential distributions). Each completed order gives a net profit (before paying the servers) of 2.00

dollars. Each server makes 11.00 dollars per hour. Should the restaurant hire a third server? Explain

in terms of profit (after paying the servers) per hour. Note: this simulation problem is posed in the

Hand/Spreadsheet Simulation section of the Simulation Foundations Chapter.

(i) Use ScalaTion’s Known Random Variate Generator (RVG) to make ES reproduce the results of the

Spreadsheet Simulation. Give the Event Graph, code for the Event subclasses including their occur

methods, and the summary results.

(ii) Replace the Known RVG with ScalaTion’s Exponential RVG in order to run the simulation

longer to obtain better results. Also, run multiple replications to produce multiple estimates for the

final profit for having two servers vs. three servers. To make the replications independent, make sure

each replication uses a different base random number stream.

(iii) Explain how Confidence Intervals can be used to make more informed decisions.

(iv) [Bonus] Create 95% Confidence Intervals for the two and three server simulations. Let the number

of replications be 10 and use the Student’s t Distribution.

13. Question 3: Simulation model design: Draw an Event Graph for a simulation model used to study a

Bank with two tellers with Exponential inter-arrival and service time distributions with rates λ and

µ, respectively. Having one line and two servers along with Exponential distributions makes this an

M/M/2 queue. Explain the nodes and edges in your event graph.

665

https://journals.sagepub.com/doi/10.1177/0037549707083111

666

Chapter 18

Process-Oriented Models

A process can be thought of an unit of execution. Conceptually, an active entity in a process-oriented

simulation may execute as its own process.

Computers with multiple cores and hyper-threading may execute many processes at once. A system with

16 cores and hyper-threading (2 threads run per core), would allow 32 processes to run in parallel. Actually,

since several processes will be waiting on input, the number of processes is much larger that this number

would suggest. Still, process-oriented simulation typically will require many more processes, so traditional

heavy-weight processes are out of the question. Typically, the choice is between threads and coroutines.

667

18.1 Base Traits and Classes for Process-Oriented Models

The simulation package contains several base traits and classes that can be used by several types of

simulation models, and are especially useful for process-oriented simulation models.

18.1.1 Identifiable Trait

The Identifiable trait provides unique identification for simulation components, entities and events. In-

cludes a mandatory id and an optional name.

trait Identifiable:

def name: String = _name

def name_= (name: String): Unit =

def simType: String = getClass.getSimpleName ()

def me: String = s"$simType.$_name.$id"

override def equals (that: Any): Boolean =

override def hashCode: Int = id

18.1.2 Locatable Trait

The Locatable trait provides location information/coordinates for objects in simulation models (e.g., Components).

trait Locatable:

def at: Array [Double] = _at

def at_= (at: Array [Double]): Unit =

18.1.3 Modelable Trait

The Modelable trait defines the notions of clock and simulate, common to many types of ScalaTion

simulation models.

trait Modelable:

def clock = _clock

def simulate (startTime: Double): Unit

18.1.4 Temporal Trait

The Temporal trait adds time (actTime) and temporal ordering to the Identifiable trait.

trait Temporal

extends Identifiable:

def compare (other: Temporal): Int = { actTime compare other.actTime }

override def toString: String = s"Temporal ($me, $actTime)"

668

18.2 Concurrent Processing of Actors

A simulation with multiple actors as active entities whose behaviors overlap in time are most naturally

implemented using concurrent programming.

Traditionally, programming language support for concurrent programming has been limited and this

makes providing support of process-oriented models more difficult. Typically, support for coroutines is

sufficient for developing simulation engines of this type. Languages supporting coroutines include: Simula,

Smalltalk, Modula-2, Ruby, Julia, Go, and Kotlin.

On the other hand, many languages support threads, notably Java and therefore all Java based languages

including Scala. Although threads are capable of getting the job done, they introduce two problems: Unusual

transfer of control between threads can lead to challenging bugs to eliminate. There is also more overhead

(time and space) required to use threads rather than coroutines. To deal with the first problem, ScalaTion

implements a Coroutine class using Java’s Runnable interface and Thread class. Then users of ScalaTion

can avoid the complexity and bugs associated with threads. Improvement on the problem of overhead will

be provided by Java 18 in the form of VirtualTheads. These run in user space with reduced overheads and

can allow may more actors to run concurrently.

18.2.1 Java’s Thread Class

The PingPong Java class provides a simple example of how Java threads work. The class implements the

Runnable interface allowing the run method of object instances of this class to be executed concurrently in

multiple Threads. In this case, two instances are created: the first instance that writes ”ping” and sleeps for

333 milliseconds, and the second instance that writes ”PONG” and sleeps for 1000 milliseconds.

The following are some of the commonly used methods available in Java Threads: currentThread (the

currently running thread), interrupt (receive an InterruptedException), join (waits for thread to termi-

nate), run (execute the overridden method concurrently) sleep (temporarily cease execution for the given

number of milliseconds), start (the thread begins execution and calls the run method), and yield (this

threads offers to give another thread a chance to run). See the on-line Java API Documentation for more

details.

import static java.lang.System.*;

public class PingPong implements Runnable

{

private String word;

private int delay;

/**

* Construct a ping or pong object.

*/

public PingPong (String whatToSay, int delayTime)

{

word = whatToSay;

delay = delayTime;

} // PingPong

669

/**

* Run method for the ping/pong object.

*/

public void run ()

{

for (; ;) {

out.println (word);

try {

Thread.sleep (delay);

} catch (InterruptedException ex) {

return;

} // try

} // for

} // run

/**

* Main method for invoking the application.

* @param args Command-line arguments

*/

public static void main (String [] args)

{

new Thread (new PingPong ("ping", 333)).start ();

new Thread (new PingPong ("PONG", 1000)).start ();

} // main

} // PingPong

This code can be compiled typing the following:

$ javac PingPong.java

$ java PingPong

Notice the interleaved execution. Had the run been called directly, rather than indirectly via calling the

start method, no interleaving would be seen, since this would require the first thread to finish before the

second one can begin. Try change ”start” to ”run” in the code above. Note, to terminate the program, type

”Ctrl C”.

18.2.2 ScalaTion’s Coroutine Class

The Coroutine class supports (one-at-a-time) quasi-concurrent programming. A coroutine runs/acts until it

yields control from ’this’ to ’that’ coroutine. When resumed, a coroutines continues its execution where it left

off. As in the PingPong class, the Coroutine class implements (extends in Scala) Runnable interface. The

run method keeps track of the number of coroutines started and terminated as well as delegates to the act

method. This abstract method must be implemented by the simulation model developer. The start method

causes the run method to be executed concurrently, which delegates to the act method (that contains the

simulation logic).

@param label the label for the class of coroutines to be created.

670

abstract class Coroutine (label: String = "cor")

extends Runnable:

def counts: (Int, Int, Int) = (nCreated, nStarted, nTerminated)

def run (): Unit =

def act (): Unit

def yyield (that: Coroutine, quit: Boolean = false): Unit =

def start (): Future [_] =

def interrupt (): Unit =

The Coroutine also uses the following from the java.util.concurrent package: Executors, ExecutorSer-

vice, Future, Semaphore, and ThreadPoolExecutor. See Coroutine.scala in the scalation.simulation

package for details.

671

18.3 Process Interaction

Many discrete-event simulation models are written using the process-interaction world view, because the

code tends to be concise and intuitively easy to understand. Take for example the process-interaction model

of a bank (BankModel a subclass of Model) shown later. Following this world view, one simply constructs

the simulation components and then provides a script for entities (cimActors) to follow while in the system.

In this case, the act method for the customer class provides the script (what entities should do), i.e., enter

the bank, if the tellers are busy wait in the queue, then receive service and finally leave the bank.

The development of a simulation engine for process-interaction models is complicated by the fact that con-

current (or at least quasi-concurrent) programming is required. Various language features/capabilities from

lightweight to middleweight include continuations, coroutines, fibers, actors, virtual-threads and threads.

Heavyweight concurrency via OS processes is infeasible, since simulations may require a very large number

of concurrent entities. The main requirement is for a concurrent entity to be able to suspend its execution

and be resumed where it left off (its state being maintained on a stack). Since preemption is not necessary,

lightweight concurrency constructs are ideal. Presently, ScalaTion uses the Coroutine class.

ScalaTion includes several types of model components: Gate, Junction, Resource, Route, Sink,

Source, Transport, WaitQueue and WaitQueue LCFS. A model may be viewed as a directed graph with

several types of nodes:

• Gate: a gate is used to control the flow of entities, they cannot pass when it is shut.

• Junction: a junction is used to connect two transports.

• Resource: a resource provides services to entities (typically resulting in some delay).

• Sink: a sink consumes entities.

• Source: a source produces entities.

• WaitQueue: a FCFS wait-queue provides a place for entities to wait, e.g., waiting for a resource to

become available or a gate to open.

• WaitQueue LCFS: an LCFS wait-queue provides a place for entities to wait, e.g., waiting for a resource

to become available or a gate to open.

These nodes are linked together with directed edges (from, to) that model the flow entities from node to

node. A Source node must have no incoming edges, while a Sink node must have no outgoing edges.

• Route: a route bundles multiple transports together (e.g., a two-lane, one-way street).

• Transport: a transport is used to move entities from one component node to the next.

The model graph includes coordinates for the component nodes to facilitate animation of the model.

Coordinates for the component edges are calculated based on the coordinates of its from and to nodes.

Small colored tokens move along edges and jump through nodes as the entities they represent flow through

the system.

Formally, it is not required to be a graph since entities can move from node to node without going along

an edge (e.g., WaitQueue to Resource). These graph-like structures are referred to as Network Diagram.

Scalation’s Agent-Based Simulation (see the next section), however, does require the model to be based

on an underlying Property Graph.

672

18.3.1 Model Template

All process-interaction simulation models in ScalaTion are of the following basic form. The file called

Ex Template.scala in the scalation.simulation.process package may be used as a starting template

for the development of specific process-interaction simulation models.

@param name the name of the simulation model

@param reps the number of independent replications to run

@param animating whether to animate the model

@param aniRatio the ratio of simulation speed vs. animation speed

@param nStop the number arrivals before stopping

@param stream the base random number stream (0 to 999)

class SOMEModel (name: String = "SOME", reps: Int = 1, animating: Boolean = true,

aniRatio: Double = 8.0, nStop: Int = 100, stream: Int = 0)

extends Model (name, reps, animating, aniRatio):

// Initialize Model Constants

val lambda = 6.0 // customer arrival rate (per hour)

// Create Random Variables (RVs)

val iArrivalRV = Exponential (HOUR / lambda, stream)

// Create Model Components

val entry = Source ("entry", this, () => SOMEActor (), 0, nStop, iArrivalRV, (100, 290))

val exit = Sink ("exit", (600, 290))

addComponent (entry, exit)

// Specify Scripts for each Type of Simulation Actor

case class SOMEActor () extends SimActor ("s", this):

def act (): Unit =

println ("SOMEActor: please write the script for this actor")

exit.leave ()

end act

end SOMEActor

simulate ()

waitFinished ()

Model.shutdown ()

end SOMEModel

673

Specification of a process-interaction involves the four steps: (1) Initialize Model Constants, (2) Create

Random Variables (RVs), (3) Create Model Components, and (4) Specify Scripts for each Type of Simulation

Actor. The SOMEModel class can be invoked as follows:

> runMain scalation.simulation.process.runSOME

@main def runSOME (): Unit = new SOMEModel ()

18.3.2 Component Trait

The basic structure of a simulation is given by the simulation components. The Component trait provides

basic common features for simulation components. A component may function either as a node or edge.

Entities/sim-actors interact with component nodes and move/jump along component edges. All components

maintain sample/duration statistics (e.g., time in waiting queue) and all except Gate, Source and Sink

maintain time-persistent statistics (e,g., number in waiting queue).

The most important component is the containing Model. For example, in BankModel discussed next, the

instance of this class will serve as the director. Its role is similar to that in the event package, but rather

than executing occur methods, it transfers control between the SimActors.

Class Methods:

trait Component

extends Identifiable with Locatable:

def initComponent (label: String, loc: Array [Double]): Unit =

def director: Model = _director

def director_= (director: Model): Unit =

def composite: Boolean = subpart.size > 0

protected def initStats (label: String): Unit =

def aggregate (): Unit =

def display (): Unit

def tally (duration: Double): Unit = _durationStat.tally (duration)

def accum (value: Double): Unit = _persistentStat.accum (value, _director.clock)

def durationStat: Statistic = _durationStat

def persistentStat: TimeStatistic = _persistentStat

18.3.3 Example: BankModel

Consider an simple bank simulation model where customers wish to utilize one of several tellers, but may

need to wait their turn in a shared queue. Figure 18.1 depicts the flow of customers (SimActors) through

the bank (entry to door/exit) and corresponds closely with the code required to implement the model in

the process-interaction paradigm.

674

entry tellerQ teller door
toTellerQ toDoor

Figure 18.1: Bank Model Schematic Diagram

Such a BankModel (see the example 1 package) may be developed as follows:

• Initialize Model Constants: In this case customer arrival (lambda) and service (mu) rates need to be

specified. In addition, the number of service units (nTellers) needs to be specified.

• Create Random Variables (RVs): This model will have three random variates: one for the inter-

arrival times (iArrivalRV), one for service times (serviceRV), and one for movement (moveRV) along

Transports.

• Create Model Components: A key step is to define the component nodes entry, tellerQ, teller,

and door. Then two edge components, toTellerQ and toDoor, are defined. These six components are

added to the BankModel using the addComponent method. Note, the endpoint nodes for an edge must

be added before the edge itself.

class BankModel (name: String = "Bank", reps: Int = 1, animating: Boolean = true,

aniRatio: Double = 8.0, nStop: Int = 100, stream: Int = 0)

extends Model (name, reps, animating, aniRatio):

// Initialize Model Constants

val lambda = 6.0 // customer arrival rate (per hour)

val mu = 7.5 // customer service rate (per hour)

val nTellers = 1 // the number of bank tellers (servers)

// Create Random Variables (RVs)

val iArrivalRV = Exponential (HOUR / lambda, stream)

val serviceRV = Exponential (HOUR / mu, (stream + 1) % N_STREAMS)

val moveRV = Uniform (4 * MINUTE, 6 * MINUTE, (stream + 2) % N_STREAMS)

// Create Model Components

val entry = Source ("entry", this, () => Customer (), 0, nStop, iArrivalRV, (100, 290))

val tellerQ = WaitQueue ("tellerQ", (330, 290))

val teller = Resource ("teller", tellerQ, nTellers, serviceRV, (350, 285))

val door = Sink ("door", (600, 290))

val toTellerQ = Transport ("toTellerQ", entry, tellerQ, moveRV)

val toDoor = Transport ("toDoor", teller, door, moveRV)

addComponent (entry, tellerQ, teller, door, toTellerQ, toDoor)

675

• Specify Scripts for each Type of Simulation Actor: Finally, an inner case class called Customer is defined

where the act method specifies the script for bank customers to follow. The act method specifies the

behavior of concurrent entities (SimActor) and is analogous to the run method for Java/Scala Threads.

// Specify Scripts for each Type of Simulation Actor

case class Customer () extends SimActor ("c", this):

def act (): Unit =

toTellerQ.move ()

if teller.busy then tellerQ.waitIn () else tellerQ.noWait ()

teller.utilize ()

teller.release ()

toDoor.move ()

door.leave ()

end act

end Customer

simulate ()

waitFinished ()

Model.shutdown ()

end BankModel

The script for the actor consists of the following steps:

1. Upon creation by the Source at entry, the actor will move to the teller queue.

2. The actor will check whether all the tellers are busy and if all are busy, will wait in the queue tellerQ

which is a WaitQueue. Note, the call to noWait is just for statistics collection.

3. The actor will utilize one of the tellers in the teller Resource, for a period of time corresponding to

its service time.

4. After service is finished, the actor will then release the teller. This allows a waiting actor to begin

service and triggers the collection of statistics.

5. The actor now moves to the door/exit.

6. Upon arrival at the door, a Sink, the actor will leave the bank/simulation and overall statistics will

be collected.

The last three method calls will run the simulation using multiple threads/coroutines (simulate), wait

until all the threads/coroutines are finished (waitFinished), and then safely shut down concurrent execution

(Model.shutdown).

676

18.3.4 Executing the Bank Model

The BankModel class can be invoked as follows:

> runMain scalation.simulation.process.example_1.runBank

@main def runBank (): Unit = new BankModel ()

To make the animation easier to follow, try changing the aniRatio to 50.0.

18.3.5 Network Diagram

A Network Diagram for the Bank Model shown in Figure 18.2 displays four nodes (Source in green,

WaitQueue in cyan, Resource in orange, and Sink in purple) and two edges (both Transports in blue).

Figure 18.2: Animation of Network Diagram of Bank Model

An active entity (SimActor) representing a Customer is shown as token (small circle) frozen in its motion

along the first Transport. Like an Event Graph, a Network Diagram can be used for both simulation model

design and animation.

18.3.6 Comparison to Event Scheduling

In comparison, the Bank Model for event-scheduling did not include time delays and events for moving tokens

along transports (although these could be added). The BankModel in the example MIR package reduces the

impact of transports by (1) using the transport’s jump method rather than its move method and (2) reducing

the time through the transport by an order of magnitude. The jump method has the tokens jumping directly

to the middle of the transport, while the move method simulates smooth motion using many small hops.

The example 1 package provides several example process-interaction models based on the OSS method,

including BankModel, CallCenterModel, EmerDeptModel, LoopModel, MachineModel, OneWayStreetModel,

RoadModel, and TrafficModel.

The example MIR and example MBM packages include a subset of these models.

677

18.3.7 SimActor Class

The SimActor abstract class represents entities that are active in the model. The act abstract method,

which specifies entity behavior, must be defined for each subclass. Each SimActor extends the Coroutine

class and may be roughly thought of as running in its own thread. The script for entities/sim-actors to follow

is specified in the act method of the subclass as was done for the Customer case class in the BankModel.

For example, a customer in the BankModel will enter the bank, move to a teller, if there is a line/queue

will wait in the queue, be served by the teller and finally leave the bank. The director will transfer control

to the actor (bank customer) which will execute code to get to the next step and transfer control back to

the director. In this way the entity progresses through time processing multiple multiple events over its

lifetime. A SimActor is created by a Source and terminated by a Sink. The act method encodes the logic

of the actor’s script.

Class Methods:

@param label the label/name of the entity (‘SimActor‘)

@param director the director controlling the model

abstract class SimActor (label: String, director: Model)

extends Coroutine (label) with Temporal with Ordered [SimActor] with Locatable:

def trajectory: Double = _trajectory

def trajectory_= (trajectory: Double): Unit =

def compare (actor2: SimActor): Int = actor2.actTime compare actTime

def act (): Unit

def schedule (delay: Double): Unit =

def yieldToDirector (quit: Boolean = false): Unit =

override def toString: String = s"SimActor ($me at $actTime)"

Two of the key methods involved in transferring control between actors (via the director) are schedule

and yieldToDirector.

def schedule (delay: Double): Unit =

actTime = director.clock + delay

director.reschedule (this)

end schedule

The schedule method places this actor in agenda (like a future event list) effectively specifying when the

actor (a coroutine) will be reactivated. The delay parameter indicates how are into the future this will be.

def yieldToDirector (quit: Boolean = false): Unit =

director.log.trace (this, "resumes", director, director.clock)

yyield (director, quit)

end yieldToDirector

678

When the actor is has completed a step (conceptually like an embedded event) and either placed itself in

a queue or the agenda, it is ready to let another actor to execute. It does this by yielding control to the

director so the director can take the next action via the yieldToDirector method. The quit parameter is

a flag indicating whether this actor has completed its last step.

18.3.8 Source Class

The Source class is used to periodically inject entities (SimActors) into a running simulation model (and a

token into the animation). It may act as an arrival generator. A Source is both a simulation Component

and a special SimActor, and therefore can run concurrently.

The act method loops over time through the creation of units entities. After making an entity using the

makeEntity function, it schedules itself to run in the future by an amount of the given by iArrivalTime.gen,

and it transfers control back to the director by calling yieldToDirector. A Source may create entities of

different subtypes. For example, in the TrafficModel the esubtype indicates which of the four directions

cars will traveling as they approach an intersection. The act method has an outer loop over replications and

an inner scheduling loop shown below.

breakable {

for i <- 1 to units do // minor loop - make actors

debug ("act", s"make $i SimActor")

if director.stopped then break () // terminate source, simulation ended

val actor = makeEntity () // make new actor

actor.mySource = this // actor’s source

actor.subtype = esubtype // set the entity subtype

director.numActors += 1 // number of actors created by all sources

director.log.trace (this, "generates", actor, director.clock)

director.animate (actor, CreateToken, randomColor (actor.id), Ellipse (),

Array (at(0) + at(2) + RAD / 2.0, at(1) + at(3) / 2.0 - RAD))

actor.schedule (0.0)

if i < units then

val duration = iArrivalTime.gen

tally (duration)

schedule (duration)

yieldToDirector () // yield and wait duration time units

end if

end for

} // breakable

For conciseness the Source.group method may be used to create multiple sources for a model.

def group (director: Model, makeEntity: () => SimActor, units: Int, xy: (Int, Int),

src: (String, Int, Variate, (Int, Int))*): List [Source] =

val sourceGroup = new ListBuffer [Source] ()

for s <- src do sourceGroup += Source (s._1, director, makeEntity, s._2, units, s._3,

(xy._1 + s._4._1, xy._2 + s._4._2))

sourceGroup.toList

end group

679

For animation, the location of a Source node is specified by loc.

Class Methods:

@param name the name of the source

@param director the director controlling the model

@param makeEntity the function to make entities of a specified type

@param esubtype indicator of the subtype of the entities to be made

@param units the number of entities to make

@param iArrivalTime the inter-arrival time distribution

@param loc the location of the source (x, y, w, h)

class Source (name: String, director: Model, makeEntity: () => SimActor,

esubtype: Int, units: Int,

iArrivalTime: Variate, loc: Array [Double])

extends SimActor (name, director) with Component:

def this (name: String, director: Model, makeEntity: () => SimActor, esubtype: Int,

units: Int, iArrivalTime: Variate, xy: (Double, Double)) =

def display (): Unit =

def act (): Unit =

18.3.9 Sink Class

The Sink class is used to terminate entities (SimActors) when they are finished. This class will remove the

token from the animation and collect important statistics about the entity. A sink has a name and a location

in the animation. Unlike a Source, a Sink is not active, rather is bundles logic to be executed by an actor

when they are ready to leave the simulation. They do this by calling the leave method, which will tally the

actors’ time in the system.

tally (director.clock - actor.arrivalT)

Note, when a SimActor is no longer referenced (e.g., in director’s agenda or in a wait queue) it becomes

available for garbage collection (memory reclamation).

Class Methods:

@param name the name of the sink

@param at the location of the sink (x, y, w, h)

class Sink (name: String, at: Array [Double])

extends Component:

def this (name: String, xy: (Double, Double)) =

def display (): Unit =

def leave (): Unit =

680

18.3.10 Transport Class

The Transport class provides a pathway between two other component nodes. The Components in a Model

conceptually form a graph in which the edges are Transport objects and the nodes are other Component

objects. An edge may be either a Transport or Route. A Transport is directional connecting a from

component to a to component. When flow is required in both directions, two transports are required.

A SimActor may utilize a Transport by calling either the move or jump methods. The move method is

intended for smooth animation, while the jump transports the entity quickly to the next component.

Class Methods:

@param name the name of the transport

@param from the first/starting component

@param to the second/ending component

@param motion the speed/trip-time to move down the transport

@param isSpeed whether speed or trip-time is used for motion

@param bend the bend or curvature of the transport (0 => line)

@param shift1 the x-y shift for the transport’s first endpoint (from-side)

@param shift2 the x-y shift for the transport’s second endpoint (to-side)

class Transport (name: String, val from: Component, val to: Component,

motion: Variate, isSpeed: Boolean = false, bend: Double = 0.0,

shift1: R2 = new R2 (0.0, 0.0), shift2: R2 = new R2 (0.0, 0.0))

extends Component:

override def at: Array [Double] =

def display (): Unit =

def jump (): Unit =

def move (): Unit =

18.3.11 Resource Class

The Resource class provides services to entities (SimActors). The service provided by a resource typically

delays the entity by an amount of time corresponding to its service time. The Resource may or may not

have an associated waiting queue. It provides a number of service units (e.g., tellers) and a busy method

to determine if all the servers are busy. A SimActor typically calls utilize () to go into service for an

amount time determined by serviceTime.gen. Alternatively, if the actor knows the length of its service

time, it may call utilize (duration). When finished, the actor should release the server. Finally, it is

possible change the number service units available (e.g., a teller goes on break) by calling changeUnits.

Class Methods:

681

@param name the name of the resource

@param line the line/queue where entities wait

@param units the number of service units (e.g., bank tellers)

@param serviceTime the service time distribution

@param at the location of the resource (x, y, w, h)

class Resource (name: String, line: WaitQueue, private var units: Int, serviceTime: Variate,

at: Array [Double])

extends Component:

def this (name: String, line: WaitQueue, units: Int, serviceTime: Variate,

xy: (Double, Double))

def changeUnits (dUnits: Int): Unit =

def display (): Unit =

def busy: Boolean = inUse == units

def utilize (): Unit =

def utilize (duration: Double): Unit =

def release (): Unit =

18.3.12 WaitQueue Class

The WaitQueue class is a wrapper for Scala’s Queue class, which supports FCSC Queues. It adds monitoring

capabilities and optional capacity restrictions. If the queue is full, entities (SimActors) attempting to enter

the queue are barred. At the model level, such entities may be (1) held in place, (2) take an alternate route,

or (3) be lost (e.g., dropped call/packet). An entity on a WaitQueue is suspended for an indefinite wait. The

actions of some other concurrent entity will cause the suspended entity to be resumed (e.g., when a bank

customer finishes service and releases a teller).

When seeking service, an actor should check whether the servers are busy, and if so call waitIn. Although

it is not necessary to call noWait, it is preferred to make this call to get the average waiting time for all

actors, not just those that had to wait (of course, if that is the real interest of the study, the noWait call

may be left out).

if teller.busy then tellerQ.waitIn () else tellerQ.noWait ()

Class Methods:

@param name the name of the wait-queue

@param at the location of the wait-queue (x, y, w, h)

@param cap the capacity of the queue (defaults to unbounded)

class WaitQueue (name: String, at: Array [Double], cap: Int = Int.MaxValue)

extends Queue [SimActor] with Component:

682

def this (name: String, xy: (Double, Double), cap: Int) =

def isFull: Boolean = length >= cap

def barred: Int = _barred

def display (): Unit =

def waitIn (): Boolean =

def noWait (): Unit = tally (0.0)

18.3.13 WaitQueue LCFS Class

The WaitQueue LCFS class is a wrapper for Scala’s Stack class, which supports Last-Come, First-Serve

(LCFS) Queues. It adds monitoring capabilities and optional capacity restrictions. If the queue is full,

entities SimActor‘s) attempting to enter the queue are ’barred’. At the model level, such entities may be

(1) held in place, (2) take an alternate route, or (3) be lost (e.g., dropped call/packet).

Class Methods:

@param name the name of the wait-queue

@param at the location of the wait-queue (x, y, w, h)

@param cap the capacity of the LCFS queue (defaults to unbounded)

class WaitQueue_LCFS (name: String, at: Array [Double], cap: Int = Int.MaxValue)

extends Stack [SimActor] with Component:

def this (name: String, xy: (Double, Double), cap: Int) =

def isFull: Boolean = length >= cap

def barred: Int = _barred

def display (): Unit =

def waitIn (): Boolean =

def noWait (): Unit = tally (0.0)

18.3.14 Junction Class

The Junction class provides a connector between two transports/routes. Since Lines and QCurves have

limitation (e.g., hard to make a loop back), a junction may be needed, see the LoopModel for an example.

Statistics are collected about entities at junctions.

For traffic simulations, junctions may also indicate locations for road sensors. The statistics collected at

the junction can then be compared with the data recorded by a real-life sensor and used to calibrate/validate

the simulation model. For example CalTrans records and makes available sensor data in its Performance

Measure System (PeMS) https://dot.ca.gov/programs/traffic-operations/mpr/pems-source.

Class Methods:

683

https://dot.ca.gov/programs/traffic-operations/mpr/pems-source

@param name the name of the junction

@param director the director controlling the model

@param jTime the jump-time through the junction

@param at the location of the junction (x, y, w, h)

class Junction (name: String, director: Model, jTime: Variate, at: Array [Double])

extends Component:

def this (name: String, director: Model, jTime: Variate, xy: (Double, Double)) =

def display (): Unit =

def jump (): Unit =

18.3.15 Gate Class

The Gate class models the operation of gates that can open and shut. When a gate is open, entities can flow

through and when shut, they cannot. When shut, the entities may wait in a queue or go elsewhere. A gate

can model a traffic light (green =⇒ open, red =⇒ shut). The onTime indicates how long the gate will be

open (green light), while offTime indicated how long the gate will be shut (red light).

Class Methods:

@param name the name of the gate

@param director the model/container for this gate

@param line the queue holding entities waiting for this gate to open

@param units number of units/phases of operation

@param onTime distribution of time that gate will be open

@param offTime distribution of time that gate will be closed

@param loc the location of the Gate (x, y, w, h)

@param shut0 ‘Boolean‘ indicating if the gate is initially opened or closed

@param cap the maximum number of entities that will be released when the gate is opened

class Gate (name: String, director: Model, line: WaitQueue, units: Int,

onTime: Variate, offTime: Variate,

loc: Array [Double], shut0: Boolean = false, cap: Int = 10)

extends SimActor (name, director) with Component:

def this (name: String, director: Model, line: WaitQueue, units: Int,

onTime: Variate, offTime: Variate,

xy: (Double, Double), shut0: Boolean, cap: Int) =

def shut: Boolean = _shut

def display (): Unit =

def release (): Unit =

def act (): Unit =

def gateColor: Color = if _shut then red else green

684

def flip (): Unit = _shut = ! _shut

def duration: Double = if _shut then offTime.gen else onTime.gen

18.3.16 Route Class

The Route class provides a multi-lane pathway between two other node components. The Components in

a Model conceptually form a graph in which the edges are Transports/Routes and the nodes are other

components. A route is a composite component that bundles several transports. The route will have k lanes

that are stored in an array of Transports.

val lane = Array.ofDim [Transport] (k)

See the RoadModel which uses two Route objects, one for West-bound traffic and the other for East-bound

traffic. Each route has two lanes, making the road a four-lane road overall.

Class Methods:

@param name the name of the route

@param k the number of lanes/transports in the route

@param from the starting component

@param to the ending component

@param motion the speed/trip-time to move down the transports in the route

@param isSpeed whether speed or trip-time is used for motion

@param angle angle in radians of direction (0 => east, Pi/2 => north, Pi => west, 3Pi/2 => south)

@param bend the bend or curvature of the route (0 => line)

class Route (name: String, k: Int, from: Component, to: Component,

motion: Variate, isSpeed: Boolean = false,

angle: Double = 0.0, bend: Double = 0.0)

extends Component:

def selector: Variate = lane(0).selector

def selector_= (selector: Variate): Unit = lane(0).selector = selector

override def at: Array [Double] = lane(0).at

def display (): Unit =

18.3.17 Model Class

The Model class maintains a list of components making up the model and controls the flow of entities

(SimActors) through the model, following the process-interaction world-view. A simulation model must

extend the Model class and create an instance object that serves as the director. The director maintains a

time-ordered priority queue called agenda to activate/re-activate each of the entities. The metaphor is that

685

the director directs the actors in the play (i.e., simulation model). Each entity (SimActor) is implemented

as a Coroutine and may be roughly thought of as running in its own thread. Control is transferred back

and forth between the director and the actors in the play.

Class Methods:

@param name the name of the simulation model

@param reps the number of independent replications to run

@param animating whether to animate the model

@param aniRatio the ratio of simulation speed vs. animation speed

@param full generate a full report with both sample and time-persistent statistics

class Model (name: String, val reps: Int = 1, animating: Boolean = true, aniRatio: Double = 1.0,

val full: Boolean = true)

extends Coroutine (name) with Completion with Modelable with Component:

def addComponent (_parts: Component*): Unit = for p <- _parts do parts += p

def addComponents (_parts: List [Component]*): Unit = for p <- _parts; q <- p do parts += q

def theActor: SimActor = _theActor

def stopped: Boolean = ! simulating

def reset (): Unit =

def resetStats (rep: Int, rmax: Int = reps): Unit =

def simulate (_startTime: Double = 0.0): Unit =

def cleanup (): Unit =

def reschedule (actor: SimActor): Unit = agenda += actor

def act (): Unit =

def getStatistics: ListBuffer [Statistic] =

def display (): Unit = for p <- parts do p.display ()

def animate (who: Identifiable, what: CommandType, color: Color, shape: Shape,

at: Array [Double]): Unit =

def animate (who: Identifiable, what: CommandType, color: Color, shape: Shape,

from: Component, to: Component, at: Array [Double] = Array ()): Unit =

protected def fini (rep: Int): Unit =

protected def report (): Unit =

protected def reportV (showMeans: Boolean = false): Unit =

protected def reportF (): Unit = new StatTable (s"$name statistics", getStatistics)

Process-Interaction Simulation Engine

The operation of the process-interaction simulation engine can be understood by looking at the inner schedul-

ing loop within the act method of the Model class. The director takes the first actor in the agenda and

marks it as theActor. Then it advances its clock to the activation time of theActor. The director then

transfer control by yielding to the theActor. After executing the next step in their logic, theActor will

transfer control back to the director. This will continue until the agenda becomes empty or the director

is instructed to stop simulating.

686

while simulating && ! agenda.isEmpty do // INNER SCHEDULING LOOP

_theActor = agenda.dequeue () // next from priority queue

_clock = _theActor.actTime // advance the time

log.trace (this, "resumes", _theActor, _clock)

yyield (_theActor) // director yields to actor

end while

The outer loop in the act method is for replications.

for rep <- 1 to reps do // LOOP THROUGH REPLICATIONS

For One-Shot Simulation (OSS), reps should be one and for the Method of Independent of Replications

(MIR) it should be say 10 or greater. See the Simulation Output Analysis Chapter for details. The simulate

method is called by the class extending Model to initialize the component parts of the model. Its call to

start will make a new thread that begins executing the director’s act method.

def simulate (_startTime: Double = 0.0): Unit =

startTime = _startTime

_clock = startTime

log.trace (this, "starts", this, _clock)

for p <- parts do

log.trace (this, s"establish x = ${p.at(0)}, y = ${p.at(1)}", p, _clock)

p.director = this

for q <- p.subpart do q.director = this

if p.isInstanceOf [Source] then reschedule (p.asInstanceOf [Source])

end for

start () // start the director thread/actor -> act ()

end simulate

18.3.18 Vehicle Traffic Model

A Network Diagram for a Vehicle Traffic simulation model is shown in Figure 18.3. It models an intersection

of two multi-lane roads, one East-West and the other North-South. The intersection is controlled by traffic

lights. Each road is divided into four parts: two directions and two segments (before and after the light).

There are five random variates used in this simulation.

val iArrivalRV = Uniform (iaTime, stream)

val onTimeRV = Sharp (onTime, (stream + 1) % N_STREAMS)

val offTimeRV = Sharp (offTime, (stream + 2) % N_STREAMS)

val moveRV = Uniform (mvTime, (stream + 3) % N_STREAMS)

val laneRV = Bernoulli ((stream + 4) % N_STREAMS)

The components in the simulation model are prescribed as follows:

At the beginning of each route, a Source will generate car arrivals. As traffic flow changes during each

day, a Non-Homogeneous Process-Process (NHPP) may be used to generate cars (this example just uses

Uniform). The time-dependent arrival rate λ(t) may be fit to traffic flow data. For conciseness, the group

687

method is used to create all four Sources. The coordinates (800, 250) form a reference point; the rest are

relative to the reference point.

val source = Source.group (this, () => Car (), nStop, (800, 250),

("s1N", 0, iArrivalRV, (0, 0)), // from North

("s1E", 1, iArrivalRV, (230, 200)),

("s1S", 2, iArrivalRV, (30, 400)),

("s1W", 3, iArrivalRV, (-200, 230)))

A place is needed for cars waiting for a stop light to change from red to green. Thus four WaitQueues

are needed.

val queue = WaitQueue.group ((800, 430), ("q1N", (0, 0)), // before North light

("q1E", (50, 20)),

("q1S", (30, 70)),

("q1W", (-20, 50)))

The 4-way intersection requires four traffic lights to the control flow of cars. At any particular time, two

of the lights should be red (closed Gate) and two should be green (open Gate). The onTimeRV gives the

duration for the green light, while offTimeRV gives the duration of the red light. Both are Sharp distributions

that give a constant value. The group method swaps the on and off times, based upon whether its number

in the group is even or odd. Lights are positioned at the back of the intersection, e.g., the light for traffic

coming for the North source "s1N" is the bottom left light in Figure 18.3.

val light = Gate.group (this, nStop, onTimeRV, offTimeRV, (800, 480),

("l1N", queue(0), (0, 0)), // traffic from North

("l1E", queue(1), (0, -30)),

("l1S", queue(2), (30, -30)),

("l1W", queue(3), (30, 0)))

After making it through the intersection, traffic continues to its designated Sink. For example, cars

created by source s1N will be terminated by sink k1S.

val sink = Sink.group ((830, 250), ("k1N", (0, 0)),

("k1E", (200, 230)),

("k1S", (-30, 400)), // end for North traffic

("k1W", (-230, 200)))

For each Source, two Routes are created: one from the Source to the WaitQueue and the other from the

Gate to the Sink.

val road = ListBuffer [Route] ()

for i <- source.indices do

road += Route ("ra" + i, 2, source(i), queue(i), moveRV)

end for

for i <- source.indices do

road += Route ("rb" + i, 2, light(i), sink((i + 2) % 4), moveRV)

end for

addComponents (source, queue, light, sink, road.toList)

688

In total, there are 16 nodes: four Sources, four WaitQueues, four Gates and four Sinks. In addition,

there are 8 edges: all Routes with two lanes each (so underlying there are 16 Transports).

