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Chapter 1

Introduction to Data Science

1.1 Data Science

The field of Data Science can be defined in many ways. To its left is Machine Learning that emphasizes

algorithms for learning, while to its right is Statistics that focuses on procedures for estimating parame-

ters of models and determining statistical properties of those parameters. Both fields develop models to

describe/predict reality based on one or more datasets. Statistics has a greater interest in making inferences

or testing hypotheses based upon datasets. It also has a greater interest in fitting probability distributions

(e.g., are the residuals normally or exponentially distributed).

The common thread is modeling. A model should be able to make predictions (where is the hurricane

likely to make landfall, when will the next recession occur, etc.). In addition, it may be desirable for a model

to enhance the understanding of the system under study and to address what-if type questions (perspective

analytics), e.g., how will traffic flow improve/degrade if a light-controlled intersection is replaced with a

round-about.

A model may be viewed as replacement for a real system, phenonema to process. A model will map inputs

into outputs with the goal being that for a given input, the model will produce output that approximates

the output that the real system would produce. In addition to inputs and outputs, some models include

state information. For example, the output of a heat pump will depend if it is in the heating or cooling

state (internally this determines the direction of flow of the refrigurant). Further, some types of models are

intended to mimic the behavior of the actual system and facilitate believable animation. Examples of such

models are simulation models. They support prescriptive analytics which enables changes to a system to

tested on the model, before the often costly changes to the actual system are under taken.

Broad categories of modeling are dependent of the type output (also called response) of the model. When

the response is treated as a continuous variable, a predictive model (e.g., regression) is used. If the goal

is to forecast into the future (or there is dependency among the response values), a forecasting model

(e.g., ARIMA) is used. When the response is treated as a categorical variable, a classification model (e.g.,

support vector machine) is used. When the response values are largely missing, a clustering model may be

used. Finally, when values are missing from a data matrix, an imputation model (k-nearest neighbors) or

recommendation model (e.g., low-rank approximation using singular value decomposition) may be used.

Dimensionality reduction (e.g., principal component analysis) can be useful across categories.

The prerequisite material for data science includes Vector Calculus, Applied Linear Algebra and Calculus-
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based Probability and Statistics. Datasets can be stored as vectors and matrices, learning/parameter esti-

mation often involves taking gradients, and probability and statistics are needed to handle uncertainity.
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1.2 ScalaTion

ScalaTion supports multi-paradigm modeling that can be used for simulation, optimization and analytics.

In ScalaTion, the analytics package provides tools for performing data analytics. Datasets are be-

coming so large that statistical analysis or machine learning software should utilize parallel and/or distibuted

processing. Databases are also scaling up to handle greater amounts of data, while at the same time increas-

ing their analytics capabilities beyond the traditional On-Line Analytic Processing (OLAP). ScalaTion

provides many analytics techniques found in tools like MATLAB, R and Weka. The analytics component

contains six types of tools: predictors, classifiers, forecasters, clusterers, recommenders and reduc-

ers. A trait is defined for each type.

The latest version, ScalaTion 1.6, consists of five modules. Each module contains many packages (a

key package is given for each module below).

1. scalation mathematics: e.g., scalation.linalgebra

2. scalation statistics: e.g., scalation.stat

3. scalation database: e.g., scalation.columnar db

4. scalation modeling: e.g., scalation.analytics

5. scalation models: e.g., apps.analytics

To use ScalaTion, go to the Website http://www.cs.uga.edu/~jam/scalation.html and click on the

most recent version of ScalaTion and follow the first three steps: download, unzip, build.

Current projects are targeting Big Data Analytics in four ways: (i) use of sparse matrices, (ii) parallel

implementations using Scala’s support for parallelism (e.g., .par methods, parallel collections and actors),

(iii) distributed implementations using Akka, and (iv) high performance data stores including columnar

databases (e.g., Vertica), document databases (e.g., MongoDB), graph databases (e.g., Neo4j) and distributed

file systems (e.g., HDFS).
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1.3 A Data Science Project

The orientation of this textbook is that of developing modeling techniques and the understanding of how

to apply them. A secondary goal is to explain the mathematics behind the models in sufficient detail to

understand the algorithms implementing the modeling techniques. Concise code based on the mathematics

is included and explained in the textbook. Readers may drill down to see the actual ScalaTion code.

The textbook is intended to facilitate trying out the modeling techniques as they are learned and to suport

a group-based term project that includes the following ten elements. The term project is to culminate in a

presentation that explains what was done concerning these ten elements.

1. Problem Statement. Imagine that your group is hired as consultants to solve some problem for a

company or government agency. The answers and recommendations that your group produces should

not depend soley on prior knowledge, but rather on sophisticated analytics performed on multiple

large-scale datasets. In particular, the study should be focused and the purpose of the study should

clearly stated. What not to do: The following datasets are relevant to the company, so we ran them

through an analytics package (e.g., R) and obtained the following results.

2. Collection and Description of Datasets. To reduce the chances of results being relevant only to

a single dataset, multiple datasets should be used for the study (at least two). Explanation must be

given to how each dataset relates to the other datasets as well as to the problem statement. When

a dataset in the form of a matrix, metadata should be collected for each column/variable. In some

cases the response column(s)/variable(s) will be obvious, in others it will depend on the purpose of the

study. Initially, the result of columns/variables may be considered as features that may be useful in

predicting responses. Ideally, the datasets should loaded into a well-designed database. ScalaTion

provides two high-performance database systems: a column-oriented relational database system

and a graph database system.

3. Data Preprocessing Techniques Applied. During the preprocessing phase (before the modeling

techniques are applied), the data should be clean-up. This includes elimination of features with zero

variance or too many missing values, as well as the elimination of key columns (e.g., on the training

data, the employee-id could perfectly predict the salary of an employee, but is unlikley to be of any

value in making predictions on the test data). For the remaining columns, strings should be converted

to integers and imputation techniques should be used to replace missing values.

4. Visual Examination. At this point, Exploratory Data Analysis (EDA) should be applied. Com-

monly, one column of a dataset in the combined data matrix will be chosen as the response column,

call it the response vector y, and the rest of the columns that remain after preprocessing form m-by-n

data matrix X. In general models are of the form

y = f(x) + ε (1.1)

where f is function mapping feature vector x into a predicted value for response y. The last term may be

viewed as random error ε. In an ideal model, the last term will be error (e.g., white noise). Since most

models are approximations, technically the last term should be referred to as a residual (that which

is not explained by the model). During exploratory data analysis, the value of y, should be plotted

against each feature/column x:j of data matrix X. The relationships between the columns should
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be examined by computing a correlation matrix. Two columns that are very highly correlated are

supplying redundant information, and typically, one should be removed. For a regression type problem,

where y is treated as continuous random variable, a simple linear regression model should be created

for each feature xj ,

y = b0 + b1xj + ε (1.2)

where the parameters b = [b0, b1] are to be estimated. The line generated by the model should be

plotted along with the {(xij , yi)} data points. Visually, look for patterns such white noise, linear

relationship, quadratic relationship, etc. Plotting the residuals {(xij , εi)} will also be useful.

5. Modeling Techniques Chosen. For every type of modeling problem, there is the notions of a

NullModel: For prediction it is guess the mean, i.e., given a feature vector z, predict the value E [y],

regardless of the value of z. The coefficient of determination R2 for such models will be zero. If a

more sophisticated model cannot beat the NullModel, it is not helpful in predicting or explaining the

phenonema. Projects should include four classes of models: (i) NullModel, (ii) simple, easy to explain

models (e.g., Multiple Linear Regression), (iii) complex, performant models (e.g., Quadratic Regression,

Extreme Learning Machines) (iv) complex, time-consuming models (e.g., Neural Networks). If classes

(ii-iv) do not improve upon class (i) models, new datasets should be collected. If this does not help, a

new problem should be sought. On the flip side, if class (ii) models are nearly perfect (R2 close to 1),

the problem being addressed may be too simple for a term project. At least one modeling technique

should be chosen from each class.

6. Explanation of Why Techniques Were Chosen. As a consultant to a company, a likely question

will be, ”why did you chose those particular modeling techniques”? There are an enormous number of

possible modeling techniques. Your group should explain how the candidate techniques were narrowed

down and ultimately how the techniques were chosen. A review of how well the selected modeling

techniques worked, as well as suggested changes for future work, should be given at the end of the

presentation.

7. Feature Selection. Although feature selection can occur during multiple phases in a modeling study,

an overview should be given at this point in the presentation. Explain which features were eliminated

and why they were eliminated prior to building the models. During model building, what features

were eliminated, e.g., using forward selection, backward selection, Lasso Regression, dimensionality

reduction, etc. Also address the relative importance of the remaining features.

8. Reporting of Results. First the experimental setup should be described in sufficient detail to

facilitate reproducibility of your results. One way to show overall results is to plot predicted responses

ŷ and actual responses y versus the instance index i = 0 until m. Reports are to include the Quality

of Fit (QoF) for the various models and datasets in the form of tables, figures and explanation of the

results. Besides the overall model, for many modeling techniques the importance/significance of model

parameters/variables may be assessed as well. Tables and figures must include descriptive captions

and color/shape schemes should be consistent across figures.

9. Interpretation of Results. With the results clearly presented, they need to be given insightful

interpretations. What are the ramifications of the results? Are the modeling techniques useful in

making predictions, classifications or forecasts?
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10. Recommendations of Study. The organization that hired your group would like some take home

messages that may result in improvements to the organization (e.g., what to produce, what processes

to adapt, how to market, etc.). A brief discussion of how the study could be improved (possibly leading

to futher comsultating work) should be given.
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1.4 Additional Textbooks

More detailed development of this material can be found in textbooks on statistical learning, such as “An

Introduction to Statistical Learning” (ISL) [13] and “The Elements of Statistical Learning” (ESL) [11]. See

Table 1.1 for a mapping between the chpaters in three textbooks.

Table 1.1: Source Material Chapter Mappings

Topic ScalaTion ISL ESL

Mathematical Preliminaries Ch. 2 - -

Data Management Ch. 3 - -

Prediction Ch. 4 Ch. 3, 5, 6 Ch. 3

Classification Ch. 5 Ch. 2, 5, 8 Ch. 4, 12, 13, 15

Classification - Continuous Ch. 6 Ch. 4, 8, 9 Ch. 4, 12, 13, 15

Generalized Linear Models Ch. 7 - -

Generalized Additive Models Ch. 8 - -

Non-Linear Models and Neural Networks Ch. 9 Ch. 7 Ch. 11

Time-Series/Temporal Models Ch. 10 - -

Clustering Ch. 11 Ch. 10 Ch. 14

Dimensionality Reduction Ch. 12 Ch. 6, 10 Ch. 14

Functional Data Analysis Ch. 13 Ch. 7 Ch. 5

Simulation Models Ch. 14 - -

Optimization Used in Data Science Appendix - -

Parallel/Disributed Computing Appendix - -

19



20



Chapter 2

Mathematical Preliminaries

This chapter serves as a quick review of the two principal mathematical foundations for data science, prob-

ability and linear algebra.
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2.1 Probability

Probability is used to measure the likelihood of certain events occurring, such as flipping a coin and getting a

head, rolling a pair of dice and getting a sum of 7, or getting a full house in five card draw. Given a random

experiment, the sample space S is the set of all possible outcomes.

2.1.1 Probability Measure

A probability measure P can be defined axiomatically as follows:

P (A) ≥ 0 for any event A ⊆ S

P (S) = 1

P (∪Ai) =
∑

P (Ai) for a countable collection of disjoint events

(2.1)

Consequently, given an eventA, the probability of its occurrence is restricted to the unit interval, P (A) ∈ [0, 1].

Given two events A and B, the joint probability of their co-occurrence is denoted by

P (AB) = P (A ∩B) ∈ [0, min(P (A), P (B))] (2.2)

If events A and B are independent, simply take the product of the individual probabilities,

P (AB) = P (A)P (B)

The conditional probability of the occurrence of event A, given it is known that event B has occurred/will

occur is

P (A|B) =
P (AB)

P (B)
(2.3)

If events A and B are independent, the conditional probability reduces to

P (A|B) =
P (AB)

P (B)
=

P (A)P (B)

P (B)
= P (A)

In other words, the occurrence of event B has no affect on the probability of event A occurring. An important

theorem involving conditional probability is Bayes Theorem.

P (A|B) =
P (B|A)P (A)

P (B)
(2.4)

2.1.2 Random Variable

Rather than just looking at individual events, e.g., A or B, one is often more interested in the probability

that random variables take on certain values. A random variable y (blue font) takes on values from a given

domain Dy.

y ∈ Dy (2.5)

For A ⊆ Dy one can measure the probability of the random variable y taking on a value from the set A.

This is denoted by P (y ∈ A). For example, the probability of rolling a natural in dice (sum of 7 or 11 with

two dice) is given by

P (y ∈ {7, 11}) = 6/36 + 2/36 = 8/36 = 2/9
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2.1.3 Cumulative Distribution Function

It is often easier to examine the probability measure for a random variable in terms of a Cumulative Dis-

tribution Function (CDF). It measures the amount probability or mass accumulated over the domain up to

and including the point y. The color highlighted symbol y is the random variable, while y simply represents

a value.

Fy(y) = P (y ≤ y) (2.6)

To illustrate the concept, let x1 and x2 be the number on dice 1 and dice 2, respectively. Let y = x1 + x2,

then Fy(6) = P (y ≤ 6) = 5/12. The entire CDF for the discrete random variable y (roll of two dice), Fy(y)

is

{(2, 1/36), (3, 3/36), (4, 6/36), (5, 10/36), (6, 15/36), (7, 21/36), (8, 26/36), (9, 30/36), (10, 33/36), (11, 35/36), (12, 36/36)}

As another example, the CDF for a continuous random variable y that is defined to be uniformly distributed

on the interval [0, 2] is

Fy(y) =
y

2
on [0, 2]

When random variable y follows this CDF, we may say that y is distributed as Uniform (0, 2), symbolically,

y ∼ Uniform (0, 2).

2.1.4 Probability Mass Function

While the CDF indicates accumulated probability or mass (totaling 1), examining probability or mass locally

can be more informative. In case the random variable is discrete, a probability mass function (pmf) may be

defined.

py(yi) = Fy(yi)− Fy(yi−1) (2.7)

This indicates the amount of mass/probability at point yi, i.e., the amount of accumulated mass at point yi

minus the amount of accumulated mass at the previous point yi−1. For one dice x1, the pmf is

{(1, 1/6), (2, 1/6), (3, 1/6), (4, 1/6), (5, 1/6), (6, 1/6)}

A second dice x2 will have the same pmf. They both follow the Discrete Uniform Distribution. If the two

random variables are added y = x1 + x2, the pmf for the random variable y (roll of two dice), py(y) is

{(2, 1/36), (3, 2/36), (4, 3/36), (5, 4/36), (6, 5/36), (7, 6/36), (8, 5/36), (9, 4/36), (10, 3/36), (11, 2/36), (12, 1/36)}

The random variable y follows the Discrete Triangular Distribution (that peaks in the middle) and not the

flat Discrete Uniform Distribution.
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2.1.5 Probability Density Function

Suppose y is defined on the continuous domain [0, 2] and that mass/probability is uniformally spread amounst

all the points in the domain. In such situations, it is not productive to consider the mass at one particular

point. Rather one would like to consider the mass in a small interval and scale it by dividing by the length

of the interval. In the limit this is the derivative which gives the density. For a continuous random variable,

if the function Fy is differentiable, a probability density function (pdf) may be defined.

fy(y) =
dFy(y)

dy
(2.8)

For example, the pdf for the uniformly distributed random variable y on [0, 2] is

fy(y) =
d

dy

y

2
=

1

2
on [0, 2]

Random variates of this type may be generated using ScalaTion’s Uniform (0, 2) class within the

scalation.random package.

val rvg = Uniform (0, 2)

val yi = rvg.gen

Going the other direction, the CDF Fy(y) can be computed by summing the pmf py(y) or integrating the

pdf fy(y).

2.1.6 Expectation

Using the definition of a CDF, one can determine the expected value (or mean) for random variable y using

a Riemann-Stieltjes integral.

E [y] =

∫
Dy

y dFy(y) (2.9)

The mean specifies the center of mass, e.g., a two-meters rod with the mass evenly distributed throughout,

would have a center of mass at 1 meter. Although it will not affect the center of mass calculation, since the

total probability is 1, unit mass is assumed (one kilogram). The center of mass is the balance point in the

middle of the bar.

Continuous Case

When y is a continuous random variable, we may write the mean as follows:

E [y] =

∫
Dy

y fy(y)dy (2.10)

The mean of y ∼ Uniform (0, 2) is

E [y] =
∫

2

0
y

1

2
dy = 1.
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Discrete Case

When y is a discrete random variable, we may write

E [y] =
∑
y∈Dy

y py(y) (2.11)

The mean for rolling two dice is E [y] = 7. One way to interpret this is to imagine winning y dollars by

playing a game, e.g., two dollars for rolling a 2 and twelve dollars for rolling a 12, etc. The expected earnings

when playing the game once is seven dollars. Also, by the law of large numbers, the average earnings for

playing the game n times will converge to seven dollars as n gets large.

2.1.7 Variance

The variance of random variable y is given by

V [y] = E
[
(y − E [y])2

]
(2.12)

The variance specifies how the mass spreads out from the center of mass. For example, the variance of y ∼
Uniform (0, 2) is

V [y] = E
[
(y − 1)2

]
=
∫

2

0
(y − 1)2 1

2
dy =

1

3

That is, the variance of the one kilogram, two-meter rod is 1
3 kilogram meter2. Again, for probability to

be viewed as mass, unit mass (one kilogram) must be used, so the answer may also be given as 1
3 meter2

Similarly to interpreting the mean as the center of mass, the variance corresponds to the moment of inertia.

The standard deviation is simply the square root of variance.

SD [y] =
√

V [y] (2.13)

For the two-meter rod, the standard deviation is 1√
3

= 0.57735. The percentage of mass within one

standard deviation unit of the center of mass is then 58%. Many distributions, such as the Normal (Gaussian)

distribution concentrate mass closer to the center. For example, the Standard Normal Distribution has the

following pdf.

fy(y) =
1√
2π

e−y
2/2

The mean for this distribution is 0, while the variance is 1. The percentage of mass within one standard

deviation unit of the center of mass is 68%.

2.1.8 Covariance

The covariance of two random variable x and y is given by

C [x, y] = E [(x− E [x])(y − E [y])] (2.14)

The covariance specifies whether the two random variables have similar tendencies. If the random variables

are independent, the covariance will be zero, while similar tendencies show up as positive covariance and
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dissimilar tendencies as negative covariance. Correlation normalizes covariance to the domain [−1, 1]. Co-

variance can be extended to more than two random variables. Let z be a vector of k random variables, then

a covariance matrix is produced.

C [z] =
[
C [zi, zj ]

]
0≤i,j<k

2.1.9 Quantiles

In addition, one may be interested in the median or half quantile

Q [y] = F−1
y (

1

2
) (2.15)

More generally, the p ∈ [0, 1] quantile is given by

pQ [y] = F−1
y (p) (2.16)

where F−1
y is the inverse CDF (iCDF). For example, recall the CDF for Uniform (0, 2) is

p = Fy(y) =
y

2
on [0, 2]

Taking the inverse yields the iCDF.

F−1
y (p) = 2p on [0, 1]

Consequently, the median Q [y] = F−1
y ( 1

2 ) = 1.

2.1.10 Mode

Similarly, we may be interested in the mode, which is the average of the points of maximal probability mass.

M [y] = argmax
y∈Dy

py(y) (2.17)

The mode for rolling two dice is y = 7. For continuous random variables, it is the average of points of

maximal probability density.

M [y] = argmax
y∈Dy

fy(y) (2.18)

For the two-meter rod, the mean, median and mode are all equal to 1.

2.1.11 Conditional Mass and Density

Conditional probability can be examined locally.
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Discrete Case

Given two discrete random variables x and y, the conditional mass function of x given y is defined as follows:

px|y(x, y) = P (x = x|y = y) =
px,y(x, y)

py(y)
(2.19)

where px,y(x, y) is the joint mass function. The marginal mass function for x is

px(x) =
∑
y∈Dy

px,y(x, y) (2.20)

Continuous Case

Similarly, for two continuous random variables x and y, the conditional density function of x given y is

defined as follows:

fx|y(x, y) =
fx,y(x, y)

fy(y)
(2.21)

where fx,y(x, y) is the joint density function. The marginal density function for x is

fx(x) =

∫
y∈Dy

fx,y(x, y)dy (2.22)

2.1.12 Conditional Expectation

The value of one random variable may influence the expected value of another random variable The condi-

tional expectation of random variable x given random variable y is defined as follows:

E [x|y = y] =

∫
Dx

x dFx|y(x, y) (2.23)

When y is a continuous random variable, we may write

E [x|y = y] =

∫
Dx

x fx|y(x, y)dx (2.24)

When y is a discrete random variable, we may write

E [x|y = y] =
∑
x∈Dx

x px|y(x, y) (2.25)

2.1.13 Conditional Independence

A wide class of modeling techniques are under the umbrella of probabilistic graphical models (e.g., Bayesian

Networks and Markov Networks). They work by factoring a joint probability based on conditional indepen-

dencies. Random variables x and y are conditionally indendent given z, denoted

x ⊥ y | z
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means that

Fx,y|z(x, y, z) = Fx|z(x, z)Fy|z(y, z)

2.1.14 Odds

Another way of looking a probability is odds. This is the ratio of probabilities of an event A occurring over

the event not occurring S −A.

odds(y ∈ A) =
P (y ∈ A)

P (y ∈ S −A)
=

P (y ∈ A)

1− P (y ∈ A)
(2.26)

For example, the odds of rolling a pair dice and getting natural is 8 to 28.

odds(y ∈ {7, 11}) =
8

28
=

2

7
= .2857

Of the 36 individual outcomes, eight will be a natural and 28 will not. Odds can be easily calculated from

probability.

odds(y ∈ {7, 11}) =
P (y ∈ {7, 11})

1− P (y ∈ {7, 11})
=

2/9

7/9
=

2

7
= .2857

Calculating probability from odds may be done as follows:

P (y ∈ {7, 11}) =
odds(y ∈ {7, 11})

1 + odds(y ∈ {7, 11})
=

2/7

9/7
=

2

9
= .2222

2.1.15 Example Problems

Understanding of some of techniques to be discussed requires some background in conditional probability.

1. Consider the probability of rolling a natural (i.e., 7 or 11) with two dice where the random variable y

is the sum of the dice.

P (y ∈ {7, 11}) = 1/6 + 1/18 = 2/9

If you knew you rolled a natural, what is the conditional probability that you rolled a 5 or 7?

P (y ∈ {5, 7} | y ∈ {7, 11}) =
P (y ∈ {5, 7}, y ∈ {7, 11})

P (y ∈ {7, 11})
=

1/6

2/9
= 3/4

This is the conditional probability of rolling a 5 or 7 given that you rolled a natural.

More generally, the conditional probability that y ∈ A given that x ∈ B is the joint probability divided

by the probability that x ∈ B.

P (y ∈ A |x ∈ B) =
P (y ∈ A, x ∈ B)

P (x ∈ B)

where
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P (y ∈ A, x ∈ B) = P (x ∈ B | y ∈ A)P (y ∈ A)

Therefore, the conditional probability of y given x is

P (y ∈ A |x ∈ B) =
P (x ∈ B | y ∈ A)P (y ∈ A)

P (x ∈ B)

This is Bayes Theorem written using random variables, which provides an alternative way to compute

conditional probabilities, i.e., P (y ∈ {5, 7} | y ∈ {7, 11}) is

P (y ∈ {7, 11} | y ∈ {5, 7})P (y ∈ {5, 7})
P (y ∈ {7, 11})

=
(3/5) · (5/18)

2/9
= 3/4

2. To illustrate the usefulness of Bayes Theorem, consider the following problem from John Allen Paulos

that is hard to solve without it. Suppose you are given three coins, two fair and one counterfeit (always

lands heads). Randomly select one of the coins. Let x indicate whether the selected coin is fair (0) or

counterfeit (1). What is the probability that you selected the counterfeit coin?

P (x = 1) = 1/3

Obviously, the probability is 1/3, since the probability of picking any of the three coins is the same.

This is the prior probability.

Not satisfied with this level of uncertainty, you conduct experiments. In particular, you flip the selected

coin three times and get all heads. Let y indicate the number of heads rolled. Using Bayes Theorem,

we have,

P (x = 1 | y = 3) =
P (y = 3 |x = 1)P (x = 1)

P (y = 3)
=

1 · (1/3)

5/12
= 4/5

where P (y = 3) = (1/3)(1) + (2/3)(1/8) = 5/12. After conducting the experiments (collecting

evidence) the probability estimate may be improved. Now the posterior probability is 4/5.

2.1.16 Estimating Parameters from Samples

Given a model for predicting a response value for y from a feature/variable vector x,

y = f(x; b) + ε

one needs to pick a functional form for f and collect a sample of data to estimate the parameters b. The

sample will consist of m instances (yi,xi) that form the response/output vector y and the data/input matrix

X.

y = f(X; b) + ε

There are multiple types of estimation procedures. The central ideas are to minimize error or maximize

the likelihood that the model would generate data like the sample. A common way to minimize error is to

minimize the Mean Squared Error (MSE). The error vector ε is the difference between the actual response

vector y and the predicted response vector ŷ.
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ε = y − ŷ = y − f(x; b)

The mean squared error on the length (Euclidean norm) of the error vector ||ε|| is given by

E
[
||ε||2

]
= V [||ε||] + E [||ε||]2 (2.27)

where V [||ε||] is error variance and E [||ε||] is the error mean. If the model is unbiased the error mean will

be zero, in which case the goal is to minimize the error variance.

Sample Mean

Suppose the speeds of cars on an interstate highway are Normally distributed with a mean at the speed

limit of 70 mph (113 kph) and a standard deviation of 8 mph (13 kph), i.e., y ∼ N(µ, σ2) in which case the

model is

y = µ+ ε

where ε ∼ N(0, σ2). Create a sample of size m = 100 data points, using a Normal random variate generator.

The population values for the mean µ and standard deviation σ are typically unknown and need to be

estimated from the sample, hence the names sample mean µ̂ and sample standard deviation σ̂. Show the

generated sample, by plotting the data points and displaying a histogram.

val (mu, sig) = (70.0, 8.0) // population mean and standard deviation

val m = 100 // sample size

val t = VectorD.range (0, m) // time/index vector

val rvg = Normal (mu, sig * sig) // Normal random variate generator

val sample = new VectorD (m) // vector to hold sample

for (i <- sample.range) sample(i) = rvg.gen // sample from Normal distribution

val (mu_, sig_) = (sample.mean, sample.stddev) // sample mean and standard deviation

println (s"(mu_, sig_) = ($mu_, $sig_)")

new Plot (t, sample)

new Histogram (sample)

See scalation.stat.StatVectorTest6.

Imports: scalation.{linalgebra.VectorD, plot.Plot, random.Normal, stat.{Histogram,
vectorD2StatVector}}.

Confidence Interval

Now that you have an estimate for the mean, you begin to wonder if is correct or rather close enough.

Generally, an estimate is considered close enough if its confidence interval contains the population mean.

Collect the sample values into a vector y. Then the mean is simply

µ̂ =
1 · y
m

To create a confidence interval, we need we need to determine the variablility or variance in the estimate µ̂.
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V [µ̂] =
V [y]

m
=

σ2

m

The difference between the estimate from the sample and the population mean is Normally distributed and

centered at zero (show that µ̂ is an unbiased estimator for µ, i.e., E [µ̂] = µ).

µ̂− µ ∼ N(0, σ
2

m )

We would like to transform the difference so that the resulting expression follows a Standard Normal

distribution. This can be done by dividing by σ√
m

.

µ̂− µ
σ/
√
m
∼ N(0, 1)

Consequently, the probability that the expression is greater than z is given by the CDF of the Standard

Normal distribution, FN (z).

P

(
µ̂− µ
σ/
√
m
> z

)
= 1− FN (z)

One might consider that if z = 2, two standard deviation units, then the estimate is not close enough. The

same problem can exist on the negative side, so we should require∣∣∣∣ µ̂− µσ/
√
m

∣∣∣∣ ≤ 2

In other words,

|µ̂− µ| ≤ 2σ√
m

This condition implies that µ would likely be inside the following confidence interval.[
µ̂− 2σ√

m
, µ̂+

2σ√
m

]
In this case it is easy to compute values for the lower and upper bounds of the confidence interval. The

interval half width is simply 2·8
10 = 1.6, which is to be subtracted and added to the sample mean.

Use ScalaTion to determine the probability that µ is within such confidence intervals?

println (s"1 - F(2) = ${1 - normalCDF (2)}")

The probability is one minus twice this value. If 1.96 is used instead of 2, what is the probability, expressed

as a percentage.

Typically, the population standard deviation is unlikely to be known. It would need to estimated by

using the sample standard deviation. This substitution introduces more variablity into the estimation of the

confidence interval and results in the Standard Normal distribution (z-distribution)[
µ̂− z∗σ√

m
, µ̂+

z∗σ√
m

]
(2.28)

being replace by the Student t-distribution [
µ̂− t∗σ̂√

m
, µ̂+

t∗σ̂√
m

]
(2.29)
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where z∗ and t∗ represent distances from zero, e,g., 1.96 or 2.09, that are large enough so that the analyst

is comfortable with the probability that they may be wrong.

Does the probability you determined in the last example problem make any sense. Seemingly, if you took

several samples, only a certain percentage of them would have the population mean within their confidence

interval.

for (it <- 1 to iter) {

val sample = new VectorD (m) // vector to hold sample

for (i <- sample.range) sample(i) = rvg.gen // sample from Normal distribution

val (mu_, sig_) = (sample.mean, sample.stddev) // sample mean and standard deviation

val interv = sample.interval () // interval half width: t-distribution

val ci = sample.ci (mu_, interv) // confidence interval

val inside = ci._1 <= mu && mu <= ci._2

val interv2 = sample.interval2 (sig_) // interval half width: z-distribution

val ci2 = sample.ci (mu_, interv2) // confidence interval

val inside2 = ci2._1 <= mu && mu <= ci2._2

if (inside) count += 1

if (inside2) count2 += 1

} // for

Try various values for m starting with m = 20. Compute percentages for both the t-distribution and the

z-distribution. Given the default confidence level used by ScalaTion is 0.95 (or 95%) what would you

expect your percentages to be?

Estimation for Discrete Outcomes/Responses

Explain why the probability mass function (pmf) for flipping a coin n times with the experiment resulting in

the discrete random variable y = k heads is given by the Binomial Distribution having unknown parameter

p, the probability of getting a head for any particular coin flip,

pn(k) = P (y = k) =
(
n
k

)
pk(1− p)n−k

i.e., y ∼ Binomial(n, p).

Now suppose an experiment is run and y = k, a fixed number, e.g., n = 100 and k = 60. For various

values of p, plot the following function.

L(p) =
(
n
k

)
pk(1− p)n−k

What value of p maximizes the function L(p)? The function L(p) is called the Likelihood function and it is

used in Maximum Likelihood Estimation (MLE) [16].

2.1.17 Exercises

Several random number and random variate generators can be found in ScalaTion’s random package. Some

of the following exercises will utilize these generators.

1. Let the random variable h be the number heads when two coins are flipped. Determine the following

conditional probability: P (h = 2|h ≥ 1).
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2. Prove Bayes Theorem.

P (A|B) =
P (B|A)P (A)

P (B)

3. Compute the mean and variance for the Bernoulli Distribution with success probability p.

py(y) = py (1− p)1−y for y ∈ {0, 1}

4. Show that the variance may be written as follows:

V [y] = E
[
(y − E [y])2

]
= E

[
y2
]
− E [y]

2

5. Use the Randi random variate generator to run experiments to check the pmf and CDF for rolling two

dice.

import scalation.linalgebra.VectorD

import scalation.plot.Plot

import scalation.random.Randi

object DiceTest extends App

{

val dice = Randi (1, 6)

val x = VectorD.range (0, 13)

val freq = new VectorD (13)

for (i <- 0 until 10000) {

val sum = dice.igen + dice.igen

freq(sum) += 1

} // for

new Plot (x, freq)

} // DiceTest object

6. Use the Uniform random variate generator and the Histogram class to run experiments illustrating

the Central Limit Theorem (CLT).

import scalation.linalgebra.VectorD

import scalation.stat.Histogram

import scalation.random.Uniform

object CLTTest extends App

{

val rg = Uniform ()

val x = VectorD (for (i <- 0 until 100000) yield rg.gen + rg.gen + rg.gen + rg.gen)

new Histogram (x)

} // CLTTest object
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7. Imagine you are a contestant on the Let’s Make a Deal game show and host, Monty Hall, asks you to

select door number 0, 1 or 2, behind which are two worthless prizes and one luxury car. Whatever

door you pick, he randomly opens one of the other non-car doors and asked if you want to stay with

you initial choice or switch to the remaining door. What are the probabilities of winning if you (a)

stay with your initial choice, or (b) switch to the other door? Finish the code below to validate your

results.

object MontyHall extends App

{

val rg = Randi (0, 2) // door selection (0, 1 or 2) random generator

val coin = Bernoulli () // coin flip generator

val stream = 0 // random number stream, try up to 999

var winStay = 0 // count wins with stay strategy

var winSwitch = 0 // count wins with switch strategy

for (it <- 1 to 100000) { // test the strategies 100,000 times

// car randomly placed behind this door

// contestant randomly picks a door

// Monty Hall shows other non-car door (if choice, make randomly)

if (pick == car) winStay += 1 // stay with initial pick

else winSwitch += 1 // switch to the other door

} // for

println ("winStay = " + winStay)

println ("winSwitch = " + winSwitch)

} // MontyHall object

8. Given three random variables such that x ⊥ y | z, show that

Fx|y,z(x, y, z) = Fx|z(x, z)

2.1.18 Further Reading

1. Probability and Mathematical Statistics [22]
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2.2 Linear Algebra

Data science and analytics make extensive use of linear algebra. For example, let yi be the income of the ith

individual and xij be the value of the jth predictor/feature (age, education, etc.) for the ith individual. The

responses (outcomes of interest) are collected into a vector y, the values for predictors/features are collected

in a matrix X and the parameters/coefficients b are fit to the data.

2.2.1 Linear System of Equations

The study of linear algebra starts with solving systems of equations, e.g.,

y0 = x00b0 + x01b1

y1 = x10b0 + x11b1

This linear system has two equations with two variables having unknown values, b0 and b1. Such linear

systems can be used to solve problems like the following: Suppose a movie theatre charges 10 dollars per

child and 20 dollars per adult. The evening attendance is 100, while the revenue is 1600 dollars. How many

children (b0) and adults (b1) were in attendance?

100 = 1b0 + 1b1

1600 = 10b0 + 20b1

The solution is b0 = 40 children and b1 = 60 adults.

In general, linear systems may be written using matrix notation.

y = Xb (2.30)

where y is an m-dimensional vector, X is an m-by-n dimensional matrix and b is an n-dimensional vector.

2.2.2 Matrix Inversion

If the matrix is of full rank with m = n, then the unknown vector b may be uniquely determined by

multiplying both sides of the equation by the inverse of X, X−1

b = X−1y (2.31)

Multiplying matrix X and its inverse X−1, X−1X results in an n-by-n identity matrix In = [Ii=j ], where

the indicator function Ii=j equals 1 when i = j and 0 otherwise.

A faster and more numerically stable way to solve for b is to perform Lower-Upper (LU) Factorization.

This is done by factoring matrix X into lower L and upper U triangular matrices.

X = LU (2.32)

Then LUb = y, so multiplying both sides by L−1 gives Ub = L−1y. Taking an augmented matrix
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[
1 3 1

2 1 7

]
and performing row operations to make it upper right triangular has the effect of multiplying by L−1. In

this case, the first row multiplied by -2 is added to second row to give.[
1 3 1

0 −5 5

]
From this, backward substitution can be used to determine b1 = −1 and then that b0 = 4, i.e.,

b =

[
4

−1

]
In cases where m > n, the system may be overdetermined, and no solution will exist. Values for b are

then often determined to make y and Xb agree as closely as possible, e.g., minimize absolute or squared

differences.

Vector notation is used in this technical report, with vectors shown in boldface and matrices in uppercase.

Note, matrices in ScalaTion are in lowercase, since by convention, uppercase indicates a type, not a variable.

ScalaTion supports vectors and matrices in its linalgebra and linalgebra gen packages. A commonly

used operation is the dot (inner) product, x · y, or in ScalaTion, x dot y.

2.2.3 Vector

A vector may be viewed a point in multi-dimensional space, e.g., in three space, we may have

x = [x0, x1, x2] = [0.57735, 0.55735, 0.57735]

y = [y0, y1, y2] = [1.0, 1.0, 0.0]

where x is a point on the unit sphere and y is a point in the plane determined by the first two coordinates.

2.2.4 Vector Operations

Vectors may be added (x+y), subtracted (x−y), multiplied element-by-element (Hadamard product) (x∗y),

and divided element-by-element (x/y). These operations are also supported when one of the arguments is a

scalar. A particularly important operation, the dot product of two vectors is simply the sum of the products

of their elements.

x · y =

n−1∑
i=0

xiyi = 1.1547 (2.33)

The norm of a vector is its length. Assuming Euclidean distance, the norm is

‖x‖ =

√√√√n−1∑
i=0

x2
i = 1 (2.34)

The norm of y is
√

2. If θ is the angle between the x and y vectors, then the dot product is the product of

their norms and the cosine of the angle.
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x · y = ‖x‖‖y‖ cos(θ)

Thus, the cosine of θ is,

cos(θ) =
x · y
‖x‖‖y‖

=
1.1547

1 ·
√

2
= 0.8165

so the angle θ = .616 radians. Vectors x and y are orthogonal if the angle θ = π/2 radians (90 degrees).

In general there are `p norms. The two that are used here are the `2 norm ‖x‖ = ‖x‖2 (Euclidean

distance) and the `1 norm ‖x‖1 (Manhattan distance).

‖x‖1 =

n−1∑
i=0

|xi|

Vector notation facilitates concise mathematical expressions. Many common statistical measures for

populations or samples can be given in vector notation. For an m dimensional vector (m-vector) the following

may be defined.

µ(x) = µx =
1 · x
m

σ2(x) = σ2
x =

(x − µx) · (x − µx)

m

=
x · x
m

− µ2
x

σ(x,y) = σx,y =
(x − µx) · (y − µy)

m

=
x · y
m

− µx µy

ρ(x,y) = ρx,y =
σx,y
σxσy

which are the population mean, variance, covariance and correlation, respectively.

The size of the population is m, which corresponds to the number of elements in the vector. A vector of

all ones is denoted by 1. For an m-vector ‖1‖2 = 1 · 1 = m. Note, the sample mean uses the same formula,

while the sample variance and covariance divide by m− 1, rather than m (sample indicates that only some

fraction of population is used in the calculation).

Vectors may be used for describing the motion of an object through space over time. Let u(t) be the

location of an object (e.g., golf ball) in three dimensional space R3 at time t,

u(t) = [x(t), y(t), z(t)]

To describe the motion, let v(t) be the velocity at time t, and a be the constant acceleration, then according

to Newton’s Second Law of Motion,

u(t) = u(0) + v(0) t+ 1
2a t2

The time varying function u(t) over time will show the trajectory of the golf ball.
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2.2.5 Vector Calculus

Data science uses optimization to fit parameters in models, where for example a quality of fit measure (e.g.,

sum of squared errors) is minimized. Typically, gradients are involved. In some cases, the gradient of the

measure can be set to zero allowing the optimal parameters to be determined by matrix factorization. For

complex models, this may not work, so an optimization algorithm that moves in the direction opposite to

the gradient can be applied.

Gradient Vector

Consider the following function f : R2 → R of vector u = [x, y]

f(u) = (x− 2)2 + (y − 3)2

The gradient of function f consists of a vector formed from the two partial derivatives and

∇f(u) =

[
∂f

∂x
,
∂f

∂y

]
indicates the direction of steepest increase. Its norm indicates the magnitude of the rate of change. By

setting the gradient equal to zero in this case

∂f

∂x
= 2(x− 2)

∂f

∂y
= 2(y − 3)

one may find the vector that minimizes function f , namely u = [2, 3] where f = 0. For more complex

functions, repeatedly moving in the opposite direction to the gradient, may lead to finding a minimal value.

In general, the gradient (or gradient vector) of function f : Rn → R of vector x ∈ Rn is

∇f(x) =
∂f(x)

∂x
=

[
∂f

∂x0
, . . . ,

∂f

∂xn−1

]
(2.35)

In data science, it is often convenient to take the gradient of a dot product of two functions of x, in which

case the following product rule can be applied.

∇(f(x) · g(x)) = ∇f(x) · g(x) + f(x) · ∇g(x) (2.36)

Jacobian Matrix

The Jacobian Matrix is an extension of the gradient vector to the case where the value of the function is

multi-dimensional, i.e., f = [f0, f1, . . . , fm−1]. In general, the Jacobian of function f : Rn → Rm of vector

x ∈ Rn is

J f(x) =

[
∂fi
∂xj

]
0≤i<m,0≤j<n

= (2.37)
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∇f0(x)

∇f1(x)

. . .

∇fm−1(x)


Consider the following function f : R2 → R2 that maps vectors in R2 into other vectors in R2.

f(x) = [(x0 − 2)2 + (x1 − 3)2, (2x0 − 6)2 + (3x1 − 6)2]

The Jacobian of the function, J f(x), is 
∂f0

∂x0
,
∂f0

∂x1

∂f1

∂x0
,
∂f1

∂x1


Taking the partial derivatives gives the following Jacobian matrix.[

2x0 − 4, 2x1 − 6)

4x0 − 12, 6x1 − 12

]

Hessian Matrix

While the gradient is a vector of first partial derivatives, the Hessian is a matrix of second partial derivatives.

The Hessian Matrix of a scalar-valued function f : Rn → R of vector x ∈ Rn is

H f(x) =

[
∂2f

∂xi∂xj

]
0≤i<n,0≤j<n

(2.38)

Consider the following function f : R2 → R that maps vectors in R2 into scalars in R.

f(x) = (2x0 − 6)2 + (3x1 − 6)2

The Hessian of the function, H f(x), is 
∂2f

∂x2
0

,
∂2f

∂x0∂x1

∂2f

∂x1∂x0
,
∂2f

∂x2
1


Taking the second partial derivatives gives the following Hessian matrix.[

4, 0

0, 6

]

Vector Operations in ScalaTion

Vector operations are illustrated by the VectoD trait, which includes methods for size, indices, set, copy, filter,

select, concatenate, vector arithmetic, power, square, reciprocal, abs, sum, mean variance, rank, cumulate,

normalize, dot, norm, max, min, mag, argmax, argmin, indexOf, indexWhere, count, contains, sort and

swap.
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Table 2.1: Vector Arithmetic Operations

op vector op vector vector op scalar vector element op scalar

+ def + (b: VectoD): VectoD def + (s: Double): VectoD def + (s: (Int, Double)): VectoD

+= def += (b: VectoD): VectoD def += (s: Double): VectoD -

- def - (b: VectoD): VectoD def - (s: Double): VectoD def - (s: (Int, Double)): VectoD

-= def -= (b: VectoD): VectoD def -= (s: Double): VectoD -

* def * (b: VectoD): VectoD def * (s: Double): VectoD def * (s: (Int, Double)): VectoD

*= def *= (b: VectoD): VectoD def *= (s: Double): VectoD -

/ def / (b: VectoD): VectoD def / (s: Double): VectoD def / (s: (Int, Double)): VectoD

/= def /= (b: VectoD): VectoD def /= (s: Double): VectoD -

2.2.6 Matrix

A matrix may be viewed as a collection of vectors, one for each row in the matrix. Matrices may be used to

represent linear transformations

f : Rn → Rm (2.39)

that map vectors in Rn to vectors in Rm. For example, in ScalaTion an m-by-n matrix A with m = 3

rows and n = 2 columns may be created as follows:

val a = MatrixD ((3, 2), 1, 2,

3, 4,

5, 6)

to produce matrix A. 1 2

3 4

5 6


Matrix A will transform u vectors in R2 into v vectors in R3.

Au = v (2.40)

For example,

A

[
1

2

]
=

[ 5
11

17

]

2.2.7 Matrix Operations

ScalaTion supports retrieval of row vectors, column vectors and matrix elements. In particular, the

following access operations are supported.

Note that in Scala, i to k is a Range that includes k, while i until k does not include k. Common

operations on matrices are supported as well.
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A = a = matrix

A = a() = underlying array

ai = a(i) = row vector i

a:j = a.col(j) = column vector j

aij = a(i, j) = the element at row i and column j

Ai:k,j:l = a(i to k, j to l) = row and column matrix slice

Matrix Addition and Subtraction

Matrix addition val c = a + b

cij = aij + bij

and matrix subtraction val c = a - b are supported.

Matrix Multiplication

A frequently used operation in data science is matrix multiplication val c = a * b.

cij =

n−1∑
k=0

aikbkj

Mathematically, this is written as C = AB. The ij element in matrix C is the vector dot product of the ith

row of A with the jth column of B.

Matrix Transpose

The transpose of matrix A, written At (val t = a.t), simply exchanges the roles of rows and columns.

def t: MatrixD =

{

val c = new MatrixD (dim2, dim1)

for (j <- range1) {

val v_j = v(j)

for (i <- range2) c.v(i)(j) = v_j(i)

} // for

c

} // t

Matrix Determinant

The determinant of square (m = n) matrix A, written |A| (val d = a.det), indicates whether a matrix is

singular or not (and hence invertible), based on whether the determinant is zero or not.