Figure 18.3: Animation of Network Diagram of Vehicle Traffic Model

For this simulation, Cars are the actors moving along the roads (may be thought of as autonomous

vehicles or car-driver combinations). The behavior of a car depends on the direction it is traveling and is

specified by its subtype.

case class Car () extends SimActor ("c", this):

def act (): Unit =

val i = subtype // from North (0), East (1), South (2), West (3)

val l = laneRV.igen // randomly select lane l

road(i).lane(l).move ()

if light(i).shut then queue(i).waitIn ()

road(i + 4).lane(l).move () // add 4 for next segment

sink((i + 2) % 4).leave ()

end act

end Car

689

The TrafficModel may be runs as follows:

> runMain scalation.simulation.process.example_1.runTraffic

@main def runTraffic (): Unit = new TrafficModel ()

18.3.19 Model MBM Class

While the Model class works for both One-Shot Simulation (OSS) and the Method of Independent of Replica-

tions (MIR), the Model MBM class is required for the Method of Batch Means (MBM). Although this method

involves a single replication/simulation run, the single long run is divided into multiple batches in order to

provide statistics. MIR and MBM provide complete statistics while OSS cannot, see the Simulation Output

Analysis Chapter for details.

Class Methods:

* @param name the name of the simulation model

* @param nBatch the number of batches to run

* @param sizeB the size of each batch

* @param animating whether to animate the model

* @param aniRatio the ratio of simulation speed vs. animation speed

* @param full generate a full report with both sample and time-persistent statistics

*/

class Model_MBM (name: String, val nBatch: Int = 10, sizeB: Int = 100,

animating: Boolean = false, aniRatio: Double = 1.0, full: Boolean = true)

extends Model (name, 1, animating, aniRatio, full):

override def act (): Unit =

Notice that the Model MBM class extends the Model class reusing all of methods, except its act method.

18.3.20 Exercises

1. Explain why the act method cannot be just a regular method/function call.

2. Explain what happens in the inner scheduling loop of the Model class. For the BankModel, suppose

there are three coroutines/threads, the director, customer1, and customer2. Using three vertical

time lines, one for each coroutine, with the director in the middle, show the control transfers between

them. Assume customer2 arrives before customer1 finishes its service.

3. Wendy’s vs. McDonald’s Lines. Given two servers, is it better to have a line/queue for each server

or one common line for both servers. Create a Network Diagram for Wendy’s and another one for

MacDonald’s.

4. Implement a Process-Interaction Simulation and analyze the waiting times and standard deviation of

the waiting times for Wendy’s and MacDonald’s. Let λ = 20 hr−1 and µ = 12 hr−1.

690

5. Machine Shop. Create a Network Diagram for the Machine Shop described in the Event-Oriented

Simulation chapter.

6. Implement a Machine Shop simulation using Process-Interaction and determine which policy is better.

7. Vehicle Traffic Simulation. Create a Network Diagram for the stretch of US 101 at the Stanford

exits from Willow Road to Oregon Expressway. See the Caltrans PeMS map.

8. Create a Process-Interaction Simulation of US 101 (Bayshore Freeway) at the Stanford exits. Data

is recorded every five minutes at each of the sensors from Willow Road to Oregon Expressway giving

288 data points per day per sensor. Collect data for a portion the year 2021 for these sensors. Use

it to calibrate and validate your models. Place Sources at the beginning of all road segments and

on-ramps. Model the traffic inflow to the model using a Non-Homogeneous Poisson Process (NHPP)

for each source that fits the data at that location. Place Sinks at the end of all road segments

and off-ramps. Place Junctions at all road sensors. Use Routes for the road segments between

sensors. There are typically four lanes Northbound and four lanes Southbound. Finally, use the data

provided by Caltrans PeMS (traffic flow and speed) to to measure the accuracy (sMAPE) of your

simulation model. See https://getd.libs.uga.edu/pdfs/peng_hao_201908_phd.pdf and https:

//dot.ca.gov/programs/traffic-operations/mpr/pems-source.

9. Emergency Department Simulation. Create and execute an Process-Interaction model for an

emergency room/department based on the specifications given in the following paper, “Modeling and

Improving Emergency Department Systems using Discrete Event Simulation,” by Christine Duguay

and Fatah Chetouane. https://journals.sagepub.com/doi/10.1177/0037549707083111. Model

the patients as actors and the doctors and nurses as resources.

10. Compare the results of BankModel for the event package and process package. What happens as

the number entities (customers) increases? What happens when the move method is replaced with the

jump method. How do these results compare to those from Queueing Theory?

11. Rewrite the Car class for the VehicleModel from section 17.3.18 and put it in your answer sheet. Put

this inside a new simulation model called TrafficModelTurn that has cars go straight with probability

0.75 and turn right with probability 0.25. Run the before TrafficModel and after TrafficModelTurn

models and indicate the changes in travel time (cars going from Source to Sink).

runMain scalation.simulation.process.example_1.runTraffic

runMain scalation.simulation.process.example_1.runTrafficTurn

Give the mean travel times reported by each Sink for both models.

12. Question 4: Develop a process interaction simulation model for a Bank with two tellers (nTellers

= 2). Let the inter-arrival time distribution be Exponential with rate λ = 12 per hour and the

service time distribution be Exponential with rate µ = 7.5 per hour. Simulate for 100 customers and

1 replication. Report the mean waiting time Tq in minutes. You may modify the BankModel class

(Bank.scala) in the

scalation.simulation.process.example 1

691

https://getd.libs.uga.edu/pdfs/peng_hao_201908_phd.pdf
https://dot.ca.gov/programs/traffic-operations/mpr/pems-source
https://dot.ca.gov/programs/traffic-operations/mpr/pems-source
https://journals.sagepub.com/doi/10.1177/0037549707083111

package, if you like. Show all modifications you made to the code. Note, it is important to develop a

correct model as this question is linked to the next question.

692

18.4 Agent-Based Simulation

Agent-Based Simulation (ABS) may be viewed as a cousin of Process-Interaction Simulation. An important

enhancement provided by ABS is to provide a richer structure for actors to interact. For example, in a traffic

simulation, it may be useful for a Car to know about the cars ahead and behind, as they may influence what

the car does. Although this can done with process-interaction, it is up to model developer to create all

the code to handle this. An ABS system should provide a framework that facilitates enriched interactions,

reducing the burden of the simulation model developer. To reflect the enhanced capabilities of actors,

including greater knowledge of its environment and other actors, they are typically named agents.

For simplicity, we focus on ABS as a form of time-based simulation (discrete-time or discrete-event) with

event causality and a time-advance mechanism, but do not consider the more general Agent-Based Modeling

(ABM) that may run multiple autonomous agents without controlled causal ordering of events, see [208] for

a discussion.

In this context, the increased flexibility provided by Agent-Based Simulation partially derives from the

capabilities/properties of agents. Desirable characteristics for agents include the following [115, 116, 114]:

1. An agent needs to be identifiable, self-contained, and active. Although actors in the process inter-

action paradigm share this, the event-scheduling paradigm does not as entities are passive and their

logic/behavior specification is scattered among multiple event routines.

2. Agents have some level of autonomy. An agent should have the ability to sense its environment, make

decisions and act accordingly. An example where this is not the case would be a SimActor whose

script includes no parameterization or decision making (e.g., if statements). An agent should be able

to Observe-Decide-Act [59].

3. Agents have the ability to interact with other agents. An example, in a Vehicle Traffic simulation,

would be a car using a car-following rule/model which influences the driver’s speed and gap to the car

in front. The agent must be aware of its neighborhood to put a car-following rule/model into play.

Some models may require move detailed interaction between agents, e.g., may require a communication

protocol.

4. An agent is situated in an environment and interacts with its local environment. As agents can move

around in their environment typically they will be given coordinates. Although coordinates were

given for process-interaction, they were added for animation and providing a real interpretation of the

coordinates is up to the model developer. An ABS system should directly support this capability.

5. It is also useful to provide support for agents to learn, for example, the model developer, could provide

a set of possible rules for a car to change lanes. Support for for learning would mean that cars can

collect information and analyze it to improve there decision making. This allows the agents to adapt

as the simulation continues. Improvement implies goals, for example, the car would prefer less (not

more) travel time.

6. Resources may exist in the environments or within agents. For example, a server is often thought of

as part of the environment in process-interaction simulations, but a more realistic or detailed model

could represent each teller as an agent that does other thinks besides just serving bank customers, e.g.,

they work a shift, have lunch and take breaks.

693

Further Reading

• “Introductory Tutorial: Agent-Based Modeling and Simulation,” by Charles Macal, Michael North,

Proceedings of the 2014 Winter Simulation Conference, https://informs-sim.org/wsc14papers/

includes/files/004.pdf.

In ScalaTion agents may access information about the simulated world via a Knowledge Graph. In

particular, a spatial Property Graph (PGraph) is used to set up the components in the simulated world. See

the Property Graph section in the Data Management Chapter.

The vertices in the PGraph represent resources that agents can work with. An agent has a position in the

simulated world with 2D or 3D coordinates. These coordinates may be transformed to screen coordinates

for purposes of animation (see the next section). The edges in the PGraph represent one-way connections

between vertices.

18.4.1 SimAgent

A SimAgent is a dynamic entity that moves to vertices and along edges as the simulation progresses. Its

location is recorded in terms of its topological coordinates. An agent is thought to be at a vertex or on a

edge. In theory, vertices are points, but ScalaTion allows them to take up space and measures distance as the

distance from the center of the vertex. Distance along an edge is given by the distance from the beginning of

the edge where it connects to the from vertex to the agent. In animation, an agent is represented as a token

that moves along the graph. Due to the small size of vertices, tokens within may be represented collectively.

Tokens on edges are represented as circles moving along edges. Topological coordinates are specified using

the Topological trait.

@param elem the element in the graph (at a vertex or on an edge)

@param dist its distance along the segment

trait Topological (var elem: Element, var dist: Double)

extends PartiallyOrdered [Topological]:

def tryCompareTo [B >: Topological: AsPartiallyOrdered] (other: B): Option [Int] =

def neighbors: VEC [Topological] = elem.tokens

def neighbors (d: Double): VEC [Topological] =

override def toString: String = s"Topological ($elem, $dist)"

While moving through the graph, an agent may interact with vertices as well as other agents. Agents

moving along an edge may speed up, slow down or jump to a parallel edge (e.g., lane change in a vehicle

traffic simulation).

val tokens = Set [Topological] () // topological objects/tokens at this edge

At a vertex, agents may passively wait (e.g., in wait queue), work with a server for a period of time,

update their properties (e.g., the value of a part changes at each machine stage), wait for a traffic light to

change color, choose which edge to follow upon leaving the vertex (e.g., the road to turn onto).

val tokens = Set [Topological] () // topological objects/tokens at this vertex

694

https://informs-sim.org/wsc14papers/includes/files/004.pdf
https://informs-sim.org/wsc14papers/includes/files/004.pdf

As expected, agents play a more central role in Agent-Based Simulation compared to Process-Interaction

Simulation where much of the specification of behavior/decision making is often delegated to the compo-

nents/blocks in the simulation.

A Property Graph (PGraph) consists of multiple vertex-types (VertexType) and multiple edge-types

(EdgeTypes) as defined in the scalation.database.graph package.

18.4.2 Vertices

The vertices in a property graph are grouped into one or more vertex-types. A vertex is Identifiable and

situated is space using Spatial coordinates.

@param _name the name of this vertex (’name’ from ‘Identifiable‘)

@param prop maps vertex property names into property values

@param _pos the position (Euclidean coordinates) of this vertex (’pos’ from ‘Spatial‘)

class Vertex (_name: String, val prop: Property, _pos: VectorD = null)

extends Identifiable (_name)

with Spatial (_pos)

with PartiallyOrdered [Vertex]

with Serializable:

ScalaTion’s ABS system defined in scalation.simulation.agent based currently supports the fol-

lowing types of vertices:

• Gate: a gate is used to control the flow of agents, they cannot pass when it is shut.

• Junction: a junction is used to connect two transports.

• Resource: a resource provides services to agents (typically resulting in some delay).

• Sink: a sink consumes agents.

• Source: a source produces agents.

• WaitQueue: a FCFS wait-queue provides a place for agents to wait, e.g., waiting for a resource to

become available or a gate to open.

• WaitQueue LCFS: an LCFS wait-queue provides a place for agents to wait, e.g., waiting for a resource

to become available or a gate to open.

These vertex-types correspond to the component nodes in process-interaction. Their constructors and

methods are more oriented towards allowing more flexibility and specificity from the agents.

18.4.3 Edges

The edges in a property graph are grouped into one or more edge-types. An edge is Identifiable and

situated is space using Spatial coordinates based one of the vertices it connects to.

695

@param _name the name of this edge (’name’ from ‘Identifiable‘)

@param from the source/from vertex of this edge

@param prop maps edge property names into property values

@param to the target/to vertex of this edge

class Edge (_name: String, val from: Vertex, val prop: Property, val to: Vertex)

extends Identifiable (_name)

with Spatial (if from == null then to.pos else from.pos)

with Serializable:

ScalaTion’s ABS system currently supports the following types of edges:

• Link: a link supports simple/quick movement of agents between closely connected vertices (e.g., a

queue before a resource).

• Route: a route bundles multiple transports together (e.g., a two-lane, one-way street).

• Transport: a transport is used to move agents from one vertex to the next.

Note, closely connected nodes in the process-interaction were not required to have an edge between them,

however, as ScalaTion’s ABS system in built using PGraph, edges are required between vertices, hence the

need for the Link class.

18.4.4 Bank Model

Specification of an Agent-Based Simulation model for a simple bank is not much different than for a Process-

Interaction model.

Initialize Model Constants. As with any type of simulation model, constants or model parameters

need to be specified, although in practice it is usually preferred to specify them in a scenario specification,

e.g., in a @main top-level function.

val lambda = 6.0 // customer arrival rate (per hour)

val mu = 7.5 // customer service rate (per hour)

val nTellers = 1 // the number of bank tellers (servers)

Create Random Variates (RVs). A fourth random variate is added for jumping through the link

between the wait queue and the resource containing the servers/tellers.

val iArrivalRV = Exponential (HOUR / lambda, stream)

val serviceRV = Exponential (HOUR / mu, (stream + 1) % N_STREAMS)

val moveRV = Uniform (4 * MINUTE, 6 * MINUTE, (stream + 2) % N_STREAMS)

val jumpRV = Uniform (0.4 * MINUTE, 0.6 * MINUTE, (stream + 3) % N_STREAMS)

Create the Graph Model. Specifying a graph model replaces the specification of the model components

under process interaction. Notice the addition of the Link edge.

val entry_pos = Source.at (100, 290)

val cust_pos = VectorD (110, 290, 10, 10)

696

val entry = Source ("entry", this, 0.0, iArrivalRV, () => Customer (), nStop, pos = entry_pos)

val tellerQ = WaitQueue ("tellerQ", this, pos = WaitQueue.at (330, 290))

val teller = Resource ("teller", this, serviceRV, nTellers, pos = Resource.at (380, 285))

val door = Sink ("door", this, pos = Sink.at (600, 290))

val toTellerQ = Transport ("toTellerQ", this, entry.vert, tellerQ, moveRV)

val toTeller = Link ("to", this, tellerQ, teller, jumpRV)

val toDoor = Transport ("toDoor", this, teller, door, moveRV)

Specify Scripts for each Type of Simulation Agent. The script is similar to the specification of

actor scripts for process interaction. The service, move and jump times may also pass directly into the

work, move and jump methods. Notice the increased specification available to SimAgents. For more complex

models, this allows greater flexibility. In addition, an explicit ping method is required, as it is now not

implicitly done by the resource, i.e., actions are now under control of the agent.

case class Customer () extends SimAgent ("c", director.clock, this, cust_pos.copy):

def act (): Unit =

toTellerQ.move (this)

if teller.busy then tellerQ.waitIn (this) else tellerQ.noWait (this)

toTeller.jump (this)

teller.work (this)

teller.release (this)

tellerQ.ping ()

toDoor.move (this)

door.leave (this)

end act

end Customer

simulate ()

waitFinished ()

Model.shutdown ()

18.4.5 Vehicle Traffic Model

The advantages of Agent-Based Simulation are not apparent in models as simple a Bank Simulation Model.

Vehicle Traffic Models, on the other hand, are complex enough to illustrate some advantages.

Accurate simulation models of vehicle traffic often use a car-following rule/model to determine speed and

braking actions of a car (an agent) based on the car ahead. This seems simple enough, just maintain a

reference to the car ahead. Several complexities may ensue:

• The car ahead exits: the exiting car may then link the car behind (you) to the car ahead of itself, as

in deletion from a doubly linked list.

• Your car wants to change lanes: where is the new car to follow, it needs to be efficiently found, by

searching the local road segment.

• Your car wants to turn onto another road: the car needs to know where it is in the graph. The

intersection is a vertex, the chosen road is an edge and the car starts on a particular road segment.

697

The following Car class includes an ability to change lanes. This requires a more flexible move method,

where the second parameter indicates the fraction of the length of a Route to move along. Midway, a new

lane l2 is determined and passed to the changeLane method. The car continues along lane l2 to the traffic

light. If the light is green, then it continues through, otherwise it waits in the queue. After getting through

the light it continues to its Sink.

case class Car () extends SimAgent ("c", director.clock, this):

def act (): Unit =

val i = subtype // from North (0), East (1), South (2), West (3)

val l = laneRV.igen // randomly select lane l

road(i).lane(l).move (this, 0.5) // move half way down lane l

val l2 = (l + 1) % 2 // index of other lane

road(i).changeLane (this, l, l2) // change to lane l2

road(i).lane(l2).move (this, 0.5) // move the rest of the way down lane l2

if light(i).shut then queue(i).waitIn (this) // stop and wait for red light

road(i + 4).lane(l2).move (this) // add 4 for next segment

sink((i + 2) % 4).leave (this) // end at this sink

end act

end Car

18.4.6 Hybrid Models

Hybrid simulation techniques, although more complex, allow the most appropriate modeling technique to be

applied to parts of an overall simulation study. A comprehensive example is given in

“Application of Mixed Simulation Method to Modelling Port Traffic,” by Ehiagwina Omoforma Augus-

tine, 2021 [42]. https://researchonline.ljmu.ac.uk/id/eprint/15592/1/2021AugustineEhiagwinaPhD%

20.pdf

18.4.7 Exercises

1. Compare the software available for Agent-Based Simulation.

2. Discuss the simulation world-views/paradigms used for modeling port traffic in the following disserta-

tion, “Application of Mixed Simulation Method to Modelling Port Traffic.”

3. What data structures and algorithms can used in the changeLane method to efficiently find the car

ahead?

4. Design an Agent-Based Simulation for Vehicle Traffic Forecasting.

5. Develop an Agent-Based Simulation for Vehicle Traffic Forecasting. Add the capabilities discussed

in this section to provide a more realistic simulation compared to Process-Interaction. See

6. Design the Emergency Department Simulation as an Agent-Based Simulation.

7. Develop the Emergency Department Simulation as an Agent-Based Simulation and model doctors

and nurses as agents rather than resources as was indicated for the process-interaction approach.

698

https://researchonline.ljmu.ac.uk/id/eprint/15592/1/2021AugustineEhiagwinaPhD%20.pdf
https://researchonline.ljmu.ac.uk/id/eprint/15592/1/2021AugustineEhiagwinaPhD%20.pdf

Create and execute an model for an emergency department/room based on the specifications given in

the following paper, “Modeling and Improving Emergency Department Systems using Discrete Event

Simulation,” by Christine Duguay and Fatah Chetouane, https://journals.sagepub.com/doi/10.

1177/0037549707083111.

8. Design an Agent-Based Simulation for analyzing the COVID-19 Pandemic.

9. Develop an Agent-Based Simulation for analyzing the COVID-19 Pandemic. See “A realistic agent-

based simulation model for COVID-19 based on a traffic simulation and mobile phone data,” Sebastian

A. Muller et al., https://arxiv.org/pdf/2011.11453.pdf as a starting point.

10. Develop an Agent-Based Simulation for Military Applications. See “Simulating Small Unit Military

Operations with Agent-Based Models of Complex Adaptive Systems,” by Victor Middleton, Proceed-

ings of the 2010 Winter Simulation Conference, https://www.informs-sim.org/wsc10papers/013.

pdf as a starting point.

11. Explain how Agent-Based Modeling and Simulation (ABMS) is used to study emergent phenomena.

Give an example.

699

https://journals.sagepub.com/doi/10.1177/0037549707083111
https://journals.sagepub.com/doi/10.1177/0037549707083111
https://arxiv.org/pdf/2011.11453.pdf
https://www.informs-sim.org/wsc10papers/013.pdf
https://www.informs-sim.org/wsc10papers/013.pdf

18.5 Animation

Process-Interaction and Agent-Based Simulation are ideally suited for animation. The environment can be

given largely by displaying nodes and edges of a graph. The dynamics can be displayed by creating, moving

and destroying tokens. The locations and actions of an actor or agent over its lifetime can be depicted in

the animation.

18.5.1 2D Animation

In the JVM world (includes Java, Scala and several other languages), simple 2D animation can be accom-

plished using awt and swing. A richer graphics library is provided by JavaFx. Motion involves both space

and time, so Java’s Thread class and Runnable interface are also used for animation.

Basics of 2D Animation

Java’s abstract window toolkit (awt) and swing packages support simple 2D animations. The example below

illustrates this by drawing a large blue circle and having a small red ball continually trace the circle. The

drawing Canvas is a class that extends JPanel that is an inner class within a JFrame. The run method (1)

updates the ball coordinates, (2) sleeps for tau millisecond, e.g., 20 milliseconds corresponds to 50 frames

per second (generally fast enough for humans to see motion as smooth), and (3) repaints the canvas by

calling repaint.

class SimpleAnimator (title: String)

extends JFrame (title) with Runnable:

private val dim = new Dimension (600, 500) // the size of the canvas

private val tau = 20 // operate at 50 Hz

private val circle = new Ellipse2D.Double (200, 200, 200, 200) // the circle to traverse

private val ballPos = new Point2D.Double (0, 300) // ball position

private val ball = new Ellipse2D.Double () // the moving ball

getContentPane ().add (new Canvas ())

setLocation (100, 100)

setSize (dim)

setVisible (true)

setDefaultCloseOperation (EXIT_ON_CLOSE)

new Thread (this).start ()

class Canvas extends JPanel:

override def paintComponent (gr: Graphics): Unit = ???

end Canvas

def run (): Unit =

var theta = 0.0

while true do

theta += 0.05

ballPos.x = 300 + 100 * cos (theta)

700

ballPos.y = 300 + 100 * sin (theta)

println (s"ballPos = $ballPos")

try Thread.sleep (tau)

catch case ex: InterruptedException => println ("SimpleAnimator.run: sleep failed")

end try

repaint ()

end while

end run

end SimpleAnimator

The call to repaint will cause execution of the paintComponent method. Based on the new ball coordi-

nates determined by the angle theta, the ball will move a few pixels each time the canvas is repainted. The

setFrame (x, y, w, h) method is used to reset the ball coordinates: x-coordinate, y-coordinate, width,

and height of the ball. Notice that draw draws the shape’s boundary, while fill fills the shape in with color.

override def paintComponent (gr: Graphics): Unit =

super.paintComponent (gr)

val gr2 = gr.asInstanceOf [Graphics2D] // use hi-res

gr2.setPaint (Color.blue) // blue circle

gr2.draw (circle)

gr2.setPaint (Color.red) // read ball

ball.setFrame (ballPos.x - 10, ballPos.y - 10, 20, 20)

gr2.fill (ball)

end paintComponent

The x and y coordinates specify the top-left position for the bounding box of the ball. As the ballPos is

intended to be the center of the ball, half the width/height (10) must be subtracted to center the ball on

the large red circle.

This example animation may be run as follows:

@main def runSimpleAnimator (): Unit = new SimpleAnimator ("SimpleAnimator")

ScalaTion avoids the direct use of any graphics framework to facilitate changing frameworks as the

technology evolves. Consequently, the scala2d package is used to insulate code from the particulars of any

graphics framework. The SimpleAnimation2 class shows the minimal changes required to switch from direct

use of Java graphics libraries to the use of the scala2d package.

2D Animation in ScalaTion

The Model class in the event, process, and agent based packages import the following from the scalation.animation

package: AnimateCommand, CommandType, and DgAnimator.

The AnimateCommand class provides a data structure for holding animation command specifications.

701

@param action the animation action to perform

@param eid the external id for the component acted upon

@param shape the shape of graph component (node, edge or token)

@param label the display label for the component

@param primary whether the component is primary (true) or secondary (false)

@param color the color of the component

@param pts the set points/dimensions giving the shapes location and size

@param time simulation time when the command is to be performed

@param from_eid the ’eid’ of the origination node (only for edges)

@param to_eid the ’eid’ of the destination node (only for edges)

case class AnimateCommand (action: CommandType, eid: Int, shape: Shape, label: String,

primary: Boolean, color: Color, pts: Array [Double], time: Double,

from_eid: Int = -1, to_eid: Int = -1):

def compare (command2: AnimateCommand) = time compare command2.time

def show (array: Array [Double]) =

override def toString =

The CommandType enumeration specifies the types of commands passed from a simulation engine to the

animation engine.

enum CommandType (val name: String):

case CreateNode extends CommandType ("CreateNode")

case CreateEdge extends CommandType ("CreateEdge")

case CreateToken extends CommandType ("CreateToken")

case DestroyNode extends CommandType ("DestroyNode")

case DestroyEdge extends CommandType ("DestroyEdge")

case DestroyToken extends CommandType ("DestroyToken")

case MoveNode extends CommandType ("MoveNode")

case MoveToken extends CommandType ("MoveToken")

case MoveToken2Node extends CommandType ("MoveToken2Node")

case MoveTokens2Node extends CommandType ("MoveTokens2Node")

case MoveToken2Edge extends CommandType ("MoveToken2Edge")

case ScaleNode extends CommandType ("ScaleNode")

case ScaleToken extends CommandType ("ScaleToken")

case ScaleTokensAt extends CommandType ("ScaleTokensAt")

case SetPaintNode extends CommandType ("SetPaintNode")

case SetPaintEdge extends CommandType ("SetPaintEdge")

case SetPaintToken extends CommandType ("SetPaintToken")

case TimeDilation extends CommandType ("TimeDilation")

end CommandType

The DgAnimator class is an animation engine for animating graphs. It contains a Panel that provides a

paintComponent method for displaying the nodes, edges and tokens of the graph.

@param _title the title for the display frame

702

@param fgColor the foreground color

@param bgColor the background color

@param aniRatio the ratio of simulation speed vs. animation speed

class DgAnimator (_title: String, fgColor: Color = black, bgColor: Color = white,

aniRatio: Double = 1.0)

extends VizFrame (_title, null, 1200, 800) with Runnable:

def saveImage (fname: String): Unit = writeImage (fname, this)

def run (): Unit =

def animate (tStart: Double, tStop: Double): Unit =

def invokeNow (cmd: AnimateCommand): Unit =

def getCommandQueue: ConcurrentLinkedQueue [AnimateCommand] = cmdQ

The run method repeatedly executes animation commands, sleeps and repaints the drawing canvas/panel.

The length of the sleep is determined by the time gap between commands based on their values from the

simulation clock as well as the aniRatio.

18.5.2 3D Animation

C++ and C# are commonly languages used for 3D animations. There are several libraries available in the

JVM world as well. JavaFx has limited support for 3D. Currently, LWJGL and libGDX are widely used by

the JVM community.

Further Reading

• Introduction to Computer Graphics and Animation, by F. E. Ekpenyong, National Open University

of Nigeria, CIT 371 Course Material, https://nou.edu.ng/sites/default/files/2017-03/CIT371.

pdf

18.5.3 Exercises

1. Create an animation of the trajectory of a golf ball using the equations given in the State Space Models

chapter. Add a tracer to see the path taken by the golf ball.

2. Redesign the scala2d package and call it scala2df to use JavaFx rather than awt and swing.

3. Design a scala3d package that uses JavaFx with its limited 3D capabilities.

4. Design a scala3d package that uses LWJGL.

5. Design a scala3d package that uses LibGDX.

6. Add the ability to zoom-in and zoom-out for animations.

7. List two ways animation is useful in simulation. Make a convincing argument for each.

703

https://nou.edu.ng/sites/default/files/2017-03/CIT371.pdf
https://nou.edu.ng/sites/default/files/2017-03/CIT371.pdf

704

Chapter 19

Simulation Output Analysis

Unlike some modeling techniques, a simulation run will produce one result, the next run another results.

Individually these results may be misleading as results depend on the combination of random variates

generated. Simulation true power comes from generating several results and then performing statistical

analysis on these results. In other words, the simulation outputs need to be analyzed.

Many types of output may analyzed. For example, many simulation studies are interested in reducing

waiting times. For such studies, one may define,

yi = waiting time of the ith customer (19.1)

A goal of the simulation study would then be to produce accurate point and interval estimates of the customer

waiting times.

19.1 Point and Interval Estimates

As discussed in the Probability Chapter, given a sample of size m, the sample mean (µ̄ = µ̂) is computed as

follows:

µ̄ =
1 · y
m

=
1

m

m−1∑
i=0

yi (19.2)

The sample variance is computed as follows:

σ̂2 =
‖y − µ̄‖2

m− 1
=

1

m− 1

m−1∑
i=0

(yi − µ̄)2 (19.3)

Typically, simulations are used to study average behavior, so the focus in on the sample mean. To collect

statistics on average behavior, several means need to collected and it is important that they be independent

(or at least not highly correlated). There are two common methods used to achieve this, the Method of

Independent Replications and the Method of Batch Means.

Both methods will produce n means: µ̄0, µ̄1, . . . µ̄n−1. From these a grand mean will be calculated.

¯̄µ =
1

n

n−1∑
i=0

µ̄i (19.4)

705

The grand mean can be used to estimate average behavior or performance characteristics, such as average

waiting times. In addition to using the grand mean as a point estimate, it is common practice to obtain an

interval estimate [¯̄µ− ihw, ¯̄µ+ ihw], where ihw is the interval half width.

To create an interval estimate in the form of a confidence interval, we need to determine the variability

or variance in the point estimate ¯̄µ.

V [¯̄µ] = V

[
1

n

n−1∑
i=0

µ̄i

]
=

1

n2

n−1∑
i=0

V [µ̄i] =
σ2
µ̄

n
(19.5)

Consequently, the following is an estimate for the variance of ¯̄µ.

σ̂2
¯̄µ =

σ̂2
µ̄

n
(19.6)

Therefore the interval half width is

ihw = t∗
σ̂µ̄√
n

(19.7)

where t∗ is a critical value from the Student’s t Distribution. The interval estimate is then[
¯̄µ− t∗σµ̄√

n
, ¯̄µ+

t∗σµ̄√
n

]
(19.8)

Suppose the true mean waiting time µ can be computed (e.g., from Queueing Theory), then the probability

the confidence interval will contain it corresponds to the confidence level chosen (and t∗ is determined by

this and the Degrees of Freedom).

706

19.2 One-Shot Simulation

One-shot simulation happens when there a single simulation run and that run is treated as a whole (i.e., it

is not broken into multiple batches). This is the simplest way to run a simulation and it is good idea to

convince yourself that the model is running correctly in this mode before moving on a method more useful

for simulation output analysis.

The process package contains several example models that are placed in sub-directories according how

they are set up for output analysis and validation.

• example 1:

One-Shot Simulation (OSS)

During model development, OSS may be used since model execution takes less time and animation is

on by default, thus giving the model developer quick feedback on the correctness of the model. The

default settings are 1 replication, animation on, uses move method, extends Model (no batching). The

move method gives smooth motion for better animation.

• example MIR:

Method of Independent Replications (MIR)

OSS will report a mean, but not a standard deviation, since that requires at least 2 simulation runs (or

replications). The default settings are 10 replications, animation off, uses jump method, and extends

Model (no batching). The jump method gives less overhead in Transports which for many models may

provide more accurate statistics that correspond better those in the event package. The developer

needs to decide depending on what they are modeling. For example, one should use move and not

jump for traffic simulations, but use jump over move for tandem queues where the time to move from

one queue to next is negligible. Note, using move with OSS would likely be preferred as it will make it

easier to track the entities while viewing the animation.

• example MBM:

Method of Batch Means (MBM)

Although MIR can provide more useful statistics, it tends to be less effective for studying long-term or

steady-state behavior. MBM has one long simulation run (replication), but divides it up into several

batches. Each batch produces a batch mean and since there are several of them, standard deviations

can be computed. The default settings are 1 replication, animation off, uses jump method, extends

Model MBM (batching). The Model MBM class extends the Model class with batching capabilities (see the

section on MBM for details).

707

19.3 Simulation Model Validation

In data science in general, model validation is both important and challenging. As simulation models tend

to have many human designed components that must work together, so the chance of making errors is high.

Also, like all computer programs bugs need to be removed. With sorting algorithms, it is obvious when the

output is incorrect. With simulation, it is often difficult to know whether the output is correct or not.

One option would be to collect data and see if the model output agrees with data. This begs to question

of whether a program implementing a model and having bugs could agree with the data. As this is real

possibility, one should be skeptical of a new model and first look to ways to falsify the model. Of course,

there is the additional complexity of whether the problem is with program implementing model or the model,

or likely both. To have a clean separation between the implementing program and the model, would require

a formal (or executable) specification of the model. The process of showing that a program implementation

agrees with the model is sometimes called verification (to be discussed later).

Focusing first on validation a model based on a program that implements it, there are many ways to

check the simulation model’s behavior or output [104, 166].

1. Make sure the model works for Simple Scenarios. For example, consider the Machine Shop with limited

storage capacity for parts being processed by machines in sequence. This model can to difficult to build

correctly and hard to know if its output is correct. Due to the limited queue sizes, parts may be sold

for scrap or machines may be blocked from operating. However, when the part arrival rate is small, no

parts will be sent to scrap and no machines will be blocked. A simpler model can be used (or built)

that uses infinite capacity queues. The new machine shop model should agree with this simpler model.

2. Slowly Increase the Complexity of scenarios. For a machine shop with two machines in sequence, the

first queue becoming full will introduce the first increment of complexity. What is expected to happen

when the arrival rate increases enough to cause the first queue to become full? In case the second

queue becomes full first, its capacity can be temporarily increased to focus on one problem at a time.

After any bugs triggered by the first queue becoming have been removed, the arrival may be further

increased to make the second queue to become full. Finally, after bugs associated with this have been

removed, add the option of blocking the first machine when the second queue becomes full. Removing

bugs with all three issues simultaneously may be very difficult. And remember, the Machine Shop

model is a relatively simple model.

3. Use Analytic Models as beacons in the sea of complexity. They may be too simple for the problem

being addressed, but may be close enough to be indicators of whether you are on the right track. For

example, the infinite queue approximation for machines in sequence can be solved analytically using a

Queueing Network model. Although the restrictions of unchanging parameters, to certain distributions

and steady-state conditions may have taken Queueing Networks out as viable models for the original

problem, they still can be very helpful in model validation. Time series Forecasting models such as

SARIMAX and LSTM many be very helpful in validating Vehicle Traffic simulation models.

4. A collection of related, validated models in a specific domain along with explanations of when they are

applicable and why they are at least an approximation to the phenomena/system under study could

be termed a Theory. The theory would typically include constraints that could be used to assess the

realism of a newly proposed (simulation) model. Models that are accurate may still be in discord with

theory, suggesting either the model is magical or the theory needs revision. There are new initiatives

708

in data science and machine learning that go by various names such as theory-guided data science

[90, 123] or physics-informed machine learning [89].

5. The above item focused on model output, but model inputs are important as well. Input Analysis can

be used to choose between distributions, e.g., are service times Exponential, Erlang, Normal, Weibull,

etc. If arrivals follow an Non-Homogeneous Process Process (NHPP), how is the function λ(t) estimated

correctly? Are probabilities for cars go straight, turning right, turning left estimated correctly. Plots

and Goodness-of-Fit test can be useful for this.

6. Before it was argued that simpler models are helpful for validation. Ideally, the new model could be

positioned between a simpler model and a more Complex Model that has been previously validated.

Such a model may not exist given the need for your study, but if one does, it could be that your models

is faster or more generalizable than the complex model. Alternatively, it may be more amenable to

optimization or interpretation. In any case, the model complex model can be very helpful for validation.

7. Besides looking at the results/outputs of a simulation model, one should Examine the Behavior of the

model. One way to do this is to examine a trace of the model execution (e.g., what happens with each

event). This can be tedious and even mind-numbing. An alternative is to examine an animation of

simulation. The animation should be watched to slow motion to see what happens to the entities (or

actors or agents) in detail. For both tracing and animation, the number of entities should be reduced.

The real simulation may requires thousand of entities, examining all of them will likely be fruitless.

8. Although humans can digest short traces, they may miss the part of the simulation exhibiting the

incorrect behavior (e.g., machine 1 gets blocked, but a newly arriving entity begins service in the

blocked queue), Anomaly Detection in Simulation Traces can be used. For example, do entities enter

the sink out of order, or does an entity’s wait time vary greatly form the entities going through the

system at roughly the same time and taking the same pathway. Both machine learning and rule-based

anomaly detection algorithms can be useful.

9. As a later step in the validation process, the output of the model (whether predictions, forecasts or

classifications) need to be compared with data and Quality of Fit (QoF) measures should be examined.

For example, R2, MAE and sMAPE may be used to assess the quality of forecasts. The QoF measures

should be compared to other models addressing the problem under study.

10. The model developers should also follow standard Software Engineering Practices, a topic too large to

summarize here.

19.3.1 Model Calibration

At some point during or after model validation, model calibration can be performed. Typically, this involves

adjusting the model parameters to improve some QoF measure for the model. If performed too early,

calibrating a buggy model is a waste of effort. Remember one should always be skeptical of newly developed

model.

Calibration becomes a search process in parameter space. As an example, suppose a compartmental

model for a pandemic includes 10 rate parameters each with 10 feasible levels. Grid Search would then

require run 1010 simulations in order to find the best combination. Actually, it is worse than that, since a

709

single run is not reliable, i.e., multiple runs need to be made for each combination of parameters. See the

exercises for better alternatives to Grid Search.

19.3.2 Model Verification

In the simulation literature, verification is used to show that the program implementation meets the intentions

of a model specification. The task is given to the model developer. Tool support includes those from software

engineering to facilitate debugging and systemic software testing (e.g., unit testing and coverage conditions).

ScalaCheck and ScalaTest help automate the software testing process. Recently, progress has been made

on automated verification systems, such as Stainless [101] that is used for verifying the correctness of Scala

programs. The fact that Scala has a purely functional subset and strict static type checking, facilities

program verification.

710

19.4 Method of Independent Replications (MIR)

Since simulation models produce stochastic outputs, One-Shot Simulation may not be reliable. Suppose one

is interested in customer waiting time Tq (renamed w). Each customer will have their own waiting time

wj . One simulation run typically involves hundreds or thousands of entities/customers. One might think

that taking an average or mean would provide a useful estimate. Unfortunately, the wj ’s may be highly

correlated, which tends to inflate variability. This can be evidenced in the following table where an M/M/1

Queue is simulated for nr = 10 replications (where the only thing changing per run is the base random

number stream).

For MIR, let wij be the waiting time for the jth entity in the ith run. The ith run mean is given as

follows:

w̄i =
1

ns

ns−1∑
j=0

wij = mean waiting time for ith replication (19.9)

The number of customers per run nStop = ns is set to 100 (and then 1000) in Table 19.1. In order to make

the replications independent, it is essential to change the stream each time.

Table 19.1: M/M/1 Queue: 10 Replications

Stream w̄i (100) w̄i (1000)

0 15.282 40.975

1 21.969 34.289

2 25.769 28.267

3 29.512 20.762

4 19.829 29.164

5 26.259 29.266

6 12.316 37.362

7 96.311 21.234

8 39.947 34.554

9 12.915 31.867

mean 30.011 30.774

stdev 24.760 6.478

Notice the high variability in w̄i particularly for nStop = 100, less so with nStop = 1000. These data are

created by running the MIR version of BankModel.

runMain scalation.simulation.process.example_MIR.runBank

The changes to the code from the example 1 version are the following: animation is turned off, reps = 10,

jump replaces move and the time on the transports is greatly reduced.

val moveRV = Sharp (SECOND, (stream + 2) % N_STREAMS)

The mean and standard deviation for each column can be used to compute confidence intervals.

711

19.4.1 Confidence Intervals

Case nr = 10, ns = 100

For the case where reps = 10, nStop = 100, the grand mean is simply the mean of nr = 10 run means.

¯̄w =
1

nr

nr−1∑
i=0

w̄i = 30.011 (19.10)

The standard deviation of the run means w̄i’s is

σ̂w̄ =
1

nr − 1

nr−1∑
i=0

(w̄i − ¯̄w)2 = 24.760 (19.11)

Thus, the interval half width (ihw) is

t∗
σw̄√
nr

= 2.262
24.760√

10
= 17.712 (19.12)

where t∗ is the value for the Student’s t distribution with nr − 1 Degrees of Freedom, where the area/proba-

bility of being in either tail is 0.05 (95% confidence interval). Therefore, the interval estimate is the following:[
¯̄w − t∗σ̂w̄√

nr
, ¯̄w +

t∗σ̂w̄√
nr

]
(19.13)

Finally, the 95% confidence interval is

[30.011− 17.712, 30.011 + 17.712] = [12.299, 47.723] (19.14)

Case nr = 10, ns = 1000

For the case where reps = 10, nStop = 1000, the interval half width (ihw) is

t∗
σw̄√
nr

= 2.262
6.478√

10
= 4.634 (19.15)

and the 95% confidence interval is much tighter.

[30.774− 4.634, 30.774 + 4.534] = [26.140, 35.408] (19.16)

Case nr = 40, ns = 1000

For the case where reps = 40, nStop = 1000, the interval half width (ihw) is

t∗
σw̄√
nr

= 2.023
7.758√

40
= 2.481 (19.17)

and the 95% confidence interval is even tighter.

[30.489− 2.481, 30.489 + 2.481] = [28.008, 32.970] (19.18)

712

Case nr = 40, ns = 10000

For the case where reps = 40, nStop = 10000, the interval half width (ihw) is

t∗
σw̄√
nr

= 2.023
2.598√

40
= 0.831 (19.19)

and the 95% confidence interval is reasonably tight.

[31.600− 0.831, 31.600 + 0.831] = [30.769, 32.431] (19.20)

With 10,000 entities per run, it is reasonable to compare this results with the result from queueing theory.

Tq =
ρ/µ

1− ρ
(19.21)

Since the traffic intensity ρ =
λ

µ
=

6

7.5
= 0.8,

Tq =
0.8/7.5

1− 0.8
= 0.533 hours = 32 minutes (19.22)

Note, the theoretical value of 32 minutes is inside all the confidence intervals.

19.4.2 Example: MIR Version of BankModel

The source code for the MIR version of BankModel in the scalation.simulation.process/example MIR

package is shown below.

class BankModel (name: String = "Bank", reps: Int = 100, animating: Boolean = false,

aniRatio: Double = 8.0, nStop: Int = 1000, stream: Int = 0)

extends Model (name, reps, animating, aniRatio):

//--

// Initialize Model Constants

val lambda = 6.0 // customer arrival rate (per hour)

val mu = 7.5 // customer service rate (per hour)

val nTellers = 1 // the number of bank tellers (servers)

//--

// Create Random Variables (RVs)

val iArrivalRV = Exponential (HOUR / lambda, stream)

val serviceRV = Exponential (HOUR / mu, (stream + 1) % N_STREAMS)

val moveRV = Sharp (SECOND, (stream + 2) % N_STREAMS)

//--

// Create Model Components

val entry = Source ("entry", this, () => Customer (), 0, nStop, iArrivalRV, (100, 290))

val tellerQ = WaitQueue ("tellerQ", (330, 290))

713

val teller = Resource ("teller", tellerQ, nTellers, serviceRV, (350, 285))

val door = Sink ("door", (600, 290))

val toTellerQ = Transport ("toTellerQ", entry, tellerQ, moveRV)

val toDoor = Transport ("toDoor", teller, door, moveRV)

addComponent (entry, tellerQ, teller, door, toTellerQ, toDoor)

//--

// Specify Scripts for each Type of Simulation Actor

case class Customer () extends SimActor ("c", this):

def act (): Unit =

toTellerQ.jump ()

if teller.busy then tellerQ.waitIn () else tellerQ.noWait ()

teller.utilize ()

teller.release ()

toDoor.jump ()

door.leave ()

end act

end Customer

simulate ()

waitFinished ()

Model.shutdown ()

end BankModel

714

19.5 Method of Batch Means (MBM)

The Method of Batch Means (MBM) is intended to provide a more efficient and reliable way to analyze the

steady-state, as opposed to what was done in the last section of making nStop large enough for the simulation

to exhibit steady-state behavior. Each of the forty runs/replications had to go through a warm-up period

or transient phase.

With MBM, the simulation only goes through one transient phase at the beginning. Rather than having a

mean for each run, a mean is created for each batch. One long run is divided into multiple batches. The trick

is to make the batches uncorrelated enough, so that the advantage of independent replications is not lost. If

the batch means are highly correlated, the confidence intervals will not be reliable. Fortunately, the longer

the batch sizeB (sb), the smaller the correlation between the batch means. The other hyper-parameter is

nBatch (nb). These are analogs of ns and nr.

For MBM, let wij be the waiting time for the jth entity in the ith batch. The ith batch mean is given as

follows:

w̄i =
1

sb

sb−1∑
j=0

wij = mean waiting time for ith batch (19.23)

The grand mean is simply the mean of nb batch means.

¯̄w =
1

nb

nb−1∑
i=0

w̄i (19.24)

The standard deviation of the batch means w̄i’s is

σ̂w̄ =
1

nb − 1

nb−1∑
i=0

(w̄i − ¯̄w)2 (19.25)

Thus, the interval half width (ihw) is

ihw = t∗
σw̄√
nb

(19.26)

where t∗ is the value for the Student’s t distribution with nr − 1 Degrees of Freedom, where the area/prob-

ability of being in either tail is 0.05 (95% cofidence interval).

19.5.1 Effect of Increasing the Number of Batches

Table 19.2 compares the grand means ¯̄w and interval half widths (ihw) of MBM versus MIR with the batch

size sb and the run length ns both set to 1000. The number of batches nb and the number of replications nr

are given in the first column of the table and range from 10 to 100.

The MBM grand means ¯̄w appear to be converging to 32, the answer from queueing theory (see the

exercises). Such a tendency is not obvious for MIR grand means that appear to converging to a lower

number than 32. This is because the data from the transient phase is in every replication, so its effect does

not diminish. On the contrary, MBM arguably has only one batch affected by the transient or warm-up

phase, so as the number of batches increases, the transient effect should steadily decrease.

715

Table 19.2: M/M/1 Queue: MBM vs. MIR

nb or nr MBM ¯̄w MBM ihw MIR ¯̄w MIR ihw

10 31.875 5.074 30.774 4.634

20 30.146 2.821 28.880 2.815

30 30.030 2.980 29.924 3.074

40 31.703 3.121 30.489 2.481

50 32.141 2.845 30.777 2.398

60 32.382 2.574 30.935 2.154

70 32.503 2.313 31.120 1.914

80 32.220 2.089 30.495 1.759

90 31.812 1.947 30.584 1.683

100 31.764 1.841 30.426 1.583

19.5.2 Effect on Batch Correlation of Increasing the Batch Size

As the waiting time for entity/customer i is likely to be highly correlated with that of customer i − 1, a

small batch size will likely result in highly correlated batch means. The model developer can check the

autocorrelation of the batch means and increase the batch size as needed. The grand means shown Table

19.2 (where the batch size is 1000) are simply the means of batch means for MBM or the means of the run

means for MIR. For example, for nb = 40, the following are the batch means.

val batchMeans = VectorD (

41.0430, 34.1852, 27.8945, 20.7674, 29.5358, 28.1378, 39.3704, 22.8593, 38.9610, 35.9986,

30.0565, 29.4135, 37.4061, 31.1298, 26.1880, 23.1076, 28.7468, 21.2382, 29.1787, 27.7081,

54.9413, 16.9537, 26.2421, 27.1526, 39.5139, 18.0606, 34.2399, 27.5326, 21.1054, 32.2369,

18.5720, 56.1361, 37.0753, 29.6010, 50.7372, 29.5670, 52.8855, 21.3998, 39.4527, 31.7850)

println (s"batchMeans.acorr () = ${batchMeans.acorr ()}")

The acorr method in VectorD computes the lag-1 autocorrelation ρ1 for the vector shown above to be -0.2767.

Having larger batch sizes sb is likely to reduce to the magnitude (absolute value) of the correlation. Assuming

covariance stationarity (see the section on the Auto-Correlation Function in the time series chapter), the

lag-1 autocorrelation may be computed as follows:

ρ1 =
C [w̄i, w̄i−1]

V [w̄i]
(19.27)

See the exercises to see how autocorrelation changes with increasing batch sizes.

19.5.3 MBM versus MIR

The Method of Batch Means (MBM) is intended for longer running or steady-state simulations, while the

Method of Independent Replications (MIR) is intended for shorter duration or transient-phase simulations

(e.g., a systems shuts down each day and does not sufficiently stabilize for a steady-state simulation to be

meaningful).

716

The Method of Batch Means and the Method of Independent Replications may be depicted as shown

below. The MIR simulation consists of nr = 10 runs/replications, while the MBM simulation consists of one

run, that is divided in nb = 10 batches. Let ’-’ represent 10 entities/customers, and thus the length of a

replication ns = 100 entities, and similarly the size of each batch sb = 100 entities.

MIR:

---------- w_0

---------- w_1

---------- w_2

---------- w_3

---------- w_4

---------- w_5

---------- w_6

---------- w_7

---------- w_8

---------- w_9

MBM:

|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|

w_0 w_1 w_2 w_3 w_4 w_5 w_6 w_7 w_8 w_9

The w̄i (w i) are run means for MIR and batch means for MBM.

19.5.4 Relative Precision

It had been mentioned that having tight confidence intervals is an important goal in simulation. That begs

the question, tight relative to what. Often it is sufficient to make it relative the estimated grand mean. One

may define γ to be 1 - the relative precision and calculate it as the interval half width over the grand mean,

i.e.,

γ =
ihw

¯̄w
(19.28)

Suppose the goal is to achieve 90% relative precision (or γ ≤ .1). For nb = 10, γ = 5.074/31.875 = .159,

indicating more batches are needed. For nb = 20, γ = 2.821/30.146 = .094, indicating acceptable relative

precision. Note, some simulation studies may prefer to with work absolute precision instead.

A basic procedure for MBM would be to increase the batch size until the correlation between batch means

drops to a threshold (e.g., ρ1 ≤ .2 or .3) and 1 - relative precision drops to another threshold (e.g., γ ≤ .05

or .1). There are several advanced procedures that are more efficient/effective (although more complex) for

MBM, see [105, 12, 182, 5].

19.5.5 Example: MBM Version of BankModel

The source code for the MBM version of BankModel in the scalation.simulation.process/example MBM

package is shown below.

class BankModel (name: String = "Bank", nBatch: Int = 100, sizeB: Int = 1000,

animating: Boolean = false, aniRatio: Double = 8.0, stream: Int = 0)

extends Model_MBM (name, nBatch, sizeB, animating, aniRatio):

717

val nStop = nBatch * sizeB // number arrivals before stopping the Source

//--

// Initialize Model Constants

val lambda = 6.0 // customer arrival rate (per hour)

val mu = 7.5 // customer service rate (per hour)

val nTellers = 1 // the number of bank tellers (servers)

//--

// Create Random Variables (RVs)

val iArrivalRV = Exponential (HOUR / lambda, stream)

val serviceRV = Exponential (HOUR / mu, (stream + 1) % N_STREAMS)

val moveRV = Sharp (SECOND, (stream + 2) % N_STREAMS)

//--

// Create Model Components

val entry = Source ("entry", this, () => Customer (), 0, nStop, iArrivalRV, (100, 290))

val tellerQ = WaitQueue ("tellerQ", (330, 290))

val teller = Resource ("teller", tellerQ, nTellers, serviceRV, (350, 285))

val door = Sink ("door", (600, 290))

val toTellerQ = Transport ("toTellerQ", entry, tellerQ, moveRV)

val toDoor = Transport ("toDoor", teller, door, moveRV)

addComponent (entry, tellerQ, teller, door, toTellerQ, toDoor)

//--

// Specify Scripts for each Type of Simulation Actor

case class Customer () extends SimActor ("c", this):

def act (): Unit =

toTellerQ.jump ()

if teller.busy then tellerQ.waitIn () else tellerQ.noWait ()

teller.utilize ()

teller.release ()

toDoor.jump ()

door.leave ()

end act

end Customer

simulate ()

waitFinished ()

Model.shutdown ()

718

end BankModel

719

19.6 Exercises

1. Consider how increasing the number of batches by 10 for both MBM and MIR up 100 batches/repli-

cations. effects the accuracy of the simulation. Using the data from Table 19.2, plot the grand means

versus n (the number of batches/replications). Also plot the theory line (32) and discuss the converge.

2. Convergence for MIR is dependent upon the length of the runs/replications ns. For nr = 40, plot

the MIR grand means as the run length ns increase from 10 to 100,000 on a log scale (10, 100, 1000,

10,000, 100,000). Again plot the theory line (32) and discuss the converge.

3. Increasing the MBM batch size sb can also be advantageous, in that the correlation between batches

decreases. For nb = 40, plot the MBM grand means as the run length sb increase from 10 to 100,000

on a log scale (10, 100, 1000, 10,000, 100,000). On another plot, indicate the lag-1 autocorrelation

between the batch means w̄i. What is the takeaway message?

4. Explain why the MIR run means should in independent.

5. Under what circumstances would MBM be an inappropriate method to use in a simulation study.

6. For a large number of calibration parameters or parameters having many levels, Grid Search becomes

infeasible. Consult the literature for better alternatives.

7. Question 5: For the process-interaction simulation model of a Bank with two tellers (see Section

17.3.20: Exercise 12), determine the mean waiting time Tq three ways. For the simulations use ns =

sb = 1000.

(a) Analytic Model based on Queueing Theory. Give the formula and compute the value for Tq. Be

sure to indicate the time units.

(b) Simulation Model using the Method of Independent Replications (MIR). Give the Grand Mean

and its Confidence Interval. Make sure “1 - relative precision” γ ≤ .1 (may require more runs). Is the

value for Tq from Queueing Theory inside this confidence interval?

(c) Simulation Model using the Method of Batch Means (MBM). Assume the lag-1 autocorrelation ρ1

is small enough. Give the Grand Mean and its Confidence Interval. Make sure “1 - relative precision”

γ ≤ .1 (may require more batches). Is the value for Tq from Queueing Theory inside this confidence

interval?

720

Appendices

721

Appendix A

Optimization in Data Science

As discussed in earlier chapters, when matrix factorization cannot be applied for determining optimal values

for parameters, an optimization algorithm will often need to be applied. This chapter provides a quick

overview of optimization algorithms that are useful for data science. Note that the notation in the opti-

mization field differs in that we now focus on optimizing the vector x rather than the parameter vector

b.

Many optimization problems may be formulated as restricted forms of the following,

minimize f(x)

subject to g(x) ≤ 0

h(x) = 0

where f(x) is the objective function, g(x) ≤ 0 are the inequality constraints, and h(x) = 0 are the equality

constraints. Consider the example below.

minimize f(x) = (x1 − 4)2 + (x2 − 2)2

subject to g(x) = [x1 − 3, x2 − 1] ≤ 0

h(x) = x1 − x2 = 0

If we ignore all the constraints, the optimal solution is x = [4, 2] where f(x) = 0, while enforcing the

inequality constraints makes this solution infeasible. The new optimal solution is x = [3, 1] where f(x) = 2.

Finally, the optimal solution when all constraints are enforced is x = [1, 1] where f(x) = 10. Note, for this

example there is just one equality constraint that forces x1 = x2.

723

A.1 Partial Derivatives and Gradients

These topics were introduced in the chapter on Linear Algebra, but are probed in more depth here.

Definition: The partial derivative w.r.t. xj of a multivariate function f : Rn → R (y = f(x)) is defined as

follows.

∂f

∂xj
= lim

h→0

f(x1, . . . , xj + h, . . . , xn)− f(x)

h
(A.1)

It indicates the rate of change in function f with small changes to the xj coordinate in Rn space. All the

other coordinates are held fixed.

A.1.1 Basic Rules

Many of the rules from univariate calculus carry over directly.

Proposition: Addition Rule:

∂

∂xj
(f + g) =

∂f

∂xj
+

∂g

∂xj
(A.2)

Proposition: Subtraction Rule:

∂

∂xj
(f − g) =

∂f

∂xj
− ∂g

∂xj
(A.3)

Proposition: Product Rule:

∂

∂xj
(fg) =

∂f

∂xj
g + f

∂g

∂xj
(A.4)

Proposition: Quotient Rule:

∂

∂xj
(f/g) =

∂f

∂xj
g − f ∂g

∂xj
g2

(A.5)

A.1.2 Chain Rules

There are multiple chains rules involving partial derivatives of composite functions.

Proposition: Let h(x) = f(g(x)) be the composition h = f ◦g where f : R→ R, g : Rn → R, and u = g(x)

then

∂h

∂xj
=

df

du

∂u

∂xj
(A.6)

Proposition: Given f(x(t), y(t)) where x and y may be thought of functions of time t, the derivative is

df

dt
=

∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
(A.7)

These rules can be generalized to higher dimensions. Naturally, there are additional chain rules for more

complex functional compositions.

724

A.1.3 Gradient

Definition: The gradient of multivariate function f : Rn → R (y = f(x)) is defined as follows.

∇f =

[
∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xn

]
(A.8)

It is the n-dimensional vector of partial derivatives. At each point in Rn, it is orthogonal to the contour

curves of the response variable y and points in the direction of steepest increase.

The gradient may be written more concisely as follows

∇f = [∂x1f, ∂x2f, . . . , ∂xnf] (A.9)

where ∂xjf is more concise notation for
∂f

∂xj
. Furthermove, we may use this notation for gradients,

∂xf = ∇f (A.10)

A.1.4 Generalized Chain Rules

Proposition: Given two multi-variate, vector-valued functions f : Rp → Rq and g : Rn → Rp, the Jacobian

chain rule is

Jf◦g(x) = Jf (g(x)) Jg(x) (A.11)

The two Jacobian matrices are multiplied together. Consider the case where n = 4, p = 3, q = 2 and

h = [h0, h1] = f ◦ g

[
∂x0h0 ∂x1h0 ∂x2h0 ∂x3h0

∂x0
h1 ∂x1

h1 ∂x2
h1 ∂x3

h1

]
=

[
∂u0f0 ∂u1f0 ∂u2f0

∂u0
f1 ∂u1

f1 ∂u2
f1

]∂x0g0 ∂x1g0 ∂x2g0 ∂x3g0

∂x0
g1 ∂x1

g1 ∂x2
g1 ∂x3

g1

∂x0
g2 ∂x1

g2 ∂x2
g2 ∂x3

g2

where u = [u0, u1, u2] = g(x). Now consider the case when q = 1, i.e., function f is scalar-valued, then

∂xf ◦ g(x) = ∂uf(g(x)) Jg(x) (A.12)

In other words, the gradient of h w.r.t. x as a 1-by-n matrix (effectively a vector) is the product of the

gradient of f as a 1-by-p matrix and the Jacobian of g as a p-by-n matrix. Further consider the case when

p = 1 making g a scalar valued function. The gradient of h w.r.t. x as a 1-by-n matrix (vector) becomes the

product of the gradient of f as a 1-by-1 matrix (scalar) and the gradient of g as a 1-by-n matrix (vector).

∂xf ◦ g(x) = ∂uf(g(x)) ∂xg(x) (A.13)

Note that the scalar ∂uf(g(x)) is an ordinary derivative. Focusing on one dimension in the vector x, xj , the

jth partial derivative is then

∂xjh(x) = ∂xjf ◦ g(x) = ∂uf(g(x)) ∂xjg(x) (A.14)

When the arguments to the functions are understood (and hence dropped), this can be shortened to

725

∂xjh = ∂uf ∂xjg (A.15)

These formulas are summarized in Table A.2 for f : Rp → Rq, g : Rn → Rp, x ∈ Rn, and u = g(x) ∈ Rp.

Table A.1: Chain Rules for f ◦ g(x) with argument x understood

Name n p q LHS Space Chain Rule Type

CR1 multi multi multi Jf◦g Rn×q Jf (g) Jg Jacobian

CR2 multi multi single ∂xf ◦ g Rn ∂uf(g) Jg Gradient

CR3 multi single single ∂xf ◦ g Rn ∂uf(g) ∂xg Gradient

CR4 single single single ∂xf ◦ g R ∂uf(g) ∂xg Derivative

When the function is univariate and scalar, the ∂ symbol is understood by context to be an ordinary

derivative, rather than a partial derivative.

The first two rules can be re-written as shown below by extending the concise notation to include Jaco-

bians, i.e., ∂xg = Jg where both x and g are vector-valued.

Table A.2: Revised Chain Rules

Name n p q LHS Space Chain Rule Type

CR1 multi multi multi ∂xf ◦ g Rn×q ∂uf(g) ∂xg Jacobian

CR2 multi multi single ∂xf ◦ g Rn ∂uf(g) ∂xg Gradient

A.1.5 calculus Package

Calculus operations on functions are provided in the calculus package, including the Differential object.

Differential Object

1 object Differential:

2

3 def resetH (step: Double): Unit = h = step; h2 = h + h; hh = h * h; hh4 = 4.0 * hh

4 def resetHR (largeStep: Double): Unit = hl = largeStep

5 def fdiffernce (f: FunctionS2S , x: Double): Double = (f(x + hl) - f(x)) / hl

6 def derivative1 (f: FunctionS2S , x: Double): Double = (f(x + h) - f(x)) / h

7 def derivative (f: FunctionS2S , x: Double): Double = (f(x + h) - f(x - h)) / h2

8 def partial (i: Int)(f: FunctionV2S , x: VectorD): Double =

9 (f(x + (i, h)) - f(x - (i, h))) / h2

10 def grad (f: FunctionV2S , x: VectorD): VectorD =

11 def slope (f: FunctionV2S , x: VectorD , n: Int = 0): VectorD =

12 def jacobian (f: Array [FunctionV2S], x: VectorD): MatrixD =

13 def eval (f: Array [FunctionV2S], x: VectorD): VectorD =

14 def derivative2 (f: FunctionS2S , x: Double): Double =

15 (f(x + h) - 2.0*f(x) + f(x - h)) / hh

16 def partial2 (i: Int , j: Int)(f: FunctionV2S , x: VectorD): Double =

17 def hessian (f: FunctionV2S , x: VectorD): MatrixD =

726

18 def laplacian (f: FunctionV2S , x: VectorD): Double =

19

20 end Differential

Most of these methods also have math-like Unicode equivalents (see code for details). The most common

first order methods are shown below.

1 @param f the function whose derivative is sought

2 @param x the point (scalar) at which to estimate the derivative

3

4 def derivative (f: FunctionS2S , x: Double): Double = (f(x + h) - f(x - h)) / h2

5

6 @param i the dimension to compute the partial derivative on

7 @param f the function whose partial derivative is sought

8 @param x the point (vector) at which to estimate the partial derivative

9

10 def partial (i: Int)(f: FunctionV2S , x: VectorD): Double =

11 (f(x + (i, h)) - f(x - (i, h))) / h2

12

13 @param f the function whose gradient is sought

14 @param x the point (vector) at which to estimate the gradient

15

16 def grad (f: FunctionV2S , x: VectorD): VectorD =

17 VectorD (for i <- x.indices yield (f(x + (i, h)) - f(x - (i, h))) / h2)

18

19 @param f the array of functions whose Jacobian is sought

20 @param x the point (vector) at which to estimate the Jacobian

21

22 def jacobian (f: Array [FunctionV2S], x: VectorD): MatrixD =

23 MatrixD (for i <- f.indices yield grad (f(i), x))

727

A.2 Automatic Differentiation

As we learned Neural Networks work because of back-propagation, but this requires manual development of

partial derivatives. Notice that for a Gated Recurrent Unit (GRU), getting the partial derivatives correct is

not so easy, and with newer architectures, it is even harder.

Automatic Differentiation [63, 142, 13] allows one to specify the equations for forward propagation and

have the system automatically handle the backward propagation (and even generalize it).

This has opened up a new research area are called differential programming [200] where model developers

can specify parameterized equations and the system can automatically fit the parameters (based on data)

using first or second order optimizers.

A.2.1 Forward Propagation

To keep things simple, suppose we make a forward pass in a perceptron using a single instance x ∈ X and

y ∈ y, i.e., x ∈ Rn, and y ∈ R. Then the main purpose of the forward pass to estimate the prediction vector

ŷ. For further simplification, let us assume the bias is handled by having x0 = 1.

ŷ = f(x · b) (A.16)

Now the weight vector (not matrix) is b ∈ Rn. In addition, the forward pass calculates the loss function.

L =
1

2
(y − ŷ)2 =

1

2
(y − f(x · b))2 (A.17)

A.2.2 Reverse Mode Backward Propagation

The purpose of the backward pass is to calculate partial derivatives using chain rules w.r.t. the parameters

b. The chain rule applied in this case is CR3 with u = f(x · b).

∂L
∂b

=
∂L
∂u

∂u

∂b
(A.18)

The chain rule applied can be applied again with v = x · b to obtain.

∂L
∂b

=
∂L
∂u

∂u

∂v

∂v

∂b
(A.19)

∂bL = ∂uL ∂vf(x · b) ∂b(x · b) (A.20)

The formulas for the forward and backward passes are shown on the left and right, respectively.

L(u) =
1

2
(y − u)2 → ∂uL = − (y − u) (A.21)

u = f(x · b) → ∂vf(x · b) = f ′(v) (A.22)

v = x · b → ∂b(x · b) = x (A.23)

The calculations may be depicted in a computation graph as shown in Figure A.1. Forward calculations

(left-to-right) are shown above the nodes, while backward calculations (right-to-left) are shown below the

nodes.

728

x

input

v

x · b

x

u

f(v)

f ′(v)

L

1
2 (y − u)2

u− y

Figure A.1: Computation Graph for Perceptron

A.2.3 Example Calculation for Perceptron

Consider the following example calculation described in the Perceptron section (Neural Networks chapter)

with the parameters initialized to b = [.1, .2., .1], the inputs to x = [1, .5, 1] corresponding to the sixth row in

exercise 7, and the output to y = .3. The sigmoid function is used for activation (see the Perceptron section

for its function f and derivative f ′). Figure A.2 shows the calculated values for the forward and backward

passes.

x

[1, .5, 1]

v

.3

[1., .5, 1]

u

.5744

.2445

L

.0376

.2744

Figure A.2: Computation Graph Results for Perceptron

Label each node vi, and then the partial derivative calculations simply accumulate the multiplications left-

to-right according to following formula

v̄i = v̄i+1
∂vi+1

∂vi
(A.24)

where v̄i =
∂L
∂vi

and v̄4 = 1. This value v̄i is called the adjoint, a term used in adjoint methods that provide

more efficient ways of calculating derivatives [54].

The automatic differentiation calculations are summarized in Tables A.3 and A.4 symbolically and nu-

merically.

Table A.3: Forward and Backward Symbolic Calculations for Perceptron Example

Node i Value vi Adjoint v̄i Comment (left, right)

0 x - input, NA

1 v = x · b x ε f ′(v) pre-activation, gradient ∂bL
2 u = f(v) ε f ′(v) prediction ŷ, delta δ

3 1
2
(y − u)2 ε = u− y loss, negative error

4 - 1 NA, multiplicative identity

729

Table A.4: Forward and Backward Calculations for Perceptron Example

Node i Value vi Adjoint v̄i Comment (left, right)

0 [1, .5, 1] - input, NA

1 .3 [.0671, .0335, .0671] pre-activation, gradient ∂bL
2 .5744 .0671 prediction ŷ, delta δ

3 .0376 .2744 loss, negative error

4 - 1 NA, multiplicative identity

The gradient ∂bL is then used for making parameter updates.

b = b − ∂bL η (A.25)

With the learning rate η = 1, the new parameter values will be b = [−.1666, .0778,−.1666]. Notice that

this update differs from the one given in the Perceptron section as that one is based on all the rows in data

matrix X, whereas this one only uses row six.

Computation on Full Input

The previous example used a single row (the sixth) x ∈ X to perform the computation, as would be done

with pure (single instance) Stochastic Gradient Descent. On the other hand, Gradient Descent would use

the full input data/training matrix X. The updated two step chain rule becomes the following:

∂L
∂b

=
∂L
∂u

∂u

∂v

∂v

∂b
(A.26)

This states that the gradient of the loss function L w.r.t. the parameters b is the product of the gradient

of the loss function L w.r.t. u times the Jacobian of u w.r.t. v times the Jacobian of v w.r.t. b. The two

Jacobian matrices are diagonal because the activation function maps individual elements, i.e.,

ui = f(vi) =⇒ ∂vjui = 0 when i 6= j (A.27)

Thus, the matrix multipication becomes the element-wise vector product of three vectors.

∂uL ∗ diag(∂vu) ∗ diag(∂bv) (A.28)

The full input calculations are depicted in the computation graph shown in Figure A.3.

X

input

v

Xb

X
ᵀ

u

f(v)

f ′(v)

L

1
2‖y − u‖2

u− y

Figure A.3: Computation Graph for Perceptron - Input X

730

Calculations for the full input case are summarized in Table A.5. Where there is a vector of length nine,

the previous table’s numbers correspond to the sixth element. The overall loss and gradient should not agree

as in the first table they are based in one row, while in this table they are based on all nine rows.

Table A.5: Forward and Backward Calculations for Perceptron Input X Example

Node i Value vi Adjoint v̄i

0 X -

1 [.1, .15, .2, .2, .25, .3, .3, .35, .4] [.040, -.122, .189]

2 [.525,.537,.540,.540,.562,.574,.574,.587,.599] [.006, .059, .087, -.062, .015, .067, -.104, -.052, .024]

3 .279 [.025, .237, .350, -.250, .0622, .274, -.426, -.213, .099]

4 - 1

A.2.4 Example for Three-Layer Neural Network

Automatic Differentiation simply requires the specification of the prediction equation and the loss function.

The prediction equation for a Three-Layer (one hidden) Neural Network is given below.

Ŷ = f1(f0(XA+α)B + β) (A.29)

Using one half sse as the loss function, it may be expressed as one half the Frobenius norm squared.

L =
1

2
‖Y − f1(f0(XA+α)B + β)‖2F (A.30)

Partial derivatives are now needed for all weight matrices and bias vectors:

∂ajhL, ∂αhL, ∂bhkL, ∂βkL (A.31)

Or in aggregated form.

∂AL, ∂αL, ∂BL, ∂βL (A.32)

Ignoring biases (or using the Bias Trick to incorporate them into weight matrices), the prediction equation

becomes the following:

Ŷ = f1(f0(XA)B) (A.33)

During back-propagation, calculation of
∂L
∂B

needed to update weight matrix B occurs first, followed by

the calculation of
∂L
∂A

needed to update weight matrix A.

A.2.5 Partial Derivatives w.r.t. B

The partial derivative of the loss function L w.r.t. the second weight matrix B

∂BL =
∂L
∂B

=

[
∂L
∂bhk

]
(A.34)

731

is an nz-by-ny matrix and can be decomposed using the following matrix calculus chain rule.

∂L
∂B

=
∂L
∂Ŷ

∂Ŷ

∂U

∂U

∂B
(A.35)

Figure A.4 represents a computation graph for three layer neural network relevant to
∂L
∂B

.

X

input

V

XA

Z

f0(V)

U

ZB

Z
ᵀ

Ŷ

f1(U)

f ′1(U)

L

1
2‖Y − Ŷ ‖

2
F

Ŷ − Y

Figure A.4: Computation Graph for Three Layer Neural Network

To better illustrate how the partial derivative products accumulate right-to-left, Table A.6 shows the forward

and backward calculations relevant to weight matrix B for three layer neural networks symbolically.

Table A.6: Forward and Backward Matrix Calculations Relevant to B for Neural Network Example

Node i Value vi Adjoint v̄i Comment (left, right)

0 X - input, NA

1 V = XA - hidden layer pre-activation, gradient

2 Z = f0(V) - hidden layer values, delta 0

3 U = ZB Z
ᵀ
∆1 output layer pre-activation, gradient

4 Ŷ = f1(U) ∆1 = E � f ′1(U) prediction, delta 1

5 L = 1
2
‖Y − Ŷ ‖2F E = Ŷ − Y loss, negative error

6 - 1 NA, multiplicative identity

The parameter update for weight matrix B is then

B = B − Z
ᵀ

∆1 η (A.36)

i.e., move in the direction opposite the gradient (Z
ᵀ
∆1) moderated by the learning rate η.

A.2.6 Partial Derivatives w.r.t. A

The partial derivative of the loss function L w.r.t. the first weight matrix A

∂AL =
∂L
∂A

=

[
∂L
∂ajh

]
(A.37)

is an n-by-nz matrix and can be decomposed using the following matrix calculus chain rule.

∂L
∂A

=
∂L
∂Ŷ

∂Ŷ

∂U

∂U

∂Z

∂Z

∂V

∂V

∂A
(A.38)

Figure A.5 represents a computation graph for three layer neural network relevant to
∂L
∂A

.

732

X

input

V

XA

X
ᵀ

Z

f0(V)

f ′0(V)

U

ZB

B
ᵀ

Ŷ

f1(U)

f ′1(U)

L

1
2‖Y − Ŷ ‖

2
F

Ŷ − Y

Figure A.5: Computation Graph for Three Layer Neural Network

Notice that the forward pass for the two computation graphs are identical, while the backward pass is

the same until computing the partial derivative for node U . Table A.7 shows the forward and backward

calculations relevant to weight matrix A for three layer neural networks symbolically.

Table A.7: Forward and Backward Matrix Calculations Relevant to A for Neural Network Example

Node i Value vi Adjoint v̄i Comment (left, right)

0 X - input, NA

1 V = XA X
ᵀ
∆0 hidden layer pre-activation, gradient

2 Z = f0(V) ∆0 = ∆1B
ᵀ
� f ′0(V) hidden layer values, delta 0

3 U = ZB ∆1B
ᵀ

output layer pre-activation, gradient

4 Ŷ = f1(U) ∆1 = E � f ′1(U) prediction, delta 1

5 L = 1
2
‖Y − Ŷ ‖2F E = Ŷ − Y loss, negative error

6 - 1 NA, multiplicative identity

The parameter update for weight matrix A is then

A = A−X
ᵀ

∆0 η (A.39)

i.e., move in the direction opposite the gradient (X
ᵀ
∆0) moderated by the learning rate η.

733

A.3 Gradient Descent

One the simplest algorithms for unconstrained optimization is Gradient Descent (GD). Imagine you are in

a mountain range at some point x with elevation f(x). Your goal is the find the valley (or ideally the

lowest valley). Look around (assume you cannot see very far) and determine the direction and magnitude

of steepest ascent. This is the gradient.

Using the objective/cost function from the beginning of the chapter,

minimize f(x) = (x1 − 4)2 + (x2 − 2)2

the gradient of the objective function ∇f(x) is the vector formed by the partial derivatives
[
∂f
∂x1

, ∂f∂x2

]
∇f(x) = [2(x1 − 4), 2(x2 − 2)]

In its most elemental form the algorithm simply moves in the direction that is opposite to the gradient

−∇f(x) and a distance determined by the magnitude of the gradient. Unfortunately, at some points in

the search space the magnitude of the gradient may be very large and moving that distance may result

in divergence (you keep getting farther away from the valley). One solution is to temper the gradient by

multiplying it by a learning rate η (tunable hyper-parameter typically smaller than one). Using a tuned

learning rate, update your current location x as follows:

x = x − η∇f(x) GD Update Equation (A.40)

Repeat this process until a stopping rule signals sufficient convergence. Examples of stopping rules include

stop when the change to x or f(x) becomes small or after the objective function has increased for too many

consecutive iterations/steps.