Matrix Dot Product

ScalaTion provides several types of dot products on both vectors and matrices, three of which are shown

below. The first method computes the usual dot product between two vectors, while the second and third
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methods are between two matrices. The second method simply takes dot products of the corresponding

columns of each matrix. The third method provides another (and sometimes more efficient) way to compute

AtB = A ·B = a.t * b = a mdot b.

def dot (b: VectorD): Double =

{

var s = 0.0

for (i <- range) s += v(i) * b.v(i)

s

} // dot

def dot (b: MatrixD): VectorD =

{

if (dim1 != b.dim1) flaw ("dot", "matrix dot matrix - incompatible first dimensions")

val c = new VectorD (dim2)

for (i <- range1; j <- range2) c(j) += v(i)(j) * b.v(i)(j)

c

} // dot

def mdot (b: MatrixD): MatrixD =

{

if (dim1 != b.dim1) flaw ("mdot", "matrix mdot matrix - incompatible first dimensions")

val c = new MatrixD (dim2, b.dim2)

val at = this.t // transpose the ’this’ matrix

for (i <- range2) {

val at_i = at.v(i) // ith row of ’at’ (column of ’a’)

for (j <- b.range2) {

var sum = 0.0

for (k <- range1) sum += at_i(k) * b.v(k)(j)

c.v(i)(j) = sum

} // for

} // for

c

} // mdot

2.2.8 Matrix Factorization

Many problems in data science involve matrix factorization to for example solve linear systems of equations

or perform Ordinary Least Squares (OLS) estimation of parameters. ScalaTion supports several factorization

techniques, including the techniques shown in table 2.2

See Chapter 4 to see how matrix factorization is used in Ordinary Least Squares estimation.

2.2.9 Internal Representation

The current internal representation used for storing the elements in a dense matrix is Array [Array [Double]]

in row major order (row-by-row). Depending on usage, operations may be more efficient using column ma-

jor order (column-by-column). Also, using a one dimensional array Array [Double] mapping (i, j) to the

42



Table 2.2: Matrix Factorization Techniques

Fractorization Factors Factor 1 Factor 2 Class

LU A = LU lower left triangular upper right triangular Fac LU

Cholesky A = LLt lower left triangular its transpose Fac Cholesky

QR A = QR orthogonal upper right triangular Fac QR H

SVD A = UΣV t orthogonal diagonal, orthogonal SVD

kth location may be more efficient. Furthermore, having operations access through submatrices (blocks)

may improve performance because of caching efficiency or improved performance for parallel and distributed

versions.

The linalgebra package provides several traits and classes implementing multiple types of vectors and

matrices as shown in Table 2.3 The VectoD trait has dense, sparse and compressed class implementations,

while the MatriD trait has dense, sparse, compressed, symmetric tridiagonal and bidiagonal class implemen-

tations.

Table 2.3: Types of Vectors and Matrices: Implementing Classes

trait VectoD MatriD

dense VectorD MatrixD

sparse SparseVectorD SparseMatrixD

compressed RleVectorD RleMatrixD

tridiagonal - SymTriMatrixD

bidiagonal - BidMatrixD

The suffix ‘D’ indicates the base element type is Double. There are also implementations for Complex

‘C’, Int ‘I’, Long ‘L’, Rational ‘Q’, Real ‘R’, StrNum ‘S’, and TimeNum ‘T’. There are also generic

implementations in linalgebra gen, but they tend to run more slowly.

ScalaTion supports many operations involving matrices and vectors, including the following show in

Table 2.4.

Table 2.4: Types of Vector and Matrix Products

Product Method Example in Math

vector dot def dot (y: VectoD): Double x dot y x · y
vector elementwise def * (y: VectoD): VectoD x * y x y

vector outer def outer (y: VectoD): MatriD x outer y x⊗ y

matrix mult def * (y: MatriD): MatriD x * y X Y

matrix dot def dot (y: MatriD): VectoD x dot y X · Y
matrix mdot def mdot (y: MatriD): MatriD x mdot y Xt Y

matrix vector def * (y: VectoD): VectoD x * y X y

matrix vector def ** (y: VectoD): MatriD x ** y X diag(y)
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2.2.10 Exercises

1. Draw two 2-dimensional non-zero vectors whose dot product is zero.

2. Given the matrix X and the vector y, solve for the vector b in the equation y = Xb using matrix

inversion and LU factorization.

import scalation.linalgebra.{MatrixD, VectorD, Fac_LU}

val x = new MatrixD ((2, 2), 1, 3,

2, 1)

val y = VectorD (1, 7)

println ("using inverse: b = X^-1 y = " + x.inverse * y)

println ("using LU fact: Lb = Uy = " + { val lu = new Fac_LU (x); lu.factor ().solve (y) } )

Modify the code to show the inverse matrix X−1 and the factorization into the L and U matrices.

3. If Q is an orthogonal matrix, then QtQ becomes what type of matrix? What about QQt? Illustrate

with an example 3-by-3 matrix. What is the inverse of Q?

4. Show that the Hessian matrix of a scalar-valued function f : Rn → R is the transpose of the Jacobian

of the gradient, i.e.,

Hf(x) = [J∇f(x)]t

5. Critical points for a function f : Rn → R occur when ∇f(x) = 0. How can the Hessian Matrix can be

used to decide whether a particular critical point is a local minimum or maximum?

2.2.11 Further Reading

1. Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares [3]

2. Matrix Computations [10]
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2.3 Notational Conventions

With respect to random variables, vectors and matrices, the following notational conventions shown in Table

2.5 will be used in this book.

Table 2.5: Notational Conventions Followed
variable type case font color

scalar lower italics black

vector lower bold black

matrix upper italics black

random scalar lower italics blue

random vector lower bold blue

Built on the Functional Programming features in Scala, ScalaTion support several function types:

type FunctionS2S = Double => Double // function of a scalar - Double

type FunctionV2S = VectorD => Double // function of a vector - VectorD

type FunctionV_2S = VectoD => Double // function of a vector - VectoD

type FunctionV2V = VectorD => VectorD // vector-valued function of a vector - VectorD

type FunctionV_2V = VectoD => VectoD // vector-valued function of a vector - VectoD

type FunctionM2M = MatrixD => MatrixD // matrix-valued function of a matrix - MatrixD

type FunctionM_2M = MatriD => MatriD // matrix-valued function of a matrix - MatriD

These function types are defined in scalation.math and svcalation.linalgebra. A scalar-valued function

type ends in ’S’, a vector-valued function type ends in ’V’, and a matrix-valued function type ends in ’M’.

Mathemtically, the scalar-valued functions are denoted by a symbol, e.g., f .

S2S function f : R→ R

V2S function f : Rn → R

V 2S function f : Rn → R

Mathemtically, the vector-valued and matrix-valued functions are denoted by a bold symbol, e.g., f .

V2V function f : Rn → Rm

V 2V function f : Rn → Rm

M2M function f : Rm×n → Rp×q

M 2M function f : Rm×n → Rp×q
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2.4 Model

Models are about making predictions such as given certain properties of a car, predict the car’s mileage, given

recent performance of a stock index fund, forecast its future value, or given a person’s credit report, classify

them as either likely to repay or not likely to repay a loan. The thing that is being predicted, forecasted

or classified is referred to the response/output variable, call it y. In many cases, the “given something” is

either captured by other input/feature variables collected into a vector, call it x,

y = f(x; b) + ε (2.41)

or by previous values of y. Some functional form f is chosen to map input vector x into a predicted value

for response y. The last term indicates the difference between actual and predicted values, i.e., the residuals

ε. The function f is parameterized and often these parameters can be collected into a matrix b.

If values for the parameter vector b are set randomly, the model is unlikely to produce accurate pre-

dictions. The model needs to be trained by collecting a dataset, i.e., several (m) instances of (xi, yi), and

optimizing the parameter vector b to minimize some loss function, such as mean squared error (mse),

mse =
1

m
||y − ŷ||2 (2.42)

where y is the vector from all the response instances and ŷ = f(X; b) is the vector of predicted response

values and X is the matrix formed from all the input/feature vector instances.

After a model is trained, its Quality of Fit (QoF) should be evaluated. One way to perform the evaluation

is to train the model on the full dataset and test as well on the full dataset. For complex models with many

parameters, overfitting will likely occur. Then its excellent evaluation is unlikely to be reproduced when the

model is applied in the real-world. To avoid overly optimistic evaluations due to overfitting, it is common

to divide a dataset (X,y) into a training dataset and testing dataset where training is conducted on the

training dataset (Xr,yr) and evaluation is done on the test dataset (Xe,ye). The conventions used in this

book for the full, training and test datasets are shown in Table 2.6

Table 2.6: Convention for Datasets
Math Symbol Code Description

X x full data/input matrix

Xr x r training data/input matrix (maybe full)

Xe x e test data/input matrix (maybe full)

y y full response/output vector

yr y r training response/output vector (maybe full)

ye y e test response/output vector (maybe full)

Note, when training and testing on the full dataset, the training and test dataset are actually the same, i.e.,

they are the full dataset. If a model has many parameters, the Quality of Fit (QoF) found from training

and testing on the full dataset should be suspect. See the section on cross-validation for more details.

In ScalaTion, the Model trait severs as base trait for all the modeling techniques in the analytics

package and its subpackages classifier, clusterer, fda, forecaster, and recommeneder.
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Model Trait

Trait Methods:

trait Model extends Error

def train (x_r: MatriD, y_r: VectoD): Model

def eval (x_e: MatriD, y_e: VectoD): Model

def hparameter: HyperParameter

def parameter: VectoD

def report: String

The train method will use a training or full dataset to train the model, i.e., optimize its parameter

vector b to minimize a given loss function. After training, the quality of the model may be assessed using

the eval method. The evaluation may be performed on a test or full dataset. Finally, information about

the model may be extracted by the following three methods: (1) hparameter showing the hyper-parameters,

(2) parameter showing the parameters, and (3) report showing the hyper-parameters, the parameter, and

the Quality of Fit (QoF) of the model. Note, hyper-parameters are used by some modeling techniques to

influence either the result or how the result is obtained.

Classes that implement (directly or indirectly) the Model trait should default x r and x e to the full

data/input matrix x, and y r and y e to the full response/output vector y that are passed into the class

constructor, e.g.,

class Regression (x: MatriD, y: VectoD,

fname_ : Strings = null, hparam: HyperParameter = null,

technique: RegTechnique = QR)

Implementations of the train method take a training data/input matrix x r and a training response/output

vector y r and optimize the parameter vector b to, for example, mimimize error or maximize likelihood.

Implementations of the eval method take a test data/input matrix x e and the corresponding test re-

sponse/output vector y e to compute errors and evaluate the Quality of Fit (QoF). Note that with cross-

validation (to be explained later), there will be multiple training and test datasets created from one full

dataset. Implementations of the hparameter method simply return the hyper-parameter vector hparam,

while implementations of the parameter method simply return the optimized parameter vector b. (The

fname and technique parameters for Regression are the feature names and the solution/optimization

technique used to estimate the parameter vector, respectively.)
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Chapter 3

Data Management and Preprocessing

Data Science relies on having large amounts of quality data. Collecting data and handling data quality issues

are of upmost importance. Without support from a system or framework, this can be very time-consuming

and error-prone. This chapter provides a quick overview of the support provided by ScalaTion for data

management and preprocessing. Data management capabilities are provided by ScalaTion’s Time Series

DataBase (TSDB). Preprocessing of data should be done before applying analytics techniques to ensure they

are working on quality data. ScalaTion provides a variety of preprocessing techniques.
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3.1 Analytics Databases

It is convenient to collect data from multiple sources and store the data in a database. Analytics databases

are organized to support efficient data analytics. Multiple systems, including ScalaTion’s TSDB, are built

on top of columnar, main memory databases in order to provide high performance. ScalaTion’s TSDB is a

Time Series DataBase that has built-in capabilities for handling time series data. It is able to store non-time

series data as well. It provides two Application Programming Interfaces (APIs) for convenient access to the

data [?].
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3.2 Columnar Relational Algebra API

The first API is a Columnar Relational Algebra that includes the standard operators of relational algebra plus

those common to column-oriented databases. It consists of the Table trait and two implementing classes:

Relation and MM Relation. Persistence for Relation is provided by the save method, while MM Relation

utilizes memory-mapped files.

3.2.1 Relation Creation

A Relation object is created by invoking a constructor or factory apply function. For example, the following

six Relations may be useful in a traffic forecasting study.

val sensor = Relation (“sensor”, Seq (“sensorID”, “model”, “latitude”, “longitude”, “on”), Seq (), 0,

“ISDDI”)

val road = Relation (“road”, Seq (“roadID”, “rdName”, “lat1”, “long1”, “lat2”, “long2”), Seq (), 0,

“ISDDDD”)

val mroad = Relation (“road”, Seq (“roadID”, “rdName”, “lanes”, “lat1”, “long1”, “lat2”, “long2”),

Seq (), 0, “ISIDDDD”)

val traffic = Relation (“traffic”, Seq (“time”, “sensorID”, “count”, “speed”), Seq (), Seq (0, 1), “TIID”)

val wsensor = Relation (“sensor”, Seq (“sensorID”, “model”, “latitude”, “longitude”), Seq (), 0, “ISDD”)

val weather = Relation (“weather”, Seq (“time”, “sensorID”, “precipitation”, “wind”), Seq (), Seq (0,

1), “TIID”)

The name of the first relation is “sensor”, the first sequence is the attribute names, the second sequence is

the data (currently empty), 0 is the column number for the primary key, “ISDDI” indicates the domains for

the attributes (Integer, String, Double, Double, Integer). It stores information about traffic sensors. The

second relation stores the ID, name, beginning and ending latitude-longitude coordinates. The third relation

is for multi-lane roads. The fourth relation stores the data collected from traffic sensors. The primary key in

this case is composite, Seq (0, 1), as both the time and the sensorID are required for unique identification.

The fifth relation stores information about weather sensors. Finally, the sixth relation stores data collected

from the weather sensors.

3.2.2 Relation Population

There are several ways to populate the Relations. A row/tuple can be added one at a time using def

add (tuple: Row). Population may also occur during relation construction (via a constructor or apply

method). There are factory apply functions that take a file or URL as input.

For example to populate the sensor relation with information about Austin, Texas’ traffic sensors stored

in the file austin traffic sensors.csv the following line of code may be used.

val sensor = Relation (“sensor”, “austin traffic sensors.csv”)

Data files are stored in subdirectories of ScalaTion’s data directory.
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Columnar Relational Algebra Operators

Table 3.1 shows the thirteen operators supported (the first six are considered fundamental). Operator

names as well as Unicode symbols may be used interchangeably (e.g., r union s or r ∪ s compute the union

of relations r and s). Note, the extended projection operator eproject (Π) provides a convenient mechanism

for applying aggregate functions. It is often called after the groupby operator, in which case multiple rows

will be returned. Multiple columns may be specified in eproject as well. There are also several varieties of

join operators. As an alternative to using the Unicode symbol when they are Greek letters, the letter may

be written out in English (pi, sigma, rho, gamma, epi, omega, zeta, unzeta).

Table 3.1: Columnar Relational Algebra (r = road, s = sensor, t = traffic, q = mroad, w = weather)

Operator Unicode Example Return

select σ r.σ (“rdName”, == “I285”) rows of r where rdName == “I285”

project π r.π (“rdName”, “lat1”, “long1”) the rdName, lat1, and long1 columns of r

union ∪ r ∪ q rows that are in r or q

minus - r − q rows that are in r but not q

product × r × t concatenation of each row of r with those of t

rename ρ r.ρ(“r2”) a copy of r with new name r2

join ./ r ./ s rows in natural join of r and s

intersect ∩ r ∩ q rows that are in r and q

groupby γ t.γ (“sensorId”) rows of t grouped by sensorId

eproject Π t.Π (avg, “acount”, “count”)(“sensorId”) the average of the count column of t

orderBy ω t.ω (“sensorId”) rows of t ordered by sensorId

compress ζ t.ζ (“count”) compress the count column of t

uncompress Z t.Z (“count”) uncompress the count column of t

The extended projection operator eproject applies aggregate operators on aggregation columns (first argu-

ments) and regular project on the other columns (second arguments). Typically it is called after the groupby

operator.

t.γ (“sensorId”).Π (avg, “acount”, “count”)(“sensorId”)

In addition to the natural join shown in Table 3.1, the ScalaTion TSDB also supports equi-join, general

theta join, left outer join, and right outer join, as shown below.

r ./ (“roadId”, “on”, s) equi− join

r ./ [Int](s, (“roadId”, “on”, == )) theta join

t n (“time”, “time”, w) left outer join

t o (“time”, “time”, w) right outer join

3.2.3 Example Queries

Several example queries for the traffic study are given below.
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1. Retrieve traffic data within a 100 kilometer-grid from the center of Austin, Texas. The latitude-

longitude coordinates for Austin, Texas are (30.266667, -97.733333).

val austin = latLong2UTMxy (LatitudeLongitude (30.266667, -97.733333))

val alat = (austin. 1 - 100000, austin. 1 + 100000)

val along = (austin. 2 - 100000, austin. 2 + 100000)

traffic ./ sensor.σ [Double] (“latitude”, ∈ alat).σ [Double] (“longitude” ∈ along)
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3.3 SQL-Like API

The SQL-Like API in ScalaTion provides many of the language constucts of SQL in a functional style.

3.3.1 Relation Creation

A RelationSQL object is created by invoking a constructor or factory apply function. For example, the

following six RelationSQLs may be useful in a traffic forecasting study.

val sensor = RelationSQL ("sensor", Seq ("sensorID", "model", "latitude", "longitude", "on"),

null, 0, "ISDDI")

val road = RelationSQL ("road", Seq ("roadID", "rdName", "lat1", "long1", "lat2", "long2"),

null, 0, "ISDDDD")

val mroad = RelationSQL ("road", Seq ("roadID", "rdName", "lanes", "lat1", "long1", "lat2", "long2"),

null, 0, "ISIDDDD")

val traffic = RelationSQL ("traffic", Seq ("time", "sensorID", "count", "speed"),

null, 0, "TIID")

val wsensor = RelationSQL ("sensor", Seq ("sensorID", "model", "latitude", "longitude"),

null, 0, "ISDD")

val weather = RelationSQL ("weather", Seq ("time", "sensorID", "precipitation", "wind"),

null, 0, "TIID")

RelationSQL Class

Class Methods:

@param name the name of the relation

@param colName the names of columns

@param col the Scala Vector of columns making up the columnar relation

@param key the column number for the primary key (< 0 => no primary key)

@param domain an optional string indicating domains for columns (e.g., ’SD’ = ’StrNum’, ’Double’)

@param fKeys an optional sequence of foreign keys - Seq (column name, ref table name, ref column position)

class RelationSQL (name: String, colName: Seq [String], col: Vector [Vec],

key: Int = 0, domain: String = null, fKeys: Seq [(String, String, Int)] = null)

extends Tabular with Serializable

def repr: Relation = r

def this (r: Relation) = this (r.name, r.colName, r.col, r.key, r.domain, r.fKeys)

def select (cName: String*): RelationSQL =

def join (r2: RelationSQL): RelationSQL =

def join (cName1: String, cName2: String, r2: RelationSQL): RelationSQL =

def join (cName1: Seq [String], cName2: Seq [String], r2: RelationSQL): RelationSQL =

def where [T: ClassTag] (cName: String, p: T => Boolean): RelationSQL =

def where2 [T: ClassTag] (p: Predicate [T]*): RelationSQL =

def groupBy (cName: String*): RelationSQL =
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def orderBy (cName: String*): RelationSQL =

def reverseOrderBy (cName: String*): RelationSQL =

def union (r2: RelationSQL): RelationSQL =

def intersect (r2: RelationSQL): RelationSQL =

def intersect2 (r2: RelationSQL): RelationSQL =

def minus (r2: RelationSQL): RelationSQL =

def stack (cName1: String, cName2: String): RelationSQL =

def insert (rows: Row*)

def materialize ()

def exists: Boolean = r.exists

def toMatriD (colPos: Seq [Int], kind: MatrixKind = DENSE): MatriD =

def toMatriDD (colPos: Seq [Int], colPosV: Int, kind: MatrixKind = DENSE): (MatriD, VectorD) =

def toMatriDI (colPos: Seq [Int], colPosV: Int, kind: MatrixKind = DENSE): (MatriD, VectorI) =

def toMatriI (colPos: Seq [Int], kind: MatrixKind = DENSE): MatriI =

def toMatriI2 (colPos: Seq [Int] = null, kind: MatrixKind = DENSE): MatriI =

def toMatriII (colPos: Seq [Int], colPosV: Int, kind: MatrixKind = DENSE): (MatriI, VectorI) =

def toVectorC (colPos: Int = 0): VectorC = r.toVectorC (colPos)

def toVectorC (colName: String): VectorC = r.toVectorC (colName)

def toVectorD (colPos: Int = 0): VectorD = r.toVectorD (colPos)

def toVectorD (colName: String): VectorD = r.toVectorD (colName)

def toVectorI (colPos: Int = 0): VectorI = r.toVectorI (colPos)

def toVectorI (colName: String): VectorI = r.toVectorI (colName)

def toVectorL (colPos: Int = 0): VectorL = r.toVectorL (colPos)

def toVectorL (colName: String): VectorL = r.toVectorL (colName)

def toVectorQ (colPos: Int = 0): VectorQ = r.toVectorQ (colPos)

def toVectorQ (colName: String): VectorQ = r.toVectorQ (colName)

def toVectorR (colPos: Int = 0): VectorR = r.toVectorR (colPos)

def toVectorR (colName: String): VectorR = r.toVectorR (colName)

def toVectorS (colPos: Int = 0): VectorS = r.toVectorS (colPos)

def toVectorS (colName: String): VectorS = r.toVectorS (colName)

def toVectorT (colPos: Int = 0): VectorT = r.toVectorT (colPos)

def toVectorT (colName: String): VectorT = r.toVectorT (colName)

def show (limit: Int = Int.MaxValue) { r.show (limit) }

def save () { r.save () }
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3.4 Preprocessing

Using the ScalaTion TSDB, data scientists may write queries that extract data from one or more columnar

relations. These data are used to create vectors and matrices that may be passed to various analytics

techniques. Before the vectors and matrices are created the data need to be preprocessed to improve data

quality and transform the data into a form more suitable for analytics.

3.4.1 Remove Identifiers

Any column that is unique (e.g., a primary key) with arbitrary values should be removed before applying a

modeling/analytics technique. For example, an employee ID in a Neural Network analysis to predict salary

could result in a perfect fit. Upon knowing the employee ID, the salary is a known. As the ID itself (e.g.,

ID = 1234567) is arbitrary, such a model has little value.