A.3.1 Line Search

Notice that the gradient is re-evaluated at every iteration/step and that it is unclear how far to move in the

direction opposite the gradient (hence the need/annoyance of tuning the learning rate). Adding a line search

may help with these issues. The idea is that the gradient gives you a direction to follow that may work

well for awhile. (Note, line search may be used with other optimization algorithms, such as Quasi-Newton

methods.) Using a line search, you may move in that direction (straight line) so long as it productive. The

line search induces a one dimensional function that reproduces the value of the original objective function

along the given line.

One approach is to move along the line so long as there is sufficient decrease. Once this stops, re-evaluate

the gradient and start another major iteration. An example of such an algorithm is the Wolfe Line Search.

An alternative when you are confident of the extent of line search (upper limit on the range to be considered)

is to use Golden Section Search that iteratively narrows down the search from the original extent.

The problem of learning rate is still there to some degree as the line search algorithms have step size as

hyper-parameter. Of course, more complex variants may utilize adaptive learning rates or step sizes.

734

Wolfe Line Search

The parent optimization algorithm will choose a search direction p that is moving downward, while the

gradient at the current location x will be in the direction of steepest increase. The basic idea is to in-

crease/advance the displacement in the search direction α, so long as it is productive to do so. In general a

line search algorithm may work in two phases: a bracketing phases and a selection phase. The bracketing

phase finds an interval of acceptable step lengths that statisfy certain conditions, e.g., Wolfe condition 1 for

an upper bound and Wolfe condition 2 for a lower bound. The selection phase looks for a reasonably good

solution within the interval. As line search is called frequently, one typically wants to use minimal effort in

phase 2. Also, the next iteration of the parent algorithm may in a way undo some of the work done in the

last line search. One simple selection algorithm is bisection search, although interpolative search may be

used [136].

The Wolfe condition 1 (or Armijo condition) will be satisfied when the function at new point f(x + αp)

is sufficiently less than its starting value (α = 0).

f(x + αp) ≤ f(x) + c1 α∇f(x) · p (A.41)

To see the Sufficient Decrease Condition (SDC) clearly, one may consider gradient descent, which will set

the search direction p = −∇f(x), so that the above equation becomes the following:

f(x + αp) ≤ f(x) − c1 α ‖∇f(x)‖2 (A.42)

Although various optimization algorithms deflect away from the direction of steepest descent, the dot

product ∇f(x) · p will be negative. For small values of c1 (e.g., .0001), this condition will allow the new

point (due to the line search) to be on a line with small negative slope emanating from (α = 0, f(x)).

The Wolfe condition 2 has Weak and Strong versions. The goal of the Weak version is to have the dot

product of the gradient and search direction become less negative.

∇f(x + αp) · p ≥ c2∇f(x) · p (A.43)

The idea of this Curvature Condition (CC) is that as one approaches a minimal point, this dot product will

approach zero from negative values. One use of the CC condition is to make sure to advance/increase α

while the decent is still very steep, i.e., some fraction (e.g., c2 = .9) of the original rate of descent.

The following method returns whether Wolfe condition 1, the Sufficient Decrease Condition (SDC) is

satisfied.

1 @param fx the functional value of the original point

2 @param fy the functional value of the new point y = x + p * a

3 @param a the displacement in the search direction

4 @param gxp the dot product of the gradient vector g(x) and the search vector p

5

6 inline def wolfe1 (fx: Double , fy: Double , a: Double , gxp: Double): Boolean =

7 fy <= fx + c1 * a * gxp

The next method returns whether Wolfe condition 2, the Curvature Condition (CC) is satisfied.

1 @param p the search direction vector

2 @param gy the gradient at new point y = x + p * a

3 @param gxp the dot product of the gradient vector g(x) and the search vector p

4

735

5 inline def wolfe2 (p: VectorD , gy: VectorD , gxp: Double): Boolean =

6 (gy dot p) >= c2 * gxp

A.3.2 Application to Data Science

The gradient descent algorithm may be applied to data science, simply by defining an appropriate objec-

tive/cost function. Since the goal is often to minimize the sum of squared errors sse or some similar Quality

of Fit (QoF) measure, it may be used for the objective function. For a Perceptron, the equation has been

developed for L(b)

L(b) =
1

2
(y − f(Xb) · (y − f(Xb)

in which case the gradient is

∇L(b) = −X
ᵀ

[f ′(Xb) ε] (A.44)

where ε = y − f(Xb).

For each epoch, the parameter vector b is updated according to the GD Update Equation.

b = b − η∇L(b) (A.45)

A.3.3 Exercises

1. Write a ScalaTion program to solve the example problem given above.

1 // function to optimize

2 def f(x: VectorD): Double = (x(0) - 4)~ˆ2 + (x(1) - 2)~ˆ2

3

4 // gradient of objective function

5 def grad (x: VectorD): VectorD = VectorD (?, ?)

6

7 val x = new VectorD (2) // vector to optimize

8 val eta = 0.1 // learning rate

9

10 for k <- 1 to MAX_IT do

11 x -= grad (x) * eta

12 println (s"$k: x = $x, f(x) = ${f(x)}, lg(x) = ${lg(x)}, p = $p, l = $l")

13 end for

2. Add code to collect the trajectory of vector x in a matrix z and plot the two columns in the z matrix.

1 val z = new MatrixD (MAX_IT , 2) // store x’s trajectory

2 z(k-1) = x.copy

3 new Plot (z(?, 0), z(?, 1)

3. The strong Wolfe condition 2 is the following:

|∇f(x + αp) · p| ≤ c2 |∇f(x) · p| (A.46)

How does it differ from the weak condition and when is it useful?

736

A.4 Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is a foundational algorithm for Data Science. In fits in the class of

stochastic optimization algorithms since the objective/loss function is noisy, as it is based on functions of

randomly selected mini-batches of data instances. Such algorithms need to be robust and need not be the

best optimization algorithm in a deterministic setting.

Several improved variants Stochastic Gradient Descent are incorporated into popular neural network

software packages.

The GradientDescent NoLS class provides methods to optimize a loss/objective function f that may be

stochastic. It tries to find a value for vector x that minimizes the loss function. In the context of Neural

Networks, x may be thought of the parameter vector (weights and biases). This optimizer implements a

Gradient Descent with no contained Line-Search optimizer.

This algorithm is rather simple: (1) Compute the gradient vector g using the grad function. (2) Multiply

it by the step-size/learning rate α and subtract this from the previous value of the parameter vector x.

g = ∇f(x) gradient (A.47)

x −= α[g] parameter update (A.48)

Note, the exact relationship between the learning rate α and the hyper-parameter eta (η) is code dependent.

Of course the core logic shown above must be embedded in an iterative optimization algorithm (see the

solve method in the GradientDescent NoLS class.

1 @param f the vector -to -scalar (V2S) objective/loss function

2 @param grad the vector -to -vector (V2V) gradient function , grad f

3 @param hparam the hyper -parameters

4

5 class GradientDescent_NoLS (f: FunctionV2S , grad: FunctionV2V ,

6 hparam: HyperParameter = hp)

7 extends Minimize

8 with StoppingRule (hp("upLimit").toInt): // limit on increasing loss

The solve method iterates over several time-steps or learning epochs. It computes the gradient, multiplies

it by learning rate α and subtracts this product from the vector x. A stopping rule is checked and if progress

is stalled, the algorithm terminates early. This method returns the best solution found for the loss function

f and the vector x.

1 @param x0 he starting point

2 @param α the step -size/learning rate

3

4 def solve (x0: VectorD , α: Double = eta): FuncVec =

5 var x = x0 // start parameters at initial guess

6 var f_x = -0.0 // loss function , value indefined

7 var best = (f_x , x) // start with best = initial

8

9 var (go, it) = (true , 1)

10 cfor (go && it <= MAX_IT , it += 1) { // iterate over each epoch/timestep

11 val g = grad (x) // get gradient loss function

12 x -= g * α // update parameters x

13 f_x = f(x) // compute new loss function value

14

737

15 best = stopWhen (f_x , x)

16 if best._2 != null then go = false // early termination , return best

17 } // cfor

18 if go then getBest // best solution found

19 else best

20 end solve

A.4.1 Using SGD to Train Neural Networks

For simplicity, this discussion will focus on the Perceptron and NeuralNet 2L classes, starting with the loss

function L(b),

L(b) =
1

2
(y − f(Xb)) · (y − f(Xb))

an estimate of the gradient is computed for a limited number of instances (a mini-batch). Several non-

overlapping mini-batches are created simultaneous by taking a random permutation of the row indices of

data/input matrix X. The permutation is split into nB mini-batches. Letting iB be the indices for the ith

mini-batch and X[iB] be the projection of matrix X onto the rows in iB , the estimate for the gradient is

simply

∇L(b) = −X[iB]
ᵀ

[f ′(X[iB]b) ε] (A.49)

where ε = y[iB]− f(X[iB]b). Using the definition of the delta vector

δ = − f ′(X[iB]b) ε

the gradient becomes

∇L(b) = X[iB]
ᵀ

δ

For each epoch, nB mini-batches are created. For each mini-batch, the parameter vector b is updated

according to this equation, using that mini-batch’s estimate for the gradient.

b = b − η∇L(b) = b − X[iB]
ᵀ

δη (A.50)

At a high level, the optimize2 method for the Optimize SGD class shown in the NeuralNet 2L section

works as follows:

1. The outermost loop makes many complete passes through the training set portion of the dataset. Each

pass may be thought of a learning epoch.

2. The inner loop will iterate through all the mini-batches, updating the parameters (weights and biases)

based on delta corrections (combination of errors and slopes).

3. The updateWeight method simply encodes the boxed equations from the Perceptron section: com-

puting predicted output, the negative of the error vector, the delta vector, and a mini-batch size

normalized learning rate, and finally, returning the parameter vector b update.

738

4. The last part of the outer loop computes the new loss function and applies a stopping rule for early

termination. The parameter settings with the lowest loss function are recorded and returned along

with number of epochs.

5. The final line of optimize simply returns the value of the loss function and number epochs used by

the algorithm, when there is no early termination.

The optimize3 and optimize methods in the Optimize SGD class are for NeuralNet 3L and NeuralNet XL,

respectively.

739

A.5 Stochastic Gradient Descent with Momentum

To better handle situations where the gradient becomes small or erratic, previous values of the gradient can

be weighed in with the current gradient. Their contributions can be exponentially decayed, so that recent

gradients have greater influence. The decay rate β ∈ [0, 1] indicates how fast prior gradients are discounted.

If β = 0, momentum is not used. In ScalaTion, the hyper-parameter beta (β) is set to 0.9, but can easily

be changed.

These contributions may be collected via the gradient-based parameter updates to the parameter vector x

[55]. First the gradient vector g is computed using the grad function. The gradient-based momentum vector

p is calculated as the weighted average of the current gradient and the previous momentum. Finally, the

parameter vector x is updated as a weighted average of the current gradient and the momentum, moderated

by the learning rate α > 0 (derived from the hyper-parameter eta (η) in some code).

g = ∇f(x) gradient (A.51)

p = (1− β) g + β p momentum (A.52)

x −= α[(1− ν) g + ν p] parameter update (A.53)

If β is zero, that algorithm behaves the same as Stochastic Gradient Descent. At the other extreme, if β is

1, there is no decay and all previous gradients will weigh in, so eventually the new gradient value will have

little impact and the algorithm will become oblivious to its local environment.

The third hyper-parameter ν determines how much weight to place on the current gradient versus the

momentum when updating the parameter vector x. There are two special cases to consider.

1. When ν = 0, the parameter update becomes

x −= α[g] parameter update (A.54)

so the algorithm becomes Stochastic Gradient Descent.

2. When ν = 1, the parameter update becomes

x −= α[p] parameter update (A.55)

so the algorithm becomes Stochastic Gradient Descent using only Momentum.

See [55] for a more nuanced discussion on the variety of stochastic gradient descent algorithms that use

momentum.

1 @param f the vector -to -scalar (V2S) objective/loss function

2 @param grad the vector -to -vector (V2V) gradient function , grad f

3 @param hparam the hyper -parameters

4

5 class GradientDescent_Mo (f: FunctionV2S , grad: FunctionV2V ,

6 hparam: HyperParameter = hp)

7 extends Minimize

8 with StoppingRule (hparam("upLimit").toInt): // limit on increasing loss

740

The solve method iterates over several time-steps or learning epochs. It computes the gradient and

uses it to recompute the momentum as the weighted average of this gradient and the previous momentum.

The update to the vector x is another weighted average of this gradient and the updated momentum. This

update is then multiplied by learning rate α and subtracted from the vector x. A stopping rule is checked

and if progress is stalled, the algorithm terminates early. This method returns the best solution found for

the loss function f and the vector x.

1 @param x0 the starting point

2 @param α the step -size/learning rate

3

4 def solve (x0: VectorD , α: Double = eta): FuncVec =

5 var p = new VectorD (x0.dim) // momentum -based aggregated gradient

6 var x = x0 // start parameters at initial guess

7 var f_x = -0.0 // loss function , value indefined

8 var best = (f_x , x) // start with best = initial

9

10 var (go, it) = (true , 1)

11 cfor (go && t <= MAX_IT , it += 1) { // iterate over each epoch/timestep

12 val g = grad (x) // get gradient of loss function

13 p = g * (1 - β) + p * β // update momentum -based agg. gradient

14 x -= (g * (1 - ν) + p * ν) * α // update parameters

15 f_x = f(x) // compute new loss function value

16

17 best = stopWhen (f_x , x)

18 if best._2 != null then go = false // early termination , return best

19 } // cfor

20 if go then getBest // best solution found

21 else best

22 end solve

A.5.1 Using SGDM to Train Neural Networks

To utilize this algorithm for training Neural Networks (e.g., for NeuralNet 2L) the loss function L(b) and

its gradient ∇L(b) are required.

L(b) = ‖y − f(XB)‖2F (A.56)

∇L(b) = X[iB]
ᵀ

δ (A.57)

where δ = f ′(XB) � ε.

The Optimizer SGDM class has three optimization methods supporting Stochastic Gradient Descent with

Momentum. The optimize2 method is for NeuralNet 2L. It takes the input x and output y matrices, the

initial guess for parameters bb, the initial learning rate eta, and the activation function ff.

1 @param x the m-by-n input matrix (training data consisting of m input vectors)

2 @param y the m-by-ny output matrix (training data consisting of m output vectors)

3 @param bb the array of parameters (weights & biases) between every two adjacent layers

4 @param eta the initial learning/convergence rate

5 @param ff the array of activation function family for every two adjacent layers

6

7 def optimize2 (x: MatrixD , y: MatrixD ,

8 bb: NetParams , eta: Double , ff: Array [AFF]): (Double , Int) =

741

The method initializes several constants and variables, mainly related to the hyper-parameters. The

permutation generator is use to create random mini-batches.

1 val permGen = permGenerator (x.dim) // permutation vector generator

2 val b = bb(0) // net -params: weights and biases

3 val f = ff(0) // activation function

4 val bSize = min (hp("bSize").toInt , x.dim) // batch size

5 val maxEpochs = hp("maxEpochs").toInt // maximum number of epochs

6 val upLimit = hp("upLimit").toInt // limit on increasing lose

7 val β = hp("beta").toDouble // momentum hyper -parameter

8 val ν = hp("nu").toDouble // 0 => SGD , 1 => (normalized) SHB

9 var η = eta // set initial learning rate

10 val nB = x.dim / bSize // the number of batches

11 var p = new MatrixD (b.w.dim , b.w.dim2) // momentum matrix

The code below shows the double loop (over epoch and ib). The parameter vector b is updated for each

batch by calling updateWeight. The rest of the outer loop simply looks for early termination based on a

stopping rule and records the best solution for b found so far. The square of the Frobenius norm is used to

compute the sse over all outputs. The final part of the outer loop, increases the learning rate η at the end of

each adjustment period (as the algorithm get closer to an optimal solution, gradients shrink and may slow

down the algorithm).

1 var sse_best_ = -0.0

2 var (go, epoch) = (true , 1)

3 cfor (go && epoch <= maxEpochs , epoch += 1) { // iterate over each epoch

4 val batches = permGen.igen.chop (nB) // permute & split into batches

5

6 for ib <- batches do b -= updateWeight (x(ib), y(ib)) // iteratively update b

7

8 val sse = (y - f.fM (b * x)).normFSq // recompute sum of squared errors

9 collectLoss (sse) // collect loss per epoch

10 val (b_best , sse_best) = stopWhen (Array (b), sse)

11 if b_best != null then

12 b.set (b_best (0))

13 sse_best_ = sse_best // save best in sse_best_

14 go = false

15 else

16 if epoch % ADJUST_PERIOD == 0 then η *= ADJUST_FACTOR // adjust learn rate

17 end if

18 } // cfor

The core of algorithm is the updateWeight method that (1) computes the predicted outputs, (2) computes

the error matrix (actually minus the error matrix for convenience), (3) computes the delta correction matrix

as the Hadamard product of the slope matrix and the error matrix, (4) adjusts the learning rate by dividing

by the batch size, (5) computes the change to parameters ignoring momentum from previous calls, (6) adds

some of the momentum to this parameter change, and (7) returns the update matrix.

1 @param x the input matrix for the current batch

2 @param y the output matrix for the current batch

3

4 inline def updateWeight (x: MatrixD , y: MatrixD): MatrixD =

5 val α = η / x.dim // eta over the current batch size

6 val yp = f.fM (b * x) // prediction: Yp = f(XB)

7 val ε = yp - y // negative of error matrix

742

8 val δ = f.dM (yp) � ε // delta matrix for y

9 val g = x.T * δ // gradient matrix

10

11 p = g * (1 - β) + p * β // update momentum -based aggregated gradient

12 (g * (1 - ν) + p * ν) * α // parameter update amount (to be subtracted)

13 end updateWeight

The final part of the optimize2 method returns the value of the loss function and the number of iterations

when there is no early termination.

1 if go then ((y - f.fM (b * x)).normFSq , maxEpochs) // return sse and # epochs

2 else (sse_best_ , epoch - upLimit)

3 end optimize2

Note: the ScalaTion code also uses the � operator for Hadamard product (the alternative is *∼) and a

T-like Unicode symbol that looks similar to T for transpose.

The optimize3 and optimize methods in the Optimize SGDM class are for NeuralNet 3L and NeuralNet XL,

respectively.

A.5.2 Exercises

1. Plot the loss function versus the time-step/epoch for the AutoMPG for the NeuralNet 2L, NeuralNet 3L

and NeuralNet XL, comparing the SGD and SGDM.

Hint: see the MonitorLoss trait in the modeling package.

2. Repeat the above exercise on a larger dataset.

743

A.6 SGD with ADAptive Moment Estimation

The ADAptive Moment estimation (Adam) Optimizer extends the optimizers that use first moments of

momentum (means) of the gradients by including second moments (uncentered variances) [96]. The algorithm

computes the gradient g and the momentum p just like in the previous section.

g = ∇f(x) gradient (A.58)

p = (1− β1) g + β1 p momentum mean (A.59)

v = (1− β2) g2 + β2 v momentum uncentered variance (A.60)

p̂ = p/(1− βt1) corrected mean (A.61)

v̂ = v/(1− βt2) corrected uncentered variance (A.62)

x −= α

[
p̂√

v̂ + eps

]
parameter update (A.63)

The new element is to include the uncentered variance (second raw moment) v into the calculation. It is

included to normalize the gradient, dividing it by
√

v̂ (analog of dividing a random variable by its standard

deviation). A very small value eps is added to it to avoid division by zero.

The calculated momentum mean p and momentum uncentered variance v are not used directly. This is

because these two vectors are initialized to zero, so they will be under-estimates. These values are inflated

by dividing them (1− βt1) and (1− βt2), respectively. For example, if β1 = 0.9 and t = 1, p will be inflated

by a factor of 10. Raising β1 (same for β2) to the tth power reduces this effect as the time-steps increase.

The GradientDescent Adam class provides an implementation of this algorithm.

1 @param f the vector -to -scalar (V2S) objective/loss function

2 @param grad the vector -to -vector (V2V) gradient function , grad f

3 @param hparam the hyper -parameters

4

5 class GradientDescent_Adam (f: FunctionV2S , grad: FunctionV2V ,

6 hparam: HyperParameter = hp)

7 extends Minimize

8 with StoppingRule (hparam("upLimit").toInt): // limit on increasing loss

The solve method iteratively applies the above logic looking for a minimal solution. Again the code will

terminate early due to lack of progress.

1 @param x0 the starting point

2 @param α the step -size/learning rate

3

4 def solve (x0: VectorD , α: Double = eta): FuncVec =

5 var p = new VectorD (x0.dim) // first moment of momentum

6 var v = new VectorD (x0.dim) // second raw moment of momentum

7 var ph = VectorD.nullv // bias -corrected 1st moment

8 var vh = VectorD.nullv // bias -corrected 2nd raw moment

9 var x = x0 // start at initial guess

10 var f_x = -0.0 // loss function , value undefined

11 var best = (f_x , x) // start with best = initial

12

13 var (go, it) = (true , 1)

14 cfor (go && it <= MAX_IT , it += 1) { // iterate over epochs/timesteps

744

15 val g = grad (x) // get gradient of loss function

16 p = p * β1 + g * (1 - β1) // update biased 1st moment

17 v = v * β2 + g~ˆ2 * (1 - β2) // update biased 2nd raw moment

18 ph = p / (1 - β1~ˆit) // compute bias -corrected 1st moment

19 vh = v / (1 - β2~ˆit) // compute bias -corrected 2nd raw mo.

20 // x -= ph * α // update parameters (1st moment)

21 x -= (ph / (vh~ˆ0.5 + EPS)) * α // update parameters (both moments)

22 f_x = f(x) // compute new loss function value

23

24 best = stopWhen (f_x , x)

25 if best._2 != null then go = false // early termination , return best

26 } // cfor

27 if go then getBest // best solution found

28 else best

29 end solve

A.6.1 Exercises

1. Apply the Adam Optimizer to NeuralNet 2L, NeuralNet 3L, and NeuralNet XL, i.e., finish the coding

of Optimizer Adam.

2. Test reducing the inflation of p and v by starting the time t at a larger value than 1 and discuss the

effects, if any.

3. Report on the tuning of the hyper-parameters eta (η), beta (β1) and beta2 (β2).

1 object Minimize

2

3 /** hyper -parameters for tuning the optimization algorithms - user tuning

4 */

5 val hp = new HyperParameter

6 hp += ("eta", 0.5, 0.5) // initial learning/convergence rate

7 // hp += ("eta", 0.01, 0.01) // initial learning/convergence rate

8 hp += ("maxEpochs", 400, 400) // maximum number of epochs/iterations

9 hp += ("upLimit", 4, 4) // up-limit for stopping rule

10 hp += ("eps", 1E-8, 1E-8) // epilson , value close to zero

11 hp += ("beta", 0.9, 0.9) // momentum decay hyper -parameter

12 hp += ("beta2", 0.999, 0.999) // second momentum decay hyper -parameter

13 hp += ("nu", 0.9, 0.9) // 0 => SGD , 1 => (normalized) SHB

14

15 end Minimize

4. Compare the loss curves, Quality of Fit (QoF), and run-times of Optimizer SGD, Optimizer SGDM, and

Optimizer Adam in ScalaTion, analogously in Keras and PyTorch.

745

A.7 Coordinate Descent

Rather than moving in the opposite direction of the gradient, the coordinate descent algorithm picks a

coordinate direction and tries moving forward (1) or backward (-1) parallel to the coordinate axis. The next

coordinate to try may be picked by a selection rule or cyclically as done by the code below.

Upon selecting a direction, a Line Search algorithm is applied to move down in that direction. The

code can perform an exact (e.g., GoldenSectionLS) or inexact (e.g., WolfeLS line search. The Line Search

algorithm looks in direction dir and returns the distance to move in that direction.

1 @param x the current point

2 @param dir the direction to move in

3 @param step the initial step size

4

5 def lineSearch (x: VectorD , dir: VectorD , step: Double = STEP): Double =

6 def f_1D (z: Double): Double = f(x + dir * z) // create a 1D function

7 val ls = if exactLS then new GoldenSectionLS (f_1D) // Golden Section line search

8 else new WolfeLS (f_1D , .0001, .1) // Wolfe LS (c1 = .0001, c2 = .1)

9 ls.search (step) // perform a line search

10 end lineSearch

The solve method cyclically picks a coordinate axis and tries moving in both the forward and backward

directions. The algorithm terminates when the distance moved on the last step drops below a tolerance or

when a maximum MAX IT number of iterations is exceeded.

1 @param x0 the starting point

2 @param step the initial step size

3 @param toler the tolerance

4

5 def solve (x0: VectorD , step: Double = STEP , toler: Double = EPSILON): FuncVec =

6 val n = x0.dim

7 var x = x0 // current point

8 var fx = f(x) // obj. function at current point

9 var y = VectorD.nullv // next point

10 var fy = 0.0 // obj. function at next point

11 val dir = new VectorD (n) // set dir. by cycling coordinates

12 var dist = 1.0 // distance current to next point

13 var down = true // moving down flag

14

15 var it = 1

16 cfor (it <= MAX_IT && down && dist > toler , it += 1) {

17

18 for fb <- 1 to -1 by -2; j <- 0 until n do // cycle coordinates get direction

19

20 if j > 0 then dir(j-1) = 0.0

21 dir(j) = fb // set dir: forward/backward by fb

22 y = x + dir * lineSearch (x, dir , step) // determine the next point

23 fy = f(y) // objective value for next point

24

25 debug ("solve", s"it = it, y =y, fy = fy, dir =dir")

26

27 dist = (x - y).normSq // distance current to next point

28 down = fy < fx // still moving down?

29 if down then { x = y; fx = fy } // make next point current point

30 end for

746

31 } // cfor

32 (fx , x) // return functional value and point

33 end solve

747

A.8 Conjugate Gradient

The Conjugate Gradient (or Conjugarte Gradient Descent) algorithm like SGDM combines prior gradient

(or search direction) information in with the current gradient (or search direction).

gr(t) = ∇f(x(t)) (A.64)

dir(t) = − gr(t) + β dir(t−1) (A.65)

The new search direction dir(t) is opposite the current gradient gr(t) plus a correction term β dir(t−1)

proportional to the previous direction. This proportion β for the Fletcher-Reeves (FR) formula is the ratio

of dot products of the search directions.

β = − dir(t) · dir(t)

dir(t−1) · dir(t−1)
(A.66)

For the Polak-Ribiere (PR) formula β is the ratio of dot products where the numerator takes the difference

between subsequent search directions.

β = −
dir(t) ·

[
dir(t) − dir(t−1)

]
dir(t−1) · dir(t−1)

(A.67)

ScalaTion uses the PR formula (adding EPSILON and taking a max).

1 @param sd1 the search direction at the previous point

2 @param sd2 the search direction at the current point

3

4 private inline def beta (sd1: VectorD , sd2: VectorD): Double =

5 max (0.0, (sd2 dot (sd2 - sd1)) / (sd1.normSq + EPSILON)) // PR -CG (Polak -Ribiere)

The ConjugateGradient class supports finding minimal values for an objective/loss function f . It also

supports having constraints and utilizes line-search.

1 @param f the objective function/loss to be minimized

2 @param g the constraint function to be satisfied , if any

3 @param ineq whether the constraint function must satisfy inequality or equality

4 @param exactLS whether to use exact (e.g., ‘GoldenLS ‘)

5 or inexact (e.g., ‘WolfeLS ‘) Line Search

6

7 class ConjugateGradient (f: FunctionV2S , g: FunctionV2S = null ,

8 ineq: Boolean = true , exactLS: Boolean = true)

9 extends Minimizer:

The solve method provides the iterative search engine and is set up for deterministic functions, but

could be adapted to a stochastic setting.

1 @param x0 the starting point

2 @param step the initial step -size

3 @param toler the tolerance

4

5 def solve (x0: VectorD , step: Double = STEP , toler: Double = EPSILON): FuncVec =

6 var x = x0 // current point

7 var f_x = fg(x) // objective function at current point

8 var y = VectorD.nullv // next point

748

9 var f_y = 0.0 // objective function at next point

10 var dir = - grad (fg , x) // initial direction is -gradient

11 var dir0 = VectorD.nullv // keep the previous direction

12 var dist = 1.0 // distance current to next point

13 var down = true // moving down flag

14

15 for t <- 1 to MAX_IT if down && dist > toler && dir.normSq > toler do

16 y = x + dir * lineSearch (x, dir , step) // determine the next point

17 f_y = fg(y) // obj. function value for next point

18 dir0 = dir // save the current direction

19 dir = - grad (fg , y) // next search dir. via Gradient Desc.

20 if t > 1 then dir += dir0 * beta (dir0 , dir) // modify search direction using PR-CG

21

22 dist = (x - y).normSq // calc distance current to next point

23 down = f_y < f_x // still moving down?

24 if down then { x = y; f_x = f_y } // make next point , the current point

25 end for

26 (f_x , x) // return functional value & point

27 end solve

When formulas are available for the partial derivatives making up the gradient, they should be used since

they are faster and more accurate than numerical methods.

1 @param partials the vector of partial derivative functions

2

3 def setDerivatives (partials: FunctionV2V): Unit =

4 if g != null then flaw ("setDerivatives", "only works for unconstrained problems")

5 gr = partials // use given functions for partial derivatives

6 end setDerivatives

ScalaTion provides Gradient Descent and Conjugate Gradient Descent algorithms in two versions, one

with Line Search (LS) and one without (NoLS) as shown in Table A.8.

Table A.8: Gradient Descent and Conjugate Gradient Algorithms

Algorithm Class LS Class NoLS Description

Gradient Descent GradientDescent GradientDescent NoLS move opposite the gradient

Conjugate Gradient ConjugateGradient ConjugateGradient NoLS gradient with composite of previuos ones

A.8.1 Exercises

1. Adapt the above code for a stochastic setting.

2. Report on the literature concerning the use of or influence of the Conjugate Gradient algorithm in

Machine Learning.

3. Consult the literature on the effectiveness of the Conjugate Gradient algorithm in the presence of

constraints.

749

A.9 Quasi-Newton Methods

A.9.1 Newton-Raphson Method

In one dimension, the Newton (or Newton-Raphson) Method simply optimizes (minimizes) a function f by

moving in the direction opposite the gradient (first derivative) divided by the Hessian (second derivative).

The step size is moderated by the learning rate η (eta).

xi+1 = xi − η
∂xf

∂2
xf

(A.68)

The NewtonRaphson class provides solve methods for finding roots (places where the function evaluates

to zero) and a method for finding optimal values. The optimize method finds a local optima close to the

starting point/guess x0. It applies the logic of the above equation and numerically approximates the first

and second derivatives.

1 @param x0 the starting point/guess

2

3 def optimize (x0: Double): (Double , Double) =

4 var x = x0 // current point

5 var f_x = f(x) // function value at x

6 var df_x = 1.0 // first derivative value at x

7

8 var it = 1

9 cfor (it < MAX_IT && abs (df_x) > EPS , it += 1) {

10 df_x = maxmag (D (f)(x), EPS) // make sure 1st der. isn’t too small

11 d2f_x = maxmag (DD (f)(x), EPS) // make sure 2nd der. isn’t too small

12 x -= df_x / d2f_x * eta // subtract the ratio

13 f_x = f(x)

14 } // cfor

15

16 printf ("optimal solution x = %10.5f, f = %10.5f\n", x, f(x))

17 (f_x , x)

18 end optimize

A.9.2 Newton Method

The same idea can be applied when f is takes vectors rather than scalars, i.e., f : Rn → R, although the

details are much more involved.

xi+1 = xi − η ∂xf [∂2
xf]−1 (A.69)

Now ∂xf is a gradient vector and ∂2
xf is a Hessian matrix. As division is not supported, matrix inversion is

used. Using alternate notion, it can be written as follows:

xi+1 = xi − η∇xf [Hxf]−1 (A.70)

This represents a vector-matrix multiplication, although it can be easily switched to a matrix-vector multi-

plication since the Hessian matrix is symmetric (and switching from row to column vectors for the gradient).

xi+1 = xi − η [Hxf]−1∇xf (A.71)

750

One may view the multiplication by the Hessian as modifying (or deflecting) the gradient due to the function’s

curvature. Define this to be the direction vector d.

d = [Hxf]−1∇xf (A.72)

Rather than taking the inverse, it will be faster and more numerically stable to used matrix factorization

(as was done for regression).

[Hxf] d = ∇xf (A.73)

The solve method in the Newton class finds local optima close to the starting point/guess x0. This version

numerically approximates the first and second derivatives. It uses factorization (Fac LU) to solve for the

direction vector d.

1 @param x0 the starting point/guess

2 @param α the current learning rate

3

4 def solve (x0: VectorD), α: Double = eta: FuncVec =

5 var x = x0 // current point

6 var f_x = f(x) // function value at x

7 var df_x = VectorD.one (x.dim) // initial dummy value for gradient

8

9 var it = 1 // iteration counter

10 cfor (it < MAX_IT && df_x.norm > EPS , it += 1) {

11 df_x = ∇ (f, x) // compute gradient , numerically

12 val d2f_x = H (f, x) // compute Hessian , numerically

13

14 val d = if gradDesc then df_x // direction = gradient

15 // else Fac_LU.inverse (d2f_x)() * df_x // deflected via inverse Hessian

16 else Fac_LU.solve_ (d2f_x , df_x) // deflected via factorized Hessian

17

18 x -= d * α // subtract direction * α

19 f_x = f(x) // functional value

20 } // cfor

21

22 println (s"optimal solution x = §x, f = §{f(x)}")
23 (f_x , x)

24 end solve

Cholesky and QR factorizations may be used as well.

A.9.3 BFGS Method

The idea of Qausi-Newton methods is to replace the cubic time complexity of the Newton update for

computing the inverse Hessian with a quadratic complexity approximation. The quasi methods may require

more iterations, but each iteration is faster. In addition, quasi Newton methods may also work better when

the Hessian is a nearly singular matrix.

Address: f must be twice differential and H must be positive definite

Letting vector s be the latest change in position (i.e., step) and y be the latest change in the gradient,

the aHi inc method computes the change to the approximate Hessian inverse H−1 (aHi) matrix using the

751

Sherman–Morrison formula (see https://mdav.ece.gatech.edu/ece-6270-spring2021/notes/09-bfgs.

pdf).

(s⊗ s) (sy + y · ay)

s2
y

− ay ⊗ s + s⊗ ay

sy
(A.74)

where scalar sy = s · y and vector ay = H−1y. Recall that ⊗ is the symbol for outer product (takes two

vectors and produces a rank 2 matrix). The corresponding ScalaTion code is shown below.

1 @param aHi the current value of the approximate Hessian inverse (aHi)

2 @param s the step vector (next point - current point)

3 @param y the difference in the gradients (next - current)

4

5 def aHi_inc (aHi: MatrixD , s: VectorD , y: VectorD): MatrixD =

6 var sy = maxmag (s dot y, eps)

7 val ay = aHi * y

8 (⊗ (s, s) * (sy + (y dot ay))) / sy~ˆ2 - (⊗ (ay , s) + ⊗ (s, ay)) / sy

9 end aHi_inc

Using this update method, the inverse Hessian is never computed, only efficiently approximated. This

particular approximation yield the Broyden [23], Fletcher [48], Goldfarb [56], Shanno [170] (BFGS) algorithm.

See [141] for a historical review of second-order optimization algorithms.

1 @param x0 the starting point/guess

2 @param α the current learning rate

3

4 def solve (x0: VectorD , α: Double = eta): FuncVec =

5 var x = x0 // current point

6 var f_x = f(x) // function value at x

7 var df_x = ∇ (f, x) // compute gradient , numerically

8 var aHi = MatrixD.eye (x.dim , x.dim) // approximate Hessian inverse

9 // start with identity matrix

10 var it = 1 // iteration counter

11 cfor (it < MAX_IT && df_x.norm > EPS , it += 1) {

12 val d = if gradDesc then df_x // direction = gradient

13 else aHi * df_x // use approximate Hessian inverse

14

15 val s = d * -α // compute step vector

16 x += s // update new x

17 val df_x_ = df_x // save previous gradient

18 df_x = ∇ (f, x) // compute new gradient , numerically

19 aHi += aHi_inc (aHi , s, df_x - df_x_) // update approximate Hessian inverse

20 f_x = f(x) // functional value

21 } // cfor

22

23 println (s"optimal solution x = $x, f = ${f(x)}")

24 (f_x , x)

25 end solve

A.9.4 Limited Memory-BFGS Method

The Limited Memory BFGS (L-BFGS) Method [112] does not maintain an approximate Hessian inverse,

but rather maintains the last m s and y vectors. These are applied using two loops as shown below. The

findDir method computes the deflected gradient by passing in the current gradient and using the last m

752

https://mdav.ece.gatech.edu/ece-6270-spring2021/notes/09-bfgs.pdf
https://mdav.ece.gatech.edu/ece-6270-spring2021/notes/09-bfgs.pdf

steps or changes in x-position vectors s and changes in gradient vectors y. There are stored using the Ring

class that efficiently maintains the last cap = m additions.

1 @param g the current gradient

2 @param k the k-th iteration

3

4 def findDir (g: VectorD , k: Int): VectorD =

5 var q = g // start with current gradient

6 for i <- k-1 to k-m by -1 do

7 a(i) = (s(i) dot q) * p(i)

8 q -= y(i) * a(i)

9 val ga = (s(k-1) dot y(k-1)) / y(k-1).normSq // gamma

10 var z = q * ga

11 for i <- k-m until k do

12 val b = (y(i) dot z) * p(i)

13 z += s(i) * (a(i) - b)

14 z // return direction = deflected grad.

15 end findDir

The solve method for L-BFGS only needs slight modification from the BFGS algorithm.

1 @param x0 the starting point/guess

2 @param α the current learning rate

3

4 def solve (x0: VectorD , α: Double = eta): FuncVec =

5 var x = x0 // current point

6 var f_x = f(x) // function value at x

7 var df_x = ∇ (f, x) // compute gradient , numerically

8

9 var it = 0 // iteration counter

10 cfor (it < MAX_IT && df_x.norm > EPS , it += 1) {

11 debug ("solve", s"it = $it: f($x) = $f_x , df_x = $df_x")

12

13 val d = if it == 0 then df_x // direction = gradient

14 else findDir (df_x , it) // find deflected gradient

15

16 val s_ = d * -α // compute step (- => opposite grad.)

17 x += s_ // update new x

18 val df_x_ = df_x // save previous gradient

19 df_x = ∇ (f, x) // compute new gradient , numerically

20 val y_ = df_x - df_x_ // difference in gradients

21 f_x = f(x) // functional value

22 s.add (s_); s.add (y_) // add s_ and y_ to their rings (last

m)

23 } // cfor

24

25 println (s"optimal solution x = $x\, f = $s{f(x$)}")

26 (f_x , x)

27 end solve

A.9.5 Summary

The three algorithms trade off efficiency of the approximate Hessian inverse update for more iterations/ability

to find optima. The following study [178] shows these trade off for several example problems. The time

complexity of update is Newton O(n3), BFGS O(n2), and L-BFGS O(mn).

753

ScalaTion provides each of the three algorithms in two versions, one with Line Search (LS) and one

without (NoLS). The classes implementing these algorithms are shown in Table A.9.

Table A.9: Newton and Quasi-Newton Optimization Algorithms

Algorithm Class LS Class NoLS Description

Newton Method Newton Newton NoLS use inverse Hessian to deflect gradient

BFGS Method BFGS BFGS NoLS use approximate inverse Hessian

L-BFGS Method L BFGS L BFGS NoLS use last m steps and gradient changes

These classes implement both solve and solve2 nethods.

1 def solve (x0: VectorD , α: Double = eta): FuncVec =

2 def solve2 (x0: VectorD , grad: FunctionV2V , α: Double = eta): FuncVec =

The first numerically computes the gradient, while the second one requires the user/application to pass in

the gradient, typically as a function mapping vectors to vectors (FunctionV2V). As the Newton Method

requires computing the Hessian as well it needs a function for each partial derivative so it it can perform an

more efficient Jacobian calculation for the Hessian. In this case the type needs to be Array [FunctionV2S].

A.9.6 Exercises

1. Compare the success rate, number of iterations and execution times of each of the three algorithms

for their Line Search (LS) versions. Use the some of 30 benchmark problems given in Appendix A of

[103].

https://arxiv.org/pdf/2204.05297.pdf

2. Compare the success rate, number of iterations and execution times of each of the three algorithms for

their No Line Search (NoLS) versions. Use the same benchmark.

3. Compare the best of the Newton/Quasi-Newton methods with Gradient Descent and Conjugate Gra-

dient methods.

754

https://arxiv.org/pdf/2204.05297.pdf

A.10 Method of Lagrange Multipliers

The Method of Lagrange Multipliers (or Lagrangian Method) provides a means for solving constrained

optimizations problems. For optimization problems involving only one equality constraint, one may introduce

a Lagrange multiplier λ. At optimality, the gradient of f should be orthogonal to the surface defined by the

constraint L(x) = 0, otherwise, moving along the surface in the opposite direction to the gradient (−∇f(x)

for minimization) would improve the solution. Since the gradient of h, ∇h(x), is orthogonal to the surface

as well, this implies that the two gradients should only differ by a constant multiplier λ.

−∇f(x) = λ∇h(x) (A.75)

In general, such problems can solved by defining the Lagrangian

L(x,λ) = f(x)− λ · h(x) (A.76)

where λ is a vector of Lagrange multipliers. When there is a single equality constraint, this becomes

L(x, λ) = f(x)− λh(x)

Taking the gradient of the Lagrangian w.r.t. x and λ yields a vector of dimension n+ 1.

∇L(x, λ) = [∇f(x)− λ∇h(x), h(x)]

Now we may try setting the gradient to zero and solving a system of equations.

A.10.1 Example Problem

The Lagrangian for the problem given at the beginning of the chapter is

L(x, λ) = (x1 − 4)2 + (x2 − 2)2 − λ (x1 − x2)

Computation of the gradient [∂
∂x1

, ∂
∂x2

, ∂∂λ] of the Lagrangian yields the following three equations,

−2(x1 − 4) = λ

−2(x2 − 2) = −λ

x1 − x2 = 0

The first two equations are from the gradient w.r.t. x, while the third equation is simply the constraint itself

h(x) = 0. The equations may be rewritten in the following form.

2x1 + λ = 8

2x2 − λ = 4

x1 − x2 = 0

This is a linear system of equations with 3 variables [x1, x2, λ] and 3 equations that may be solved, for

example, by LU Factorization. In this case, the last equation gives x1 = x2, so adding equations 1 and 2

yields 4x1 = 12. Therefore, the optimal value is x = [3, 3] with λ = 2 where f(x) = 2.

755

Adding an equality constraint is addressed by adding another Lagrange multiplier, e.g., 4 variables

[x1, x2, λ1, λ2] and 4 equations, two from the gradient w.r.t. x and one for each of the two constraints.

Linear systems of equations are generated when the objective function is at most quadratic and the

constraints are linear. If this is not the case, a nonlinear system of equations may be generated.

756

A.11 Karush-Kuhn-Tucker Conditions

Introducing inequality constraints makes the situation is a little more complicated. A generalization of

the Method of Lagrange Multipliers based on the Karush-Kuhn-Tucker (KKT) conditions is needed. For

minimization, the KKT conditions are as follows:

−∇f(x) = α · ∇g(x) + λ · ∇h(x) (A.77)

The original constraints must also hold.

g(x) ≤ 0 and h(x) = 0

Furthermore, the Lagrange multipliers for the inequality constraints α are themselves constrained to be

non-negative.

α ≥ 0

When the objective function is at most quadratic and the constraints are linear, the problem of finding

an optimal value for x is referred to a Quadratic Programming. Many estimation/learning problems in

data science are of this form. Beyond Quadratic Programming lies problems in Nonlinear Programming.

Linear Programming (linear objective function and linear constraints) typically finds less use (e.g., Quantile

Regression) in estimation/learning, so it will not be covered in this Chapter, although it is provided by

ScalaTion.

A.11.1 Active and Inactive Constraints

757

A.12 Quadratic Programming

The QuadraticSimplex class solves Quadratic Programming (QP) problems using the Quadratic Simplex

Algorithm. Given a constraint matrix A, constant vector b, cost matrix Q and cost vector c, find values

for the solution/decision vector x that minimize the objective function f(x), while satisfying all of the

constraints, i.e.,

minimize f(x) =
1

2
x ·Qx + c · x

subject to g(x) = Ax− b ≤ 0

Before considering the type of optimization algorithm to use, we may simplify the problem by applying

the KKT conditions.

−∇f(x) = Qx + c = α · ∇g(x) = α ·A

Adding the constraints gives the following n equations and 2m constraints:

Qx + c = α ·A

Ax− b ≤ 0

α ≥ 0

These equations have two unknown vectors, x of dimension n and α of dimension m.

The algorithm creates an simplex tableau. This implementation is restricted to linear constraints Ax ≤ b

and Q being a positive semi-definite matrix. Pivoting must now also handle nonlinear complementary

slackness.

Class Methods:

1 @param a the M-by-N constraint matrix

2 @param b the M-length constant/limit vector

3 @param q the N-by-N cost/revenue matrix (second order component)

4 @param c the N-length cost/revenue vector (first order component)

5 @param x_B the initial basis (set of indices where x_i is in the basis)

6

7 class QuadraticSimplex (a: MatrixD , b: VectorD , q: MatrixD , c: VectorD ,

8 var x_B: Array [Int] = null)

9

10 def set (mat: MatrixD , i: Int , u: VectorD , j: Int = 0): Unit =

11 def setBasis (j: Int = N, l: Int = M): Array [Int] =

12 def entering (): Int =

13 def comple (l: Int): Int =

14 def leaving (l: Int): Int =

15 def pivot (k: Int , l: Int): Unit =

16 def solve (): (VectorD , Double) =

17 def tableau: MatrixD = t

18 def primal: VectorD =

758

19 def dual: VectorD = null

20 def objValue (x: VectorD): Double = (x dot (q * x)) * .5 + (c dot x)

21 def showTableau (): Unit =

759

A.13 Augmented Lagrangian Method

The Augmented Lagrangian Method (also known as the Method of Multipliers) takes a constrained opti-

mization problem with equality constraints and solves it as a series of unconstrained optimization problems.

minimize f(x)

subject to h(x) = 0

where f(x) is the objective function and h(x) = 0 are the equality constraints.

In penalty form, the constrained optimization problem becomes.

minimize f(x) +
ρk
2
‖h(x)‖22

where k is the iteration counter. The square of the Euclidean norm indicates to what degree the equality

constraints are violated. Replacing the square of the Euclidean norm with the dot product gives.

minimize f(x) +
ρk
2

h(x) · h(x)

The value of the penalty parameter ρk increases (e.g., linearly) with k and thereby enforces the equality

constraints more strongly with each iteration.

An alternative to minimizing f(x) with a quadratic penalty is to minimize using the Augmented La-

grangian Lρk(x,λ).

Lρk(x,λ) = f(x) +
ρk
2

h(x) · h(x)− λ · h(x) (A.78)

where λ is the vector of Lagrange multipliers. After each iteration, the Lagrange multipliers are updated.

λ = λ− ρk h(x)

This method allows for quicker convergence without the need for the penalty ρk to become as large (see the

exercises for a comparison of the Augmented Lagrangian Method with the Penalty Method). This method

may be combined with an algorithm for solving unconstrained optimization problems (see the exercises for

how it can be combined with the Gradient Descent algorithm). The method also can be extended to work

inequality constraints.

A.13.1 Example Problem

Consider the problem given at the beginning of the chapter with the inequality constraint left out.

minimize f(x) = (x1 − 4)2 + (x2 − 2)2

subject to h(x) = x1 − x2 = 0

where x ∈ R2, f is the objective function and h is the single equality constraint. The Augmented Lagrangian

for this problem is

760

Lρk(x, λ) = (x1 − 4)2 + (x2 − 2)2 +
ρk
2

(x1 − x2)2 − λ(x1 − x2) (A.79)

The gradient of the Augmented Lagrangian ∇Lρk(x, λ) is made up of the following two partial derivatives.

∂/∂x1 = 2(x1 − 4) +
ρk
2

2(x1 − x2)− λ

∂/∂x2 = 2(x2 − 2)− ρk
2

2(x1 − x2) + λ

The Lagrange multiplier updates becomes

λ = λ− ρk (x1 − x2)

The code in the exercises tightly integrates the Gradient Descent algorithm with the Augmented Lagrangian

method by updating the penalty and Lagrange multiplier during each iteration.

A.13.2 Exercises

1. Write a ScalaTion program to solve the example problem given above.

1 // function to optimize

2 def f(x: VectorD): Double = (x(0) - 4)~ˆ2 + (x(1) - 2)~ˆ2

3

4 // equality constraint to maintain

5 def h(x: VectorD): Double = x(0) - x(1)

6

7 // augmented Lagrangian

8 def lg (x: VectorD): Double = f(x) + (p/2) * h(x)~ˆ2 - l * h(x)

9

10 // gradient of Augmented Lagrangian

11 def grad (x: VectorD): VectorD = VectorD (?, ?)

12

13 val x = new VectorD (2) // vector to optimize

14 val eta = 0.1 // learning rate

15 val p0 = 0.25; var p = p0 // initial penalty (p = p0)

16 var l = 0.0 // initial value for Lagrange multiplier

17

18 for k <- 1 to MAX_IT do

19 l -= p * h(x) // comment out for Penalty Method

20 x -= grad (x) * eta

21 println (s"$k: x = $x, f(x) = ${f(x)}, lg(x) = ${lg(x)}, p = $p, l = $l")

22 p += p0

23 end for

2. Add code to collect the trajectory of vector x in a matrix z and plot the two columns in the z matrix.

1 val z = new MatrixD (MAX_IT , 2) // store x’s trajectory

2 z(k-1) = x.copy

3 new Plot (z(?, 0), z(?, 1)

3. Compare the Augmented Lagrangian Method with the Penalty Method by simply removing the La-

grange multiplier from the code.

761

A.14 Alternating Direction Method of Multipliers

For problems that have non-differentiable points, it may work better to approach such points from two

directions. This happens with `1 regularization, e.g., in Lasso regression. Given a differentiable function

f(x) along with a regularization term α‖x‖1, it is non-differentiable in each dimension as xj approaches

zero, with the slopes for the second term jumping from negative α to positive α.

minimize f(x) + α‖x‖1 (A.80)

where x ∈ Rn and f : Rn → R.

The Alternating Direction Method of Multipliers (ADMM) approach [22] is to separate the objective

function into two parts

minimize f(x) + g(z) (A.81)

by introducing a new vector z ∈ Rn and constraining it to x via the equality constraint

subject to x− z = 0 (A.82)

and letting

g(z) = α‖z‖1 (A.83)

The augmented Lagrangian is then of the form

Lρk(x, z,λ) = f(x) + g(z) +
ρk
2
‖x− z‖22 − λ · (x− z) (A.84)

where λ is a vector of Lagrange multipliers and ρk is the penalty parameter for the kth iteration (see the

last section).

The problem can be solved by iterating over k and solving three sub-problems for each iteration (the

prime indicates the new value for iteration k). The x and z variable vectors are updated in an alternating

fashion.

1. Minimize the augmented Lagrangian w.r.t. the x vector with z and λ fixed with initial values at the

start of iteration k.

x′ = argminx Lρk(x, z,λ) (A.85)

2. Minimize the augmented Lagrangian w.r.t. the z vector with x fixed at its new value and λ fixed at

its start value.

z′ = argminz Lρk(x′, z,λ) (A.86)

3. Update the Lagrange multipliers based on the new values for x and z.

λ′ = λ− ρk(x′ − z′) (A.87)

762

A.14.1 Example Problem

As a reformulation of the half sse loss function for regression, f(x) may be written,

f(x) =
1

2
‖y −Dx‖22 (A.88)

where D ∈ Rm×n is the given data matrix, x ∈ Rn is the parameter vector to be fit, and y ∈ Rm is the given

response vector. Letting the shrinkage parameter α be constant, the regularization term becomes,

g(z) = α‖z‖1 (A.89)

Therefore, the augmented Lagrangian is now,

Lρk(x, z,λ) =
1

2
‖y −Dx)‖22 + α ‖z‖1 +

ρk
2
‖x− z‖22 − λ · (x− z) (A.90)

1. The first sub-problem can be solved by setting the following gradient to zero.

∂L

∂x
= −D

ᵀ

(y −Dx) + ρk(x− z) − λ = 0 (A.91)

Collecting terms gives an equation that can be solved by matrix factorization (like it was done for ridge

regression) to determine x′.

(D
ᵀ

D + ρkI)x = D
ᵀ

y − ρkz + λ (A.92)

2. The first term in the second sub-problem is constant w.r.t. z and may be ignored. Using a soft-

thresholding function for the gradient of α ‖z‖1 (see the first exercise) and taking the overall gradient

w.r.t. z and dividing by ρk gives the following:

∂L

∂z
= Sα/ρk(z) − (x′ − z) +

λ

ρk
= 0 (A.93)

3. The update to the Lagrange multipliers is the same as the general equation.

λ′ = λ− ρk(x′ − z′) (A.94)

A.14.2 LassoAddm Object

1 object LassoAdmm:

2

3 def reset: Unit =

4 def solve (a: MatrixD , b: VectorD , λ: Double = 0.01): VectorD =

5 def solveCached (ata_ρI_inv: MatrixD , atb: VectorD , λ: Double): VectorD =

A.14.3 Exercises

1. The sub-deferential of the scalar absolute value function f ,

f(x) = α|x|

763

is α sign(x) where

sign(x) =

1 x > 0

[−1, 1] x = 0

−1 x < 0

Unfortunately, sign(x) is a relation, but not a function. To avoid this problem, one can approximate

the derivative of α|x| with the following soft-thresholding function.

Sθ(x) =

x− θ x > θ

0 |x| ≤ θ
x+ θ x < −θ

1 @param x the scalar to threshold

2 @param th the threshold (theta)

3

4 def softThresh (x: Double , th: Double): Double =

5 if x > th then x - th

6 else if x < -th then x + th

7 else 0

8 end softThresh

Plot this function for various values of θ.

2. Rework the above example problem using the scaled version of ADMM [22].

x′ = argminx (f(x) +
ρk
2
‖x− z + u‖22) (A.95)

z′ = argminz (g(z) +
ρk
2
‖x′ − z + u‖22) (A.96)

u′ = u + (x′ − z′) (A.97)

where u = − λ
ρk

.

3. Show how the equations from the above problem relate to those given in the Lasso section of the

Prediction chapter.

4. The equality constraint can be generalized to give a standard formulation [22]:

minimize f(x) + g(z) (A.98)

subject to Ax +Bz = c (A.99)

where x ∈ Rn and z ∈ Rm are variable vectors, and A ∈ Rp×n and B ∈ Rp×m are coefficient matrices.

Rewrite the augmented Lagrangian for this more general case.

764

A.15 Nelder-Mead Simplex

Efficient nonlinear optimization without the use of gradients is challenging. Of the derivative-free methods,

the Nelder-Mead Simplex [131, 177] method is surprisingly robust and effective. A simplex is a triangular

shape defined by n + 1 vertices in n-dimensional space, e.g., a triangle in a two-dimensional plane. The

algorithm begins with an initial simplex that is systematically moved downhill by methods that expand,

reflect, contract-out, contract-in and shrink the simplex.

More specifically, the algorithm improves the simplex by replacing the worst vertex (xh) with a better

one found on the line containing xh and the centroid (xc). It tries reflection, expansion, outer contraction

and inner contraction points, in that order. If none succeeds, it shrinks the simplex. The algorithm iterate

until the distance between the best and worst points in the simplex drops below a given tolerance.

Consider the following objective function.

f(x) = (x0 − 2)2 + (x1 − 3)2 + 1 (A.100)

The optimal (minimal) solution is the green point at (2, 3) with a functional value of 1 with contours drawn

around it The initial simplex is shown as the blue triangle in Figure A.6: the worst point is in red with a

functional value of 6, the second worst is in purple with a functional value of 5, and the best point is in blue

with a functional value of 3. In this case, the reflect method will succeed with new better point (2, 2) with

a functional value of 2 and shown in cyan. The new cyan point will replace the red point, forming a new

simplex closer to the optimal solution.

−1 1 2 3 4

1

2

3

4

5

x0

x1

Figure A.6: Contour Curves for Nelder-Mead Simplex (red = 6, purple = 5, blue = 3)

Point/vertex replacement is based on finding points along a line that includes the worst point xh and the

centroid xc formed from the other points (excluding the worst). In this example, the centroid xc = (1.5, 1.5).

• Reflection. The reflection point xr is the centroid plus α times the distance from the worst point to

the centroid and is given as the cyan point in Figure A.6. In 2D and α = 1, it flips the triangle to the

other side.

765

xr = xc + (xc − xh) ∗ α (A.101)

• Expansion. The expansion point xe push further away from the centroid than the reflection point.

xe = xc + (xr − xc) ∗ γ (A.102)

• Outer Contraction. The outer contraction point xo is between the centroid and the reflection point.

xo = xc + (xr − xc) ∗ β (A.103)

• Inner Contraction. The inner contraction point xi is between the worst point and the centroid.

xi = xc + (xh − xc) ∗ β (A.104)

For the above example with α = 1, γ = 2, and β = 0.5, these points are xr = (2, 2),xe = (2.5, 2.5),xo =

(1.75, 1.75), and xi = (1.25, 1.25).

The transformation method applies some simple rules for selecting one of these points to replace the

worst point (see the code for details). If none of these points are selected to replace the worst point xh, then

all the points are pulled toward the best point xl by a factor of δ. by the shrink method.

A.15.1 NelderMeadSimplex Class

1 @param f the vector -to-scalar objective function

2 @param n the dimension of the search space

3

4 class NelderMeadSimplex (f: FunctionV2S , n: Int)

5 extends Minimize:

6

7 def initSimplex (x0: VectorD , step: Double): Unit =

8 def transform (): Double =

9 def solve (x0: VectorD , step: Double = 1): FuncVec =

A.15.2 Exercises

1. Make a table showing the new candidate points/vertices for each of the first five iterations of the

Nelder-Mead algorithm. Include the functional values of these points.

2. Consider ways to normalize the search space and how this can improve the performance of the Nelder-

Mead algorithm.

3. The performance of the Nelder-Mead algorithm can be affected by the choice of the initial simplex.

Discuss issues related to (a) initial general location, (b) initial size, and (c) initial shape.

Hint: see “Practical Initialization of the Nelder–Mead Method for Computationally Expensive Opti-

mization Problems,” [188].

766

Appendix B

Graph Databases and Analytics

Graph databases enhance traditional, row-oriented relational databases by making implicit relationships

where a foreign key references a primary key, explicit. For example, in the sensor relation rather having

a foreign key roadId that references the primary key roadId in the road relation, the relationship is made

explicit via an edge-type.

Table B.1 shows the correspondence between concepts in the relational database model and the graph

database model.

Table B.1: Mapping from Relational Database Concept to Graph Database Concept

Relational Graph Description

Domain Domain a set of values or datatype

Value Value an individual/atomic data value

Attribute Property named components in a vertex/edge

Tuple Vertex aggregation of values related to an entity

Relation Vertex-Type a collection of vertices with the same type

Primary Key Primary Key unique combination of attributes used a the main identifier

Foreign Key Edge a directed edge links a source vertex u to a target vertex v

- Edge-Type a collection of edges with the same type

- PGraph a collection of vertex-types and edge-types

Database Database a collection of graphs

The notion that all the vertices in a vertex-type have the same type means that their properties have the

same names and domains. This also implies that they will have the same arity. Furthermore, the notion

that all edges in an edge-type have the type means that their properties have the same names and domains

as well as they connect vertices from the same vertex-types. For example, edges in the Takes edge-type

connect vertices from the Student vertex-type to the Course vertex-type. Note, property graphs may have

fixed schema, be schema-less or have flexible schema.

The subsections below define several types of graphs that are useful for graph analytics and graph

databases. Such graphs need information content that is provided by labels or properties. In some cases,

the labels or properties may only be associated with vertices/nodes, but more generally, they are provided

for both vertices and edges. Labels associate a single value, while properties associate multiple values. For

767

graph analytics and some types of graph databases, labels may suffice, but properties are usually required

for robust database applications.

768

B.1 Directed Graphs

The starting point for graph databases is the basic definition of a directed graph from graph theory. A

directed graph consists of vertices (nodes) connected via one-way (directed) edges. More formally, it is a

two-tuple G(V,E) where

• V = set of vertices/nodes

• E ⊆ V × V set of directed edges

The edge from vertex/node u to vertex/node v is an ordered pair (u, v), also denoted as u → v, or more

concisely uv. The from vertex u is referred to as the source and the to vertex v is referred to as the target.

Consider the directed graph shown in Figure B.1

0 1

2 3

Figure B.1: Example Directed Graph with 4 Vertices and 6 Edges

It can be represented in multiple ways:

As a two-tuple G(V,E).

V = {0, 1, 2, 3}

E = {(0, 1), (0, 2), (1, 2), (2, 3), (3, 0), (3, 1)}

As an array of adjacency sets/lists.

a(0) = {1, 2}

a(1) = {2}

a(2) = {3}

a(3) = {0, 1}

As an adjacency matrix.

A =

0 1 1 0

0 0 1 0

0 0 0 1

1 1 0 0

769

As a transition matrix giving the probability of moving from vertex u to an adjacent vertex v is d−1
u = one

over the out-degree of vertex u.

P =

0 .5 .5 0

0 0 1 0

0 0 0 1

.5 .5 0 0

This assumes a uniform probability of selecting the next vertex to move to. In general, the transition matrix

may be defined using Markov Chain transition probabilities (also see the Chapter on State Space Models).

Movement in a directed graph must be along the edges and is called a walk meaning a sequence of edges

(e0, e1, ...), where the source vertex of ei must be the target vertex of ei−1. A trail is a walk where all the

edges are distinct. Finaly, a path is a trail where all the vertices are distinct.

A directed graph may be disconnected, weakly connected, or strongly connected. It is strongly connected

if a path exists between any two vertices u, v ∈ V . It is weakly connected if is underlying undirected graph

is connected, and is disconnected otherwise.

B.1.1 Adding Vertex Labels

The previous definition of a graph captures the topological structure, but needs to be augmented to attach

information. The simplest way to do this is to just add labels to vertices. A vertex-labeled directed graph is

a four-tuple G(V,E, L, l) where

• V = set of vertices/nodes

• E ⊆ V × V { source-vertex, target-vertex }

• L = set of labels

• l : V → L is a labelling function

Notice that if a graph has nv vertices/nodes, the number of edges may range from 0 to n2
v. There are

two general ways to represent the connectivity structure of a graph, an adjacency matrix and an adjacency

list. When the graph is sparse, i.e., ne � n2
v, then an adjacency list will be more efficient.

Under this approach, a vertex/node needs to keep track of its outgoing edges (also known as children).

The Graph0 class below has a name and a flag inverse indicating whether to also store the incoming

edges (parents). The rest of the arguments to the constructor are Arrays, where each element of the array

corresponds to a vertex in the graph. These arrays record the children ch and the vertex label. In addition,

vertex ids id are maintained internally. The children of a node are a set of integers. For example, vertex 1

may have children { 2, 4, 5 }.
Consider the graph shown in Figure B.2. If Bob and Sue know each other, then the graph consists of 2

vertices and 2 edges.

770

Bob Sue

Figure B.2: Example Vertex-Labeled Directed Graph

Graph0 Class

Class Methods:

1 @param ch the array of child (adjacency) vertex sets (outgoing edges)

2 @param label the array of vertex labels: v -> vertex label

3 @param inverse whether to store inverse adjacency sets (parents)

4 @param name the name of the digraph

5

6 case class Graph0 (ch: Array [SET [Int]],

7 label: Array [ValueType],

8 inverse: Boolean = false ,

9 name: String = "g",

10 extends Cloneable:

11

12 val id = Array.range (0, ch.size) // array of vertex id’s

B.1.2 Adding Edge Labels

Providing both edge and vertex labels allows richer information content to be stored. The vertex label

describes the vertex. In general, it may be unique or non-unique. Similarly, the edge label describes the

edge and is often used to specify a category or type (usually non-unique).

The graph shown in Figure B.3 takes the previous figure and adds labels (knows or employs) to the

edges.

Bob Sue

knows

employs

Figure B.3: Example Fully-Labeled Directed Graph

A fully-labeled directed graph is a five-tuple G(V,E,L, lv, le) where

• V = set of vertices/nodes

• E ⊆ V × V { source-vertex, target-vertex }

771

• L = set of labels

• lv : V → L is a vertex labeling function

• le : E → L is an edge labeling function

Of course, it may also be useful to split the set of labels L into Lv = set of vertex/node labels and Le = set

of edge labels.

The Graph class in scalation.database.graph pm shown below provides more functionality than the

Graph0 class, mainly adding edge labels elabel. The edge labels are stored in a Map for looking up the label

based on the source and target vertices. An optional schema specification is also provided to introduce a

type structure. (This will not be discussed further here.)

Graph Class

Class Methods:

1 @param ch the array of child (adjacency) vertex sets (outgoing edges)

2 @param label the array of vertex labels: v -> vertex label

3 @param elabel the map of edge labels: (u, v) -> edge label

4 @param inverse whether to store inverse adjacency sets (parents)

5 @param name the name of the multi -digraph

6 @param schema optional schema: map from label to label type

7

8 case class Graph (ch: Array [SET [Int]],

9 label: Array [ValueType],

10 elabel: Map [(Int , Int), ValueType],

11 inverse: Boolean = false ,

12 name: String = "g",

13 schema: Array [String] = Array ())

14 extends Cloneable:

15

16 val id = Array.range (0, ch.size) // array of vertex id’s

Example: Create a Graph

1 val links = new Graph (Array (SET (1), SET (0), SET (0, 1)), // children

2 Array ("Bob", "Sue", "Joe"), // vertex labels

3 Map ((0, 1) -> "knows", // edge labels

4 (1, 0) -> "employs",

5 (2, 0) -> "knows",

6 (2, 1) -> "knows"),

7 false , "links")

772

Notice that since there is a single label per edge and only one edge between any two vertices, the basic

structure borrowed from graph theory has not changed. It has only been embellished.

B.1.3 Directed Multi-Graphs

In order to better model the real-world, if one thinks of vertices representing entities and edges representing

relationships, then it makes sense for two entities to be in different relationships, e.g., Sue knows Bob and

Sue employs Bob. Allowing multiple edges (and edge labels) between two vertices, (u, v), introduces a

fundamental change to the graph.

No longer is an edge uniquely identified by its source and target vertices, u → v. So long as the edge

labels are different, multiple edges may connect the same source and target vertices. For example, if Bob

and Sue know each other and Sue employs Bob, then the graph consists of 2 vertices and 3 edges as shown

in Figure B.4.

Bob Sue

knows

knows

employs

Figure B.4: Example Directed Multi-Graph

Allowing multiple edges between vertices along with both edge and vertex labels allows rich information

content to be stored. The easiest way to achieve this to simply make the edge labels multi-valued.

Following this approach, a fully-labeled directed multi-graph may be represented as a five-tupleG(V,E,L, lv, le)

where

• V = set of vertices/nodes

• E ⊆ V × V { source-vertex, target-vertex }

• L = set of labels

• lv : V → L is a vertex labeling function

• le : E → 2L is an edge labeling function

Note, 2L is the power-set of the labels, so le may map to any element of the power-set (i.e., any subset).

Such graphs may implemented as follows (see the scalation.database.mugraph pm package):

MuGraph Class

Class Methods:

1 @param ch the array of child (adjacency) vertex sets (outgoing edges)

2 @param label the array of vertex labels: v -> vertex label

3 @param elabel the map of edge labels: (u, v) -> set of edge label

4 @param inverse whether to store inverse adjacency sets (parents)

773

5 @param name the name of the multi -digraph

6 @param schema optional schema: map from label to label type

7

8 case class MuGraph (ch: Array [SET [Int]],

9 label: Array [ValueType],

10 elabel: Map [(Int , Int), SET [ValueType]],

11 inverse: Boolean = false ,

12 name: String = "g",

13 schema: Array [String] = Array ())

14

15 val id = Array.range (0, ch.size) // array of vertex id’s

Making Multiple Edges Explicit

One may say the easiest approach allows an edge to have multiple labels, but does not really support

having multiple edges between a pair of vertices. However, a straightforward algorithm can convert it to

a representation that does. A natural storage structure that makes the multiple edges explicit is one that

treats edges as triples.

Using triples, a fully-labeled directed multi-graph may be represented as a four-tuple G(V,E, L, l) where

• V = set of vertices/nodes

• E ⊆ V × L× V { source-vertex, edge-label, target-vertex }

• L = set of labels

• l : V → L is a vertex labeling function

Again, it may also be useful to split the set of labels L into Lv = set of vertex/node labels and Le = set of

edge labels.

As mentioned, an edge is no longer an ordered pair, as it becomes a triple where the 3 parts are known

by various names as shown in Table B.2

Table B.2: Components of a Triple

(u, l, v) source-vertex edge-label target-vertex

(h, r, t) head relation tail

(s, p, o) subject predicate object

This concept may implemented as follows (see the scalation.database.triplegraph package): The Triple

class holds information about a triple (3 part edge).

1 @param h the head vertex

2 @param r the relation/edge -label

3 @param t the tail vertex

4

5 case class Triple (h: Int , r: ValueType , t: Int)

774

TripleGraph Class

Class Methods:

1 @param label the array of vertex labels

2 @param triples the bag of triples in the triple -graph

3 @param name the name of the triple -graph

4 @param schema optional schema: map from label to label type

5

6 case class TripleGraph (label: Array [ValueType],

7 triples: Bag [Triple],

8 name: String = "g",

9 schema: Array [String] = Array ())

10 extends Cloneable:

Such a structure provides the basis for Resource Description Framework (RDF) graphs, to be discussed later

in this chapter.

B.1.4 Exercises

1. Given the above adjacency matrix A, compute the k-hop adjacency Ak for A2 = AA.

2. For the graph shown in Figure B.1 given an example of a path, a trail that is not a path, and a walk

that is not a trail.

3. Draw the directed multi-graph called links given in Figure B.4.

4. Survey the literature to compare different ways of creating storage structures for fully-labeled directed

multi-graphs.

5. Implement an algorithm in Scala 3 that converts a MuGraph to a TripleGraph.

6. Implement an algorithm in Scala 3 that converts a TripleGraph to a MuGraph.

775

B.2 A Graph Database with Relational Roots

Before moving onto Property Graphs (the predominate form of today’s Graph Databases), a further extension

of the Table class is discussed. The main difference is that it uses a tuple construct to store vertex and

edge attributes/properties, following more closely to the Relational Model and requiring the specification of

a schema. Property Graphs use maps for storing properties of vertices and edge and support having schema

and being schema-less.

B.2.1 The GTable Class

1 @param name_ the name of the graph -table

2 @param schema_ the attributes for the graph -table

3 @param domain_ the domains/data -types for attributes (’D’, ’I’, ’L’, ’S’, ’X’, ’T’)

4 @param key_ the attributes forming the primary key

5

6 case class GTable (name_ : String , schema_ : Schema , domain_ : Domain , key_ : Schema)

7 extends Table (name_ , schema_ , domain_ , key_)

8 with Serializable:

The GTable class (for Graph-Table) supports many-to-many relationships with efficient navigation in

both directions. Supporting this is much more complicated than what is needed for LTable, but provides

for index-free adjacency, similar to what is provided by Graph Database systems.

The GTable model is graph-like in that it (as did VTable) elevates tuples into vertices as first-class citizens

of the data model. Also, a directed edge has attributes and serves to link a source (from) vertex to a target

(to) vertex. Now, if distance is included as one of the edge attributes, shortest path algorithms may be

applied.

The Edge class includes three parts: The edge attributes in the form of a tuple of values, the source

(from) vertex and target (to) vertex.

1 @param tuple the tuple part of the edge

2 @param from the source vertex

3 @param to the target vertex

4

5 case class Edge (tuple: Tuple , from: Vertex , to: Vertex):

6

7 def reverse: Edge = Edge (tuple , to , from)

8 override def toString: String = s"edge: ${stringOf (tuple)}"

9

10 end Edge

The Vertex class extends the notion of Tuple into values stored in the tuple part, along with foreign keys

links captured as outgoing edges. The edge Map has a key that is the edge label (e.g., employs) and a value

that is a set/bag of outgoing edges (e.g., all of the outgoing employs edges). Each edge in turn references

the target vertex (e.g., the person employed).

1 @param tuple the tuple part of the vertex

2

3 case class Vertex (tuple: Tuple):

4

5 val edge = Map [String , Bag [Edge]] () // map edge -label -> { edges }

6

776

7 def neighbors: Bag [Vertex] =

8 def neighbors (elab: String): Bag [Vertex] =

9 def neighbors (ref: (String , GTable)): Bag [Vertex] =

10 override def toString: String = s"vertex: ${stringOf (tuple)}"

11

12 end Vertex

B.2.2 Creating Graph Databases

A graph database may be created by constructing GTables and linking them via edge-types, as shown below:

1 val student = GTable ("student", "sid , sname , street , city , dept , level",

2 "I, S, S, S, S, I", "sid")

3 val professor = GTable ("professor", "pid , pname , street , city , dept",

4 "I, S, S, S, S", "pid")

5 val course = GTable ("course", "cid , cname , hours , dept",

6 "I, X, I, S", "cid")

7

8 student.addEdgeType ("cid", course , false) // student has M courses

9 course.addEdgeType ("sid", student , false) // course has M students

10 course.addEdgeType ("pid", professor) // course has 1 professor

B.2.3 Graph Algebra

Implementations of the main graph algebra operators are analogs of those in relational algebra. Project

simply projects on the tuple part of a vertex.

1 override def project (x: Schema): GTable =

2 val newKey = if subset (key , x) then key else x

3 val s = new GTable (s"${name}_p_${cntr.inc ()}", x, pull (x), newKey)

4 s.vertices ++= (for v <- vertices yield Vertex (pull (v.tuple , x)))

5 s

6 end project

Select applies a given predicate to all vertices in this GTable, keeping those where the predicate evaluates to

true.

1 override def select (predicate: Predicate): GTable =

2 val s = new GTable (s"${name}_s_${cntr.inc ()}", schema , domain , key)

3 s.vertices ++= (for v <- vertices if predicate (v.tuple) yield v)

4 s

5 end select

Union takes the union of all vertices in the two tables. An index may be created to eliminate duplicates.

1 override def union (r2: Table): GTable =

2 if incompatible (r2) then return this

3 val s = new GTable (s"${name}_u_${cntr.inc ()}", schema , domain , key)

4 s.vertices ++= (

5 if r2.isInstanceOf [GTable] then vertices ++ r2.asInstanceOf [GTable]. vertices

6 else vertices ++ r2.tuples.map (Vertex (_)))

7 s

8 end union

Minus will keep each vertex in this table only if it is not the second table.

777

1 override def minus (r2: Table): GTable =

2 if incompatible (r2) then return this

3 val s = new GTable (s"${name}_m_${cntr.inc ()}", schema , domain , key)

4 for v <- vertices do

5 if ! (r2 contains v.tuple) then s.vertices += v

6 end for

7 s

8 end minus

Having a graph database where the vertices are explicitly linked via edges, reduces the frequency with

which join operations are needed. Starting with a subset of vertices in a first GTable, relevant attribute

values can be efficiently extracted from this and a second table without performing a join.