3.4.2 Convert String Columns to Numeric Columns

In ScalaTion, columns with strings (of type StrNum) should be converted to integers. For displaying final

results, however, is often useful to convert the integers back to the original strings. The capabilities are

provided by the mapToInt function in the scalation.linalgebra.Converter object.

3.4.3 Identify Missing Values

Missing Values are common is real datasets. For some datasets, a question mark character ‘?’ is used to

indicate that a value is missing. In Comma Separated Value (CSV) files, repeated commas may indicate

missing values, e.g., 10.1, 11.2,,,9.8. If zero or negative numbers are not valid for the application, these may

be used to indicate missing values.

3.4.4 Detect Outliers

Data points that are considered outliers may happen because of errors or highly unusual occurrences. For

example, suppose a dataset records the times for members of a football team to run a 100-yard dash and

one of the recorded values is 3.2 seconds. This is an outlier. Some analytics techniques are less sensitive to

outliers, e.g., `1 Regression, while others, e.g., `2 Regression, are more sensitive. Detection of outliers suffers

from the obvious problems of being too strict (in which case good data may be thrown away) or too lenient

(in which case outliers are passed to an analytics technique). One may choose to handle outliers separately,

or turn them into missing values, so that both outliers and missing values may be handled together.

ScalaTion currently provides the following techniques for outlier detection: so many standard deviation

units from the mean, DistanceOutlier; the smallest and largest percent values, QuantileOutlier; and

an expansion multiplier beyond the middle two quartiles, QuartileXOutlier. For example, the following

function will turn outliers in missing values, by reassigning the outliers to noDouble, ScalaTion’s indicator

of a missing value of type Double.

DistanceOutlier.rmOutlier (traffic.column (“speed”))
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3.4.5 Imputation Techniques

The two main ways to handle missing values are (1) throw them away, or (2) use imputation to replace them

with reasonable guesses. When there is a gap in time series data, imputation may be used for short gaps,

but is unlikely to be useful for long gaps. This is especially true when imputation techniques are simple. The

alternative could be to use an advanced modeling technique like SARIMA for imputation, but then results

of a modeling study using SARIMA are likely to be biased. Imputation implementations are based on the

Imputation trait in the scalation.modeling package.

Imputation Trait

Trait Methods:

trait Imputation

def setMissVal (missVal_ : Double) { missVal = missVal_ }

def setDist (dist_ : Int) { dist = dist_ }

def imputeAt (x: VectoD, i: Int): Double

def impute (x: VectoD, i: Int = 0): (Int, Double) = findMissing (x, i)

def imputeAll (x: VectoD): VectoD =

def impute (x: MatriD): MatriD =

def imputeCol (c: Vec, i: Int = 0): (Int, Any) =

ScalaTion currently supports the following imputation techniques:

1. object ImputeRegression extends Imputation: Use SimpleRegression on the instance index to

estimate the next missing value.

2. object ImputeForward extends Imputation: Use the pevious value and slope to estimate the next

missing value.

3. object ImputeBackward extends Imputation: Use the subsequent value and slope to estimate the

pevious missing value.

4. object ImputeMean extends Imputation: Use the filtered mean to estimate the next missing value.

5. object ImputeMovingAvg extends Imputation: Use the moving average of the last ’dist’ values to

estimate the next missing value.

6. object ImputeNormal extends Imputation: Use the median of three Normally distributed, based

on filtered mean and variance, random values to estimate the next missing value.

7. object ImputeNormalWin extends Imputation: Same as ImputeNormal except mean and variance

are recomputed over a sliding window.
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3.4.6 Preliminary Feature Selection

Before selecting a modeling/analytics technique, certain columns may be thrown away. Examples include

columns with too many missing values or columns with near zero variance.

3.4.7 Align Multiple Time Series

When the data include multiple time series, there are likely to be time alignment problems. The frequency

and/or phase may not be in agreement. For example, traffic count data may be recorded every 15 minutes

and phased on the hour, while weather precipitation data may be collected every 30 minutes and phased to

10 minutes past the hour.

ScalaTion supports the following alignments techniques: (1) approximate left outer join and (2) dy-

namic time warping. The first operator will perform a left outer join between two relations based on their

time (TimeNum) columns. Rather than the usual matching based on equality, approximately equal times are

considered sufficient for alignment. For example, to align traffic data with the weather data, the following

approximate left outer join may be used.

traffic n (0.01)(“time”, “time”,weather) approximate left outer join

The second operator ...

3.4.8 Creating Vectors and Matrices

Once the data have been preprocessed, columns may be projected out to create a matrix that may be passed

to analytics/modeling techniques.

val mat = π“time”,“count” (traffic).toMatriD

This matrix may then be passed into multiple modeling techniques: (1) a Multiple Linear Regression, (2) a

AutoRegressive, Integrated, Moving Average (ARIMA) model.

val model1 = Regression (mat)

val model2 = ARIMA (mat)

By default in ScalaTion the rightmost columns are the response/output variables. As many of the

modeling techniques have a single response variable, it will be assumed to in the last column. There are also

contructors and factory apply functions that take explicit vector and matrix parameters, e.g., a matrix of

predictor variables and a response vector.

3.5 Excercises

1. Load the auto mpg.csv dataset into an auto mpg relation. Perform the preprocessing steps above to

create a cleaned-up relation auto mpg2 and produce a data matrix called auto mat from this relation.

Print out the correlation matrix for auto mat. Which columns have the highest correlation? To predict

the miles per gallon mpg which columns are likely to be the best predictors.
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2. Find a dataset at the UCI Machine Learning Repository and carry out the same steps

https://archive.ics.uci.edu/ml/index.php.
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Chapter 4

Prediction

As the name predictive analytics indicates, the purpose of techniques that fall in this category is to develop

models to predict outcomes. For example, the distance a golf ball travels y when hit by a driver depends

on several factors or inputs x such as club head speed, barometric pressure, and smash factor (how square

the impact is). The models can be developed using a combination of data (e.g., from experiments) and

knowledge (e.g., Newton’s Second Law). The modeling techniques discussed in this technical report tend

to emphasize the use of data more than knowledge, while those in the simulation modeling technical report

emphasize knowledge.

Abstractly, a predictive model can generally be formulated using a prediction function f as follows:

y = f(x, t; b) + ε (4.1)

where

• y is an response/output scalar,

• x is an predictor/input vector,

• t is a scalar representing time,

• b is the vector of parameters of the function, and

• ε represents remaining residuals/errors.

Both the response y and residuals/errors ε are treated as random variables, while the predictor/feature

variables x may be treated as either random or deterministic depending on context. Depending on the goals

of the study as well as whether the data are the product of controlled/designed experiments, the random or

deterministic view may be more suitable.

The parameters b can be adjusted so that the predictive model matches the available data. Note,

in the definition of a function, the arguments appear before the “;”, while the parameters appear after.

The residuals/errors are typically additive as shown above, but may also be multiplicative. Of course, the

formulation could be generalized by turning the output/response into a vector y and the parameters into a

matrix B.

When a model is time-independent or time can be treated as just another dimension within the x vectors,

prediction functions can be represented as follows:

61



y = f(x; b) + ε (4.2)

Another way to look at such models, is that we are trying to estimate the conditional expectation of y given

x.

y = E [y|x] + ε

ε = y − f(x; b)

Given a dataset (m instances of data), each instance contributes to an overall residual/error vector ε.

One of the simpler ways to estimate the parameters b is to minimize the size of the residual/error vector,

e.g., its Euclidean norm. The square of this norm is the sum of squared errors (sse)

sse = ||ε||2 = ε · ε (4.3)

This corresponds to mininizing the raw mean square error (mse = sse/m). See the section on Generalized

Linear Models for further development along these lines.

In ScalaTion, data are passed to the train function to train the model/fit the parameters b. In the

case of prediction, the predict function is used to predict values for the scalar response y.

A key question to address is the possible functional forms that f may take, such as the importance of

time, the linearity of the function, the domains for y and x, etc. We consider several cases in the subsections

below.
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4.1 Predictor

The Predictor trait provides a common framework for several predictor classes such as SimpleRegression

or Regression. All of the modeling techniques discussed in this chapter extend either the Predictor trait,

or an abstract class extending the Predictor trait, namely PredictorMat. These PredictorMat also extend

the Fit class to enable Quality of Fit (QoF) evaluation.

Predictor Trait

Trait Methods:

trait Predictor extends Model

def getX: MatriD

def getY: VectoD

def residual: VectoD

def analyze (x_r: MatriD, y_r: VectoD, x_e: MatriD, y_e: VectoD): Predictor

def predict (z: VectoD): Double

def predict (z: VectoI): Double = predict (z.toDouble)

def predict (z: MatriD): VectoD

def forwardSel (cols: Set [Int], index_q: Int): (Int, Predictor)

def corrMatrix (xx: MatriD): MatriD = corr (xx.asInstanceOf [MatrixD])

def test (modelName: String, doPlot: Boolean = true)

The Predictor trait inherits the five methods from the Model trait: train, eval, hparameter, parameter

and report. In addition, it defines the nine methods shown above (eight of which are to implemented by

classes extending from the Predictor trait). The getX and getY methods simply return the data matrix and

response vector that are used internally by the modeling technique (some techniques expand the original x

and y passed into the constructor). The residual method returns the error vector (difference between actual

and predicted values). The analyze method trains on the training dataset and evaluates on the test dataset.

The predict method take a data vector (e.g., a new data instance) and predict its response. An overloaded

predict method takes a matrix as input (with each row being an instance) and makes predictions for each

row. The forwardSel method performs forward selection by adding the next most predictive variable/feature

to an existing model. The corrMatrix method computes the correlation matrix for the column vectors in a

matrix. The test method analyzes, reports and plots the actual response versus the predicted response.

4.1.1 Fit

The related Fit class provides a common framework for computing Quality of Fit (QoF) measures. The

dataset for many models comes in the form of an m-by-n data matrix X and an m response vector y. After

the parameters b (an n vector) have been fit/estimated, the error vector ε may be calculated. The basic

QoF measures involve taking either `1 (Manhattan) or `2 (Euclidean) norms of the error vector as indicated

in Table 4.1.
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Table 4.1: Quality of Fit

error/residual absolute `1 norm squared `2 norm

sum sum of absolute errors sae = ||ε||1 sum of squared errors sse = ||ε||22
mean mean absolute error mae0 = sae/m mean squared error mse0 = sse/m

unbiased mean mean absolute error mae = sae/df mean squared error mse = sse/df

Typically, if a model has m instances/rows in the dataset and n parameters to fit, the error vector will live

in an m− n dimensional space (ignoring issues related to the rank the data matrix). Note, if n = m, there

may be a unique solution for the parameter vector b, in which case ε = 0, i.e., the error vector lives in

a 0-dimensional space. The degrees of freedom (for error) is the dimensionality of the space that the error

vector lives in, namely, df = m− n.

Fit Class

Class Methods:

@param y the values in the m-dimensional response vector

@param n the number of parameters (b.dim)

@param df the degrees of freedom (df._1, df._2) for (model/regression, error)

class Fit (y: VectoD, n: Int, private var df: PairD = (0.0, 0.0))

extends QoF with Error

def resetDF (df_update: PairD)

def mse_ : Double = mse

def diagnose (e: VectoD, yy: VectoD, yp: VectoD, w: VectoD = null, ym_ : Double = noDouble)

def ll (ms: Double = mse0, s2: Double = sig2e): Double = m * (log (_2pi) + log (s2) + ms / s2)

def fit: VectoD = VectorD (rSq, rBarSq, sst, sse, mse0, rmse, mae,

df._1, df._2, fStat, aic, bic, smape)

def fitLabel: Seq [String] = Fit.fitLabel

def help: String = Fit.help

def summary (b: VectoD, stdErr: VectoD, vf: VectoD, show: Boolean = false): String =

The Fit class as well as other similiar classes extend the basic QoF trait.

QoF Trait

The QoF trait defines methods to determine basic Quality of Fit (QoF) measures.

Class Methods:
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trait QoF

def diagnose (e: VectoD, yy: VectoD, yp: VectoD, w: VectoD = null, ym: Double = noDouble)

def fit: VectoD

def fitLabel: Seq [String]

def help: String

def f_ (z: Double): String = "%.5f".format (z)

def fitMap: Map [String, String] =

For modeling, a user chooses one the of classes (directly or indirectly) extending the trait Predictor

(e.g., Regression) to instantiate an object. Next the train method would be typically called, followed

by the eval method, which computes the residual/error vector and calls the diagnose method. Then the

fitMap method would be called to return quality of fit statistics computed by the diagnose method. The

quality of fit measures compute by the diagnose method in the Fit class are shown below.

@param e the m-dimensional error/residual vector (yy - yp)

@param yy the actual response/output vector to use (test/full)

@param yp the predicted response/output vector (test/full)

@param w the weights on the instances (defaults to null)

@param ym_ the mean of the actual response/output vector to use (training/full)

def diagnose (e: VectoD, yy: VectoD, yp: VectoD, w: VectoD = null, ym_ : Double = noDouble)

{

m = yy.dim // size of response vector (test/full)

if (m < 1) flaw ("diagnose", s"no responses to evaluate m = $m")

if (e.dim != m) flaw ("diagnose", s"e.dim = ${e.dim} != yy.dim = $m")

if (yp.dim != m) flaw ("diagnose", s"yp.dim = ${yp.dim} != yy.dim = $m")

val ln_m = log (m) // natural log of m (ln(m))

val mu = yy.mean // mean of yy (may be zero)

val ym = if (ym_ == noDouble) { if (DEBUG) println ("diagnose: test mean"); mu }

else { if (DEBUG) println ("diagnose: train mean"); ym_ }

sse = e.normSq // sum of squares for error

if (w == null) {

sst = (yy - ym).normSq // sum of squares total (ssr + sse)

ssr = sst - sse // sum of squares regression/model

} else {

ssr = (w * (yp - (w * yp / w.sum).sum)~^2).sum // regression sum of squares

sst = ssr + sse

} // if

mse0 = sse / m // raw/MLE mean squared error

rmse = sqrt (mse0) // root mean squared error (RMSE)

// nrmse = rmse / mu // normalized RMSE
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mae = e.norm1 / m // mean absolute error

rSq = ssr / sst // coefficient of determination

if (df._1 <= 0 || df._2 <= 0) flaw ("diagnose", s"degrees of freedom df = $df <= 0")

mse = sse / df._2 // mean of squares for error

msr = ssr / df._1 // mean of squares for regression/model

rse = sqrt (mse) // residual standard error

rBarSq = 1 - (1-rSq) * r_df // adjusted R-squared

fStat = msr / mse // F statistic (quality of fit)

p_fS = 1.0 - fisherCDF (fStat, df._1.toInt, df._2.toInt) // p-value for fStat

if (p_fS.isNaN) p_fS = 0.0 // NaN => check error from ’fisherCDF’

if (sig2e == -1.0) sig2e = e.pvariance

aic = ll() + 2 * (df._1 + 1) // Akaike Information Criterion

bic = aic + (df._1 + 1) * (ln_m - 2) // Bayesian Information Criterion

smape = (e.abs / (yy.abs + yp.abs)).sum / m // symmetric mean abs. percentage error / 100

// nmae = mae / mu // normalized MAE (MAD/Mean Ratio)

} // diagnose

Note, ˜^ is the exponentiation operator provided in ScalaTion, where the first character is ˜ to give the

operator higher precedence than multiplication (*).

The sum of squares total (sst) measures the variability of the response y,

sst = ||y − µy||2 = y · y −mµ2
y = y · y − 1

m

[∑
yi
]2

(4.4)

while the sum of squares regression (ssr = sst− sse) measures the variability captured by the model, so the

coefficient of determination measures the fraction of the variability captured by the model.

R2 =
ssr

sst
≤ 1 (4.5)

Values for R2 would be nonnegative, unless the proposed model is so bad (worse than the Null Model that

simply predicts the mean) that the proposed model actually adds variability.

4.1.2 PredictorMat

Many modeling techniques utilize several predictor/input variables to predict a value for a response/output

variable, e.g., given values for [x0, x1, x2] predict a value for y. The datasets fed into such modeling techniques

will collect multiple instances of the predictor variables into a matrix x and multiple instances of the response

variable into a vector y. The Predictor-Matrix (or PredictorMat) abstract class takes datasets of this form.

Also, using an apply method in PredictorMat’s companion object both x and y may be passed together in

a combined data matrix xy. As the Predictor trait and the Fit class are used to together in most models,

the PredictorMat abstract class merges them.

PredictorMat Abstract Class

Class Methods:
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@param x the data/input m-by-n matrix

(augment with a first column of ones to include intercept in model)

@param y the response/output m-vector

@param fname the feature/variable names

@param hparam the hyper-parameters for the model

abstract class PredictorMat (protected val x: MatriD, protected val y: VectoD,

protected var fname: Strings, hparam: HyperParameter)

extends Fit (y, x.dim2, (x.dim2 - 1, x.dim1 - x.dim2)) with Predictor

// if not using an intercept df = (x.dim2, x.dim1-x.dim2)

// correct by calling ’resetDF’ method from ‘Fit‘

def getX: MatriD = x

def getY: VectoD = y

def train (x_r: MatriD = x, y_r: VectoD = y): PredictorMat

def train2 (x_r: MatriD = x, y_r: VectoD = y): PredictorMat =

def eval (x_e: MatriD = x, y_e: VectoD = y): PredictorMat =

def eval (ym: Double, y_e: VectoD, yp: VectoD): PredictorMat = ???

def analyze (x_r: MatriD = x, y_r: VectoD = y,

def hparameter: HyperParameter = hparam

def parameter: VectoD = b

def report: String =

def summary: String =

def residual: VectoD = e

def predict (z: VectoD): Double = b dot z

def predict (z: MatriD = x): VectoD = VectorD (for (i <- z.range1) yield predict (z(i)))

def buildModel (x_cols: MatriD): PredictorMat

def forwardSel (cols: Set [Int], index_q: Int = index_rSqBar): (Int, PredictorMat) =

def forwardSelAll (index_q: Int = index_rSqBar, cross: Boolean = true): (Set [Int], MatriD) =

def backwardElim (cols: Set [Int], index_q: Int = index_rSqBar, first: Int = 1): (Int, PredictorMat) =

def backwardElimAll (index_q: Int = index_rSqBar, first: Int = 1, cross: Boolean = true):

(Set [Int], MatriD) =

override def corrMatrix (xx: MatriD = x): MatriD = corr (x.asInstanceOf [MatrixD])

def vif (skip: Int = 1): VectoD =

def crossValidate (k: Int = 10, rando: Boolean = true): Array [Statistic] =

A brief discription of all these methods follows:

1. The getX method returns the actual data/input matrix used by the model. Some complex models

expanded the columns in an initial data matrix to add for example quadratic or cross terms.

2. The getY method returns the actual response/output vector used by the model. Some complex models

transform the initial response vector.

3. The train method takes the dataset passed into the model (either the full dataset or a training dataset)

and optimizes the model parameters b.
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4. The train2 method takes the dataset passed into the model (either the full dataset or a training

dataset) and optimizes the model parameters b. It also optimizes the hyper-parameters.

5. The eval method evaluates the Quality of Fit (QoF) either on the full dataset or a designated test

dataset that is passed into the eval method.

6. The parameter method returns the estimated parameters for the model.

7. The hparameter method returns the hyper-parameters for the model. Many simple models have none,

but more sophisticated modeling techniques such as RidgeRegression and LassoRegression have

them (e.g., a shrinkage hyper-parameter).

8. The report method return a basic report on the model’s hyper-parameters, parameters and overall

quality of fit.

9. The summary method return a statistical summary for each of the model parameters/coefficients in-

cluding t and p values for the variable/parameter, where low values for p indicate a strong contribution

of the variable/parameter to the model.

10. The residual method returns the difference between the actual and predicted response vectors. The

residual indicates what the model has left to explain/account for (e.g., an ideal model will only leave

the noise in the data unaccounted for).

11. The two predict methods use the paramater vector that results from training to predict the re-

sponse/output for a new instance/input. One version takes a single instance in the form of vector,

while the other overloaded method takes multiple instances in the form of a matrix.

12. The buildModel method build a sub-model that is restricted to given columns of the data matrix.

13. The forwardSel method is used for forward selection of variables/features for inclusion into the model.

At each step the variable that increases the predictive power of the model the most is selected. This

method is called repeatedly in forwardSelAll to find “best” combination of features. Not guaranteed

to find the optimal combination.

14. The bakwardElim method is used for backward elimination of variables/features from the model. At

each step the variable that contributes the least to the predictor power of the model is eliminated. This

method is called repeatedly in bakwardElimAll to find “best” combination of features. Not guaranteed

to find the optimal combination.

15. The corrMatrix method returns the correlation matrix for the data/input matrix. High correlation

between column vectors in the matrix may indicate collinearity.

16. The vif method returns the Variance Inflation Factors (VIFs) for each of the columns in the data/input

matrix. High VIF scores may indicate multi-collinearity.

17. The crossValidate method implements k-fold cross-validation, where a dataset is divided into a

training dataset and a test dataset. The training dataset is used by the train method, while the test

dataset is used by the eval method. This is repeated k times.
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4.2 Null Model

The NullModel class implements the simplest type of predictive modeling technique. If all else fails it may

be reasonable to simply guess that y will take on its expected value or mean.

y = E [y] + ε

This could happen if the predictors x are not relevant, not collected in a useful range or the relationship is

too complex for the modeling techniques you have applied.

4.2.1 Model Equation

Ignoring the predictor variables x gives the following simple model equation.

y = b0 + ε (4.6)

It is just a constant term plus the error/residual term.

4.2.2 Training

The training dataset in this case case only consists of a response vector y. The optimal solution for the

parameter vector b is simple to compute. It can be shown that (see exercises) the optimal value for the

parameter is the mean of the response vector.

b0 = µy (4.7)

In ScalaTion this requires just one line of code inside the train method.

def train (x_null: MatriD, y_r: VectoD): NullModel =

{

b = VectorD (y_r.mean) // parameter vector [b0]

this

} // train

After values for the model parameters are determined, it it important to assess the Quality of Fit (QoF).

The eval method will compute the residual/error vector ε and then call the diagnose method.

def eval (x_null: MatriD, y_e: VectoD): NullModel =

{

val yp = VectorD.fill (y_e.dim)(b(0)) // y predicted for (test/full)

e = y_e - yp // compute residual/error vector e

diagnose (e, y_e, yp) // compute diagnostics

} // eval

The coefficient of determination R2 for the null regression model is always 0, i.e., none of variance in the

random variable y is explained by the model. A more sophisticated model should only be used if it is better

than the null model, that is when its R2 is strictly greater than zero. Also, a model can have a negative R2

if its predictions are worse than guessing the mean.

Finally, the predict method is simply.

def predict (z: VectoD): Double = b(0)
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NullModel Class

Class Methods:

@param y the response/output vector

class NullModel (y: VectoD)

extends Fit (y, 1, (1, y.dim)) with Predictor with NoFeatureSelection

def getX: MatriD = null

def getY: VectoD = y

def train (x_null: MatriD, y_r: VectoD): NullModel =

def eval (x_null: MatriD, y_e: VectoD): NullModel =

def analyze (x_r: MatriD = null, y_r: VectoD = y,

def hparameter: HyperParameter = null

def parameter: VectoD = b

def report: String =

def residual: VectoD = e

def predict (z: VectoD): Double = b(0)

def predict (z: MatriD = null): VectoD = VectorD.fill (y.dim)(b(0))

4.2.3 Exercises

1. Determine the value for the parameter b0 that minmizes the sum of squared errors sse = ε · ε.

2. Let the response vector y be

val y = VectorD (1, 3, 3, 4)

and execute the NullModel.

For context, assume the corresponding predictor vector y is

val x = VectorD (1, 2, 3, 4)

Draw an xy plot of the data points. Give the value for the parameter vector b. Show the error distance

for each point in the plot. Compare the sum of squared errors sse with the sum of squares total sst.

What is the value for the coefficient of determination R2?

3. Using ScalaTion, analyze the NullModel for the following response vector y.

val y = VectorD (2.0, 3.0, 5.0, 4.0, 6.0) // response vector y

println (s"y = $y")

val rg = new NullModel (y) // create a NullModel

rg.analyze () // train on data and evaluate
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println (rg.report) // parameter values and QoF

val z = VectorD (5.0) // predict y for one point

val yp = rg.predict (z) // yp (y-predicted or y-hat)

println (s"predict ($z) = $yp")

4. Execute the NullModel on the Auto MPG dataset. See scalation.analytics.Auto MPG Regression.

What is the quality of the fit (e.g., R2 or rSq)? Is this value expected? Is is possible for a model to

perform worse than this?
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4.3 Simpler Regression

The SimplerRegression class supports simpler linear regression. In this case, the predictor vector x consists

of a single variable x0, i.e., x = [x0] and there is only a single parameter that is the coefficient for x0 in the

model.

4.3.1 Model Equation

The goal is to fit the parameter vector b = [b0] in the following model/regression equation,

y = b0x0 + ε (4.8)

where ε represents the residuals/errors (the part not explained by the model).

4.3.2 Training

A dateset may be collected for providing an estimate for parameter b0. Given m data points, stored in an

m-dimensional vector x0 and m response values, stored in an m-dimensional vector y, we may obtain the

following vector equation.

y = b0x0 + ε (4.9)

One way to find a value for parameter b0 is to minimize the norm of residual/error vector ε.

minb0‖ε‖

Since ε = y − b0x0, we may solve the following optimization problem:

minb0‖y − b0x0‖

This is equivalent to minimizing the dot product (‖ε‖2 = ε · ε = sse)

(y − b0x0) · (y − b0x0)

4.3.3 Optimization - Derviative

A function can be optimized using Calculus by taking the first derivative and setting it equal to zero. If the

second derivative is positive (negative) it will be minimal (maximal). Taking the derivative w.r.t. b0,
d

db0
,

using the derivative product rule (for dot products)

(f · g)′ = f ′ · g + f · g′ (4.10)

and setting it equal to zero yields the following equation.

d sse

db0
= − 2x0 · (y − b0x0) = 0

Therefore, the optimal value for the parameter b0 is

b0 =
x0 · y
x0 · x0

(4.11)
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4.3.4 Example Calculation

Consider the following data points {(1, 1), (2, 3), (3, 3), (3, 4)} and solve for the parameter (slope) b0.

b0 =
[1, 2, 3, 4] · [1, 3, 3, 4]

[1, 2, 3, 4] · [1, 2, 3, 4]
=

32

30
=

16

15

Using this optimal value for the parameter b0 =
16

15
, we may obtain predicted values for each of the x-values.

ŷ = ŷ = predict(x0) = b0x0 = [1.067, 2.133, 3.200, 4.267]

Therefore, the error/residual vector is

ε = y − ŷ = [1, 3, 3, 4] − [1.067, 2.133, 3.200, 4.267] = [−0.067, 0.867,−0.2,−0.267].

Note, that this model has no intercept. This makes the solution for the parameter very easy, but may

make the model less accurate. This is remedied in the next section. Since no intercept really means the

intercept is zero, the regression line will go through the origin.

SimplerRegression Class

Class Methods:

@param x the data/input matrix

@param y the response/output vector

@param fname_ the feature/variable names

@param hparam the hyper-parameters (currently has none)

class SimplerRegression (x: MatriD, y: VectoD, fname_ : Strings = null)

hparam: HyperParameter = null

extends PredictorMat (x, y, fname_, hparam) with NoFeatureSelectionMat

def train (x_r: MatriD, y_r: VectoD): SimplerRegression =

override def vif (skip: Int = 1): VectoD = VectorD (1.0) // not a problem for this model

4.3.5 Exercises

1. For x0 = [1, 2, 3, 4] and y = [1, 3, 3, 4], try various values for the parameter b0. Plot the sum of squared

errors (sse) vs. b0.

import scalation.linalgebra.VectorD

import scalation.plot.Plot

object SimplerRegression_exer_1 extends App

{
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val x0 = VectorD (1, 2, 3, 4)

val y = VectorD (1, 3, 3, 4)

val b0 = VectorD.range (0, 50) / 25.0

val sse = new VectorD (b0.dim)

for (i <- b0.range) {

val e = ?

sse(i) = e dot e

} // for

new Plot (b0, sse, lines = true)

} // SimplerRegression_exer_1 object

Where do you think the minimum occurs?

Note, to run your code you should make a separate project directory. See https://alvinalexander.

com/scala/how-to-create-sbt-project-directory-structure-scala for the directory structure.

Copy the scalation mathstat jar file scalation mathstat 2.12-1.6.jar into your lib directory.

Create a file called SimplerRegression exer 1.scala in the src/main/scala directory. In the

project’s base ditrectory, type sbt. Within sbt type compile and then run.

2. From the X matrix and y vector, plot the set of data points {(xi1, yi) | 0 ≤ i < m} and draw the line

that is nearest to these points. What is the slope of this line. Pass the X matrix and y vector as

arguments to the SimplerRegression class to obtain the b = [b0] vector.

// 4 data points: x0

val x = new MatrixD ((4, 1), 1.0, // x 4-by-1 matrix

2.0,

3.0,

4.0)

val y = VectorD (1.0, 3.0, 3.0, 4.0) // y vector

val rg = new SimplerRegression (x, y) // create a SimplerRegression

rg.analyze () // train and evaluate

println (rg.report)

val yp = rg.predict ()

new Plot (x.col(0), y, yp, lines = true) // black for y and red for yp

An alternative to using the above constructor new SimplerRegression is to use a factory function

SimplerRegression. Substitute in the following lines of code to do this.

val x = VectorD (1, 2, 3, 4)

val rg = SimplerRegression (x, y, drp._1, drp._2)

new Plot (x, y, yp, lines = true)

Note, drp stands for default remaining parameters, giving null values for fname and hparam.

val drp = (null, null)
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3. Redo the last exercise using a spreadsheet by making columns for each vector: x0, y, ŷ, ε, and ε2. Sum

the last column to obtain the sum of squared errors sse. The sum of squares total sst is the same as

the result for the NullModel see the Exercise 4.2.1:1. Finally, compute the coefficient of determination

R2.

R2 = 1 − sse

sst

4. From the X matrix and y vector, plot the set of data points {(xi1, yi) | 0 ≤ i < m} and draw the line

that is nearest to these points and intersects the origin [0, 0]. What is the slope of this line? Pass the

X matrix and y vector as arguments to the SimplerRegression class to obtain the b = [b0] vector.

// 5 data points: x0

val x = new MatrixD ((5, 1), 0.0, // x 5-by-1 matrix

1.0,

2.0,

3.0,

4.0)

val y = VectorD (2.0, 3.0, 5.0, 4.0, 6.0) // y vector

val rg = new SimplerRegression (x, y) // create a SimplerRegression

rg.analyze () // train and evaluate

println (rg.report)

val z = VectorD (5.0) // predict y for one point

val yp = rg.predict (z) // y-predicted

println (s"predict ($z) = $yp")

5. Execute the SimplerRegression on the Auto MPG dataset. See scalation.analytics.ExampleAuto MPG.

What is the quality of the fit (e.g., R2 or rSq)? Is this value expected? What does it say about this

model? Try using different columns for the predictor variable.

6. Compute the second derivative w.r.t. b0,
d2sse

db20
. Under what conditions will it be positive?
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4.4 Simple Regression

The SimpleRegression class supports simple linear regression. In this case, the predictor vector x consists

of the constant one and a single variable x1, i.e., [1, x1], so there are now two parameters b = [b0, b1] in the

model.

4.4.1 Model Equation

The goal is to fit the parameter vector b in the model,regression equation,

y = b · x + ε = [b0, b1] · [1, x1] + ε = b0 + b1x1 + ε (4.12)

where ε represents the residuals (the part not explained by the model).

4.4.2 Training

Given m data points/vectors, stored row-wise in an m-by-2 matrix X and m response values, stored in an

m dimensional vector y, solve the following optimization problem,

minb‖ε‖

Substituting ε = y − Xb yields

minb‖y − Xb‖

min[b0,b1]‖y − [1 x1][ b0b1 ]‖

min[b0,b1]‖y − (b01 + b1x1)‖

This is equivalent to minimizing the dot product (‖ε‖2 = ε · ε = sse)

(y − (b01 + b1x1)) · (y − (b01 + b1x1))

Since x0 is just 1, for simplicity we drop the subscript on x1.

(y − (b01 + b1x)) · (y − (b01 + b1x))

4.4.3 Optimization - Gradient

A function of several variables can be optimized using Vector Calculus by setting its gradient equal to

zero and and solving the resulting system of equations. When the system of equations are linear, matrix

factorization may be used, otherwise techniques from Nonlinear Optimization may be needed.

Taking the gradient ∇ =

[
∂

∂b0
,
∂

∂b1

]
of sse using the derivative product rule and setting it equal to zero

yields two equations.

∇sse(b) =

[
∂sse

∂b0
,
∂sse

∂b1

]
= 0
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Partial Derivative w.r.t. b0

The first equation results from setting
∂

∂b0
of sse to zero.

−21 · (y − (b01 + b1x)) = 0

1 · y − 1 · (b01 + b1x) = 0

b01 · 1 = 1 · y − b11 · x

Since 1 · 1 = m, b0 may be expressed as

b0 =
1 · y − b11 · x

m
(4.13)

Partial Derivative w.r.t. b1

Similarly, the second equation results from setting
∂

∂b1
of sse to zero.

−2x · (y − (b01 + b1x)) = 0

x · y − x · (b01 + b1x) = 0

b01 · x + b1x · x = x · y

Multiplying by both sides by m produces

mb01 · x +mb1x · x = mx · y

Substituting for mb0 = 1 · y − b11 · x yields

[1 · y − b11 · x]1 · x + mb1x · x = mx · y
b1[mx · x− (1 · x)2] = mx · y − (1 · x)(1 · y)

Solving for b1 gives

b1 =
mx · y − (1 · x)(1 · y)

mx · x− (1 · x)2
(4.14)

The b0 parameter gives the intercept, while the b1 parameter gives the slope of the line that best fits the data

points.

4.4.4 Example Calculation

Consider again the problem from the last section where the data points are {(1, 1), (2, 3), (3, 3), (3, 4)} and

solve for the two parameters, (intercept) b0 and (slope) b1.

b1 =
4[1, 2, 3, 4] · [1, 3, 3, 4]− (1 · [1, 2, 3, 4])(1 · [1, 3, 3, 4])

4[1, 2, 3, 4] · [1, 2, 3, 4]− (1 · [1, 2, 3, 4])2
=

128− 110

120− 100
=

18

20
= 0.9

b0 =
1 · [1, 3, 3, 4]− 0.9(1 · [1, 2, 3, 4])

4
=

11− 0.9 ∗ 10

4
= 0.5

77



Concise Formulas for the Parameters

More concise and intuitive formalas for the parameters b0 and b1 may be derived.

• Using the definition for mean from section 2.2.1 for µx and µy, it can be shown that the expression for

b0 shortens to

b0 = µy − b1µx (4.15)

Draw a line through the following two points [0, b0] (the intercept) and [µx, µy] (the center of mass).

How does this line compare to the regression line.

• Now, using the definitions for covariance σx,y and variance σ2
x from section 2.2.1, it can be shown that

the expression for b1 shortens to

b1 =
σx,y
σ2
x

(4.16)

If the slope of the regression line is simply the ratio of the covariance to the variance, what would the

slope be if y = x.

4.4.5 Exploratory Data Analysis

As discussed in Chapter 1, Exploratory Data Analysis (EDA) should be performed after preprocessing the

dataset. Once the response variable y is selected, a null model should be created to see in a plot where the

data points lie compared to the mean. The code below shows how to do this for the AutoMPG dataset.

import ExampleAutoMPG.{t, x, y}

banner ("Plot response y vs. row index t")

val nm = new NullModel (y)

nm.analyze ()

println (nm.report)

val yp = nm.predict ()

new Plot (t, y, yp, "EDA: y and yp (red) vs. t", lines = true)

Next the relationships between the predictor variable xj (the columns in input/data matrix X) should

be compared. If two of the predictor variables are highly correlated, their individual effects on the response

variable y may be indistinguishable. The correlations between the predictor variable, may be seen by

examining the correlation matrix.

banner ("Correlation Matrix for columns of x")

println (nm.corrMatrix (x)

Although Simple Regression may be too simple for many problems/datasets, it should be used in Ex-

ploratory Data Analysis (EDA). A simple regression model should be created for each predictor variable xj .

The data points and the best fitting line should be plotted with y on the verticle axis and xj on the horizonal

axis. The data scientist should look for patterns/tendencies of y versus xj , such as linear, quadratic, etc.

When there is no relationship, the points will appear to be randomly and unformly positioned in the plane.
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for (j <- x.range2) {

banner (s"Plot response y vs. predictor variable x$j")

val xj = x.col(j)

val rg = SimpleRegression (xj, y, drp._1, drp._2)

rg.analyze ()

println (rg.report)

val yp = rg.predict ()

new Plot (xj, y, yp, s"EDA: y and yp (red) vs. x$j", lines = true)

} // for

SimpleRegression Class

Class Methods:

@param x the data/input matrix augmented with a first column of ones

@param y the response/output vector

@param fname_ the feature/variable names

@param hparam the hyper-parameters (currently has none)

class SimpleRegression (x: MatriD, y: VectoD, fname_ : Strings = null,

hparam: HyperParameter = null)

extends PredictorMat (x, y, fname_, hparam) with NoFeatureSelectionMat

def train (x_r: MatriD, y_r: VectoD): SimpleRegression =

override def vif (skip: Int = 1): VectoD = VectorD (1.0) // not a problem for this model

4.4.6 Exercises

1. From the X matrix and y vector, plot the set of data points {(xi1, yi) | 0 ≤ i < m} and draw the line

that is nearest to these points (i.e., that minimize ||ε||). Using the formulas from developed in this

section, what are the intercept and slope [b0, b1] of this line.

Also, pass the X matrix and y vector as arguments to the SimpleRegression class to obtain the b

vector.

// 4 data points: constant x1

val x = new MatrixD ((4, 2), 1, 1, // x 4-by-2 matrix

1, 2,

1, 3,

1, 4)

val y = VectorD (1, 3, 3, 4) // y vector

val rg = new SimpleRegression (x, y) // create a SimpleRegression

rg.analyze () // train and evaluate

println (rg.report)
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2. For more complex models, setting the gradient to zero and solving a system of simultaneous equa-

tion may not work, in which case more general optimzation techniques may be applied. Two simple

optimization techniques are grid search and gradient descent.

For grid search, in a spreadsheet set up a 5-by-5 grid around the optimal point for b, found in the

previous problem. Compute values for sse for each point in the grid. Plot sse versus b0 across the

optimal point. Do the same for b1.

For gradient descent, pick a starting point b0, compute the gradient ∇sse and move −η∇sse from b0

where η is the learning rate. Repeat for a few iterations. What is happening to the value of see.

∇sse = [−21 · (y − (b01 + b1x)),−2x · (y − (b01 + b1x))]

Substituting ε = y − (b01 + b1x), half ∇sse may be written as

[−1 · ε,−x · ε]

3. From the X matrix and y vector, plot the set of data points {(xi1, yi) | 0 ≤ i < m} and draw the line

that is nearest to these points. What are the intercept and slope of this line. Pass the X matrix and

y vector as arguments to the SimpleRegression class to obtain the b vector.

// 5 data points: constant x1

val x = new MatrixD ((5, 2), 1.0, 0.0, // x 5-by-2 matrix

1.0, 1.0,

1.0, 2.0,

1.0, 3.0,

1.0, 4.0)

val y = VectorD (2.0, 3.0, 5.0, 4.0, 6.0) // y vector

val rg = new SimpleRegression (x, y) // create a SimpleRegression

rg.analyze () // train and evaluate

println (rg.report)

val z = VectorD (1.0, 5.0) // predict y for one point

val yp = rg.predict (z) // y-predicted

println (s"predict ($z) = $yp")

4. Execute the SimpleRegression on the Auto MPG dataset. See scalation.analytics.ExampleAuto MPG.

What is the quality of the fit (e.g., R2 or rSq)? Is this value expected? Try using different columns

for the predictor variable.
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4.5 Regression

The Regression class supports multiple linear regression where multiple input variables are used to predict

a value for the response variable. In this case, the predictor vector x is multi-dimensional [1, x1, ...xk], so

the parameter vector b = [b0, b1, . . . , bk] has the same dimension as x.

4.5.1 Model Equation

The goal is to fit the parameter vector b in the model/regression equation,

y = b · x + ε = b0 + b1x1 + ...+ bkxk + ε (4.17)

where ε represents the residuals (the part not explained by the model).

4.5.2 Training

Using several data samples as a training set, the Regression class in ScalaTion can be used to estimate the

parameter vector b. Each sample pairs an x input vector with a y response value. The x vectors are placed

into a data/input matrix X row-by-row with a column of ones as the first column in X. The individual

response values taken together form the response vector y. The matrix-vector product Xb provides an

estimate for the response vector.

y = Xb + ε

The goal is to minimize the distance between y and its estimate ŷ. i.e., minimize the norm of residual/error

vector.

minb‖ε‖

Substituting ε = y − ŷ = y − Xb yields

minb‖y − Xb‖

This is equivalent to minimizing the dot product (‖ε‖2 = ε · ε = sse)

(y − Xb) · (y − Xb)

(y − Xb)t(y − Xb)

4.5.3 Optimization

Taking the gradient ∇sse with respect to the parameter vector b and setting it equal to the zero vector

yields

−2Xt(y − Xb) = 0

−2Xty + 2XtXb = 0
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A more detailed derivation of this equation is given in section 3.4 of “Matrix Calculus: Derivation and Simple

Application” [12]. Dividing the equation by 2 and moving the term involving b to the left side, results in

the Normal Equations.

XtXb = Xty (4.18)

Note: equivalent to minimizing the distance between y and Xb is minimizing the sum of the squared

residuals/errors (Least Squares method).

ScalaTion provides five techniques for solving for the parameter vector b based on the Normal Equa-

tions: Matrix Inversion, LU Factorization, Cholesky Factorization, QR Factorization and SVD Factorization.

4.5.4 Matrix Inversion Technique

Starting with the Normal Equations

XtXb = Xty

a simple technique is Matrix Inversion, which involves computing the inverse of XtX and using it to multiply

both sides of the Normal Equations.

b = (XtX)−1Xty (4.19)

where (XtX)−1 is an n-by-n matrix, Xt is an n-by-m matrix and y is an m-vector. The expression involving

the X matrix is referred to as the pseudo-inverse X∼1.

X∼1 = (XtX)−1Xt

Using the pseudo-inverse, the parameter vector b may be solved for as follows:

b = X∼1y

The pseudo-inverse can be computed by first multiplying X by its transpose. Gaussian Elimination can be

used to compute the inverse of this, which can be then multiplied by the transpose of X. In ScalaTion,

the computation for the pseudo-inverse (x pinv) looks similar to the math.

val x_pinv = (x.t * x).inverse * x.t

A more robust approach is

val fac = new Fac_Inv (x.t * x).factor ()

val x_pinv = fac.factors._2 * x.t

For efficiency, the code in Regression does not calculate x pinv, rather is directly solves for the parameters

b.

val b = fac.solve (x.t * y)
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4.5.5 LU Factorization Technique

Lower, Upper Decomposition works like Matrix Inversion, except that is just reduces the matrix to zeroes

below the diagonal, so it tends to be faster and less prone to numerical instability. First the product XtX,

an n-by-n matrix, is factored

XtX = LU

where L is a lower left triangular n-by-n matrix and U is an upper right triangular n-by-n matrix. Then the

normal equations may be rewritten

LUb = Xty

Letting w = Ub allows the problem to solved in two steps. The first is solved by forward substitution to

determine the vector w.

Lw = Xty

Finally, the parameter vector b is determined by backward substitution.

Ub = w

4.5.6 Cholesky Factorization Technique

A faster and slightly more stable technique is to use Cholesky Factorization. Since the product XtX is a

positive definite, symmetric matrix, it may factored using Cholesky Factorization into

XtX = LLt

where L is a lower triangular n-by-n matrix. Then the normal equations may be rewritten

LLtb = Xty

Letting w = Ltb, we may solve for w using forward substitution

Lw = Xty

and then solve for b using backward substitution.

Ltb = w

4.5.7 QR Factorization Technique

A slightly slower, but even more robust technique is to use QR Factorization. Using this technique, the

m-by-n X matrix can be factored directly, which increases the stability of the technique.

X = QR

where Q is an orthogonal m-by-n matrix and R matrix is a right upper triangular n-by-n matrix. Starting

again with the Normal Equations,
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XtXb = Xty

simply substitute QR for X.

(QR)tQRb = (QR)ty

Taking the transpose gives

RtQtQRb = RtQty

and using the fact that QtQ = I, we obtain the following:

RtRb = RtQty

Multiply both sides by (Rt)−1 yields

Rb = Qty

Since R is an upper triangular matrix, the parameter vector b can be determined by backward substitution.

Alternatively, the pseudo-inverse may be computed as follows:

X∼1 = R−1Qt

ScalaTion uses Householder Orthogonalization (alternately Modified Gram-Schmidt Orthogonalization)

to factor X into the product of Q and R.