For example, if one wishes to run a query to retrieve the courses each student is taking, one may write

the following:

1 student extract ("sname , cname", ("cid", course))

This query will extract sname values from the Student table and pair them with cname values from the

Course table. Use of cid indicates the edge-type to follow. (In general, there may be multiple types of

outgoing edges.)

B.2.4 Exercises

1. Use Scala 3 to complete the implementation of GTable in the scalation.database.table package.

2. Using your implementation for GTable, create a schema where vertices represent cities and edges

represent roads connecting them. City attributes include id, name, state, lat, long, and population.

Road attributes include distance.

3. Populate the database with sample data for Northeast Georgia, with major roads (US and State Roads)

connecting the following cities: Athens, Jefferson, Watkinsville, Monroe, Bethlehem, Winder, Bogart,

Statham, Bishop, Good Hope, Hull, Colbert, Crawford, Nicholson, Danielsville.

4. Using GTable’s graph algebra, list all major roads leaving Athens, GA.

5. List all paths from Athens, GA to Winder, GA.

6. Find the shortest path (distance-wise) from Athens, GA to Winder, GA.

778

B.3 Property Graphs

Property graphs [16] enhance plain labeled directed multi-graphs by replacing labels with a list/map of

properties. (Note, some database models and systems such as Neo4j keep labels and assign them a special

purpose.) As such, information may be flexibly added to a property graph. The structure and type of

a property graph is defined by specifying its structural organization (analogously to specifying relational

schema). Some Graph Databases/Property Graphs are schema-less to add greater flexibility and agility.

Property Graphs may be divided into two groups: Labeled Property Graph and Typed Property Graphs.

A typed property graph requires all vertices to have a unique Vertex-Type that defines the vertex-schema

(set of properties) for vertices of a given type. Similarly, it requires all edges to have a unique Edge-Type. In

addition to defining the edge-schema, it specifies the source and target Vertex-Types. Some graph databases

engines, however, chose to provide users with greater flexibiilty. For instance, Neo4j does not give a vertex

a type, but instead may give one or more labels to a vertex (node). For example, the label Person may

be use to indicate the kind of node (this is done without creating a Vertex-Type). Some vertices may have

two (or more) labels, e.g., Person and Golfer. As vertices are often accessed based on their labels, indices

are automatically created to find the vertices with given labels. Different graph database engines make

choices regarding whether to use labels or types for vertices, as well as such choices for edges. Furthermore,

labels may be optional vs. required, as well as unique vs. multivalued. See the following document for the

design choices made by some of the popular graph database engines: https://medium.com/geekculture/

labeled-vs-typed-property-graphs-all-graph-databases-are-not-the-same-efdbc782f099.

B.3.1 Structure of a Property Graph

The following structural definitions specify datatypes and structural organization for property graphs as

defined in the scalation.database.graph package. In order to support rapid access to into collections VEC

is used. Currently, the fastest such Scala 3 structure for immutable collections is Vector, while for mutable

collections it is ArrayBuffer.

1 // import scala.collection.immutable .{ Vector => VEC}

2 import scala.collection.mutable .{ ArrayBuffer => VEC}

ScalaTion’s graph database supports property graphs and is organized as follows: The primary concepts

are vertex and edge. Similar vertices and edges are collected into vertex-types and edge-types. A prop-

erty graph consists of multiple vertex-types and edge-types. Element and element type are introduced as

generalizations that are useful in defining graph algebra operators.

• The ValueType type is a Scala 3 union type for atomic database values.

1 type ValueType = (Double | Int | Long | String | TimeNum)

• The Property type corresponds to the notion of an attribute in a relational database. It maps property

names to property values (e.g., Map ("name" -> "Bob", "salary" -> 85000.0).

1 type Property = Map [String , ValueType]

An example of a property is shown below.

1 val knows: Property = Map ("type" -> "knows")

779

https://medium.com/geekculture/labeled-vs-typed-property-graphs-all-graph-databases-are-not-the-same-efdbc782f099
https://medium.com/geekculture/labeled-vs-typed-property-graphs-all-graph-databases-are-not-the-same-efdbc782f099

Vertex Class

The Vertex class specifies the form of vertices/nodes in the property graph. A vertex maintains properties

for a vertex, e.g., a person. It is analogous to a tuple in a relational database.

1 @param _name the name of this vertex (’name’ from ‘Identifiable ‘), vertex label

2 @param prop maps vertex property names into property values

3 @param _pos the position (Euclidean coordinates) of this vertex (’pos’ from ‘Spatial ‘)

4

5 class Vertex (_name: String , val prop: Property , _pos: VectorD = null)

6 extends Identifiable (_name)

7 with Spatial (_pos)

8 with PartiallyOrdered [Vertex]

9 with Serializable:

For example, three vertices can easily be created.

1 @main def vertexTest (): Unit =

2

3 val x0 = VectorD (200, 100, 40, 40)

4 val x1 = VectorD (100, 400, 40, 40)

5 val x2 = VectorD (500, 500, 40, 40)

6

7 // use the class constructor to explicitly assign vertex label

8

9 val vertices = Array (

10 new Vertex ("Bob", Map ("name" -> "Bob", "state" -> "GA", "salary" -> 85000.0) , x0),

11 new Vertex ("Sue", Map ("name" -> "Sue", "state" -> "FL", "salary" -> 95000.0) , x1),

12 new Vertex ("Joe", Map ("name" -> "Joe", "state" -> "GA", "salary" -> 99000.0) , x2))

13

14 banner ("Vertices with explicitly assigned vertex labels")

15 Vertex.show (vertices)

16

17 // use the companion object ’s apply method to use system generated vertex label

18

19 val vertices2 = Array (

20 Vertex (Map ("name" -> "Bob", "state" -> "GA", "salary" -> 85000.0) , x0),

21 Vertex (Map ("name" -> "Sue", "state" -> "FL", "salary" -> 95000.0) , x1),

22 Vertex (Map ("name" -> "Joe", "state" -> "GA", "salary" -> 99000.0) , x2))

23

24 banner ("Vertices with system generated vertex labels")

25 Vertex.show (vertices2)

26

27 end vertexTest

VertexType Class

The VertexType class corresponds to the notion of an entity type in an Entity-Relationship Model. A

vertex-type collects vertices of the same type, e.g., a person vertex-type. Its schema specification determines

the types of properties that vertices in this collection are allowed to have. The color and shape are for

display purposes. It is analogous to a relation with no foreign keys in a relational database.

1 @param _name the name of this vertex type (’name’ form ‘Identifiable ‘)

2 @param schema the property names for this vertex type

3 @param verts the set of vertices having this vertex type (extension)

780

4 @param color the display color for vertices of this type

5 @param shape the display shape template for vertices of this type

6

7 class VertexType (_name: String , val schema: Schema ,

8 val verts: VEC [Vertex] = VEC [Vertex] (),

9 val color: Color = yellow ,

10 val shape: Shape = Ellipse ())

11 extends Identifiable (_name)

12 with Serializable:

The three vertices defined above may be collected into a vertex-type.

1 val vt0 = VertexType ("person", "name , state , salary", vertices)

The information content in a vertex-type can be shown in a tabular format.

Table B.3: Person VertexType

vertex name state salary

v0 “Bob” “GA” 85000.0

v1 “Sue” “FL” 95000.0

v2 “Joe” “GA” 99000.0

Edge Class

The Edge class allows explicit relationships to be formed between vertices. An edge connects a source vertex

to a target vertex and may have its own properties. It may be thought of a triple (from, prop, to),

but also allows for an edge label and shift used for diplay purposes. It is roughly analogous to an implicit

relationship manifest via foreign key-primary key pairs in a relational database.

1 @param _name the name of this edge (’name’ from ‘Identifiable ‘), edge label

2 @param from the source/from vertex of this edge

3 @param prop maps edge property names into property values

4 @param to the target/to vertex of this edge

5 @param shift number of units to shift to accomodate a bundle of egdes in a composite

edge

6

7 class Edge (_name: String , val from: Vertex , val prop: Property , val to: Vertex , val

shift: Int = 0)

8 extends Identifiable (_name)

9 with Spatial (if from == null then to.pos else from.pos)

10 with Serializable:

For example, three edges can easily be created.

1 // use the class constructor to explicitly assign edge label

2

3 val edges = VEC (

4 new Edge ("knows", v(0), Map ("type" -> "knows", "since" -> 5), v(1)),

5 new Edge ("knows", v(1), Map ("type" -> "knows", "since" -> 2), v(0), -1),

6 new Edge ("knows", v(2), Map ("type" -> "knows", "since" -> 4), v(0)))

781

7

8 banner ("Edges with explicitly assigned edge labels")

9 Edge.show (edges)

10

11 // use the companion object ’s apply method to use system generated edge label

12

13 val edges2 = VEC (

14 Edge (v(0), Map ("type" -> "knows", "since" -> 5), v(1)),

15 Edge (v(1), Map ("type" -> "knows", "since" -> 2), v(0), -1),

16 Edge (v(2), Map ("type" -> "knows", "since" -> 4), v(0)))

17

18 banner ("Edges with system generated edge labels")

19 Edge.show (edges2)

EdgeType Class

The EdgeType class corresponds to the notion of an relationship type in an Entity-Relationship Model. An

edge-type collects edges of the same type and has a source VertexType and a target VertexType. Its schema

specification determines the type of properties that edges in this collection are allowed to have. The color

and shape are for display purposes. An edge-type is analogous to a relation with foreign keys in a relational

database.

1 @param _name the name of this edge -type (’name’ from ‘Identifiable ‘)

2 @param from the source vertex

3 @param schema the property names for this edge -type

4 @param to the target vertex

5 @param edges the set of edges having this edge -type (extension)

6 @param color the display color for edges of this type

7 @param shape the display shape template for edges of this type

8

9 class EdgeType (_name: String ,

10 val from: VertexType , val schema: Schema , val to: VertexType ,

11 val edges: VEC [Edge] = VEC [Edge] (),

12 val color: Color = blue ,

13 val shape: CurvilinearShape = Arrow ())

14 extends Identifiable (_name)

15 with Serializable:

The three edges defined above may be collected into an edge-type.

1 val et0 = EdgeType ("knows", vt0 , "type", vt0 , edges)

The information content in an edge-type can be shown in a tabular format.

Table B.4: Knows Edge-Type

edge from-vertex type since to-vertex

e0 v0 “knows” 5 v1

e1 v1 “knows” 2 v0

e2 v2 “knows” 4 v0

782

PGraph Class

The PGraph class is used to store property graphs. A property graph has a name, zero or more VertexTypes

and zero or more EdgeTypes. Each of the EdgeTypes can only reference VertexTypes specified in this PGraph.

The animating and aniRatio are used for diaplay purposes.

1 @param name the name of the property graph

2 @param vt the set of vertex types

3 @param et the set of edges types

4 @param animating whether to animate the model (defaults to false)

5 @param aniRatio the ratio of simulation speed vs. animation speed

6

7 class PGraph (val name: String ,

8 val vt: VEC [VertexType] = VEC [VertexType] (null),

9 val et: VEC [EdgeType] = VEC [EdgeType] (null),

10 animating: Boolean = false , aniRatio: Double = 1.0)

11 extends Serializable:

A SocialNetwork property graph can be created as shown below. See the example below to see the full

construction of the property graph.

1 val g = PGraph ("SocialNetwork", VEC (vt0), VEC (et0 , et1))

A PGraph with no EdgeTypes essentially allows a similar organization to a relational database. Simply add

a property that acts as a foreign key and use a join operation.

Example: Create a PGraph

1 object SocialNetwork:

2

3 // Populate the property -graph

4

5 val employs: Property = Map ("type" -> "employs")

6

7 val x0 = VectorD (200, 100, 40, 40) // vertex coordinates ,

size: x, y, w, h

8 val x1 = VectorD (100, 400, 40, 40)

9 val x2 = VectorD (500, 500, 40, 40)

10

11 // Build vertices and vertex -types

12

13 val v = VEC (

14 new Vertex ("Bob", Map ("name" -> "Bob", "state" -> "GA", "salary" -> 85000.0) , x0),

15 new Vertex ("Sue", Map ("name" -> "Sue", "state" -> "FL", "salary" -> 95000.0) , x1),

16 new Vertex ("Joe", Map ("name" -> "Joe", "state" -> "GA", "salary" -> 99000.0) , x2))

17 val vt0 = VertexType ("person", "name , state , salary", v)

18

19 println (s"check schema for vertex -type vt0 = ${vt0.check}")

20 vt0.buildIndex ("name")

21

22 // Build edges and edge -types

23

24 val et0 = EdgeType ("knows", vt0 , "type", vt0 , VEC (

25 new Edge ("knows", v(0), Map ("type" -> "knows", "since" -> 5), v(1)),

26 new Edge ("knows", v(1), Map ("type" -> "knows", "since" -> 2), v(0), -1),

783

27 new Edge ("knows", v(2), Map ("type" -> "knows", "since" -> 4), v(0))))

28 val et1 = EdgeType ("employs", vt0 , "type", vt0 , VEC (

29 new Edge ("employs", v(1), employs , v(0), 1),

30 new Edge ("employs", v(2), employs , v(1))))

31

32 println (s"check schema for edge -type et0 = ${et0.check}")

33 println (s"check schema for edge -type et1 = ${et1.check}")

34

35 end SocialNetwork

As an exercise, draw the property graph called SocialNetwork.

B.3.2 Native Storage

Achieving the performance potential for graph databases requires appropriate data structures and organi-

zations, whether in main memory or in files. It is common for graph database engines to support index-free

adjacency, although various hybrids approaches are also possible [128].

There is growing popularity of graph database engines that support native storage, see https://db-engines.

com/en/ranking/graph+dbms including Neo4j, JanusGraph, TigerGraph, and TinkerGraph.

Index-Free Adjacency

Notice the basic structure for property graphs, makes it easy to find vertices connected to an edge. Some

types of navigation will require finding edges that a vertex is connected to. Suppose there are vertex-

types Student and Course connected with edge-type Takes. The meta-graph for this is shown in the next

subsection. Suppose a student named "Bob" wishes to know the courses he is taking. One would like to

traverse from the "Bob" vertex to his course vertices. In general this will not work, since some queries may

depend upon an edge property (e.g., the grade). In order to handle such cases, the "Bob" vertex should

reference its outgoing edges in the Takes edge-type. Unfortunately, "Bob" may have taken many courses

(i.e., the Takes edge/relationship type is many-to-many). A storage solution is to have the vertex reference

the first edge in the "Bob" group of courses and have this edge reference the next edge in the group, etc.

The chain of edges may be organized as either a singly or doubly linked list, however, to make edge deletions

efficient the list should be doubly linked. This is the approach utilized by Neo4j’s native graph storage engine,

as described in Chapter 6 of [156]. Note, ScalaTion’s GTable class provides an alternative of collecting all

a vertex’s outgoing edges into an ArrayBuffer.

To illustrate details about the storage, example vertex-types and edge-types will be shown for a simple

course-enrollment database.

Meta-Graph for Course Enrollment Database

Property Graphs are rich enough to depict their own conceptual model. A meta-graph showns the meta-

data for a graph database. The meta-graph in Figure B.5 shows three vertex-types, Student, Course and

Professor. These are connected via the Takes and TaughtBy edge-types. The Takes edge/relationship type

is many-to-many, while the TaughtBy edge/relationship type is many-to-one.

The arrow on the TaughtBy edge-type indicates a many-to-one relationship from Course to Professor. That

is, a course is taught by one Professor, while a professor may teach many Courses.

784

https://db-engines.com/en/ranking/graph+dbms
https://db-engines.com/en/ranking/graph+dbms

Student Course

Professor

Takes

TaughtBy

Figure B.5: Meta-Graph for the Course Enrollment Database

Storage for Course Enrollment Database

The Course and Professor vertex-types as well as the TaughtBy edge-type are shown in Figure B.5 in

tabular format. Using the index-free adjacency approach, each Course vertex maintains a reference to its

first outgoing TaughtBy edge. Similarly, each Professor vertex maintains a reference to its first incoming

TaughtBy edge.

To handle the case when there are multiple edges (e.g., a Professor may teach multiple Courses), an

edge chain is maintained in the TaughtBy Edge-Type. Following the edge chain for “Dr. Bill”, gives the first

edge as e0, with the next edge e1 and then e2; a null terminates the edge chain.

The edge chains are shown here as singly-linked lists for simplicity, while in practice doubly-linked lists allow

for more efficient maintenance of the edge chains.

785

Table B.5: Course Enrollment Database

(a) Course Vertex-Type

vertex cname hours →taughtBy

v0 “DB” 4 e0

v1 “SE” 4 e1

v2 “OS” 4 e2

v3 “AI” 3 e3

v4 “ML” 3 e4

(b) Professor Vertex-Type

vertex pname rank taughtBy→
v5 “Dr. Bill” AssocProf e0

v6 “Dr. John” Professor e3

(c) TaughtBy Edge-Type

edge from-vertex type to-vertex next edge

e0 v0 “taughtBy” v5 e1

e1 v1 “taughtBy” v5 e2

e2 v2 “taughtBy” v5 null

e3 v3 “taughtBy” v6 e4

e4 v4 “taughtBy” v6 null

B.3.3 High-Level Query Language for Graph Databases

High-level query languages for graph database have the potential to be more concise and more intuitive

than the SQL language for relational databases. Examples of high-level query languages for graph databases

include Cypher, Gremlin and GQL.

• Neo4j’s Cypher Query Language. The MATCH statement is structured according the TaughtBy edge/re-

lationship, with the WHERE constraining the professors and the RETURN indicating the returned results.

1 MATCH (c: Course) - [: TaughtBy] -> (p: Professor)

2 WHERE p.pname = ’Dr. John’

3 RETURN c.cname

• Apache TinkerPop’s Gremlin Query Language. Using syntax from the Groovy programming language

(a JVM cousin of Scala), the same query can be written in a functional programming style.

1 g.V().has (’Professor ’, ’pname ’, ’Dr. John’)

2 .out (’TaughtBy ’)

3 .values (’cname’)

• Graph Query Language (GQL) is an emerging standard for graph database. It utilizes concepts from

multiple existing languages, see https://www.gqlstandards.org/existing-languages

786

https://www.gqlstandards.org/existing-languages

The Cypher Query Language

In order to execute queries using the Cypher query language, a graph database needs to be populated. This

is done by first creating several nodes. These nodes may be referenced to make several edges.

1 CREATE

2 (s1: Student { sid: 101, sname: ’Peter’, city: ’Athens ’ }),

3 (s2: Student { sid: 102, sname: ’Paul’, city: ’Bogart ’ }),

4 (s3: Student { sid: 103, sname: ’Mary’, city: ’Athens ’ }),

5 (c1: Course { cid: 4370, cname: ’DB’, hours: 4 }),

6 (c2: Course { cid: 4550, cname: ’AI’, hours: 3 }),

7 (p1: Professor { pid: 201, pname: ’Dr. Bill’, rank: ’AssocProf ’ }),

8 (p2: Professor { pid: 202, pname: ’Dr. John’, rank: ’Professor ’ }),

9 (s1) -[: Takes]->(c1),

10 (s2) -[: Takes]->(c1),

11 (s3) -[: Takes]->(c1),

12 (s2) -[: Takes]->(c2),

13 (s3) -[: Takes]->(c2),

14 (p1) <-[: TaughtBy]-(c2),

15 (p2) <-[: TaughtBy]-(c1)

Conventions:

• () indicates a node, e.g., (s) or (s: Student)

• -[]-> indicates a forward edge, e.g., (s2)-[: Takes]->(c1)

• <-[]- indicates a backward edge, e.g., (p2)<-[: TaughtBy]-(c1)

• { } indicates a list of properties, e.g., { cid: 4370, cname: ’DB’, hours: 4 }

Note: In a MATCH statement -[]- will match in either direction.

Queries can be concisely specified using MATCH statements. The following query retrieves all nodes

with label/type Student (like returning a Student table in a relational database). If the label Student is

left out, all nodes will be returned.

1 MATCH (s: Student)

2 RETURN s

A WHERE clause can be added to, for example, restrict the returned nodes to students living in ’Athens’.

1 MATCH (s: Student)

2 WHERE s.city = ’Athens ’

3 RETURN s

This filter can be specified inside the node specification itself, as shown below.

1 MATCH (s: Student { city: ’Athens ’})

2 RETURN s

Many meaningful queries correspond to following paths in the graph database. Cypher provides convenient

syntax for specifying path patterns. Those paths matching the pattern serve as the basis for what is returned.

In the query below, the sid and sname of students taking the ’Database’ course will be returned.

1 MATCH (s: Student) -[: Takes]->(c: Course { cname: ’Database ’ })

2 RETURN s.sid , s.sname

787

This can be compared to equivalent SQL queries.

1 SELECT s.sid , s.sname

2 FROM Student s, Takes t, Course c

3 WHERE c.cname = ’Database ’ and s.sid = t.sid and t.cid = c.cid

1 SELECT s.sid , s.sname

2 FROM Student s NATURAL JOIN Takes t NATURAL JOIN Course c

3 WHERE c.cname = ’Database ’

It is easy to make connections that are multiple hops away in the graph. To find the professors teaching

’Peter’, the following 2-hop path pattern may be used.

1 MATCH (s: Student { sname: ’Peter’}) -[: Takes]->(c: Course) -[: TaughtBy]->(p: Professor)

2 RETURN p

Like SQL, Cypher allows results to be combined with UNION (AS is needed for renaming, so the columns

agree).

1 MATCH (s: Student)

2 RETURN s.sname AS name

3 UNION

4 MATCH (p: Professor)

5 RETURN p.sname AS name

Note: Like SQL, UNION removes duplicates, while UNION ALL does not.

Other commonly used clauses include ORDER BY to sort the answer to a query and LIMIT to restrict

the size of the answer.

For more information on the syntax of Cypher and more example queries, see the Neo4j Cypher Manual,

https://neo4j.com/docs/cypher-manual/current/introduction/.

B.3.4 Graph Algebra

Often high-level query languages are implemented by translating to an algebraic language that consists of

basic operators, such as select, project and join. Although graph algebra is analogous to relational

algebra, it is richer and more complex. The operators in ScalaTion’s Graph Algebra are implemented in

three classes: VertexType, EdgeType, and PGraph.

Operators for Vertex-Types

Several operators apply only to a single vertex-type. For the discussion below, the person vertex-type will

be used.

1 val person = g.vmap("person")

• The project operator for vertex-types will project onto the properties given in the specified subschema

x.

1 def project (x: Schema): VertexType =

2 if ! subset (x, schema) then flaw ("project", "subschema x does not follow schema")

3 new VertexType (name + "_p", x,

4 for v <- verts yield Vertex (v.prop.filter (x contains _._1)))

5 end project

788

https://neo4j.com/docs/cypher-manual/current/introduction/

For example, to return the vertices with the properties trimmed down to just names the following two

queries may be used. The corresponding Cypher query is also shown.

1 val q0 = person.project (Array ("name"))

2 val q2 = person.project ("name")

3 MATCH (p: Person) RETURN p.name

• The select operator for vertex-types will return the subset of vertices that satisfy the predicate pred.

1 def select (pred: Property => Boolean): VertexType =

2 new VertexType (name + "_s", schema ,

3 for v <- verts if pred (v.prop) yield v)

4 end select

For example, to return the vertices where the name property is “Sue”, the following two queries may

be used (the second one is an abbreviated form of the first one). The corresponding Cypher query is

also shown.

1 val q2 = person.select ((p: Property) => p("name") == "Sue")

2 val q3 = person.select (_("name") == "Sue")

3 MATCH (p: Person) WHERE p.name = ’Sue’ RETURN p

• The unionAll operator for vertex-types will return all the vertices that from the two vertex-types.

1 def unionAll (vt2: VertexType): VertexType =

2 new VertexType (name + "_ua_" + vt2.name , schema , verts ++ vt2.verts)

3 end unionAll

For example, the union of person and android will return person and android vertices. The corre-

sponding Cypher query is also shown.

1 val q4 = person unionAll android

2 MATCH (p: Person) RETURN p UNION ALL MATCH (a: Andoid) RETURN a

An issue to address is defining union-compatibility in a more flexible manner than in relational

databases.

• The union operator for vertex-types will return the vertices that are in either of two vertex-types,

without duplication.

1 def union (vt2: VertexType): VertexType =

2 new VertexType (name + "_u_" + vt2.name , schema , (verts ++ vt2.verts).distinct)

3 end union

For example, the union of person and android will return person and android vertices. If any two

vertices have exactly the same properties, the duplicate will be removed. The corresponding Cypher

query is also shown.

1 val q4 = person union android

2 MATCH (p: Person) RETURN p UNION MATCH (a: Andoid) RETURN a

• The intersect operator for vertex-types will return vertices both to both vertex-types (this and vt2).

1 def intersect (vt2: VertexType): VertexType =

2 new VertexType (name + "_i_" + vt2.name , schema , (verts intersect vt2.verts))

3 end intersect

789

• The minus operator for vertex-types will return the vertices that are in either of two vertex-types.

The Cypher query language does not currently provide a MINUS operation (although a work-around

can be used).

1 def minus (vt2: VertexType): VertexType =

2 new VertexType (name + "_m_" + vt2.name , schema , verts diff vt2.verts)

3 end minus

For example, starting with the vertices in q4 and subtracting the vertices in android.

1 val q5 = q4 minus android

• The groupBy operator groups the vertices based on sharing a property value pname.

1 def groupBy (pname: String , agg_name: String , agg_fn: Double => Double): VertexType =

2 debug ("groupBy", s"group $schema by $pname")

3 if ! (schema contains pname) then flaw ("groupBy", s"property $pname missing from

schema")

4 if checkMissing (pname) then flaw ("groupBy", s"property $pname missing from a

vertex")

5

6 val groups = verts.groupBy [ValueType] (_.prop(pname)) // discriminator

7 val vertices = VEC [Vertex] ()

8 for g <- groups; v <- g._2 do

9 vertices += Vertex (Map (pname -> v.prop(pname),

10 (agg_name -> agg_fn (v.prop(agg_name).toDouble))))

11 end for

12 new VertexType (name + "_g", Array (pname , agg_name), vertices)

13 end groupBy

• The orderBy orders the vertices within this vertex-type by the values of the given property name

pname.

1 def orderBy (pname: String): VertexType =

2 new VertexType (name + "_o", schema , verts.sortWith (_.prop(pname) < _.prop(pname))

)

3 end orderBy

Operators for Edge-Types

Other operators apply to edge-types. The expand operators expand into vertices that are targets (to) or

sources (from) of the edges in the edge-type. Several other operators are analogs of those provided by

vertex-types.

• The expandTo operator expand this edge-type with its ’to’ vertex-type, appending its properties

1 def expandTo: EdgeType =

2 val edgez = for e <- edges yield Edge (e.from , e.prop +++ e.to.prop , null)

3 new EdgeType (name + "_et", from , schema ++ to.schema , null , edgez)

4 end expandTo

Similar operators are expandFrom and expand.

• Versions of operators in VertexType are also provided in EdgeType.

790

1 def project (x: Schema): EdgeType =

2 def select (pred: Property => Boolean): EdgeType =

3 def unionAll (et2: EdgeType): EdgeType =

4 def union (et2: EdgeType): EdgeType =

5 def intersect (et2: EdgeType): EdgeType =

6 def minus (et2: EdgeType): EdgeType =

7 def orderBy (pname: String): EdgeType =

Operators for Property Graphs

The following four operators work on both vertex-types and edge-types to produce new property graphs.

1 def expandOut (from: VertexType , ets: VEC [EdgeType], tos: VEC [VertexType],

2 newName: String): PGraph =

3 def expandIn (froms: VEC [VertexType], ets: VEC [EdgeType], to: VertexType ,

4 newName: String): PGraph =

5 def expandBoth (froms: VEC [VertexType], ets: VEC [EdgeType], tos: VEC [VertexType],

6 newName: String): PGraph =

7 def join (g2: PGraph , vt1: VertexType , vt2: VertexType ,

8 newName: String): PGraph =

As Cypher and Gremlin are the two major query languages for graph databases, graph algebras have

been developed for each: Cypher [79, 120, 185], Gremlin [193, 192]. Additional information on graph algebra

may be found in the text on Graph Data Warehousing [53].

B.3.5 Query Processing in Graph Databases

With a larger and more complex graph algebra as well as excellent potential for high-performance query

processing, query processing in graph databases is challenging [150].

• Query Processing and Optimization in Graph Databases [64]

• Demystifying Graph Databases [16]

791

B.4 Special Types of Graph Databases

Graph databases attempt to strike the right balance between (i) rich and flexible database models, (ii)

efficient query processing, and (iii) reduction in complexity. For example, compared to relational databases,

graph databases trade off (iii) for gains in (i) and (ii). Different organizational structures for graph databases

will be positioned differently among these three competing goals.

• RDF, RDFS, RDF-Graph [51]

• Query Language: SPARQL 1.1 https://www.w3.org/TR/sparql11-query, [6]

• Ontologies, Description Logics [100], and OWL 2 EL [99, 126]

B.4.1 Embedding Relationships in Vertex-Types

The implicit relationships (foreign-key, primary-key) pairs in relational databases only support many-to-

one relationships (i.e., the foreign-key references a single primary-key). In order to support many-to-many

relationships, relational databases require such relationships to be translated in a new association relation

that includes two foreign keys. This can be viewed a disadvantage of having a database model that is too

simple. On the other hand, is allows tables to be connected using a single join. If all relationships were stored

in a separate table, two joins would be required. This is analogous to what is occuring with EdgeTypes. It

is possible the replace EdgeTypes by adding child references to VertexTypes.

The database.graph relation package in ScalaTion adds a Map that takes edge names and maps

them to another vertex. As in ScalaTion’s database.graph package, a vertex has a property Map called

prop that maps property names to property values, e.g., "name" -> "Sue". In graph relation, the

Vertex class also has a edge Map called edge that maps edge names to other vertices, e.g., "taughtBy"

-> professor.verts(1).

1 @param prop maps vertex property names to property values

2 @param edge maps vertex edge names to other vertices

3

4 case class Vertex (prop: Property , edge: Reference = emptyRef)

5 extends Serializable:

The VertexType class has a name, a schema for its properties, and edge schema for its edge references, as

well the vertices contained in it.

1 @param name the name of this vertex -type

2 @param schema the property names for this vertex -type

3 @param eschema the edge names for this vertex -type

4 @param verts the set of vertices having this vertex -type (extension)

5

6 case class VertexType (name: String , schema: VEC [String], eschema: VEC [String],

7 verts: VEC [Vertex])

8 extends Flaw ("VertexType") with Serializable:

A Course vertex-type may have a reference TaughtBy to a Professor vertex-type. At the instance level this

would indicates that for example, the Database course is taught by professor 2.

1 val Professor = VertexType ("professor",

2 VEC ("pid", "name", "phone"),

3 VEC (),

792

https://www.w3.org/TR/sparql11-query

4 VEC (Vertex (Map ("pid" -> 1, "name" -> "Bob", "phone" -> 1234567)),

5 Vertex (Map ("pid" -> 2, "name" -> "Sue", "phone" -> 2345678)),

6 Vertex (Map ("pid" -> 3, "name" -> "Joe", "phone" -> 3456789))))

7

8 val Course = VertexType ("course",

9 VEC ("cid", "cname", "dept"),

10 VEC ("taughtBy"),

11 VEC (Vertex (Map ("cid" -> 1, "cname" -> "database", "dept" -> "CSCI"),

12 Map ("taughtBy" -> professor.verts (0))),

13 Vertex (Map ("cid" -> 2, "cname" -> "networks", "dept" -> "CSCI"),

14 Map ("taughtBy" -> professor.verts (1))),

15 Vertex (Map ("cid" -> 3, "cname" -> "ai", "dept" -> "ARTI"),

16 Map ("taughtBy" -> professor.verts (2)))))

The database.graph relation package is similar to a traditional relational model, except that foreign

key values are no longer stored in a column of a table whose correspondence with the primary key value

facilitates a join. Rather a direct reference to the vertex containing that primary key value is used. The

trade-off is a slight increase in the complexity of the database model, for the potential of faster joins. See

the exercises for a comparison of property graphs, graph relations and relations.

B.4.2 Resource Description Framework (RDF) Graphs

Various restrictions/simplifications can be added to the above organizational structure to make query pro-

cessing more efficient. For example, the edge properties may be replaced with an edge label.

Similar to a graph database, an RDF store holds a collection of triples of the form (subject, predicate,

object) or (s, p, o). A predicate is also referred to as an RDF property. With certain restrictions on RDF

triples, an RDF Graph may be built upon the concept of a Vertex-Edge-Labeled Directed Multi-Graph. RDF

Graphs may be viewed as a refinement as follows: The vertices are partitioned into entity nodes and literal

nodes. An entity node’s label is an International Resource Identifier (IRI), while a literal node’s label is a

primitive value (e.g., number or string). An edge represent a triple of the form (subject, predicate, object)

or (s, p, o). The subject is the from-vertex, the predicate may be viewed as an edge label, and the object is

the to-vertex (see https://www.w3.org/TR/rdf11-primer/).

The RDFTriple class holds information about a triple (3 part edge). It may be viewed as a statement

with a subject, predicate and object.

1 @param s the head vertex (subject = International Resourse Indentifier (IRI))

2 @param p the relation/edge -label (predicate)

3 @param o the tail vertex (object = IRI or literal value)

4

5 case class RDFTriple (s: String , p: ValueType , o: ValueType)

Resource Description Framework Schema (RDFS) Graphs

On the flip side, various extensions can be added to the above organizational structure. For example, type

hierarchies can be imposed on vertex-types as well as edge-types.

The IRIs are identifiers for (Web) resources and the Resource Description Framework Schema (RDFS)

can by used to assign types to resources, dividing them into groups called classes. The rdf:type predicate

may be used to assign a type to a resource, e.g.,.

1 resourse1 rdf:type Class1

793

https://www.w3.org/TR/rdf11-primer/

states that resource1 is an instance of Class1 an rdfs:Class. Subclasses may be defined as well (see

https://www.w3.org/TR/rdf-schema/).

1 Class2 rdfs:subClassOf Class1

Similarly, properties can be defined using rdf:Property and subtypes defined using rdfs:subPropertyOf

A convenient way to define an RDF/RDFS dataset is via the Turtle language (see https://www.w3.org/

TR/2014/REC-turtle-20140225/). In addition, JSON-LD provides an alternative convenient syntax (see

https://www.w3.org/TR/json-ld/).

To handle certain use cases in RDF and RDFS, more complicated graph forms are needed, including

bipartite graphs, hypergraphs and Labeled Directed Multigraph with Triple Nodes (LDM-3N) [134]. There

are also efforts underway to provide interoperability between RDF and Property Graphs [8].

The Shapes Constraint Language (SHACL) provides constraints for RDF Graph.

SPARQL Query Language

The SPARQL query language makes it easy to express queries in that the WHERE clause consists of con-

straints in the form of triple patterns that are similar to triple statements (see https://www.w3.org/TR/

sparql11-query/).

1 PREFIX university: <http://.../ univerity >

2 SELECT ?p

3 WHERE { ?c rdf:type university:Course .

4 ?c university:taughtBy ?p . }

The first triple pattern constrains the variable ?c to be a university course, while the second one constrains

the ?p to be someone who teaches a course at the university. The SELECT clause indicates what to to return

as the answer to query, while the PREFIX indicates the data source and its namespace.

B.4.3 From Relational to Graph Databases

ScalaTion supports data models spanning the space from traditional relational data models to graph data

models, including Table, LTable, VTable, GTable, and finally PGraph. Table B.6 shows ten distinct types

of data models.

Table B.6: Types of Data Models (Relational (R), Graph-Relational (GR), Graph (G)

Type Features Example

R Nested Loop Join Oracle

R Referential Integrity, Join Using Primary Index Oracle 7

R NU Index on Foreign Key, Efficient Joins in Both Directions Table

R Joins via Index-Free Adjacency (Many-to-One) LTable

GR Information-Bearing Adjacency (May Drop Foreign Keys) CODASYL

GR Index-Free Adjacency (Many-to-Many), Tuple → Vertex VTable

G Adjacency via Edges, Edges as First Class Citizens -

G Attributes for Edges GTable

G Replace Attributes with Property Map PGraph

G Replace Property Map with Edges RDF Graph

794

https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/2014/REC-turtle-20140225/
https://www.w3.org/TR/2014/REC-turtle-20140225/
https://www.w3.org/TR/json-ld/
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/

B.5 Knowledge Graphs

Some view knowledge graphs as RDF/RDFS graphs and their extensions such as using the Web Ontology

Language (OWL) to specify type hierarchies and constraints. Another viewpoint is that they are graph

databases, primarily property graphs, used to store knowledge in addition to data.

A more common view is that knowledge graphs go beyond the structural issues related to basing them

on RDF graphs versus property graphs, by including the following deeper issues [77, 78]:

1. the type of logic used to express constraints and make inferences,

2. methodologies for adding vertices/nodes and edges/relationships, and

3. their synergy with machine learning.

For example, various sub-languages for OWL support particular forms of description logic. Description

logics are especially helpful in deducing if one class/concept subsumes another class/concept, purely from

the logical specification (e.g., Animal subsumes Mammal).

Also see https://web.stanford.edu/ vinayc/kg/notes/KG Notes v1.pdf

One could with a graph database based on Property Graph and add some following features/capabilities

discussed in the subsections below.

B.5.1 Type Hierarchies

From an object-oriented point of view, each table or vertex-type defines a class. Indeed, object-relational

database systems allow the creation of table data types using a CREATE TYPE statement. In ScalaTion these

are defined dynamically and these is no type hierarchy specified.

On the other hand, RDFS defines a type hierarchy as follows:

Again, object-relational database systems support this via the UNDER clause. For example, the student-

course-professor database may be defined as follows (for example using PostgreSQL):

1 CREATE TYPE personType AS (

2 id INTEGER ,

3 name VARCHAR (30),

4 street VARCHAR (30),

5 city VARCHAR (30))

6

7 CREATE TYPE studenType AS (

8 dept VARCHAR (30),

9 level INTEGER)

10 UNDER personType

11

12 CREATE TYPE professorType AS (

13 dept VARCHAR (30))

14 UNDER personType

15

16 CREATE TYPE courseType AS (

17 cid INTEGER ,

18 cname VARCHAR (30),

19 hours INTEGER ,

20 dept VARCHAR (30),

21 pid INTEGER)

795

h

22

23 CREATE TYPE takesType AS (

24 id INTEGER ,

25 cid INTEGER)

RDFS also allows type hierarchies to be created among relationships (edge-types). For example, a

relationship (edge-type) mother-of could could be defined to be a subtype of parent-of. Then any query

looking for parents of a Person would follow the parent-of relationship and any subtype relationships.