4.5.8 Singular Value Decomposition Technique

In cases where the rank of the data/input matrix X is not full or its multi-collinearity is high, a useful tech-

nique to solve for the parameters of the model is Singular Value Decomposition (SVD). Based on the deriva-

tion given in http://www.ime.unicamp.br/~marianar/MI602/material%20extra/svd-regression-analysis.

pdf, we start with the equation estimating y as the product of the data matrix X and the parameter vector

b.

y = Xb

We then perform a singular value decomposition on the m-by-n matrix X

X = UΣV t

where in the full-rank case, U is an m-by-n orthogonal matrix, Σ is an n-by-n diagonal matrix of singular

values, and V t is an n-by-n orthogonal matrix The r = rank(A) equals the number of nonzero singular

values in Σ, so in general, U is m-by-r, Σ is r-by-r, and V t is r-by-n. The singular values are the square

roots of the nonzero eigenvalues of XtX. Substituting for X yields

y = UΣV tb

Defining d = ΣV tb, we may write

y = Ud
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This can be viewed as a estimating equation where X is replaced with U and b is replaced with d. Conse-

quently, a least squares solution for the alternate parameter vector d is given by

d = (U tU)−1U ty

Since U tU = I, this reduces to

d = U ty

If rank(A) = n (full-rank), then the conventional parameters b may be obtained as follows:

b = V Σ−1d

where Σ−1 is a diagonal matrix where elements on the main diagonal are the reciprocals of the singular

values.

4.5.9 Use of Factorization in Regression

By default, ScalaTion uses QR Factorization to compute the pseudo-inverse X∼1. The other techniques

may be selected by using the third argument (technique) in the constructor, setting it to Cholesky, SVD, LU

or Inverse. For more information see http://see.stanford.edu/materials/lsoeldsee263/05-ls.pdf.

object RegTechnique extends Enumeration

{

type RegTechnique = Value

val QR, Cholesky, SVD, LU, Inverse = Value

val techniques = Array (QR, Cholesky, SVD, LU, Inverse)

} // RegTechnique

import RegTechnique._

Based on the selected technique, the appropriate type of matrix factorization is performed. The first part of

the code below constructs and returns a factorization object.

private def solver (xx: MatriD): Factorization =

{

technique match { // select the factorization technique

case QR => new Fac_QR (xx, false) // QR Factorization

case Cholesky => new Fac_Cholesky (xx.t * xx) // Cholesky Factorization

case SVD => new SVD (xx) // Singular Value Decomposition

case LU => new Fac_LU (xx.t * xx) // LU Factorization

case _ => new Fac_Inv (xx.t * xx) // Inverse Factorization

} // match

} // solver

The train method below computes parameter/coefficient vector b by calling the solve method provided

by the factorization classes.
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def train (x_r: MatriD = x, y_r: VectoD = y): Regression =

{

val fac = solver (x_r) // create selected factorization technique

fac.factor () // factor the matrix, either X or X.t * X

b = technique match { // solve for parameter/coefficient vector b

case QR => fac.solve (y_r) // R * b = Q.t * y

case Cholesky => fac.solve (x_r.t * y_r) // L * L.t * b = X.t * y

case SVD => fac.solve (y_r) // b = V * ^-1 * U.t * y

case LU => fac.solve (x_r.t * y_r) // b = (X.t * X) \ X.t * y

case _ => fac.solve (x_r.t * y_r) // b = (X.t * X)^-1 * X.t * y

} // match

if (b(0).isNaN) flaw ("train", s"parameter b = $b")

if (DEBUG) (s"train: parameter b = $b")

this

} // train

After training, the eval method overridden for efficiency from PredictorMat does two things: First, the

residual/error vector ε is computed. Second, several quality of fit measures are computed by calling the

diagnose method.

override def eval (x_e: MatriD = x, y_e: VectoD = y): Regression =

{

val yp = x_e * b // y predicted for x_e (test/full)

e = y_e - yp // compute residual/error vector e

diagnose (e, y_e, yp) // compute diagnostics

this

} // eval

See Exercise 2 to see how to train and eval a Regression model.

4.5.10 Model Assessment

The quality of fit measures includes the coefficient of determination R2 as well as several others. Given m

instances (data points) and n parameters in the regression model, the degrees of freedom captured by the

regression model is dfr and left for error is df .

dfr = n− 1 = k

df = m− n

If the model is without an intercept, dfr = n. The ratio of total degrees of freedom to degrees of freedom

for error is

rdf =
dfr + df

df

SimplerRegression is a one extreme of model complexity, where df = m−1 and dfr = 1, so rdf = m/(m−1)

is close to one. For a more complicated model, say with n = m/2, rdf will be close to 2. This ratio can be

used to adjust the Coefficient of Determination R2 to reduce it with increasing number of parameters. This

is called the Adjusted Coefficient of Determination R̂2
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R̄2 = 1− rdf (1−R2)

Dividing sse and ssr by their respective degrees of freedom gives the mean square error and regression,

respectively

mse = sse / df

msr = ssr / dfr

The mean square error mse follows a Chi-squared distribution with df degrees of freedom, while the mean

square regression msr follows a Chi-squared distribution with dfr degrees of freedom. Consequently, the

ratio msr
mse follows an F -distribution with (dfr, df) degrees of freedom. If this number exceeds the critical

value, one can claim that the parameter vector b is not zero, implying the model is useful. More general

quality of fit measures useful for comparing models are the Akaike Information Criterion (AIC) and Bayesian

Information Criterion (BIC).

In ScalaTion the several Quality of Fit (QoF) measures are computed by the diagnose method in the

Fit class, see the section 4.1.

def diagnose (e: VectoD, yy: VectoD, yp : VectoD = null, w: VectoD = null)

4.5.11 Model Validation

Data are needed to two purposes: First, the characteristics or patterns of the data need to be investigated

to select an appropriate modeling technique, features for a model and finally to estimate the parameters

and probabilities used by the model. Data Scientists assisted by tools do the first part of this process, while

the latter part is called training. Hence the train method is part of all modeling techniques provided by

ScalaTion. Second, data are needed to test the quality of the trained model.

One approach would be to train the model using all the available data. This makes sense, since the more

data used for training, the better the model. In this case, the testing data would need to be same as the

training leading to whole dataset evaluation. Now the difficult issue is how to guard against over-fitting.

With enough flexibility and parameters to fit, modeling techniques can push quality measures like R2 to

perfection (R2 = 1) by fitting the noise in the data. Doing so tends to make a model worse in practice

than a simple model that just captures the signal. That is where quality measures like R̄2 come into play,

but computations of R̄2 require determination of degrees of freedom (df), which may be difficult for some

modeling techniques. Furthermore, the amount of penalty introduced by such quality measures is somewhat

arbitrary.

Would not it be better to measure quality in way in which models fitting noise are downgraded because

they perform more poorly on data they have not seen? Is it really a test, if the model has already seen

the data? The answers to these questions are obvious, but the solution of the underlying problem is a bit

tricky. The first thought would be to divide a dataset in half, but then only half of the data are available

for training. Also, picking a different half may result in substantially different quality measures.

This leads to two guiding principles: First, the majority of the data should be used for training. Second,

multiple testing should be done. In general, conducting real-world tests of a model can be difficult. There

are, however, strategies that attempt to approximate such testing. Two simple and commonly used strategies

are the following: Leave-One-Out and Cross-Validation. In both cases, a dataset is divided into a training

dataset and a testing dataset.
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Leave-One-Out

When fitting the parameters b the more data available in the training set, in all likelihood, the better the

fit. The Leave-One-Out strategy takes this to the extreme, by splitting the dataset into a training set of

size m − 1 and test set of size 1 (e.g., row t in data matrix X). From this, a test error can be computed

yt − b · xt. This can be repeated by iteratively letting t range from the first to the last row of data matrix

X. For certain predictive analytics techniques such as Multiple Linear Regression, there are efficient ways

to compute the test sse based on the leverage each point in the training set has [13].

k-Fold Cross-Validation

A more generally applicable strategy is called cross-validation, where a dataset is divided into k test datasets.

For each test dataset, the corresponding training dataset is all the instances not chosen for that test dataset.

A simple way to do this is to let the first test dataset be first m/k rows of matrix X, the second be the

second m/k rows, etc.

val tsize = m / k // test dataset size

for (l <- 0 until k) {

x_e = x.slice (l * tsize, ((l+1) * tsize) // l-th test dataset

x_r = x.sliceEx (l * tsize, ((l+1) * tsize)) // l-th training dataset

} // for

The model is trained k times using each of the training datasets. The corresponding test dataset is then

used to estimate the test sse (or other quality measure such as mse). From each of these samples, a mean,

standard deviation and confidence interval may be computed for the test sse. Due to patterns that may

exist in the dataset, it is more robust to randomly select each of the test datasets.

Typically, training QoF measures such as R2 will be better than testing QoF measures such as R2
cv.

Adjusted measures such as R̄2 are intending to more closely follow R2
cv than R2.

4.5.12 Collinearity

Consider the matrix-vector equation used for estimating the parameters b via the minimization of ||ε||.

y = Xb + ε

The parameter/coefficient vector b = [b0, b1, . . . , bk] may be viewed as weights on the column vectors in the

data/predictor matrix X.

y = b01 + b1x 1 + . . . + bkx k + ε

A question arises when two of these column vectors are nearly the same. They will affect and may obfuscate

each others’ parameter values.

First, we will examine ways of detecting such problems and then give some remedies. A simple check is to

compute the correlation matrix for the column vectors in matrix X. High (positive or negative) correlation

indicates collinearity.
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Example Problem

Consider the following data/input matrix X and response vector y. This is the same example used for

SimpleRegression in Exercise 2 with new variable x2 added (i.e., y = b0 + b1x1 + b2x2 + ε).

val x = new MatrixD ((4, 3), 1, 1, 1,

1, 2, 2,

1, 3, 3,

1, 4, -1)

val y = VectorD (1, 3, 3, 4)

Try changing the value of element x32 from 1 to 4 by .5 and observe what happens to the correlation matrix.

What effect do these changes have on the parameter values b0, b1, and b2?

println (s"corr (x) = ${corr (x)}")

The corr function is provided by the scalation.stat.StatVector object. For this function, if either column

vector has zero variance, when the column vectors are the same, it returns 1.0, othersise -0.0 (indicating

undefined).

Multi-Collinearity

Even if no particular entry in the correlation matrix is high, a column in the matrix may still be nearly

a linear combination of other columns. This is the problem of multi-collinearity. This can be checked by

computing the Variance Inflation Factor (VIF) function (or vif in ScalaTion). For a particular parameter

bj for the variable/predictor xj , the function is evaluated as follows:

vif(bj) =
1

1−R2(xj)
(4.20)

where R2(xj) is R2 for the regression of variable xj onto rest of the predictors. It measures how well the

variable xj (or its vector x j) can be predicted by all xl for l 6= j. Values above 10 may be considered

problematic. In particular, the value for parameter bj may be suspect, since its variance is inflated by

vif(bj).

σ̂2(bj) =
mse

k σ̂2(xj)
· vif(bj) (4.21)

See the exercises for details. Both corr and vif may be tested in ScalaTion using RegressionTest4.

One remedy to reduce collinearity/multi-collinearity is to eliminate the variable with the highest corr/vif

function. Another is to use regularized regression such as RidgeRegression or LassoRegression.

4.5.13 Feature Selection

There may be predictor variables (features) in the model that contribute little in terms of their contributions

to the model’s ability to make predictions. The improvement to R2 may be small and may make R̄2 or other

quality of fit measures worse. An easy way to get a basic understanding is to compute the correlation of each

predictor variable x:j (jth column of matrix X) with the response vector y. A more intuitive way to do this

would be to plot the response vector y versus each predictor variable x:j. See the exercises for an example.
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Ideally, one would like pick a subset of the k variables that would optimize a selected quality measure.

Unfortunately, there are 2k possible subsets to test. Two simple techniques are forward selection and

backward elimination.

Forward Selection

The forewordSel method performs forward selection by adding the most predictive variable to the existing

model, returning the variable to be added and a reference to the new model with the added variable/feature.

@param cols the columns of matrix x currently included in the existing model

@param index_q index of Quality of Fit (QoF) to use for comparing quality

def forwardSel (cols: Set [Int], index_q: Int = index_rSqBar): (Int, PredictorMat) =

Selecting the most predictive variable to add boils down to comparing on the basis of a Quality of Fit (QoF)

measure. The default is the Adjusted Coefficient of Determination R̄2. The optional argument index q

indicates which QoF measure to use (defaults to index rSqBar). To start with a minimal model, set cols =

Set (0) for an intercept-only model. The method will consider every variable/column x.range2 not already

in cols and pick the best one for inclusion.

for (j <- x.range2 if ! (cols contains j)) {

To find the best model, the forwardSel method should be called repeatedly while the quality of fit measure

is sufficiently improving. This process is automated in the forwardSelAll method.

@param index_q index of Quality of Fit (QoF) to use for comparing quality

@param cross whether to include the cross-validation QoF measure

def forwardSelAll (index_q: Int = index_rSqBar, cross: Boolean = true): (Set [Int], MatriD) =

Backward Elimination

The backwardElim method performs backward elimination by removing the least predictive variable from

the existing model, returning the variable to eliminate, the new parameter vector and the new quality of fit.

@param cols the columns of matrix x currently included in the existing model

@param index_q index of Quality of Fit (QoF) to use for comparing quality

@param first first variable to consider for elimination

(default (1) assume intercept x_0 will be in any model)

def backwardElim (cols: Set [Int], index_q: Int = index_rSqBar, first: Int = 1):

(Int, PredictorMat) =

To start with a maximal model, set cols = Set (0, 1, ..., k) for a full model. As with forwardSel the

index q optional argument allows select from among the QoF measures. The last parameter first provides

immunity from elimination for any variable/parameter that is less than first (e.g., to ensure that models

include an intercept b0, set first to one). The method will consider every variable/column from first until

x.dim2 in cols and pick the worst one for elimination.

90



for (j <- first until x.dim2 if cols contains j) {

To find the best model, the backwardElim method should be called repeatedly until the quality of fit measure

sufficiently decreases. This process is automated in the backwardElimAll method.

@param index_q index of Quality of Fit (QoF) to use for comparing quality

@param first first variable to consider for elimination

@param cross whether to include the cross-validation QoF measure

def backwardElimAll (index_q: Int = index_rSqBar, first: Int = 1, cross: Boolean = true):

(Set [Int], MatriD) =

More advanced feature selection techniques include using genetic algorithms to find near optimal subsets

of variables as well as techniques that select variables as part of the parameter estimation process, e.g.,

LassoRegression.

Categorical Variables/Features

For Regression, the variables/features are treated as continuous/ordinal. Some of the variable may be

categorical, where there is no ordering of the values for a categorical variable. In such cases it may be useful

to replace a categorical variable with multiple dummy, binary variables. For details on how to do this, see

the section on ANCOVA.

Regression Class

Class Methods:

@param x the data/input m-by-n matrix

(augment with a first column of ones to include intercept in model)

@param y the response/output m-vector

@param fname_ the feature/variable names

@param hparam the hyper-parameters (currently none)

@param technique the technique used to solve for b in x.t*x*b = x.t*y

class Regression (x: MatriD, y: VectoD, fname_ : Strings = null,

hparam: HyperParameter = null, technique: RegTechnique = QR)

extends PredictorMat (x, y, fname_, hparam)

def train (x_r: MatriD = x, y_r: VectoD = y): Regression =

override def eval (x_e: MatriD = x, y_e: VectoD = y): Regression =

override def predict (z: MatriD = x): VectoD = z * b

def buildModel (x_cols: MatriD): Regression =
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4.5.14 Exercises

1. For Exercise 2 from the last section, compute A = XtX and z = Xty. Now solve the following linear

systems of equations for b.

Ab = z

2. Solving a regression problem in ScalaTion simply involves creating a data/input matrix X and

response/output vector y and then creating a Regression object upon which analyze (i.e., train

and eval) and report methods are called. The Texas Temperature data-set below from http://

www.stat.ufl.edu/~winner/cases/txtemp.ppt is used to illustrate how to use ScalaTion for a

regression problem.

// 16 data points: Constant x1 x2 x3

// Lat Elev Long County

val x = new MatrixD ((16, 4), 1.0, 29.767, 41.0, 95.367, // Harris

1.0, 32.850, 440.0, 96.850, // Dallas

1.0, 26.933, 25.0, 97.800, // Kennedy

1.0, 31.950, 2851.0, 102.183, // Midland

1.0, 34.800, 3840.0, 102.467, // Deaf Smith

1.0, 33.450, 1461.0, 99.633, // Knox

1.0, 28.700, 815.0, 100.483, // Maverick

1.0, 32.450, 2380.0, 100.533, // Nolan

1.0, 31.800, 3918.0, 106.400, // El Paso

1.0, 34.850, 2040.0, 100.217, // Collington

1.0, 30.867, 3000.0, 102.900, // Pecos

1.0, 36.350, 3693.0, 102.083, // Sherman

1.0, 30.300, 597.0, 97.700, // Travis

1.0, 26.900, 315.0, 99.283, // Zapata

1.0, 28.450, 459.0, 99.217, // Lasalle

1.0, 25.900, 19.0, 97.433) // Cameron

val y = VectorD (56.0, 48.0, 60.0, 46.0, 38.0, 46.0, 53.0, 46.0,

44.0, 41.0, 47.0, 36.0, 52.0, 60.0, 56.0, 62.0)

val rg = new Regression (x, y) // create a Regression model

rg.analyze () // train and evaluate

println (reg.report)

More details about the parameters/coefficients including standard error, t-values and p-values are

shown by the summary method.

println (rg.summary)

Finally, a given new data vector z, the predict method may be used to predict its response value.

val z = VectorD (1.0, 30.0, 1000.0, 100.0)

println (s"predict ($z) = ${rg.predict (z)}")
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Feature selection may be carried out by using either forwrardSel or backwardElim.

println ("reduced mod fit = " + rg.backwardElim (cols))

The source code for this example is at

http://www.cs.uga.edu/~jam/scalation_1.6/src/main/scala/apps/analytics/TempRegression.

scala .

3. Gradient descent can be used for Multiple Linear Regression as well. For gradient descent, pick a

starting point b0, compute the gradient ∇sse and move −η∇sse from b0 where η is the learning rate.

Write a Scala program that repeats this for several iterations for the above data. What is happening

to the value of sse.

∇sse = − 2Xt(y −Xb)

Substituting ε = y − Xb, half ∇sse may be written as

−Xtε

Starting with data matrix x, response vector y and parameter vector b, in ScalaTion, the calculations

become

val yp = x * b // y predicted

val e = y - yp // error

val g = x.t * e // - gradient

b += g * eta // update parameter b

val sse = e dot e // sum of squared errors

Unless the dataset is normalized, finding an appropriate learning rate eta may be difficult. See the

MatrixTransform object for details.

4. Consider the relationships between the predictor variables and the response variable in the AutoMPG

dataset. This is a well know dataset that is available at multiple websites including the UCI Machine

Learning Repository http://archive.ics.uci.edu/ml/datasets/Auto+MPG. The response variable

is the miles per gallon (mpg: continuous) while the predictor variables are cylinders: multi-valued

discrete, displacement: continuous, horsepower: continuous, weight: continuous, acceleration:

continuous, model year: multi-valued discrete, origin: multi-valued discrete, and car name: string

(unique for each instance). Since the car name is unique and obviously not causal, this variable is

eliminated, leaving seven predictor variables. First compute the correlations between mpg (vector y)

and the seven predictor variables (each column vector x:j in matrix X).

val correlation = y corr x_j

and then plot mpg versus each of the predictor variables. The source code for this example is at

http://www.cs.uga.edu/~jam/scalation_1.6/src/main/scala/scalation/analytics/ExampleAutoMPG.

scala .
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Alternatively, a .csv file containing the AutoMPG dataset may be read into a relation called auto tab

from which data matrix x and response vector y may be produced. If the dataset has missing values,

they may be replaced using a spreadsheet or using the techniques discusses in the Data Management

and Preprocessing Chapter.

val auto_tab = Relation (BASE_DIR + "auto-mpg.csv", "auto_mpg", null, -1)

val (x, y) = auto_tab.toMatriDD (1 to 6, 0)

println (s"x = $x")

println (s"y = $y"

5. Apply Regression analysis on the AutoMPG dataset. Compare with results of applying the NullModel,

SimplerRegression and SimpleRegression. Try using SimplerRegression and SimpleRegression

with different predictor variables for these models. How does their R2 values compare to the correlation

analysis done in the previous exercise?

6. Examine the collinearity and multi-collinearity of the column vectors in the AutoMPG dataset.

7. For the AutoMPG dataset, repeatedly call the backwardElim method to remove the predictor variable

that contributes the least to the model. Show how the various quality of fit (QoF) measures change as

variables are eliminated. Do the same for the forwardSel method. Using R̄2, select the best models

from the forward and backward approaches. Are they the same?

8. Compare model assessment and model validation. Compute sse, mse and R2 for the full and best

AutoMPG models trained on the entire data set. Compare this with the results of Leave-One-Out,

5-fold Cross-Validation and 10-fold Cross-Validation.

9. The variance of the estimate of parameter bj may be estimated as follows:

σ̂2(bj) =
mse

k σ̂2(xj)
· vif(bj)

Derive this formula. The standard error is the square root of this value. Use the estimate for bj and

its standard error to compute a t-value and p-value for the estimate. Run the AutoMPG model and

explain these values produced by the summary method.

4.5.15 Further Reading

1. Introduction to Linear Regression Analysis, 5th Edition [15]
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4.6 Ridge Regression

The RidgeRegression class supports multiple linear ridge regression. As with Regression, the predictor

variables x are multi-dimensional [x1, . . . , xk], as are the parameters b = [b1, . . . , bk]. Ridge regression adds

a penalty based on the `2 norm of the parameters b to reduce the chance of them taking on large values

that may lead to less robust models. The penalty is not to be included on the intercept parameter b0, as

this would shift predictions in a way that would adversely affect the quality of the model.

4.6.1 Model Equation

Centering of the data allows the intercept to be removed from the model. The combined centering on both

the predictor variables and the response variable takes care of the intercept, so it is not included in the

model. Thus, the goal is to fit the parameter vector b in the model/regression equation,

y = b · x + ε = b1x1 + · · ·+ bkxk + ε (4.22)

where ε represents the residuals (the part not explained by the model).

4.6.2 Training

Center the dataset (X,y) has the following effects: First, when the X matrix is centered, the intercept

b0 = µy. Second, when y is centered, µy becomes zero, implying b0 = 0. To rescale back to the original

reposnse values, µy can be added back during prediction. Therefore, both the data/input matrix X and the

response/output vector y should be centered (zero meaned).

The regularization of the model adds an `2-penalty on the parameters b. The loss/objective function to

minimize is now sse plus the penalty.

fobj = sse + λ ‖b‖2 = ε · ε + λb · b (4.23)

where λ is the shrinkage parameter. A large value for λ will drive the parameters b toward zero, while a

small value can help stabilize the model (e.g., for nearly singular matrices or high multi-collinearity).

fobj = (y −Xb) · (y −Xb) + λb · b

4.6.3 Optimization

Fortunately, the quadratic nature of the penalty function allows it to be combined easily with the quadratic

error terms, so that matrix factorization can still be used for finding optimal values for parameters.