B.5.2 Constraints and Rules

In addition to the structural requirements for membership in a table/vertex-type, a vertex may need to

satisfy constraints, e.g., a Voter type may extend Person and add a constraint that the voter must be at

least 18 years of age. The challenging issue with constraints is that they make it hard to know is one type

subsumes another. For example, if type Employee had a constraint the age must be 18 to 70, then Voter

subsumes Employee in the sense that every employee can be a voter, but not vice versa.

For efficiency/decidability constraint languages are designed to have restricted expressive power. Con-

straints can be written in a description logic. For example, the Web Ontology Language, Version 2 (OWL 2)

includes OWL 2 DL (Description Logic), OWL 2 EL (Existential Language), OWL 2 QL (Query Language),

and OWL 2 RL (Rule Language) profiles that trade-off expressiveness for efficiency in various ways to meet

particular needs [65, 100].

In the OWL 2 EL description logic, the schema defined above for PostgreSQL may be defined as follows:

Person v ∃hasId.> u ∃hasName.> u hasStreet.> u ∃hasCity.>

Student v Person u ∃hasDept.> u hasLevel.>

Professor v Person u ∃hasDept.>

Course v ∃hasCid.> u ∃hasName.> u ∃hasHours.> u ∃hasDept.>

Student v ∃takes.Course

Professor v ∃teaches.Course

It consists of five concepts/classes (Person, Student, Professor, Course, >), where > is the top concept

(anything) and nine roles/binary relationships (hasId, hasName, hasStreet, hasCity, hasDept, hasLevel, has-

Cid, takes, teaches). The u symbol indicates concept intersection/conjunction, thus specifying the Person

concept has all four roles/properties listed in its definition. The ∃ symbol is an existential restriction.

To permit inferencing in polynomial time, OWL EL is limited to (1) negation (¬C), (2) conjunction

(C uD), (3) disjunction (C tD), (4) existential restriction (∃R.C), (5) concept inclusion (C v D), (6) role

inclusion (R v S), and (7) role chain (R1 ◦R2 v R).

Concept inclusion C v D is the flip side of concept subsumption D w C. When C v D, if c ∈ CI , then

c ∈ DI . Note, C is a concept, while CI is the application of the concept to a knowledge base (or in general

any interpretation) and indicates the set of individuals classified under C, asserted or inferred.

Instances/individuals may be associated with concepts and roles as follows: (1) concept assertion C(a),

e.g., Student(peter), Course(database) and (2) role assertion R(a, b), e.g., takes(peter, database).

In addition to the top concept (>) containing all individuals, there is also a bottom concept (⊥) that

can never have individuals.

796

See [99, 126] for the complete definitions for OWL 2 EL.

A reasoner can be applied to make inferences, such as concept inclusion (v), concept C v D, meaning

that concept D is more general than concept C, e.g., Student v Person.

Related to constraints are rules. While inferencing with constraints is used to determine whether some-

thing (e.g., Person subsumes Student) is true, inferencing with rules produces new facts. Consider the

following rule written in Datalog [62]

grandparent(x, z) :− parent(x, y) & parent(y, z).

It produces new information that is not stored in the database or knowledge base. Although this could be

easily accomplished using relational algebra on a table parent(x, y),

πxz(parent ./y=p2.x parent)

the following rules (with the second one being recursive) are beyond the capabilities of standard relational

algebra.

ancester(x, y) :− parent(x, y).

ancester(x, z) :− parent(x, y) & ancester(y, z).

Other implementations of rules used for knowledge graphs or more knowledge bases include the Semantic

Web Rule Language (SWRL) and the Rule Interchange Format (RIF) [152].

For a discussion of future direction of research on knowledge graphs, see [76].

B.5.3 KGTable

The KGTable class in ScalaTion allows a knowledge-graph-table (or simply kg-table) to specify a parent

or supertype.

1 @param name_ the name of the graph -table

2 @param schema_ the attributes for the graph -table

3 @param domain_ the domains/data -types for attributes (’D’, ’I’, ’L’, ’S’, ’X’, ’T’)

4 @param key_ the attributes forming the primary key

5 @param parent the parent (super -type) table

6

7 class KGTable (name_ : String , schema_ : Schema , domain_ : Domain , key_ : Schema ,

8 val parent: KGTable = null)

9 extends GTable (name_ ,

10 if parent == null then schema_ else parent.schema ++ schema_ ,

11 if parent == null then domain_ else parent.domain ++ domain_ ,

12 if parent == null then key_ else parent.key)

13 with Serializable:

The schema defined above for PostgreSQL may be specified in ScalaTion as follows:

1 val person = KGTable ("person", "id , name , street , city",

2 "I, S, S, S", "id")

3 val student = KGTable ("student", "dept , level",

797

4 "S, I", null , person)

5 val professor = KGTable ("professor", "dept",

6 "S", null , person)

7 val course = KGTable ("course", "cid , cname , hours , dept",

8 "I, X, I, S", "cid")

9

10 student.addEdgeType ("cid", course , false) // student has M courses

11 course.addEdgeType ("id", student , false) // course has M students

12 course.addEdgeType ("pid", professor) // course has 1 professor

In a manner similar to the GTable graph database, a KGTable knowledge graph may be populated as

follows:

1 val v_Joe = person.addV (91, "Joe", "Birch St", "Athens")

2 val v_Sue = person.addV (92, "Sue", "Ceder St", "Athens")

3

4 val v_Peter = student.addV (101, "Peter", "Oak St", "Bogart", "CS", 3)

5 val v_Paul = student.addV (102, "Paul", "Elm St", "Watkinsville", "CE", 4)

6 val v_Mary = student.addV (103, "Mary", "Maple St", "Athens", "CS", 4)

7

8 val v_DrBill = professor.addV (104, "DrBill", "Plum St", "Athens", "CS")

9 val v_DrJohn = professor.addV (105, "DrJohn", "Pine St", "Watkinsville", "CE")

10

11 val v_Database = course.addV (4370, "Database Management", 4, "CS")

12 val v_Architecture = course.addV (4720, "Comp. Architecture", 4, "CE")

13 val v_Networks = course.addV (4760, "Computer Networks", 4, "CS")

14

15 student.add2E ("cid", Edge (v_Peter , v_Database), "id", course)

16 .add2E ("cid", Edge (v_Peter , v_Architecture), "id", course)

17 .add2E ("cid", Edge (v_Paul , v_Database), "id", course)

18 .add2E ("cid", Edge (v_Paul , v_Networks), "id", course)

19 .add2E ("cid", Edge (v_Mary , v_Networks), "id", course)

20

21 course.addE ("pid", Edge (v_Database , v_DrBill))

22 .addE ("pid", Edge (v_Architecture , v_DrBill))

23 .addE ("pid", Edge (v_Networks , v_DrJohn))

The all operator will retrieve vertices from the complete hierrachy that starts with the given class. The

first show will display Joe and Sue, while the second will display all people.

1 person.show ()

2 person.all().show ()

798

B.6 Exercises - Part I

1. Present a Group Lecture Series on High Level Query Languages for Graph Databases.

2. Present a Group Lecture Series on Graph Algebra.

3. Present a Group Lecture Series on Query Processing in Graph Database.

4. Present a Group Lecture Series on Special Types of Graph Databases.

5. Use Scala 3 to complete the implementation of VertexType in the scalation.database.graph pack-

age. It should provide operators like those in the Neo4j graph algebra.

6. Use Scala 3 to complete the implementation of EdgeType and PGraph in the scalation.database.graph

package. Again, it should provide operators like those the Neo4j graph algebra. The exiting operators

in these classes may need to renamed and/or modified.

7. Using your implementation for PGraph translate the road sensor schema.

8. Create the same schema using Neo4j.

9. Populate the database with sample data.

10. Using Neo4j’s Cypher Query language, retrieve the sensors that are on I35.

11. Retrieve traffic data within a 100 kilometer-grid from the center of Austin, Texas. The latitude-

longitude coordinates for Austin, Texas are (30.266667, -97.733333).

12. Project PG1 and PG2.

PG1: Finish and test the implementations of the ScalaTion data models: Table, LTable, VTable,

GTable, and PGraph. See Exercise 1 in Chapter 4, section 5 for details. The first four are in the

scalation.database.table package, while the last is in the scalation.database.graph package.

Each group picks one to work on.

PG2: Compare the complexity and performance of the following database systems:

• ScalaTion data models: Table, LTable, VTable, GTable, and PGraph. Each group picks one to

work on.

• Relations - using PostgreSQL/MySQL

• Properties Graphs - using Neo4j

Plot the performance of various types of queries executed with each of the four database systems.

For each plot, the x-axis will be the number of tuples/vertices, while the y-axis will be the time in

milliseconds (using nanoTime) to execute the query. Scalation allows its conveinent use as follows:

1 def time [R] (block: => R): R =

2 val t0 = nanoTime ()

3 val result = block // call -by-name

4 val t1 = nanoTime ()

5 println ("Elapsed time: " + (t1 - t0) * NS_PER_MS + " ms")

6 result

7 end time

799

Be sure to skip the timing results for the first iteration and average the next five to get reliable timing

results. Note, the JIT compiler is used during the first iteration, so it tends to be slow. The performance

evaluation will require a large number of tuples/vertices, so a tuple/vertex generator will be needed.

Make sure to test path queries common in social networking applications.

800

B.7 Graph Data Science

Graph Analytics or Graph Data Science is emerging as an important area. It has two sides: first, how can

data science/machine learning be used to build graph databases or knowledge graphs, second how can these

be used to enhance data science/machine learning. Enhancement includes making existing predictive models

better as well as supporting new types of analysis.

The first place to starts is to see how graph algorithms are used in graph data science. Graph database

providers such as Neo4j and TigerGraph supply libraries to support graph data science [130, 94, 153, 149].

B.7.1 Path Finding

There are many types of path finding problems, including single-source shortest path, all-pairs shortest

path, short-path from vertex u to w, through vertex v, vertex search, including Depth-First Search (DFS),

Breath-First Search (BFS) and A∗.

B.7.2 Centrality and Importance

The importance of vertices varies depending on their connections to other vertices. For example, a vertex

that is connected to only one other vertex would not viewed as central, a vertex with long paths in all

directions would be considered as central. Also, a vertex with high in-degree would likely be considered to

be important. A page rank algorithms may be used to score the importance of vertices.

B.7.3 Community Detection

The basic idea of community in a graph is that vertices in a group will have more connections within the

group than outside.

801

B.8 Graph Pattern Matching

Graph Pattern Matching [19] captures the idea that one can specify a query as a (typically small) graph

or more generally a graph pattern and then find all subgraphs in the graph database that match it. If one

is interested in subgraphs that match in terms of labels/properties and topology, then the graph matching

problem is called subgraph isomorphism. Various forms of graph simulation may also be used, including

simple, dual, strong, strict and tight simulation. The graph simulation algorithms return all the subgraph

isomorphism matches plus some that while they fail the subgraph isomorphism test, they may be of interest

to the user; in addition, these algorithms are much faster.

Another direction that also relaxes subgraph isomorphism is graph homomorphism [95, 184].

B.8.1 Graph Simulation

Graph simulation establishes a mapping of each vertex in the query graph Q to a set of vertices in the data

graph G. Initially the mapping is based on matching vertex labels.

φ(u) = {v ∈ G.V : lv(v) = lv(u)} (B.1)

The GraphSim class implements the pruning method defined for graph simulation.

1 @param g the data graph G(V, E, l)

2 @param q the query graph Q(U, D, k)

3

4 class GraphSim (g: Graph , q: Graph)

5 extends GraphMatcher (g, q):

Pruning is used to remove cases where vertex v ∈ φ(u) does not have children with vertex labels matching

those of vertex u.

φ(u) −= {v : lv(ch(u)) * lv(ch(v))} (B.2)

1 def prune0 (φ: Array [SET [Int]]): Array [SET [Int]] =

2 var (rem , alter) = (SET [Int] (), true) // vertices to be removed

3 breakable {

4 while alter do // check for matching children

5 alter = false // no vertices removed yet

6

7 for u <- qRange; u_c <- q.ch(u) do // for u in q; its children u_c

8 debug ("prune0", s"for u = $u, u_c = $u_c")

9 val φ_u_c = φ(u_c) // u_c mapped to vertices in g

10

11 for v <- φ(u) do // for each v in g image of u

12 if (g.ch(v) & φ_u_c).isEmpty then // v must have a child in φ(u_c)

13 rem += v; alter = true // match failed => add v to rem

14 end if

15 end for

16 if remove (φ, u, rem) then break () // remove vertices from φ(u)

17 end for

18 end while

19 } // breakable

20 φ

21 end prune0

802

The prune method also checks whether the edge labels match. (see sclation.database.graph pm.GraphSim.

Dual Simulation

Strict Simulation

Tight Simulation

B.8.2 Subgraph Isomorphism

B.8.3 Graph Homomorphism

B.8.4 Application to Query Processing in Graph Databases

803

B.9 Graph Representation Learning

Large graphs are difficult to analyze as a whole. One approach is to convert a graph into a matrix and then

use spectral theory (eigenvalues/singular values) to make a lower dimension approximation of the matrix

(e.g., for an Adjacency Matrix, Laplacian Matrix, or Normalized Laplacian Matrix). Graph Representation

Learning [207] ...

B.9.1 Matrix Representations

Weighted Adjacency Matrix

Given a Directed Multi-Graph G(V,E, Le, l, Lv), suppose an edge-label (or more generally an edge property)

can be interpreted as a weight (e.g., inverse of distance). The weight can be interpreted as vertex proximity

or similarity. Between any two vertices (u, v) there can multiple edges and edge labels.

{(u, le, v) ∈ E} (B.3)

These can be aggregated, (e.g., using count, min, max, mean, median) to create a single weight. This weight

can be use to create a weighted adjacency non-negative matrix, A = [aij].

aij = agg({le} : (u, le, v) ∈ E and u.id = i and v.id = j) (B.4)

= 0 if there no edge from u to v (B.5)

Count could be the number of edges from vertex u to v. For example, suppose the vertices represent cities

and the edges are connecting one way streets with an edge label/property giving the distance, then agg

function can be min for the minimum distance between the cities.

Graph Laplacian

Although the Graph Laplacian is usually applied in the context of undirected graph, it can be defined for

directed graphs and directed multi-graphs.

L = D −A (B.6)

where A is the weighted adjacency matrix and D is the out-degree (alternatively the in-degree) diagonal

matrix. For directed graphs, L may not be a symmetric matrix. Consequently, a spectral decomposition

giving the eigenvalues of the matrix may include complex numbers. In such cases, one could work with

singular values [26]. A simpler alternative would be to work with the undirected graph underlying the

directed graph, where L is a symmetric matrix and the eigenvalues are real numbers. Having the spectrum

of a matrix allows overall characteristics of graphs to be study and graphs compared. For example, if the

spectra of two graphs are different, then they cannot be isomorphic [26]. In addition, small eigenvalues may

be ignored to obtain a lower dimensional reprentation of the matrix (and consequently the graph).

Normalized Graph Laplacian

The Normalized Graph Laplacian is

L = D−
1
2 (D −A)D−

1
2 (B.7)

804

B.9.2 Graph Embeddings

As many data science/machine learning modeling techniques take vectors and matrices as input, they need

to be created from the information content of knowledge graphs. For example, a state in the United States

may have demographic and policy information, that can be useful information to be fed into a model. In

addition, similiar information about neighboring states or for example mobility data between the states

can useful as well. Capturing all this information may lead to a high dimensionality vector that is not

ideal for modeling. The goal of this area of research is to embed the information in a lower dimensionality

vector, while not losing important structural information [210]. Also see https://neo4j.com/developer/

graph-data-science/graph-embeddings/.

A vertex embedding function φ : V → Rd maps each vertex to d-dimensional vector. This can be done in

numerous ways, but the idea is make it so the dot product of two vectors approximates a similarity function

sim applied to the vertices, i.e.,

sim(u, v) = φ(u) · φ(v) (B.8)

FastRP

DeepWalk

A random walk in a directed graph will involve moving from vertex to vertex along edges. The selection of the

next vertex is governed by the transition matrix P . This may also be viewed as moving from state-to-state

in a Discrete-Time Markov Chain {xt|t = 0, 1, ...}. The walk will start at a particular vertex (or state) and

randomly progress from there.

Given a weighted adjacency matrix A, the transition probability for a standard random walk is given by

the following conditional probabilty [145, 83].

p(xt+1 = u|xt = v) =
auv
du

(B.9)

The transition matrix is then P = D−1A. As indicated in the section on Markov Chains, the long-term,

steady-state solution may be found by solving to π in

π = πP (B.10)

Node2Vec

GraphSAGE

805

https://neo4j.com/developer/graph-data-science/graph-embeddings/
https://neo4j.com/developer/graph-data-science/graph-embeddings/

B.10 Graph Neural Networks

The convolutional filters used in CNNs allow one to extract hidden features by looking at a collection of

nearby points. The notion of nearby may be thought of in terms of Euclidean distance.

Graphs can be used to provide a more versatile notion of what points are nearby. This may be done

by counting hops, the number of edges traversed to get form one vertex to another. If distance is an edge

property (given or derived) then nearby vertices may be defined as those within a certain distance, as shown

in Figure B.6.

v0

v1

v2

v3

v4

z3

Figure B.6: Neighborhood of vertex v3 aggregated and processed at hidden node z3

There are many types of Graph Neural Networks (GNNs) [216, 206] ... A GNN may be defined for several

types of graphs.

Consider the following slightly modified definition of a vertex-labeled directed graph as a four-tuple

G(V,E, d, x) where

• V = set of vertices

• E ⊆ V × V set of directed edges

• d = dimensionality of the property vectors

• x : V → Rd

Hence, xv denotes a property/attribute vector associated with vertex v. In general, a GNN could also use

values on edges. The following definitions are needed for understanding how GNNs work [209].

Neighborhood

The neighborhood of vertex v ∈ V is given as follows for a directed graph.

N (v) = {u|(v, u) ∈ E} ∪ {u|(u, v) ∈ E} (B.11)

The neighborhood of vertex v4 is {v1, v3}, where v1 is an upstream vertex and v3 is a downstream vertex.

806

B.10.1 AGGREGATE and COMBINE Operations

As with CNNs, the initial processing of data occurs with non-neural layers. For each layer l, data from a

vertex is mixed with its neighbors’ data using the AGGREGATE and COMBINE operations [68, 129]

AGGREGATE

The values for the neighborhood of vertex v are aggregated to form a vector of values representing the

neighborhood.

xN (v) = AGGREGATE {x(l−1)
u |u ∈ N (v)} (B.12)

The AGGREGATE operation may be as simple as element-wise mean or max-pooling.

COMBINE

A new value for vertex v, x
(l)
v is calculated by combining the previous vector value for vertex v, x

(l−1)
v , and

the vector value produced from v’s neighborhood.

x(l)
v = COMBINE(x(l−1)

v , xN (v)) (B.13)

The COMBINE operation may be a simple as element-wise mean or vector addition (+).

Example from Traffic Domain

As an example, consider applying a Graph Neural Network to vehicle traffic flow on a highway system. Let

the vertices in the graph represent sensors. At a particular time t, the sensor records the flow (vehicles in last

5 minutes) and speed (in mph). The neighborhood may capture the notion of upstream flow past one sensor

and downstream flow past another sensor. Suppose the initial property/attribute vectors are the following:

Table B.7: Example from Traffic Domain

v flow speed

v4 99 66

v1 90 68

v3 80 72

Applying an element-wise mean AGGREGATE operation gives

xN (v4) = AGGREGATE {x(0)
u |u ∈ {1, 3}} = [85, 70]

Applying an element-wise mean COMBINE operation gives

x(1)
v = COMBINE(x(0)

v ,xN (v)) = [93, 67]

Typically, the COMBINE operation includes a learnable weight/parameter matrix B and an activation

function f (e.g., reLU).

x(l)
v = f(B[x(0)

v ,xN (v)]) (B.14)

807

f is the vectorization of activation function f . The weights/parameters in the GNN indicate the importance

of data from upstream and downstream sensors in, for example, classifying, predicting or forecasting results

at a particular sensor. Pooling can also be used to reduce the size of the vectors.

ScalaTion WILL supports GraphNeuralNets of the spatial variety, so those of the spectral variety are

not considered (see [206] for a comparison).

B.11 Exercises - Part II

1. Pressent a Group Lecture Series on Graph Data Science.

2. Pressent a Group Lecture Series on Graph Pattern Matching.

3. Pressent a Group Lecture Series on Graph Representation Learning.

4. Pressent a Group Lecture Series on Graph Neural Networks.

808

Bibliography

[1] Hervé Abdi and Lynne J Williams. Principal component analysis. Wiley interdisciplinary reviews:

computational statistics, 2(4):433–459, 2010.

[2] Charu C Aggarwa et al. Data Classification: Algorithms and Applications. Chapman & Hall/CRC

Data Mining and Knowledge Discovery Series, 2015.

[3] Shahrokh Akhlaghi, Ning Zhou, and Zhenyu Huang. Adaptive adjustment of noise covariance in kalman

filter for dynamic state estimation. In 2017 IEEE power & energy society general meeting, pages 1–5.

IEEE, 2017.

[4] Awad H Al-Mohy and Nicholas J Higham. A new scaling and squaring algorithm for the matrix

exponential. SIAM Journal on Matrix Analysis and Applications, 31(3):970–989, 2010.

[5] Christos Alexopoulos, Andrew F Seila, and J Banks. Output data analysis. In Handbook of Simulation,

number 7. John Wiley & Sons, 1998.

[6] Waqas Ali, Muhammad Saleem, Bin Yao, Aidan Hogan, and Axel-Cyrille Ngonga Ngomo. A survey

of rdf stores & sparql engines for querying knowledge graphs. The VLDB Journal, pages 1–26, 2021.

[7] Daniel Aloise, Amit Deshpande, Pierre Hansen, and Preyas Popat. Np-hardness of euclidean sum-of-

squares clustering. Machine learning, 75:245–248, 2009.

[8] Renzo Angles, Harsh Thakkar, and Dominik Tomaszuk. Rdf and property graphs interoperability:

Status and issues. In AMW, 2019.

[9] David Arthur and Sergei Vassilvitskii. How slow is the k-means method? In Symposium on Compu-

tational Geometry, volume 6, pages 1–10, 2006.

[10] David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful seeding. Technical

report, Stanford, 2006.

[11] Jeremy Avigad, Johannes Hölzl, and Luke Serafin. A formally verified proof of the central limit

theorem. Journal of Automated Reasoning, 59(4):389–423, 2017.

[12] Jerry Banks, John Carson, Barry Nelson, and David Nicol. Discrete event system simulation, 5th

Edition. Pearson, 2010.

[13] Atilim Gunes Baydin, Barak A Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark Siskind.

Automatic differentiation in machine learning: a survey. Journal of Marchine Learning Research,

18:1–43, 2018.

809

[14] Anil K Bera and Yannis Bilias. The MM, ME, ML, EL, EF and GMM approaches to estimation: a

synthesis. Journal of Econometrics, 107(1-2):51–86, 2002.

[15] Joseph Berkson. Minimum chi-square, not maximum likelihood! The Annals of Statistics, 8(3):457–

487, 1980.

[16] Maciej Besta, Emanuel Peter, Robert Gerstenberger, Marc Fischer, Micha l Podstawski, Claude

Barthels, Gustavo Alonso, and Torsten Hoefler. Demystifying graph databases: Analysis and tax-

onomy of data organization, system designs, and graph queries. arXiv preprint arXiv:1910.09017,

2019.

[17] Concha Bielza and Pedro Larrañaga. Discrete Bayesian Network Classifiers: A Survey. ACM Com-

puting Surveys (CSUR), 47(1):5, 2014.

[18] Nicholas H Bingham and John M Fry. Regression: Linear models in Statistics. Springer Science &

Business Media, 2010.

[19] Sarra Bouhenni, Said Yahiaoui, Nadia Nouali-Taboudjemat, and Hamamache Kheddouci. A survey on

distributed graph pattern matching in massive graphs. ACM Computing Surveys (CSUR), 54(2):1–35,

2021.

[20] George EP Box, Gwilym M Jenkins, Gregory C Reinsel, and Greta M Ljung. Time series analysis:

forecasting and control. John Wiley & Sons, 2015.

[21] Stephan Boyd and Lieven Vandenberghe. Introduction to Applied Linear Algebra: Vectors, Matrices,

and Least Squares. Cambridge University Press, 2018.

[22] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et al. Distributed Optimiza-

tion and Statistical Learning via the Alternating Direction Method of Multipliers. Foundations and

Trends® in Machine Learning, 3(1):1–122, 2011.

[23] Charles G Broyden. The convergence of a class of double-rank minimization algorithms: 2. the new

algorithm. IMA journal of applied mathematics, 6(3):222–231, 1970.

[24] Yalcin Bulut, D Vines-Cavanaugh, and Dionisio Bernal. Process and measurement noise estimation

for kalman filtering. In Structural Dynamics, Volume 3, pages 375–386. Springer, 2011.

[25] Brett Burglund and Ryan Street. Golf ball flight dynamics. Flathead Valley, 2011.

[26] Steven Kay Butler. Eigenvalues and structures of graphs. University of California, San Diego, 2008.

[27] José M Carcione, Juan E Santos, Claudio Bagaini, and Jing Ba. A simulation of a covid-19 epidemic

based on a deterministic seir model. Frontiers in public health, 8:230, 2020.

[28] David Maxwell Chickering. Learning bayesian networks is np-complete. In Learning from data, pages

121–130. Springer, 1996.

[29] Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. On the properties

of neural machine translation: Encoder-decoder approaches. arXiv preprint arXiv:1409.1259, 2014.

810

[30] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Hol-

ger Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder-decoder for

statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.

[31] Zafer Cömert and Adnan Fatih Kocamaz. A study of artificial neural network training algorithms for

classification of cardiotocography signals. J Sci Technol, 7(2):93–103, 2017.

[32] Pierre Comon. Tensors: A brief introduction. IEEE Signal Processing Magazine, 31(3):44–53, 2014.

[33] Jerome Connor, Les E Atlas, and Douglas R Martin. Recurrent networks and narma modeling. In

Advances in neural information processing systems, pages 301–308, 1992.

[34] Denis Cousineau and Sylvain Chartier. Outliers detection and treatment: A review. International

Journal of Psychological Research, 3(1):58–67, 2010.

[35] Thomas M. Cover and Joy A. Thomas. Entropy, Relative Entropy and Mutual Information. Technical

report, Columbia University, 1991.

[36] George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control,

signals and systems, 2(4):303–314, 1989.

[37] Marc Peter Deisenroth, A Aldo Faisal, and Cheng Soon Ong. Mathematics for machine learning.

Cambridge University Press, 2020.

[38] Holger Dette and Weichi Wu. Prediction in locally stationary time series. Journal of Business &

Economic Statistics, 40(1):370–381, 2022.

[39] LEE DO Q. Numerically efficient methods for solving least squares problems, 2012.

[40] Justin Domke. Statistical Machine Learning Notes: Trees. Technical report, Uinversity of Mas-

sachusetts, 2018.

[41] Rick Durrett. Probability: theory and examples, volume 49. Cambridge university press, 2019.

[42] A Ehiagwina. Application of Mixed Simulation Method to Modelling Port Traffic. PhD thesis, Liverpool

John Moores University, 2021.

[43] Joseph G Eisenhauer. Regression through the origin. Teaching statistics, 25(3):76–80, 2003.

[44] Steven Elsworth and Stefan Güttel. Time series forecasting using LSTM networks: A symbolic ap-

proach. arXiv preprint arXiv:2003.05672, 2020.

[45] Leonhard Euler. Mechanica Sive Motus Scientia Analytice Exposita: Instar Supplementi Ad Commen-

tar. Acad. Scient. Imper, volume 2. Ex typographia academiae scientiarum, 1736.

[46] Geir Evensen. The ensemble kalman filter: Theoretical formulation and practical implementation.

Ocean dynamics, 53(4):343–367, 2003.

[47] Yuval Filmus. Two proofs of the central limit theorem. Recuperado de http://www. cs. toronto.

edu/yuvalf/CLT. pdf, 2010.

811

[48] Roger Fletcher. A new approach to variable metric algorithms. The computer journal, 13(3):317–322,

1970.

[49] Valeria Fonti and Eduard Belitser. Feature Selection using LASSO. Technical report, VU Amsterdam,

2017.

[50] Nir Friedman, Dan Geiger, and Moises Goldszmidt. Bayesian network classifiers. Machine learning,

29(2-3):131–163, 1997.

[51] Fabien Gandon, Reto Krummenacher, Sung-Kook Han, and Ioan Toma. The resource description

framework and its schema, 2011.

[52] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to forget: Continual prediction with

LSTM. In Ninth International Conference on Artificial Neural Networks. IET, 1999.

[53] Amine Ghrab et al. Graph data warehousing. 2020.

[54] Michael B Giles, Mihai C Duta, Jens-Dominik Muller, and Niles A Pierce. Algorithm developments

for discrete adjoint methods. AIAA journal, 41(2):198–205, 2003.

[55] Igor Gitman, Hunter Lang, Pengchuan Zhang, and Lin Xiao. Understanding the role of momentum in

stochastic gradient methods. Advances in Neural Information Processing Systems, 32, 2019.

[56] D Goldfarb. A family of variable metric updates derived by variational means. Mathematics of

Computing, 24:317–322, 1970.

[57] John Goldsmith. Probability for linguists. Mathématiques et sciences humaines. Mathematics and

social sciences, (180):73–98, 2007.

[58] Gene H. Golub and Charles F. Van Loan. Matrix Computations, 4th Edition, volume 3. JHU Press,

2013.

[59] Maximilian Götzinger, Dávid Juhász, Nima Taherinejad, Edwin Willegger, Benedikt Tutzer, Pasi

Liljeberg, Axel Jantsch, and Amir M Rahmani. Rosa: A framework for modeling self-awareness in

cyber-physical systems. IEEE Access, 8:141373–141394, 2020.

[60] Clive WJ Granger and Paul Newbold. Spurious regressions in econometrics. Journal of econometrics,

2(2):111–120, 1974.

[61] Erin Grant and Yan Wu. Predicting generalization with degrees of freedom in neural networks. In

ICML 2022 2nd AI for Science Workshop, 2022.

[62] Todd J Green, Shan Shan Huang, Boon Thau Loo, Wenchao Zhou, et al. Datalog and recursive query

processing. Foundations and Trends® in Databases, 5(2):105–195, 2013.

[63] Andreas Griewank et al. On automatic differentiation. Mathematical Programming: recent develop-

ments and applications, 6(6):83–107, 1989.

[64] Andrey Gubichev. Query processing and optimization in graph databases. PhD thesis, Technische

Universität München, 2015.

812

[65] Ricardo Guimarães and Ana Ozaki. Reasoning in knowledge graphs. In International Research School

in Artificial Intelligence in Bergen (AIB 2022). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022.

[66] Yunhui Guo, Honghui Shi, Abhishek Kumar, Kristen Grauman, Tajana Rosing, and Rogerio Feris.

Spottune: transfer learning through adaptive fine-tuning. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 4805–4814, 2019.

[67] Ernst Hairer, Christian Lubich, Gerhard Wanner, et al. Geometric numerical integration illustrated

by the stormer-verlet method. Acta numerica, 12(12):399–450, 2003.

[68] William L Hamilton, Rex Ying, and Jure Leskovec. Representation learning on graphs: Methods and

applications. arXiv preprint arXiv:1709.05584, 2017.

[69] John A Hartigan, Manchek A Wong, et al. A k-means clustering algorithm. Applied statistics,

28(1):100–108, 1979.

[70] Hussein Abdulahman Hashem. Regularized and Robust Regression Methods for High Dimensional Data.

PhD thesis, Brunel University, 2014.

[71] Trevor Hastie and Robert Tibshirani. Efficient quadratic regularization for expression arrays. Bio-

statistics, 5(3):329–340, 2004.

[72] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning: Data

Mining, Inference, and Prediction, 2nd Edition. Springer-Verlag New York, 2009.

[73] Yanchen He. The application of alternating direction method of multipliers on 1l-norms problems. In

Journal of Physics: Conference Series, volume 1187, page 042070. IOP Publishing, 2019.

[74] Korth HF and A Silberschatz. Database Systems Concepts. McGraw-Hill, 1986.

[75] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–

1780, 1997.

[76] Aidan Hogan. Knowledge graphs: Research directions. Reasoning Web International Summer School,

pages 223–253, 2020.

[77] Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia d’Amato, Gerard de Melo, Claudio Gutierrez,

José Emilio Labra Gayo, Sabrina Kirrane, Sebastian Neumaier, Axel Polleres, et al. Knowledge graphs.

arXiv preprint arXiv:2003.02320, 2020.

[78] Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia d’Amato, Gerard De Melo, Claudio Gutierrez,

Sabrina Kirrane, José Emilio Labra Gayo, Roberto Navigli, Sebastian Neumaier, et al. Knowledge

graphs. ACM Computing Surveys (CSUR), 54(4):1–37, 2021.

[79] Jürgen Hölsch and Michael Grossniklaus. An algebra and equivalences to transform graph patterns

in neo4j. In EDBT/ICDT 2016 Workshops: EDBT Workshop on Querying Graph Structured Data

(GraphQ), 2016.

[80] Douglas Holtz-Eakin, Whitney Newey, and Harvey S Rosen. Estimating vector autoregressions with

panel data. Econometrica: Journal of the econometric society, pages 1371–1395, 1988.

813

[81] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are universal

approximators. Neural networks, 2(5):359–366, 1989.

[82] Pili Hu. Matrix Calculus: Derivation and Simple Application. Technical report, City University of

Hong Kong, 2012.

[83] Zexi Huang, Arlei Silva, and Ambuj Singh. A broader picture of random-walk based graph embedding.

In Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data mining, pages

685–695, 2021.

[84] Rob J Hyndman and George Athanasopoulos. Forecasting: principles and practice. OTexts, 2018.

[85] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An Introduction to Statistical

Learning: With Applications in R. Springer-Verlag New York, 2013.

[86] Lucas Janson, William Fithian, and Trevor Hastie. Effective degrees of freedom: a flawed metaphor.

Biometrika, 99(1):1–8, 2012.

[87] Stephen C Johnson. Hierarchical clustering schemes. Psychometrika, 32(3):241–254, 1967.

[88] Jefkine Kafunah. Backpropagation in convolutional neural networks. DeepGrid—Organic Deep Learn-

ing, Nov, 29:1–10, 2016.

[89] George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.

Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, 2021.

[90] Anuj Karpatne, Gowtham Atluri, James H Faghmous, Michael Steinbach, Arindam Banerjee, Auroop

Ganguly, Shashi Shekhar, Nagiza Samatova, and Vipin Kumar. Theory-guided data science: A new

paradigm for scientific discovery from data. IEEE Transactions on knowledge and data engineering,

29(10):2318–2331, 2017.

[91] Matthias Katzfuss, Jonathan R Stroud, and Christopher K Wikle. Understanding the ensemble kalman

filter. The American Statistician, 70(4):350–357, 2016.

[92] Luke Keele and Nathan J Kelly. Dynamic models for dynamic theories: The ins and outs of lagged

dependent variables. Political analysis, pages 186–205, 2006.

[93] S. Sathiya Keerthi, Shirish Krishnaj Shevade, Chiranjib Bhattacharyya, and Karuturi Radha Kr-

ishna Murthy. Improvements to platt’s smo algorithm for svm classifier design. Neural computation,

13(3):637–649, 2001.

[94] Samir Khuller and Balaji Raghavachari. Basic graph algorithms. In Algorithms and theory of compu-

tation handbook: general concepts and techniques, pages 7–7. 2010.

[95] Jinha Kim, Hyungyu Shin, Wook-Shin Han, Sungpack Hong, and Hassan Chafi. Taming subgraph

isomorphism for rdf query processing. arXiv preprint arXiv:1506.01973, 2015.

[96] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980, 2014.

814

[97] Serkan Kiranyaz, Onur Avci, Osama Abdeljaber, Turker Ince, Moncef Gabbouj, and Daniel J Inman.

1d convolutional neural networks and applications: A survey. arXiv preprint arXiv:1905.03554, 2019.

[98] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-

tional neural networks. Advances in neural information processing systems, 25:1097–1105, 2012.

[99] Markus Krötzsch. Efficient inferencing for the description logic underlying owl el. Institut AIFB, KIT,

Karlsruhe, 2010.

[100] Markus Krötzsch, Frantisek Simancik, and Ian Horrocks. A description logic primer. arXiv preprint

arXiv:1201.4089, 2012.

[101] Viktor Kunčak and Jad Hamza. Stainless verification system tutorial. In # PLACE-

HOLDER PARENT METADATA VALUE#, pages 2–7, 2021.

[102] M. Kutner, Nachtsheim, and Neter. Introduction to nonlinear regression and neural networks. Technical

report, University of Minnesota, 2016.

[103] Giovanni Lavezzi, Kidus Guye, and Marco Ciarcià. Nonlinear programming solvers for unconstrained

and constrained optimization problems: a benchmark analysis. arXiv preprint arXiv:2204.05297, 2022.

[104] Averill M Law. How to build valid and credible simulation models. In 2008 Winter Simulation

Conference, pages 39–47. IEEE, 2008.

[105] Averill M Law. Simulation Modeling and Analysis. Fifth. McGraw-Hill Education, 2015.

[106] Robert J Leach, Stephanie E Forrester, AC Mears, and Jonathan R Roberts. How valid and accurate are

measurements of golf impact parameters obtained using commercially available radar and stereoscopic

optical launch monitors? Measurement, 112:125–136, 2017.

[107] Pierre L’ecuyer. Good parameters and implementations for combined multiple recursive random num-

ber generators. Operations Research, 47(1):159–164, 1999.

[108] Hagyeong Lee and Jongwoo Song. Introduction to convolutional neural network using keras; an under-

standing from a statistician. Communications for Statistical Applications and Methods, 26(6):591–610,

2019.

[109] Jun Li. A robust stochastic method of estimating the transmission potential of 2019-ncov. arXiv

preprint arXiv:2002.03828, 2020.

[110] Michael Y Li and James S Muldowney. Global stability for the seir model in epidemiology. Mathematical

biosciences, 125(2):155–164, 1995.

[111] Lek-Heng Lim. Tensors and hypermatrices. Handbook of Linear Algebra, pages 231–260, 2013.

[112] Dong C Liu and Jorge Nocedal. On the limited memory bfgs method for large scale optimization.

Mathematical programming, 45(1-3):503–528, 1989.

[113] Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on information theory, 28(2):129–

137, 1982.

815

[114] Charles Macal and Michael North. Introductory tutorial: Agent-based modeling and simulation. In

Proceedings of the Winter Simulation Conference 2014, pages 6–20. IEEE, 2014.

[115] Charles M Macal and Michael J North. Agent-based modeling and simulation. In Proceedings of the

Winter Simulation Conference, 2005., pages 86–98. IEEE, 2009.

[116] Charles M Macal and Michael J North. Tutorial on agent-based modeling and simulation. In Journal

of Simulation, pages 151–162. IEEE, 2010.

[117] Penelope Maddy. How applied mathematics became pure. The Review of Symbolic Logic, 1(1):16–41,

2008.

[118] Franco Manessi and Alessandro Rozza. Learning combinations of activation functions. arXiv preprint

arXiv:1801.09403, 2018.

[119] Maja Marasović, Tea Marasović, and Mladen Miloš. Robust nonlinear regression in enzyme kinetic

parameters estimation. Journal of Chemistry, 2017, 2017.

[120] József Marton, Gábor Szárnyas, and Dániel Varró. Formalising opencypher graph queries in relational

algebra. In European Conference on Advances in Databases and Information Systems, pages 182–196.

Springer, 2017.

[121] P McCullagh and JA Nelder. Generalized linear models., 2nd edn.(chapman and hall: London).

Standard book on generalized linear models, 1989.

[122] John A Miller, Mohammed Aldosari, Farah Saeed, Nasid Habib Barna, Subas Rana, I Budak Arpinar,

and Ninghao Liu. A survey of deep learning and foundation models for time series forecasting. arXiv

preprint arXiv:2401.13912, 2024.

[123] John A Miller, Hao Peng, and Michael E Cotterell. Adding support for theory in open science big

data. In Big Data (BigData Congress), 2017 IEEE International Congress on, pages 251–255. IEEE,

2017.

[124] Piotr Mirowski. Time series modeling with hidden variables and gradient-based algorithms. Depart-

ment of Computer Science, Courant Institute of Mathematical Sciences, New York University, Ph. D.

Dissertation, 2011.

[125] R Mohammadi Farsani and Ehsan Pazouki. A transformer self-attention model for time series fore-

casting. Journal of Electrical and Computer Engineering Innovations (JECEI), 9(1):1–10, 2020.

[126] Sutapa Mondal, Vijaya Raghava Mutharaju, and Sumit Bhatia. Embeddings for the EL++ description

logic. PhD thesis, IIIT-Delhi, 2020.

[127] Douglas C. Montgomery, Elizabeth A. Peck, and G. Geoffrey Vining. Introduction to Linear Regression

Analysis, volume 821. John Wiley & Sons, 2012.

[128] Steve Ataky Tsham Mpinda, Lucas Cesar Ferreira, Marcela Xavier Ribeiro, and Marilde Terez-

inha Prado Santos. Evaluation of graph databases performance through indexing techniques. In-

ternational Journal of Artificial Intelligence & Applications (IJAIA), 6(5):87–98, 2015.

816

[129] Nihal V Nayak. Graph neural networks - notes. Technical report, Brown Univerity, 2020.

[130] Mark Needham and Amy E Hodler. Graph algorithms: practical examples in Apache Spark and Neo4j.

O’Reilly Media, 2019.

[131] John A Nelder and Roger Mead. A simplex method for function minimization. The computer journal,

7(4):308–313, 1965.

[132] Isaac Newton. Philosophiae naturalis principia mathematica, volume 2. typis A. et JM Duncan, 1833.

[133] Anh Nguyen, Khoa Pham, Dat Ngo, Thanh Ngo, and Lam Pham. An analysis of state-of-the-art

activation functions for supervised deep neural network. In 2021 International Conference on System

Science and Engineering (ICSSE), pages 215–220. IEEE, 2021.

[134] Vinh Nguyen, Jyoti Leeka, Olivier Bodenreider, and Amit Sheth. A formal graph model for rdf and

its implementation. arXiv preprint arXiv:1606.00480, 2016.

[135] Michael A Nielsen. Neural networks and deep learning, volume 25. Determination press San Francisco,

CA, USA, 2015.

[136] Jorge Nocedal and Stephen J Wright. Numerical optimization. Springer, 1999.

[137] Chigozie Nwankpa, Winifred Ijomah, Anthony Gachagan, and Stephen Marshall. Activation functions:

Comparison of trends in practice and research for deep learning. arXiv preprint arXiv:1811.03378, 2018.

[138] Jeremy Orloff and Jonathan Bloom. 18.05 introduction to probability and statistics. Massachusetts

Institute of Technology: MIT OpenCourseWare, 2014.

[139] Jeremy Orloff and Jonathan Bloom. Maximum Likelihood Estimates. Technical report, MIT, 2014.

[140] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on knowledge

and data engineering, 22(10):1345–1359, 2009.

[141] Joanna Maria Papakonstantinou. Historical development of the BFGS secant method and its charac-

terization properties. Rice University, 2009.

[142] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming

Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in pytorch. 2017.

[143] Julio L Peixoto. A property of well-formulated polynomial regression models. The American Statisti-

cian, 44(1):26–30, 1990.

[144] Jolynn Pek, Octavia Wong, and AC Wong. Data transformations for inference with linear regression:

Clarifications and recommendations. Practical Assessment, Research, and Evaluation, 22(1):9, 2017.

[145] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social representations.

In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data

mining, pages 701–710, 2014.

[146] John Platt. Sequential minimal optimization: A fast algorithm for training support vector machines.

1998.

817

[147] J. Ross Quinlan. Induction of decision trees. Machine learning, 1(1):81–106, 1986.

[148] John R Quinlan et al. Learning with continuous classes. In 5th Australian joint conference on artificial

intelligence, volume 92, pages 343–348. World Scientific, 1992.

[149] Md Saidur Rahman et al. Basic graph theory, volume 9. Springer, 2017.

[150] Supriya Ramireddy. Query processing in graph databases. PhD thesis, University of Georgia, 2017.

[151] Suhasini Rao. A course in Time Series Analysis. Technical report, Texas A&M University, 2018.

[152] Thanyalak Rattanasawad, Kanda Runapongsa Saikaew, Marut Buranarach, and Thepchai Supnithi.

A review and comparison of rule languages and rule-based inference engines for the semantic web. In

2013 International Computer Science and Engineering Conference (ICSEC), pages 1–6. IEEE, 2013.

[153] Santanu Saha Ray. Graph theory with algorithms and its applications: in applied science and technology.

Springer, 2013.

[154] Matthew B Rhudy, Roger A Salguero, and Keaton Holappa. A kalman filtering tutorial for undergrad-

uate students. International Journal of Computer Science & Engineering Survey, 8(1):1–9, 2017.

[155] Stephen D Roberts and Dennis Pegden. The history of simulation modeling. In 2017 Winter Simulation

Conference (WSC), pages 308–323. IEEE, 2017.

[156] Ian Robinson, Jim Webber, and Emil Eifrem. Graph databases. ”O’Reilly Media, Inc.”, 2013.

[157] Raul Rojas. The backpropagation algorithm. In Neural networks, pages 149–182. Springer, 1996.

[158] Lior Rokack. Decision Trees. Technical report, Tel-Aviv University, 2015.

[159] Michael J Rosenfeld. Ols in matrix form. NYU Lecture Notes, 2013.

[160] Sheldon M Ross. Introduction to probability models, 3rd Edition. Academic Press, San Diego, 1985.

[161] Sheldon M Ross. Introduction to probability models, 11th Edition. Academic press, 2014.

[162] Dan Roth. Decision Trees. Technical report, University of Illinois, 2016.

[163] Prasanna Sahoo. Probability and Mathematical Statistics. University of Louisville, Louisville, KY

40292, USA, 2013.

[164] Remi M Sakia. The box-cox transformation technique: A review. Journal of the Royal Statistical

Society: Series D (The Statistician), 41(2):169–178, 1992.

[165] Anders W Sandvik. Numerical solutions of classical equations of motion. PY Comput. Phys, 502, 2015.

[166] Robert G Sargent. An introductory tutorial on verification and validation of simulation models. In

2015 winter simulation conference (WSC), pages 1729–1740. IEEE, 2015.

[167] T Shalab. Regression analysis. chapter 12: Polynomial regression models. University lectures, Indian

Institute of Technology Kanpur, 2010.

[168] Cosma Shalizi. Advanced data analysis from an elementary point of view, 2013.

818

[169] Cosma Shalizi. Modern Regression. Technical report, Carneige-Mellon University, 2015.

[170] David F Shanno. Conditioning of quasi-newton methods for function minimization. Mathematics of

computation, 24(111):647–656, 1970.

[171] Karl Sigman. Acceptance-rejection method. Technical report, Columbia University, 2007.

[172] Karl Sigman. Ieor 6711: Continuous-time markov chains. Technical report, Columbia University, 2009.

[173] Karl Sigman. Limiting distribution for a Markov chain recurrence and transience. Technical report,

Columbia University, 2009.

[174] Karl Sigman. Notes on little’s law. Technical report, Columbia University, 2009.

[175] Gregory A Silver, John A Miller, Maria Hybinette, Gregory Baramidze, and William S York. An

ontology for discrete-event modeling and simulation. Simulation, 87(9):747–773, 2011.

[176] Christopher A Sims. Macroeconomics and reality. Econometrica: journal of the Econometric Society,

pages 1–48, 1980.

[177] Saša Singer and Sanja Singer. Efficient implementation of the nelder–mead search algorithm. Applied

Numerical Analysis & Computational Mathematics, 1(2):524–534, 2004.

[178] Anders Skajaa. Limited memory bfgs for nonsmooth optimization. Master’s thesis, Courant Institute

of Mathematical Science, New York University, 2010.

[179] A Solonen, J Hakkarainen, A Ilin, M Abbas, and A Bibov. Estimating model error covariance matrix

parameters in extended kalman filtering. Nonlinear Processes in Geophysics, 21(5):919–927, 2014.

[180] Saul Stahl. The evolution of the normal distribution. Mathematics magazine, 79(2):96–113, 2006.

[181] Mark Stamp. A Revealing Introduction to Hidden Markov Models. Technical report, San Jose State

University, 2018.

[182] Natalie M Steiger, Emily K Lada, James R Wilson, Jeffrey A Joines, Christos Alexopoulos, and David

Goldsman. Asap3: A batch means procedure for steady-state simulation analysis. ACM Transactions

on Modeling and Computer Simulation (TOMACS), 15(1):39–73, 2005.

[183] Suhartono Suhartono. Time series forecasting by using seasonal autoregressive integrated moving

average: Subset, multiplicative or additive model. J. Math. Stat, 7:20–27, 2011.

[184] Shixuan Sun, Xibo Sun, Yulin Che, Qiong Luo, and Bingsheng He. Rapidmatch: a holistic approach

to subgraph query processing. Proceedings of the VLDB Endowment, 14(2):176–188, 2020.

[185] Gábor Szárnyas, József Marton, János Maginecz, and Dániel Varró. Reducing property graph queries

to relational algebra for incremental view maintenance. arXiv preprint arXiv:1806.07344, 2018.

[186] Souhaib Ben Taieb. Machine learning strategies for multi-step-ahead time series forecasting. Universit

Libre de Bruxelles, Belgium, pages 75–86, 2014.

[187] Souhaib Ben Taieb, Rob J Hyndman, et al. Recursive and direct multi-step forecasting: the best of

both worlds, volume 19. Citeseer, 2012.

819

[188] Shintaro Takenaga, Yoshihiko Ozaki, and Masaki Onishi. Practical initialization of the nelder–mead

method for computationally expensive optimization problems. Optimization Letters, 17(2):283–297,

2023.

[189] Srikanth Tammina. Transfer learning using VGG-16 with deep convolutional neural network for clas-

sifying images. International Journal of Scientific and Research Publications, 9(10):143–150, 2019.

[190] Chuanqi Tan, Fuchun Sun, Tao Kong, Wenchang Zhang, Chao Yang, and Chunfang Liu. A survey

on deep transfer learning. In International conference on artificial neural networks, pages 270–279.

Springer, 2018.

[191] Thaddeus Tarpey. Generalized Linear Models (GLM). Technical report, Wright State University, 2012.

[192] Harsh Thakkar, Sören Auer, and Maria-Esther Vidal. Formalizing gremlin pattern matching traversals

in an integrated graph algebra. In BlockSW/CKG@ ISWC, 2019.

[193] Harsh Thakkar, Dharmen Punjani, Soeren Auer, and Maria-Esther Vidal. Towards an integrated graph

algebra for graph pattern matching with Gremlin (extended version). arXiv preprint arXiv:1908.06265,

2019.

[194] You Tingyan. Multistep Yule-Walker estimation of autoregressive models. Technical report, National

University of singapore, 2010.

[195] Lúıs Fernando Ráınho Alves Torgo. Inductive learning of tree-based regression models. 1999.

[196] Wessel N van Wieringen. Lecture notes on ridge regression. arXiv preprint arXiv:1509.09169, 2015.

[197] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz

Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing

systems, 30, 2017.

[198] Loup Verlet. Computer” experiments” on classical fluids. i. thermodynamical properties of lennard-

jones molecules. Physical review, 159(1):98, 1967.

[199] Eric A Wan, Rudolph Van Der Merwe, and Simon Haykin. The unscented kalman filter. Kalman

filtering and neural networks, 5(2007):221–280, 2001.

[200] Fei Wang, James Decker, Xilun Wu, Gregory Essertel, and Tiark Rompf. Backpropagation with

callbacks: Foundations for efficient and expressive differentiable programming. Advances in Neural

Information Processing Systems, 31, 2018.

[201] William WS Wei. Multivariate Time Series Analysis and Applications. John Wiley & Sons, 2018.

[202] Greg Welch and Gary Bishop. An introduction to the kalman filter: Siggraph 2001 course 8. In

Computer Graphics, Annual Conference on Computer Graphics & Interactive Techniques, pages 12–

17, 2001.

[203] Samuel S Wilks. The large-sample distribution of the likelihood ratio for testing composite hypotheses.

The annals of mathematical statistics, 9(1):60–62, 1938.

820

[204] Ronald J Williams and David Zipser. A learning algorithm for continually running fully recurrent

neural networks. Neural computation, 1(2):270–280, 1989.

[205] Ian Witten, Eibe Eibe Frank, Mark Hall, and Christopher Pal. Data Mining Practical Machine Learning

Tools and Techniques, Fourth Edition. Elsevier Inc., 2017.

[206] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A com-

prehensive survey on graph neural networks. IEEE Transactions on Neural Networks and Learning

Systems, 2020.

[207] Feng Xia, Ke Sun, Shuo Yu, Abdul Aziz, Liangtian Wan, Shirui Pan, and Huan Liu. Graph learning:

A survey. IEEE Transactions on Artificial Intelligence, 2(2):109–127, 2021.

[208] Shufang Xie, Tao Zhang, and Oliver Rose. Agent-based simulation with process-interaction worldview.

Simul. Notes Eur., 29(4):169–177, 2019.

[209] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks?

arXiv preprint arXiv:1810.00826, 2018.

[210] Mengjia Xu. Understanding graph embedding methods and their applications. SIAM Review,

63(4):825–853, 2021.

[211] Yong Yu, Xiaosheng Si, Changhua Hu, and Jianxun Zhang. A review of recurrent neural networks:

LSTM cells and network architectures. Neural computation, 31(7):1235–1270, 2019.

[212] Harry Zhang. The optimality of naive bayes. AA, 1(2):3, 2004.

[213] Jianshu Zhang, Jun Du, and Lirong Dai. A GRU-based encoder-decoder approach with attention for

online handwritten mathematical expression recognition. In 2017 14th IAPR international conference

on document analysis and recognition (ICDAR), volume 1, pages 902–907. IEEE, 2017.

[214] Zhifei Zhang. Derivation of backpropagation in convolutional neural network (cnn). University of

Tennessee, Knoxville, TN, 2016.

[215] Guo-Bing Zhou, Jianxin Wu, Chen-Lin Zhang, and Zhi-Hua Zhou. Minimal gated unit for recurrent

neural networks. International Journal of Automation and Computing, 13(3):226–234, 2016.

[216] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang, Changcheng Li,

and Maosong Sun. Graph neural networks: A review of methods and applications. arXiv preprint

arXiv:1812.08434, 2018.

[217] Eric Zivot and Jiahui Wang. Unit root tests. Modeling Financial Time Series with S-Plus, pages

111–139, 2006.

[218] Eric Zivot and Jiahui Wang. Vector autoregressive models for multivariate time series. Modeling

financial time series with S-PLUS®, pages 385–429, 2006.

821

	Introduction to Data Science
	Data Science
	ScalaTion
	Package Structure
	Scala 3 Control Structures
	Scala 3 Top-Level Functions
	Classes
	Basic Types
	Collection Types
	ScalaTion: Vectors, Matrices and Tensors

	A Data Science Project
	Additional Textbooks

	I Foundations
	Linear Algebra
	Linear System of Equations
	Matrix Inversion
	Vector
	Vector Addition and Subtraction
	Element-wise Multiplication and Division
	Vector Dot Product
	Norm
	Vector Operations in ScalaTion

	Vector Calculus
	Gradient Vector
	Jacobian Matrix
	Hessian Matrix

	Matrix
	Matrix Operation in ScalaTion

	Matrix Factorization
	Eigenvalues and Eigenvectors

	Internal Representation
	Tensor
	Three Dimensional Tensors
	Four Dimensional Tensors

	Exercises
	Further Reading

	Probability
	Probability Measure
	Joint Probability
	Conditional Probability

	Random Variable
	Discrete Random Variable
	Continuous Random Variable

	Probability Distribution
	Cumulative Distribution Function
	Probability Mass Function
	Probability Density Function

	Empirical Distribution
	Expectation
	Continuous Case
	Discrete Case
	Variance
	Covariance

	Algebra of Random Variables
	Expectation is a Linear Operator
	Variance is not a Linear Operator
	Convolution of Probability Distributions
	Central Limit Theorem

	Median, Mode and Quantiles
	Median
	Quantile
	Mode

	Joint, Marginal and Conditional Distributions
	Discrete Case: Joint and Marginal Mass
	Continuous Case: Joint and Marginal Density
	Discrete Case: Conditional Mass
	Continuous Case: Conditional Density
	Independence
	Conditional Expectation
	Conditional Independence

	Odds
	Example Problems
	Estimating Parameters from Samples
	Sample Mean
	Confidence Interval
	Estimation for Discrete Outcomes/Responses

	Entropy
	Positive Log Probability
	Joint Entropy
	Conditional Entropy
	Relative Entropy
	Cross Entropy
	Mutual Information
	Probability Object

	Exercises
	Further Reading
	Notational Conventions
	Model

	Data Management
	Introduction
	Analytics Databases
	The Tabular Trait

	Relational Data Model
	Data Definition Language
	Data Manipulation Language
	Relational Algebra
	Example Queries
	Persistence
	Transactions
	Table Class
	LTable Class
	VTable Class

	Columnar Relational Data Model
	Data Definition Language
	Data Manipulation Language
	Columnar Relational Algebra
	Example Queries
	Relation Class

	SQL-Like Language
	Relation Creation
	Sample Queries
	RelationSQL Class

	Exercises

	Data Preprocessing
	Basic Operations
	Remove Identifiers
	Convert String Columns to Numeric Columns
	Identify Missing Values
	Preliminary Feature Selection

	Methods for Outlier Detection
	Based on Standard Deviation
	Based on InterQuartile Range
	Based on Quantiles/Percentiles

	Imputation Techniques
	Imputation Trait

	Align Multiple Time Series
	Creating Vectors and Matrices
	Exercises

	II Modeling
	Prediction
	Predictor
	Predictor Trait

	Quality of Fit for Prediction
	Fit Trait

	Null Model
	Model Equation
	Training
	Optimization - Derivative
	Example Calculation
	NullModel Class
	Exercises

	Simpler Regression
	Model Equation
	Training
	Optimization - Derivative
	Example Calculation
	SimplerRegression Class
	Exercises

	Simple Regression
	Model Equation
	Training
	Optimization - Gradient
	Example Calculation
	Exploratory Data Analysis
	SimpleRegression Class
	Exercises

	Regression
	Model Equation
	Training
	Optimization - Gradient
	Matrix Inversion Technique
	LU Factorization Technique
	Cholesky Factorization Technique
	QR Factorization Technique
	Use of Factorization in Regression
	Model Assessment
	Model Validation
	Collinearity
	Feature Selection
	Regression Problem: Texas Temperatures
	Regression Class
	Exercises
	Further Reading

	Ridge Regression
	Model Equation
	Training
	Optimization
	Centering
	The Hyper-parameter
	Comparing RidgeRegression with Regression
	RidgeRegression Class
	Exercises

	Lasso Regression
	Model Equation
	Training
	Optimization Strategies
	The Hyper-parameter
	Regularized and Robust Regression
	LassoRegression Class
	Exercises
	Further Reading

	Quadratic Regression
	Model Equation
	Comparison of quadratic and Regression
	SymbolicRegression.quadratic Method
	Quadratic Regression with Cross Terms
	Response Surface
	Exercises

	Cubic Regression
	Model Equation
	Comparison of cubic, quadratic and Regression
	SymbolicRegression.cubic Method
	Cubic Regression with Cross Terms
	Exercises

	Symbolic Regression
	Sample Calculation
	As a Data Science Problem
	SymbolicRegression Object
	Implementation of the apply Method
	Regularization
	Exercises

	Transformed Regression
	Model Equation
	Training
	Square Root Transformation
	Log Transformation
	Reciprocal Transformation
	Box-Cox Transformation
	Quality of Fit
	TranRegression Class
	Exercises

	Regression with Categorical Variables
	Handling Categorical Variables
	ANOVA
	RegressionCat Implementation
	RegressionCat Class
	Exercises

	Weighted Least Squares Regression
	Model Equation
	Root Absolute Deviation
	RegressionWLS Class
	Exercises

	Polynomial Regression
	Model Equation
	PolyRegression Class
	PolyORegression Class
	Exercises

	Trigonometric Regression
	Model Equation
	TrigRegression Class
	Exercises

	Classification
	Classifier
	Classifier Trait

	Quality of Fit for Classification
	FitC Trait

	Null Model
	NullModel Class
	Exercises

	Naïve Bayes
	Factoring the Probability
	Estimating Conditional Probabilities
	Laplace Smoothing
	Table Storage
	The train Method
	The test Method
	The predictI Method
	The lpredictI Method
	Feature Selection
	NaiveBayes Class
	Exercises

	Bayes Classifier
	BayesClassifier Trait

	Tree Augmented Naïve Bayes
	Structure Learning
	Conditional Probability Tables
	Smoothing
	The train Method
	The predictI Method
	TANBayes Class
	Exercises

	Bayesian Network Classifier
	Network Augmented Naïve Bayes

	Markov Network
	Markov Blanket
	Factoring the Joint Probability
	Exercises

	Decision Tree ID3
	Entropy
	Example Problem
	Early Termination
	DecisionTree Trait
	DecisionTree_ID3 Class
	Pruning
	DecisionTree_ID3wp Class
	Exercises

	Hidden Markov Model
	Example Problem
	Forward Algorithm
	Backward Algorithm
	Viterbi Algorithm
	Training
	Reestimation of Parameters
	HiddenMarkov Class
	Exercises

	Further Reading

	Classification: Continuous Variables
	Gaussian Naïve Bayes
	NaiveBayesR Class
	Exercises

	Simple Logistic Regression
	mtcars Example
	Logistic Function
	Logit Function
	Maximum Likelihood Estimation
	Likelihood Function
	Log-likelihood Function
	Computation in ScalaTion
	Making a Decision
	SimpleLogisticRegression Class
	Exercises

	Logistic Regression
	LogisticRegression Class
	Exercises

	Simple Linear Discriminant Analysis
	SimpleLDA Class
	Exercises

	Linear Discriminant Analysis
	LDA Class
	Exercises

	K-Nearest Neighbors Classifier
	Lazy Learning
	KNN_Classifier Class
	Exercises

	Decision Tree C45
	Example Problem
	DecisionTree_C45 Class
	Pruning
	DecisionTree_C45wp Class
	Exercises

	Bagging Trees
	Creating Subsample
	Training
	Hyper-parameters
	BaggingTrees Class

	Random Forest
	Extracting Sub-features
	Training
	RandomForest Class
	Exercises

	Support Vector Machine
	Separating Hyperplane
	Optimization Problem
	Running the Example Problem
	SupportVectorMachine Class
	Exercises

	Neural Network Classifiers
	Model Equation
	Training Equation
	Prediction Equation
	Optimization
	NeuralNet_Class_3L Class
	Exercises

	Generalized Linear Models and Regression Trees
	Generalized Linear Model
	Maximum Likelihood Estimation
	Akaike Information Criterion
	MLE for Generalized Linear Models

	Poisson Regression
	PoissonRegression Class

	Regression Trees
	Example Problem
	Regions
	Determining Thresholds
	RegressionTree Class

	Linear Model Trees
	Splitting
	Pruning
	Smoothing
	RegressionTreeMT class

	Random Forest Regression
	RegressionTreeRF Class

	Gradient Boosting Regression
	RegressionTreeGB Class

	Exercises
	Further Reading

	Nonlinear Models and Neural Networks
	Nonlinear Regression
	Model Equation
	Training
	Optimization
	Use of the Chain Rule
	NonlinearRegression Class
	Exercises

	Simple Exponential Regression
	Model Equation
	Training
	Optimization
	Linearization
	Exercises

	Exponential Regression
	ExpRegression Class
	Exercises

	Perceptron
	Model Equation
	Ridge Functions
	Training
	Optimization
	Example Calculation for bold0mu mumu and bold0mu mumu
	Initializing Weights/Parameters
	Activation Functions
	Basic Gradient Descent Algorithm
	Perceptron Class
	Exercises

	Multi-Output Prediction
	Model Equation
	Training
	PredictorMV Trait
	RegressionMV Class
	Optimizer Object and Trait
	NetParam Class

	Two-Layer Neural Networks
	Model Equation
	Training
	Optimization
	Matrix Version
	NeuralNet_2L Class
	NeuralNet_2L Object
	Exercises

	Three-Layer Neural Networks
	Model Equation
	Ridge Functions
	Training
	Optimization
	Matrix Version
	train Method
	Stochastic Gradient Descent Algorithm
	Example Error Calculation Problem
	Response Surface
	NeuralNet_3L Class
	Exercises

	Multi-Hidden Layer Neural Networks
	Model Equation
	Training
	Optimization
	Number of Nodes in Hidden Layers
	Avoidance of Overfitting
	Deep Learning
	NeuralNet_XL Class
	Exercises

	Convolutional Neural Networks
	1D CNN
	Model Equation
	Training
	Optimization
	Matrix Version
	Gradient Descent Algorithm
	Example Error Calculation Problem
	Two Convolutional Filters
	CNN_1D Class
	Exercises

	2D CNN
	Filtering Operation
	Pooling Operation
	Flattening Operation
	Model Equation
	Training
	Optimization
	Exercises

	Transfer Learning
	Definition of Transfer Learning
	Type of Transfer Learning
	NeuralNet_XLT Class
	Exercises

	Extreme Learning Machines
	Model Equation
	Training
	Optimization
	ELM_3L1 Class
	Exercises

	Time Series/Temporal Models
	Forecaster
	Stats4TS Case Class
	Auto-Correlation Function
	Correlogram
	Quality of Fit (QoF) for Time Series Data

	Baseline Models: Random Walk, Null and Trend Models
	Random Walk Model
	White Noise
	Detecting Random Walks
	RandomWalk Class
	Null Model
	NullModel Class
	Trend Model
	TrendModel Class
	Forecasting Lake Levels - Battle of the Baselines
	Exercises

	Simple Exponential Smoothing
	Model Equation
	Training
	Effect of the Smoothing Parameter
	SimpleExpSmoothing Class
	Exercises

	Auto-Regressive (AR) Models
	AR(1) Model
	AR(p) Model
	Training
	Forecasting
	AR Class
	Exercises

	Moving-Average (MA) Models
	MA(q) Model
	Training
	Exercises

	Auto-Regressive, Moving Average (ARMA) Models
	Selection Based on ACF and PACF
	Training
	ARMA Class
	Exercises

	Rolling-Validation
	1-Fold Rolling-Validation
	Rolling Validation and the Forecasting Matrix
	Exercises

	ARIMA (Integrated) Models
	Differencing
	Forecasting
	Backshift Operator
	Stationarity Process
	ARIMA Class
	Exercises

	SARIMA (Seasonal) Models
	Determination of the Seasonal Period
	Seasonal Differencing
	Seasonal AR and MA Terms
	Case Study: COVID-19
	SARIMA Class
	Exercises

	Further Reading

	Multivariate and Nonlinear Time Series
	Auto-Regressive with eXogenous variables (ARX) Models
	The ARX(p) Model
	The ARX(p, [a, b]) Model
	The ARX(p, n, [a, b]) Model
	Determining the Exogenous Lag Interval [a, b]
	Time Series Regression
	ARXA(p, n, k) Model
	ARXA_MV Model
	ARX Class
	ARX_MV Object
	Exercises

	SARIMAX Models
	Model Equations
	SARIMAX Object
	Exercises

	Vector Auto-Regressive (VAR) Models
	VAR(p, 2)
	VAR(p, n)
	Training
	VAR Object
	AR*(p, n)
	Exercises

	Nonlinear Time Series Models
	Nonlinear Autoregressive (NAR)
	Autoregressive Neural Network (ARNN)
	Nonlinear Autoregressive, Moving-Average (NARMA)

	Recurrent Neural Networks (RNN)
	RNN(1, 1)
	RNN(p, nh)
	RNN(p, nh, nv)
	Training
	Optimization
	Exercises

	Gated Recurrent Unit (GRU) Networks
	A GRU Layer
	Training
	Optimization
	Exercises

	Minimal Gated Unit (MGU) Networks
	Long Short Term Memory (LSTM) Networks
	Exercises

	Encoder-Decoder Architectures
	Simple Encoder-Decoder Consisting of Two GRU Cells
	Teacher Forcing
	Attention Mechanisms
	Exercises

	Transformer Models
	Self-Attention
	Positional Encoding
	Encoder-Decoder Architecture for Transformers
	Exercises
	Further Reading

	Dimensionality Reduction
	Reducer
	Principal Component Analysis (PCA)
	Representation
	Exercises

	Autoencoder (AE)
	Representation
	Denoising Autoencoder (DEA)

	Clustering
	KNN_Regression
	KNN_Regression Class
	Exercises

	Clusterer
	K-Means Clustering
	Initial Assignment
	Reassignment of Points to Closest Clusters
	Training
	KMeansClusterer Class
	Exercises

	K-Means Clustering - Hartigan-Wong
	Adjusted Distance
	KMeansClusteringHW Class
	Exercises

	K-Means++ Clustering
	Picking Initial Centroids
	KMeansClustererPP Class
	Exercises

	Clustering Predictor
	Training
	ClusteringPredictor Class
	Exercises

	Hierarchical Clustering
	HierClusterer Class
	Exercises

	Markov Clustering
	MarkovClusterer Class
	Exercises

	III Simulation
	Simulation Foundations
	Basic Concepts
	Types of Models
	Example: Modeling an M/M/1 Queue

	Random Number Generation
	Example RNG: Random0
	Testing Random Number Generators
	Example RNG: Random3
	Exercises

	Random Variate Generation
	Inverse Transform Method
	Convolution Method
	Acceptance-Rejection Method
	Exercises

	Poisson Process
	Generating a Poisson Process
	Generating a Non-Homogeneous Poisson Process
	Exercises

	Monte Carlo Simulation
	Simulation of Card Games
	Integral of a Complex Function
	Grain Dropping Experiment
	Simulation of the Monty Hall Problem
	Exercises

	Hand Simulation
	Little's Law
	Event Times
	Spreadsheet Simulation
	Exercises

	Tableau-Oriented Simulation
	Iterating through Tableau Equations
	Reproducing the Hand Simulation
	Customized Logic/Equations
	Tableau.scala
	Exercises

	State Space Models
	Example: Trajectory of a Ball in One-Dimensional Space
	Ordinary Differential Equations
	Discretization
	Trajectory Simulation
	Exercises

	Markov Chains
	Probability Mass Function
	Reducible Markov Chains
	Limiting/Steady-State Distribution
	MarkovChain Class
	Continuous-Time Markov Chains
	Limiting/Steady-State Distribution
	MarkovChainCT Class
	Queueing Models
	MMc_Queue Class
	MMcK_Queue Class
	Exercises

	Dynamic Linear Models
	Example: Traffic Sensor
	Exercises

	Kalman Filter
	Example: Golf Ball Trajectory
	Training
	Exercises

	Extended Kalman Filter
	Training
	Example: SEIHRD Model
	Exercises

	ODE Parameter Estimation

	Event-Oriented Models
	A Taxonomy/Ontology for Simulation Modeling
	List Processing
	FCFS Queue
	LCFS Queue
	Priority Queue
	Time Advance Mechanism

	Event Scheduling
	Event Class
	Example: Bank Model
	Example: Call Center Model
	Entity Class
	WaitQueue Class
	WaitQueue_LCFS Class
	Model Class
	Example: Machine Shop Model

	Event Graphs
	Example: Bank Model
	EventNode Class
	CausalLink Class

	Exercises

	Process-Oriented Models
	Base Traits and Classes for Process-Oriented Models
	Identifiable Trait
	Locatable Trait
	Modelable Trait
	Temporal Trait

	Concurrent Processing of Actors
	Java's Thread Class
	ScalaTion's Coroutine Class

	Process Interaction
	Model Template
	Component Trait
	Example: BankModel
	Executing the Bank Model
	Network Diagram
	Comparison to Event Scheduling
	SimActor Class
	Source Class
	Sink Class
	Transport Class
	Resource Class
	WaitQueue Class
	WaitQueue_LCFS Class
	Junction Class
	Gate Class
	Route Class
	Model Class
	Vehicle Traffic Model
	Model_MBM Class
	Exercises

	Agent-Based Simulation
	SimAgent
	Vertices
	Edges
	Bank Model
	Vehicle Traffic Model
	Hybrid Models
	Exercises

	Animation
	2D Animation
	3D Animation
	Exercises

	Simulation Output Analysis
	Point and Interval Estimates
	One-Shot Simulation
	Simulation Model Validation
	Model Calibration
	Model Verification

	Method of Independent Replications (MIR)
	Confidence Intervals
	Example: MIR Version of BankModel

	Method of Batch Means (MBM)
	Effect of Increasing the Number of Batches
	Effect on Batch Correlation of Increasing the Batch Size
	MBM versus MIR
	Relative Precision
	Example: MBM Version of BankModel

	Exercises

	Appendices
	Optimization in Data Science
	Partial Derivatives and Gradients
	Basic Rules
	Chain Rules
	Gradient
	Generalized Chain Rules
	calculus Package

	Automatic Differentiation
	Forward Propagation
	Reverse Mode Backward Propagation
	Example Calculation for Perceptron
	Example for Three-Layer Neural Network
	Partial Derivatives w.r.t. B
	Partial Derivatives w.r.t. A

	Gradient Descent
	Line Search
	Application to Data Science
	Exercises

	Stochastic Gradient Descent
	Using SGD to Train Neural Networks

	Stochastic Gradient Descent with Momentum
	Using SGDM to Train Neural Networks
	Exercises

	SGD with ADAptive Moment Estimation
	Exercises

	Coordinate Descent
	Conjugate Gradient
	Exercises

	Quasi-Newton Methods
	Newton-Raphson Method
	Newton Method
	BFGS Method
	Limited Memory-BFGS Method
	Summary
	Exercises

	Method of Lagrange Multipliers
	Example Problem

	Karush-Kuhn-Tucker Conditions
	Active and Inactive Constraints

	Quadratic Programming
	Augmented Lagrangian Method
	Example Problem
	Exercises

	Alternating Direction Method of Multipliers
	Example Problem
	LassoAddm Object
	Exercises

	Nelder-Mead Simplex
	NelderMeadSimplex Class
	Exercises

	Graph Databases and Analytics
	Directed Graphs
	Adding Vertex Labels
	Adding Edge Labels
	Directed Multi-Graphs
	Exercises

	A Graph Database with Relational Roots
	The GTable Class
	Creating Graph Databases
	Graph Algebra
	Exercises

	Property Graphs
	Structure of a Property Graph
	Native Storage
	High-Level Query Language for Graph Databases
	Graph Algebra
	Query Processing in Graph Databases

	Special Types of Graph Databases
	Embedding Relationships in Vertex-Types
	Resource Description Framework (RDF) Graphs
	From Relational to Graph Databases

	Knowledge Graphs
	Type Hierarchies
	Constraints and Rules
	KGTable

	Exercises - Part I
	Graph Data Science
	Path Finding
	Centrality and Importance
	Community Detection

	Graph Pattern Matching
	Graph Simulation
	Subgraph Isomorphism
	Graph Homomorphism
	Application to Query Processing in Graph Databases

	Graph Representation Learning
	Matrix Representations
	Graph Embeddings

	Graph Neural Networks
	AGGREGATE and COMBINE Operations

	Exercises - Part II