Taking the gradient of fobj with respect to b and setting it equal to zero yields

−2Xt(y − Xb) + 2λb = 0

−Xty + XtXb) + λb = 0

XtXb + λb = Xty

Since λb = λIb where I is the n-by-n identity matrix, we may write

(XtX + λI)b = Xty (4.24)

Matrix factorization may now be used to solve for the parameters b in the modified Normal Equations.
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4.6.4 Centering

Before creating a RidgeRegression model, the X data matrix and the y response vector should be centered.

This is accomplished by subtracting the means (vector of column means for X and a mean value for y).

val mu_x = x.mean // columnwise mean of x

val mu_y = y.mean // mean of y

val x_c = x - mu_x // centered x (columnwise)

val y_c = y - mu_y // centered y

The centered matrix x c and center vector y c are then passed into the RidgeRegression constructor.

val rrg = new RidgeRegression (x_c, y_c)

rrg.analyze ()

println (rrg.report)

Now, when making predictions, the new data vector z needs to be centered by subtracting mu x. Then the

predict method is called, after which the mean of y is added.

val z_c = z - mu_x // center z first

yp = rrg.predict (z_c) + mu_y // predict z_c and add y’s mean

println (s"predict ($z) = $yp")

4.6.5 The λ Hyper-parameter

The value for λ can be user specified (typically a small value) or chosen by a procedure like Generalized

Cross-Validation (GCV).

RidgeRegression Class

Class Methods:

@param x the centered data m-by-n matrix, NOT augmented with a column of 1’s

@param y the centered response m-vector

@param fname_ the feature/variable names

@param hparam the shrinkage hyper-parameter, lambda (0 => OLS) in penalty

@param technique the technique used to solve for b in (x.t*x + lambda*I)*b = x.t*y

class RidgeRegression (x: MatriD, y: VectoD, fname_ : Strings = null,

hparam: HyperParameter = RidgeRegression.hp,

technique: RegTechnique = Cholesky)

extends PredictorMat (x, y, fname_, hparam)

def train (x_r: MatriD, y_r: VectoD): RidgeRegression =

def gcv (xx: MatriD = x, yy: VectoD = y): Double =

def buildModel (x_cols: MatriD): RidgeRegression =
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4.6.6 Exercises

1. Compare the results of RidgeRegression with those of Regression. Examine the parameter vectors,

quality of fit and predictions made.

// 5 data points: x_0 x_1

val x = new MatrixD ((5, 2), 36.0, 66.0, // 5-by-2 matrix

37.0, 68.0,

47.0, 64.0,

32.0, 53.0,

1.0, 101.0)

val y = VectorD (745.0, 895.0, 442.0, 440.0, 1598.0)

val z = VectorD (20.0, 80.0)

// Compute centered (zero mean) versions of x and y, x_c and y_c

// Create a Regression model with an intercept

val ox = VectorD.one (y.dim) +^: x

val rg = new Regression (ox, y)

// Create a RidgeRegression model using the centered data

val rrg = new RidgeRegression (x_c, y_c)

// Predict a value for new input vector z using each model.

2. Based on the last exercise, try increasing the value of the hyper-parameter λ and examine its effect on

the parameter vector b, the quality of fit and predictions made.

import RidgeRegression.hp

println (s"hp = $hp")

val hp2 = hp.updateReturn ("lambda", 1.0)

println (s"hp2 = $hp2")

3. Why is it important to center (zero mean) both the data matrix X and the response vector y? What

is scale invariance and how does it relate to centering the data?
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4.7 Lasso Regression

The LassoRegression class supports multiple linear regression using the Least absolute shrinkage and

selection operator (Lasso) that constrains the values of the b parameters and effectively sets those with low

impact to zero (thereby deselecting such variables/features). Rather than using an `2-penalty (Euclidean

norm) like RidgeRegression, it uses and an `1-penalty (Manhattan norm). In RidgeRegression when bj

approaches zero, b2j becomes very small and has little effect on the penalty. For LassoRegression, the

effect based on |bj | will be larger, so it is more likely to set parameters to zero. See section 6.2.2 in [13]

for a more detailed explantion on how LassoRegression can eliminate a variable/feature by setting its

parameter/coefficient to zero.

4.7.1 Model Equation

As with Regression, the goal is to fit the parameter vector b in the model/regression equation,

y = b · x + ε = b0 + b1x1 + ...+ bkxk + ε (4.25)

where ε represents the residuals (the part not explained by the model).

4.7.2 Training

The regularization of the model adds an `1-penalty on the parameters b. The objective/loss function to

minimize is now sse plus the penalty.

fobj =
1

2
sse + λ ‖b‖1 =

1

2
‖ε‖2 + λ ‖b‖1 (4.26)

where λ is the shrinkage parameter. Substituting ε = y −Xb yields

fobj = 1
2 ‖y −Xb‖2 + λ ‖b‖1

Although similar to the `2 penalty used in Ridge Regression, it may often be more effective. Still, the

`1 penalty for Lasso has a disadvantage that the absolute values in the `1 norm make the objective function

non-differentiable. Therefore the straightforward strategy of setting the gradient equal to zero to develop

appropriate modified Normal Equations that allow the parameters to be determined by matrix factorization

will no longer work. Instead, the objective function needs to be minimized using a search based optimization

algorithm.

4.7.3 Optimization Stategies

Coordinate Descent

Alternative Direction Method of Multipliers

ScalaTion also uses the Alternative Direction Method of Multipliers (ADMM) [4] algorithm to optimize

the b parameter vector. The algorithm for using ADMM for Lasso Regression is outlined in section 6.4 of [4].

We follow their development closely, but change to the notation to that used herein. Optimization problems

in ADMM form separate the objective function into two parts f and g.

98



min f(b) + g(z) subject to b− z = 0

For Lasso Regression, the f function will capture the loss function ( 1
2 sse), while the g function will capture

the `1 regularization, i.e.,

f(b) = 1
2 ‖y −Xb‖2 , g(z) = λ ‖z‖1

Therefore, the iterative step in the ADMM algorithm becomes

b = (XtX + ρI)−1(Xty + ρ(z− u))

z = Sλ/ρ(b + u)

u = u + b− z

where S is the soft thresholding function and u is the Lagrangian vector. See scalation.minima.LassoAdmm

for coding details.

4.7.4 The λ Hyper-parameter

The shrinkage parameter λ can be tuned to control feature selection. The larger the value of λ, the more

features (predictor variables) whose parameters/coefficients will be set to zero.

LassoRegression Class

Class Methods:

@param x the data/input m-by-n matrix

@param y the response/output m-vector

@param fname_ the feature/variable names

@param hparam the shrinkage hyper-parameter, lambda (0 => OLS) in the penalty term

’lambda * b dot b’

class LassoRegression (x: MatriD, y: VectoD, fname_ : Strings = null,

hparam: HyperParameter = LassoRegression.hp)

extends PredictorMat (x, y, fname_, hparam)

def train (x_r: MatriD = x, y_r: VectoD = y): LassoRegression =

def buildModel (x_cols: MatriD): LassoRegression =

4.7.5 Exercises

1. Compare the results of LassoRegression with those of Regression and RidgeRegression. Examine

the parameter vectors, quality of fit and predictions made.
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// 5 data points: one x_0 x_1

val x = new MatrixD ((5, 3), 1.0, 36.0, 66.0, // 5-by-3 matrix

1.0, 37.0, 68.0,

1.0, 47.0, 64.0,

1.0, 32.0, 53.0,

1.0, 1.0, 101.0)

val y = VectorD (745.0, 895.0, 442.0, 440.0, 1598.0)

val z = VectorD (1.0, 20.0, 80.0)

// Create a LassoRegression model

val lrg = new LassoRegression (x, y)

// Predict a value for new input vector z using each model.

2. Based on the last exercise, try increasing the value of the hyper-parameter λ and examine its effect on

the parameter vector b, the quality of fit and predictions made.

import LassoRegression.hp

println (s"hp = $hp")

val hp2 = hp.updateReturn ("lambda", 1.0)

println (s"hp2 = $hp2")

3. Using the above dataset and the AutoMPG dataset, determine the effects of (a) centering the data

(µ = 0), (b) standardizing the data (µ = 0, σ = 1).

import MatrixTransforms._

val x_n = normalize (x, (mu_x, sig_x))

val y_n = y.standardize

4. Compare LassoRegression the with Regression that uses forward selection or backward elimination

for feature selection. What are the advantages and disadvantages of each for feature selection.

5. Compare LassoRegression the with Regression on the AutoMPG dataset. Specifically, compare the

quality of fit measures as well as how well feature selection works.

6. Elastic Nets combine both `2 and `1 penalties to try to combine the best features of both RidgeRegression

and LassoRegression. Elastic Nets naturally includes two shrinkage parameters, λ1 and λ2. Is the

additional complexity worth the benefits?

4.7.6 Further Reading

1. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers

[4]

2. Feature Selection Using LASSO [8]
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4.8 Transformed Regression

The TranRegression class supports transformed multiple linear regression. In this case, the predictor vector

x is multi-dimensional [1, x1, ...xk]. In many cases, the relationship between the response scalar y and the

predictor vector x is not linear. There are many possible functional relationships that could apply, but four

obvious choices are the following:

1. The response grows exponentially versus a linear combination of the predictor variable.

2. The response grows quadratically versus a linear combination of the predictor variable.

3. The response grows as the square root of a linear combination of the predictor variable.

4. The response grows logarithmically versus a linear combination of the predictor variable.

The capability can be easily implemented by introducing a transform function into Regression. The trans-

form function and its inverse are passed into the TranRegression class which extends the Regression class.

The transform and inverse functions for the four cases are as follows:

(log, exp), (sqrt, ^~2), (~^2, sqrt), (exp, log)

4.8.1 Model Equation

The goal then is to fit the parameter vector b in the transformed model/regression equation

tran(y) = b · x + ε = b0 + b1x1 + ... bkxk + ε (4.27)

where ε represents the residuals (the part not explained by the model) and tran is the function (defaults

to log) used to transform the response y. For example, for a log transformation, equation 4.2 becomes the

following:

log(y) = b · x + ε = b0 + b1x1 + ... bkxk + ε

The transformation is done in the implementation of the TranRegression class by transforming y and

passing it to the Regression superclass (multiple linear regression).

Regression (x, y.map (tran), technique)

The inverse transform (itran) is then applied in the predict method.

override def predict (z: VectoD): Double = itran (b dot z)

4.8.2 Example

Imagine a system where the rate of change of the response variable y with the predictor varaible x is

proportional to ts current value y and is y0 when x = 0.

dy

dx
= gy

This differential equation can be solved by direct integration to obtain
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∫
dy

y
=

∫
g dx

As the integral of
1

y
is ln y, integrating both sides gives

ln y = gx+ C

Solving for the contant C, produces

y = y0e
gx

When the growth factor g if positive, the system exhibits exponential growth, while when it is negative, it

exhibits exponential decay. So far we have ignored noise. For previous modeling techniques we have assumed

that noise is additive and typically normally distributed. For phenomena exhibiting exponential growth or

decay, this may nor be the case. When the error is multiplicative, we may collect it into the exponent.

y = y0e
gx+ε

Now applying a log transformation, will yield

log(y) = log(y0) + gx+ ε = b0 + b1x+ ε

An alternative to using TranRegression is to use Exponential Regression ExpRegression, a form of

Generalized Linear Model (see the exercises for a comparison).

4.8.3 Quality of Fit

For a fair comparison with other modeling techniques, the Quality of Fit (QoF) or overall diagnostics are

based on the original response values, as provided by the usual eval method. It may be useful to study the

Quality of Fit for the trantransformed response vector y.map (tran) as well via the eval0 method.

TranRegression Class

Class Methods:

@param x the data/input matrix

@param y the response/output vector

@param fname_ the feature/variable names

@param hparam the hyper-parameters (currently none)

@param tran the transformation function (defaults to log)

@param itran the inverse transformation function to rescale predictions to original y scale

(defaults to exp)

@param technique the technique used to solve for b in x.t*x*b = x.t*y

class TranRegression (x: MatriD, y: VectoD, fname_ : Strings = null,

hparam: HyperParameter = null,
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tran: FunctionS2S = log, itran: FunctionS2S = exp,

technique: RegTechnique = QR)

extends Regression (x, y.map (tran), fname_, hparam, technique)

def eval0 (x_e: MatriD = x, y_e: VectoD = getY): TranRegression =

override def eval (x_e: MatriD = x, y_e: VectoD = y): TranRegression =

override def analyze (x_r: MatriD = x, y_r: VectoD = getY,

x_e: MatriD = x, y_e: VectoD = y): PredictorMat =

override def predict (z: VectoD): Double = itran (b dot z)

override def predict (z: MatriD = x): VectoD = (z * b).map (itran)

Box-Cox transformations (see the last exercise) are provided in the class’ companion object.

4.8.4 Exercises

1. Use the following code to generate a dataset. You will need to import from scalation.math.sq and

scalation.random.

val cap = 30

val rng = 0 until cap

val (m, n) = (cap * cap, 3)

val err = Normal (0, cap)

val x = new MatrixD (m, n)

val y = new VectorD (m)

for (i <- rng; j <- rng) x(cap * i + j) = VectorD (1, i, j)

for (k <- y.range) y(k) = sq (10 + 2 * x(k, 1) + err.gen)

// for (k <- y.range) y(k) = sq (10 + 2 * x(k, 1) + 0.3 * x(k, 2) + err.gen)

val t = VectorD.range (0, y.dim)

Notice that it uses a linear model inside and takes the square for the response variable y. Use

Regression to create a predictive model. Ideally, the model should approximately recapture the

equations used to generate the data. What correspondence do the parameters b have to these equa-

tions? Next, examine the relationship between the response y and predicted response yp, as well as

the residuals (or remaining error) from the model.

val rg = new Regression (x, y)

rg.analyze ()

println (rg.report)

println (rg.summary)

val yp = rg.predict ()

val e = y - yp

new Plot (t, y, yp, "Original Regression y and yp vs. t")

new Plot (t, e, null, "Original e vs. t")
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Are there discernible patterns in the residuals?

2. Transform the response y to a transformed response y2 that is the square root of the former.

val y2 = y.map (sqrt _)

Redo the regression as before, but now using the transformed response y2, i.e., new Regression (x,

y2). Compute and plot the corresponding y2, yp2 and e2 vectors. What do the residuals look like

now? How can predictions be made on the original scale?

3. Now transform yp2 to yp3 in order the match the actual response y, by using the inverse transformation

function sq. Now, compute and plot the corresponding y, yp3 and e3 vectors. How well does yp3 predict

the original response y? Compute the Coefficient of Determination R2. What is the difference between

the residuals e2 and e3? Finally, use PlotM to compare Regression vs. Transformed Regression.

val ys2 = MatrixD (y2, yp2)

val ys3 = MatrixD (y, yp3, yp)

new PlotM (t, ys2.t, null, "Transformed")

new PlotM (t, ys3.t, null, "Tran-back")

4. The TranRegression class provides direct support for making transformations. Compare the quality

of fit resulting from Regression versus TranRegression.

banner ("Regession")

val rg = new Regression (x, y)

rg.analyze ()

println (rg.report)

println (rg.summary)

banner ("TranRegession")

val trg = new TranRegression (x, y, sqrt _, sq _)

trg.analyze ()

println (rg.report)

println (rg.summary)

5. Compare SimpleRegression, TranRegression and ExpRegression on the beer foam dataset www.tf.

uni-kiel.de/matwis/amat/iss/kap_2/articles/beer_article.pdf. The last two are similar, but

TranRegression assumes multiplicative noise, while ExpRegression assumes additive noise, so they

produce different predictions. Plot and compare the three predictions.

val x1 = VectorD (0, 15, 30, 45, 60, 75, 90, 105, 120, 150, 180, 210, 240, 300, 360)

val y = VectorD (14.0, 12.1, 10.9, 10.0, 9.3, 8.6, 8.0, 7.5,

7.0, 6.2, 5.5, 4.5, 3.5, 2.0, 0.9)

val _1 = VectorD.one (x1.dim)

val x = MatrixD (_1, x1)

6. Consider the following family of transformation functions.
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ftran(y) =
yλ − 1

λ

where λ determines the power function on y, e.g., 0.5 for sqrt and 2.0 for sq. What is the inverse

function? Try various Box-Cox transformations (values for lambda) for the above problem.

TranRegression (x, y, lambda)
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4.9 Quadratic Regression

The QuadRegression class extends the Regression class by automatically adding quadratic terms into the

model. It can often be the case that the response variable y will have a nonlinear relationship with one more

of the predictor variable xj . The simplest such nonlinear relationship is a quadratic relationship. Looking

at a plot of y vs. xj , it may be evident that a bending curve will fit the data much better than a straight

line.

The QuadRegression class achieves this simply by expanding the data matrix. From the dataset (initial

data matrix), all columns will have another column added that contains the values of the original column

squared. It is important that the initial data matrix has no intercept. The expansion will add an

intercept column (column of all ones) and the index calculations will be thrown off if the initial data matrix

one.

4.9.1 Model Equation

In two dimensions (2D) where x = [x1, x2], the quadratic model/regression equation is the following:

y = b · x′ + ε = b0 + b1x1 + b2x
2
1 + b4x2 + b5x

2
2 + ε (4.28)

where x′ = [1, x1, x
2
1, x2, x

2
2] and ε represents the residuals (the part not explained by the model). The

number of terms (nt) in the model increases linearly with the dimensionality of the space (n) according to

the following formula:

nt = 2n+ 1 e.g., nt = 5 for n = 2 (4.29)

Each column in the initial data matrix is expanded into two in the expanded data matrix and an intercept

column is added.

The addition of squared columns is performed by functions in the companion object. For example the

function forms will take an unexpanded vector v, the number of variables, and the number of terms for the

expanded form and will make a new vector where the zero-th element is 1.0, the odd elements are original

values and the rest of the even elements are the squared values.

@param v the vector/point (i-th row of x) for creating forms/terms

@param k number of features/predictor variables (not counting intercept) [not used]

@param nt the number of terms

override def forms (v: VectoD, k: Int, nt: Int): VectoD =

{

VectorD (for (j <- 0 until nt) yield

if (j == 0) 1.0 // intercept term

else if (j % 2 == 1) v(j/2) // linear terms

else v((j-1)/2)~^2 // quadratic terms

) // for

} // qForms

The allForms function in the ModelFactory object calls this function for each row of the data matrix X to

create the expanded matrix.
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QuadRegression Class

Class Methods:

@param x_ the initial data/input matrix (before quadratic term expansion)

must not include an intercept column of all ones

@param y the response/output vector

@param fname_ the feature/variable names

@param hparam the hyper-parameters

@param technique the technique used to solve for b in x.t*x*b = x.t*y

class QuadRegression (x_ : MatriD, y: VectoD, fname_ : Strings = null, hparam: HyperParameter = null,

technique: RegTechnique = QR)

extends Regression (QuadRegression.allForms (x_), y, fname_, hparam, technique)

with ExpandableForms

def expand (z: VectoD): VectoD = QuadRegression.forms (z, n0, nt)

def predict_ex (z: VectoD): Double = predict (expand (z))

The next few modeling techniques described in subsequent sections support the development of low-order

multi-dimensional polynomials regression models.

4.9.2 Exercises

1. Perform Quadratic Regression on the ExampleBPressure dataset using the first two columns of its

data matrix x.

import ExampleBPressure.{x01 => x, y}

2. Perform both forward selection and backward elimination to find out which of the terms have the most

impact on predicting the response. Which feature selection approach (forward selection or backward

elimination) finds a model with the highest R̄2?

3. Generate a dataset with data matrix x and response vector y using the following loop where noise =

new Normal (0, 10 * m * m).

for (i <- x.range1) {

x(i, 0) = i

y(i) = i*i + i + noise.gen

} // for

Compare the results of Regression vs. QuadRegression. Compare the Quality of Fit and the param-

eter values. What correspondence do the parameters have with the coefficients used to generate the

data? Plot y vs. x, yp and y vs. t for both Regression and QuadRegression. Also plot the residuals

e vs. x for both. Note, t is the index vector VectorD.range (0, m).
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4. Generate a dataset with data matrix x and response vector y using the following loop where noise =

new Normal (0, 10 * s * s) and grid = 1 to s.

var k = 0

for (i <- grid; j <- grid) {

x(k) = VectorD (i, j)

y(k) = x(k, 0)~^2 + 2 * x(k, 1) + noise.gen

k += 1

} // for

Compare the results of Regression vs. QuadRegression. Try modifying the equation for the response

and see how Quality of Fit changes.
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4.10 Quadratic Regression with Cross-Terms

The QuadXRegression class extends Regression and adds cross-terms in addition to the quadratic-terms

added by QuadRegression.

4.10.1 Model Equation

In two dimensions (2D) where x = [x1, x2], the quadratic cross model/regression equation is the following:

y = b · x′ + ε = b0 + b1x1 + b2x
2
1 + b3x1x2 + b4x2 + b5x

2
2 + ε (4.30)

where x′ = [1, x1, x
2
1, x1x2, x2, x

2
2] and ε represents the residuals (the part not explained by the model). The

number of terms (nt) in the model increases quadratically with the dimensionality of the space (n) according

to the formula for triangular numbers shifted by (n→ n+ 1).

nt =

(
n+ 2

2

)
=

(n+ 2)(n+ 1)

2
e.g., nt = 6 for n = 2 (4.31)

Such models generalize QuadRegression by introducing cross-terms, e.g., x1x2. Adding cross-terms makes

the number of terms increase quadratically rather than linearly with the dimensionality. Consequently,

multi-collinearity problems may be intensified and the need for feature selection, therefore, increases.

The addition of squared and cross-term columns is performed by functions in the companion object. The

function forms will take an unexpanded vector v, the number of variables, and the number of terms for the

expanded form and will make a new expanded vector.

@param v the source vector/point for creating forms/terms

@param k the number of features/predictor variables (not counting intercept)

@param nt the number of forms/terms

override def forms (v: VectoD, k: Int, nt: Int): VectoD =

{

val q = one (1) ++ v // augmented vector: [ 1., v(0), ..., v(k-1) ]

val z = new VectorD (nt) // vector of all forms/terms

var l = 0

for (i <- 0 to k; j <- i to k) { z(l) = q(i) * q(j); l += 1 }

z

} // forms

QuadXRegression Class

Class Methods:

@param x_ the m-by-n data/input matrix (original un-expanded)

@param y the m response/output vector

@param fname_ the feature/variable names

@param hparam the hyper-parameters

@param technique the technique used to solve for b in x.t*x*b = x.t*y
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class QuadXRegression (x_ : MatriD, y: VectoD, fname_ : Strings = null, hparam: HyperParameter = null,

technique: RegTechnique = QR)

extends Regression (QuadXRegression.allForms (x_), y, fname_, hparam, technique)

with ExpandableForms

def expand (z: VectoD): VectoD = QuadXRegression.forms (z, n0, nt)

def predict_ex (z: VectoD): Double = predict (expand (z))

4.10.2 Exercises

1. Perform Quadratic and QuadraticX Regression on the ExampleBPressure dataset using the first two

columns of its data matrix x.

import ExampleBPressure.{x01 => x, y}

2. Perform both forward selection and backward elimination to find out which of the terms have the most

impact on predicting the response. Which feature selection approach (forward selection or backward

elimination) finds a model with the highest R̄2?

3. Generate a dataset with data matrix x and response vector y using the following loop where noise =

new Normal (0, 10 * s * s) and grid = 1 to s.

var k = 0

for (i <- grid; j <- grid) {

x(k) = VectorD (i, j)

y(k) = x(k, 0)~^2 + 2 * x(k, 1) + x(k, 0) * x(k, 1) + noise.gen

k += 1

} // for

Compare the results of Regression, QuadRegression and QuadXRegression.
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4.11 Cubic Regression

The CubicRegression class extends Regression and adds cubic-terms in addition to the quadratic-terms

and cross-terms added by QuadXRegression.

4.11.1 Model Equation

In two dimensions (2D) where x = [x1, x2], the cubic regression equation is the following:

y = b · x′ + ε = b0 + b1x1 + b2x
2
1 + b3x1x2 + b4x2 + b5x

2
2 + b6x

2
1 + b7x

3
2 + ε (4.32)

where x′ = [1, x1, x
2
1, x1x2, x2, x

2
2, x

3
1, x

3
2] and ε represents the residuals (the part not explained by the model).

The number of terms (nt) in the model still increases quadratically with the dimensionality of the space (n)

according to the formula for triangular numbers shifted by (n→ n+ 1) plus n for the cubic terms.

nt =

(
n+ 2

2

)
=

(n+ 2)(n+ 1)

2
+ n e.g., nt = 8 for n = 2 (4.33)

When n = 10, the number of terms and corresponding parameters nt = 76, whereas for Regression,

QuadRegression and QuaXdRegression and order 2, it would 11, 21 and 66, respectively. Issues related

negative degrees of freedom, overfitting and multi-collinearity will need careful attention.

The addition of squared, cross-term and cubic columns is performed by functions in the companion

object. The function forms will take an unexpanded vector v, the number of variables, and the number of

terms for the expanded form and will make a new expanded vector.

@param v the source vector/point for creating forms/terms

@param k the number of features/predictor variables (not counting intercept)

@param nt the number of forms/terms

override def forms (v: VectoD, k: Int, nt: Int): VectoD =

{

val z = new VectorD (k)

for (i <- z.range) z(i) = v(i) ~^3

QuadXRegression.forms (v, k, QuadXRegression.numTerms (k)) ++ z

} // forms

CubicRegression Class

Class Methods:

@param x_ the input vectors/points

@param y the response vector

@param fname_ the feature/variable names

@param hparam the hyper-parameters

@param technique the technique used to solve for b in x.t*x*b = x.t*y

class CubicRegression (x_ : MatriD, y: VectoD, fname_ : Strings = null, hparam: HyperParameter = null,

technique: RegTechnique = QR)
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extends Regression (CubicRegression.allForms (x_), y, fname_, hparam, technique)

with ExpandableForms

def expand (z: VectoD): VectoD = CubicRegression.forms (z, n0, nt)

def predict_ex (z: VectoD): Double = predict (expand (z))
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4.12 Cubic Regression with Cross Terms

The CubicXRegression class extends Regression and adds cubic-cross-terms in addition to the quadratic-

terms, cross-terms and cubic-terms added by CubicRegression.

4.12.1 Model Equation

In two dimensions (2D) where x = [x1, x2], the cubic model/regression equation is the following:

y = b · x′ + ε = b0 + b1x1 + b2x
2
1 + b3x

3
1 + b4x1x2 + b5x

2
1x2 + b6x1x

2
2 + b7x2 + b8x

2
2 + b9x

3
2 + ε (4.34)

where x′ = [1, x1, x
2
1, x

3
1, x1x2, x

2
1x2, x1x

2
2, x2, x

2
2, x

3
1, x

3
2] and ε represents the residuals (the part not explained

by the model). Naturally, the number of terms in the model increases cubically with the dimensionality of

the space (n) according to the formula for tetrahedral numbers shifted by (n→ n+ 1).

nt =

(
n+ 3

3

)
=

(n+ 3)(n+ 2)(n+ 1)

6
e.g., nt = 10 for n = 2 (4.35)

When n = 10, the number of terms and corresponding parameters nt = 286, whereas for Regression,

QuadRegression, QuaXdRegression and CubicRegression and order 2, it would 11, 21, 66 and 76, re-

spectively. Issues related negative degrees of freedom, overfitting and multi-collinearity will need careful

attention.

The addition of squared, cross-term, cubic and cubic-cross-term columns is performed by functions in

the companion object. The function forms will take an unexpanded vector v, the number of variables, and

the number of terms for the expanded form and will make a new expanded vector.

@param v the source vector/point for creating forms/terms

@param k the number of features/predictor variables (not counting intercept)

@param nt the number of forms/terms

override def forms (v: VectoD, k: Int, nt: Int): VectoD =

{

val q = one (1) ++ v // augmented vector: [ 1., v(0), ..., v(k-1) ]

val z = new VectorD (nt) // vector of all forms/terms

var l = 0

for (i <- 0 to k; j <- i to k; h <- j to k) { z(l) = q(i) * q(j) * q(h); l += 1 }

z

} // forms

If polynomials of higher degree are needed, ScalaTion provides a couple of means to deal with it. First,

when the data matrix consists of single column and x is one dimensional, the PolyRegression class may

be used. If one or two variables need higher degree terms, the caller may add these columns themselves as

additional columns in the data matrix input into the Regression class.

CubicXRegression Class

Class Methods:
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@param x_ the input vectors/points

@param y the response vector

@param fname_ the feature/variable names

@param hparam the hyper-parameters

@param technique the technique used to solve for b in x.t*x*b = x.t*y

class CubicXRegression (x_ : MatriD, y: VectoD, fname_ : Strings = null, hparam: HyperParameter = null,

technique: RegTechnique = QR)

extends Regression (CubicXRegression.allForms (x_), y, fname_, hparam, technique)

with ExpandableForms

def expand (z: VectoD): VectoD = CubicXRegression.forms (z, n0, nt)

def predict_ex (z: VectoD): Double = predict (expand (z))

4.12.2 Exercises

1. Perform Cubic and CubicX Regression on the ExampleBPressure dataset using the first two columns

of its data matrix x.

import ExampleBPressure.{x01 => x, y}

2. Perform both forward selection and backward elimination to find out which of the terms have the most

impact on predicting the response. Which feature selection approach (forward selection or backward

elimination) finds a model with the highest R̄2?

3. Generate a dataset with data matrix x and response vector y using the following loop where noise =

new Normal (0, 10 * s * s) and grid = 1 to s.

var k = 0

for (i <- grid; j <- grid) {

x(k) = VectorD (i, j)

y(k) = x(k, 0)~^2 + 2 * x(k, 1) + x(k, 0) * x(k, 1) + noise.gen

k += 1

} // for

Compare the results of Regression, QuadRegression, QuadXRegression, CubicRegression and CubicXRegression

Try modifying the equation for the response and see how Quality of Fit changes.

4. Prove that the number of terms for a quadratic function f(x) in n dimensions is
(
n+2

2

)
, by decomposing

the function into its quadratic (both squared and cross), linear and constant terms,

f(x) = xtAx + btx + c

where A in an n-by-n matrix, b is an n-dimensional column vector and c is a scalar. Hint: A is

symmetric, but the main diagonal is not repeated, and we are looking for unique terms (e.g., x1x2 and

114



x2x1 are treated as the same). Note, when n = 1, A and b become scalars, yielding the usual quadratic

function ax2 + bx+ c.
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4.13 Weighted Least Squares Regression

The Regression WLS class supports weighted multiple linear regression. In this case, the predictor vector x

is multi-dimensional [1, x1, ...xk].

4.13.1 Model Equation

As before the model/regression equation is

y = b · x + ε = b0 + b1x1 + . . . + bkxk + ε

where ε represents the residuals (the part not explained by the model). Under multiple linear regression, the

parameter vector b is estimated using matrix factorization with the Normal Equations.

XtXb = Xty

Let us look at the error vector ε = y − Xb in more detail. A basic assumption is that εi ∼ NID(0, σ),

i.e., it is Normally and Independently Distributed (NID). If this is violated substantially, the estimate for

the parameters b may be less accurate than desired. One way this can happen is that the variance changes

εi ∼ NID(0, σi). This is called heteroscedasticity and it would imply that certain instances (data points)

would have greater influence b than they should. The problem can be corrected by weighting each instance

by the inverse of its residual/error variance.

wi =
1

σ2
i

This begs the question on how to estimate the residual/error variance. This can be done by performing

unweighted regression of y onto X to obtain the error vector ε. It is used to compute a Root Absolute

Deviation (RAD) vector r.

r =
√
|ε|

A simple approach would be to make the weight wi inversely proportional to ri.

wi =
n

ri

More commonly, a second unweighted regression is performed, regressing r onto X to obtain the predictions

r̂. See Exercise 1 for a comparison or the two methods setWeights0 and setWeights.

wi =
n

r̂i
(4.36)

See [15] for additional discussion concerning how to set weights. These weights can be used to build a

diagonal weight matrix W that factors into the Normal Equations

XtWXb = XtWy (4.37)

In ScalaTion, this is accomplished by computing a weight vector w and taking its square root ω =
√

w.

The data matrix X is then reweighted by premultiplying it by ω (rtW in the code), as if it is a diagonal matrix

rtW **: x. The response vector y is reweighted using vector multiplication rtW * y. The reweighted

matrix and vector are passed into the Regression class, which solves for the parameter vector b.

In summary, Weighted Least-Squares (WLS) is accomplished by reweighting and then using Ordinary

Least Squares (OLS). See http://en.wikipedia.org/wiki/Least_squares#Weighted_least_squares.
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Regression WLS Class

Class Methods:

@param xx the data/input m-by-n matrix

(augment with a first column of ones to include intercept in model)

@param yy the response/output m vector

@param fname_ the feature/variable names

@param technique the technique used to solve for b in x.t*w*x*b = x.t*w*y

@param w the weight vector (if null, computed in companion object)

class Regression_WLS (xx: MatriD, yy: VectoD, technique: RegTechnique = QR,

private var w: VectoD = null)

extends Regression ({ setWeights (xx, yy, technique, w); reweightX (xx, w) },

reweightY (yy, w), technique)

def weights: VectoD = w

override def diagnose (e: VectoD, w_ : VectoD, yp: VectoD, y_ : VectoD = null)

override def crossVal (k: Int = 10, rando: Boolean = true): Array [Statistic]

4.13.2 Exercises

1. The setWeights0 method used actual RAD’s rather than predicted RAD’s used by the setWeights

method. Compare the two methods of setting the weights on the following dataset.

// 5 data points: constant term, x_1 coordinate, x_2 coordinate

val x = new MatrixD ((5, 3), 1.0, 36.0, 66.0, // 5-by-3 matrix

1.0, 37.0, 68.0,

1.0, 47.0, 64.0,

1.0, 32.0, 53.0,

1.0, 1.0, 101.0)

val y = VectorD (745.0, 895.0, 442.0, 440.0, 1598.0)

val z = VectorD (1.0, 20.0, 80.0)

Try the two methods on other datasets and discuss the advanrages and disadvantages.

2. Prove that reweighting the data matrix X and the response vector y and solving for the parameter

vector b in the standard Normal Equations XtXb = Xty gives the same result as not reweighting and

solving for the parameter vector b in the Weighted Normal Equations XtWXb = XtWy.

3. Given an error vector ε, what does its covariance matrix C [ε] represent? How can it be estimated?

What are its diagonal elements?

4. When the non-diagonal elements are non-zero, it may be useful to consider using Generalized Least

Squares (GLS). What are the trade-offs of using this more complex technique?
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4.14 Polynomial Regression

The PolyRegression class supports polynomial regression. In this case, x is formed from powers of a single

parameter t, [1, t, t2, . . . , tk].

4.14.1 Model Equation

The goal is to fit the parameter vector b in the model/regression equation

y = b · x + ε = b0 + b1t + b2t
2 + . . . + bkt

k + ε

where ε represents the residuals (the part not explained by the model). Such models are useful when there

is a nonlinear relationship between a response and a predictor variable, e.g., y may vary quadratically with

t.

A training set now consists of two vectors, one for the m-vector t and one for the m-vector y. An easy

way to implement polynomial regression is to expand each t value into an x vector to form a data/input

matrix X and pass it to the Regression class (multiple linear regression). The columns of data matrix X

represent powers of the vector t.

X =
[
1, t, t2, . . . , tk

]
In ScalaTion the vector t is expanded into a matrix X before calling Regression. The number of columns

in matrix X is the order k plus 1 for the intercept.

val x = new MatrixD (t.dim, 1 + k)

for (i <- t.range) x(i) = expand (t(i))

val rg = new Regression (x, y, technique)

Unfortunately, when the order of the polynomial k get moderately large, the multi-collinearity problem

can become severe. In such cases it is better to use orthogonal polynomials rather than raw polynomials [23].

This is done in ScalaTion by changing the raw flag to false.

PolyRegression Class

Class Methods:

@see www.ams.sunysb.edu/~zhu/ams57213/Team3.pptx

@param t the initial data/input m-by-1 matrix: t_i expands to x_i = [1, t_i, t_i^2, ... t_i^k]

@param y the response/ouput vector

@param ord the order (k) of the polynomial (max degree)

@param fname_ the feature/variable names

@param hparam the hyper-parameters

@param technique the technique used to solve for b in x.t*x*b = x.t*y

class PolyRegression (t: MatriD, y: VectoD, ord: Int, fname_ : Strings = null, hparam: HyperParameter = null,

technique: RegTechnique = Cholesky)

extends Regression (PolyRegression.allForms (t, ord), y, fname_, hparam, technique)
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with ExpandableForms

def expand (z: VectoD): VectoD = PolyRegression.forms (z, n0, nt)

def predict (z: Double): Double = predict_ex (VectorD (z))

def predict_ex (z: VectoD): Double = predict (expand (z))

4.14.2 Exercises

1. Generate two vectors t and y as follows.

val noise = Normal (0.0, 100.0)

val t = VectorD.range (0, 100)

val y = new VectorD (t.dim)

for (i <- 0 until 100) y(i) = 10.0 - 10.0 * i + i~^2 + i * noise.gen

Test new PolyRegression (t, y, order, technique) for various orders and factorization techniques.

Test for multi-collinearity using the correlation matrix and vif.

2. Test new PolyRegression (t, y, order, technique, false) for various orders and factorization

techniques. Setting the raw flag to false will cause orthogonal polynomials to be used instead or raw

polynomials. Again, test for multi-collinearity using the correlation matrix and vif.

119



4.15 Trigonometric Regression

The TrigRegression class supports trigonometric regression. In this case, x is formed from trigonometric

functions of a single parameter t, [1, sin(ωt), cos(ωt), . . . , sin(kωt), cos(kωt)].

A periodic function can be expressed as linear combination of trigonometric functions (sine and cosine

functions) of increasing frequencies. Consequently, if the data points have a periodic nature, a trigonometric

regression model may be superior to alternatives.

4.15.1 Model Equation

The goal is to fit the parameter vector b in the model/regression equation

y = b · x + ε = b0 + b1sin(ωt) + b2cos(ωt) + . . . , b2k−1sin(kωt) + b2kcos(kωt) + ε

where ω is the base angular displacement in radians (e.g., π) and ε represents the residuals (the part not

explained by the model).

A training set now consists of two vectors, one for the m-vector t and one for the m-vector y. As was done

for polynomial regression, an easy way to implement trigonometric regression is to expand each t value into

an x vector to form a data/input matrix X and pass it to the Regression class (multiple linear regression).

The columns of data matrix X represent sines and cosines at at multiple harmonic frequencies of the vector

t.

X = [1, sin(ωt), cos(ωt), sin(2ωt), cos(2ωt), . . . , sin(kωt), cos(kωt)]

For a model with k harmonics (maximum multiplier of ωt), the data matrix can be formed as follows:

val x = new MatrixD (t.dim, 1 + 2 * k)

for (i <- t.range) x(i) = expand (t(i))

val rg = new Regression (x, y, technique)

TrigRegression Class

Class Methods:

@param t the initial data/input m-by-1 matrix: t_i expands to x_i

@param y the response/ouput vector

@param ord the order (k), maximum multiplier in the trig function (kwt)

@param fname_ the feature/variable names

@param hparam the hyper-parameters

@param technique the technique used to solve for b in x.t*x*b = x.t*y

class TrigRegression (t: MatriD, y: VectoD, ord: Int, fname_ : Strings = null, hparam: HyperParameter = null,

technique: RegTechnique = QR)

extends Regression (TrigRegression.allForms (t, ord), y, fname_, hparam, technique)

with ExpandableForms
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def expand (z: VectoD): VectoD = TrigRegression.forms (z, n0, nt, w)

def predict (z: Double): Double = predict_ex (VectorD (z))

def predict_ex (z: VectoD): Double = predict (expand (z))

4.15.2 Exercises

1. Create a noisy cubic function and test how well TrigRegression can fit the data for various values of

k (harmonics) generated from this function.

val noise = Normal (0.0, 10000.0)

val t = VectorD.range (0, 100)

val y = new VectorD (t.dim)

for (i <- 0 until 100) {

val x = (i - 40)/2.0

y(i) = 1000.0 + x + x*x + x*x*x + noise.gen

} // for

2. Make the noisy cubic function periodic and test how well TrigRegression can fit the data for various

values of k (harmonics) generated from this function.

val noise = Normal (0.0, 10.0)

val t = VectorD.range (0, 200)

val y = new VectorD (t.dim)

for (i <- 0 until 5) {

for (j <- 0 until 20) {

val x = j - 4

y(40*i+j) = 100.0 + x + x*x + x*x*x + noise.gen

} // for

for (j <- 0 until 20) {

val x = 16 - j

y(40*i+20+j) = 100.0 + x + x*x + x*x*x + noise.gen

} // for

} // for

3. Is the problem of multi-collinearity an issue for Trigonometric Regression?

4. How does Trigonometric Regression relate to Fourier Series?
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4.16 ANCOVA

An ANalysis of COVAriance (ANCOVA) model may be developed using the ANCOVA class. This type of

model comes into play when input variables are mixed, i.e., some are (i) continuous/ordinal, while others

are (ii) categorical/binary. The main difference between the two types of variables is type (i) variables define

the notion of less than (<), while variables of type (ii) do not. Also, the expected value means much less for

type (ii) variables, e.g., what is the expected value of English, French and Spanish? If we encode a language

variable xj as 0, 1 or 2 for English, French and Spanish, respectively, and half of a group speaks English

with the rest speaking Spanish, then the expected value would be French. Worse, if the encoding changes,

so does the expected value.

4.16.1 Handling Categorical Variables

Binary Variables

In the binary case, when a variable xj may take on only two distinct values, e.g., Red or Black, then it may

simply be encoded as 0 for Red and 1 for Black. Therefore, a single zero-one, encoded/dummy variable xj ,

can be used to distinguish the two cases. For example, when xj ∈ {Red,Black}, it would be replaced by

one encoded/dummy variable, xj0 as shown in Table 4.3.

Table 4.2: Encoding a Binary Variable

xj encoded xj dummy xj0

Red 0 0

Black 1 1

Categorical Variables

For the more general categorical case, when the number distinct values for a variable xj is greater than two,

simply encoding the jth column may not be ideal. Instead multiple dummy variables should be used. The

number of dummy variables required is one less than the number of distinct values ndv. In one hot encoding,

the number of dummy variables may be equal to the ndv, however, this will produce a singular expanded

data matrix X (i.e., perfect multi-collinearity).

First, the categorical variable xj may be encoded using integer values as follows:

encoded xj = 0, 1, . . . , ndv − 1

Next, for categorical variable xj , create ndv − 1 dummy variables {xjk|k = 0, . . . , ndv − 2} and use the

following loop to set the value for each dummy variable.

for (k <- 0 until n_dv - 1) x_jk = I{x_j = k+1}

I{ } is an indicator function that returns 1 when the condition evaluates to true and 0 otherwise. In this

way, xj ∈ {English, French,German, Spanish} would be replaced by three dummy variables, xj0, xj1 and

xj2, as shown in Table 4.3.
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Table 4.3: Conventional Encoding a Categorical Variable

xj encoded xj dummy xj0, xj1, xj2

English 0 0, 0, 0

French 1 1, 0, 0

German 2 0, 1, 0

Spanish 3 0, 0, 1

Unfortunately, for the conventional encoding of a categorical variable, a dummy variable column will be

identical to its square, which will result in singular matrix for QuadRegression. One solution is to exclude

dummy variables in the column expansion done by QuadRegression. Alternatively, a more robust encoding

such as the one given in Table 4.4 may be used.

Table 4.4: Robust Encoding a Categorical Variable

xj encoded xj dummy xj0, xj1, xj2

English 0 1, 1, 1

French 1 2, 1, 1

German 2 1, 2, 1

Spanish 3 1, 1, 2

Conversion from strings to an integer encoding can be accomplished using the map2Int function in the

Converter object within the scalation.linalgebra package. The vector of encoded integers xe can be

made into a matrix using MatrixI (xe). To produce the dummy variable columns the dummyVars function

within the ANCOVA companion object may be called. See the first exercise for an example.

Multi-column expansion may done by the caller in cases where there are few categorical variables, by

expanding the input data matrix before passing it to the Rgression class. The expansion occurs automatically

when the ANCOVA class is called. This class performs the expansion and then delegates to the work to the

Regression class.

Before continuing the discussion of the ANCOVA class, a restricted form is briefly discussed.

4.16.2 ANOVA

An ANalysis Of VAriance (ANOVA) model may be developed using the ANOVA1 class. This type of model

comes into play when all input/predictor variables are categorical/binary. One-way Analysis of Variance

allows only one binary/categorical treatment variable and is framed in Scalation using General Linear

Model (GLM) notation and supports the use of one binary/categorical treatment variable t. For example,

the treatment variable t could indicate the type of fertilizer applied to a field.

The ANOVA1 class in ScalaTion only supports one categorical variable, so in general, x consists of ndv−1

dummy variables dk for k ∈ {1, ndv − 1}

y = b · x + ε = b0 + b1d1 + . . . + bldl + ε
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where l = ndv−1 and ε represents the residuals (the part not explained by the model). The dummy variables

are binary and are used to determine the level/type of a categorical variable. See http://psych.colorado.

edu/~carey/Courses/PSYC5741/handouts/GLM%20Theory.pdf.

In ScalaTion, the ANOVA1 class is implemented using regular multiple linear regression. A data/input

matrix X is build from columns corresponding to levels/types for the treatment vector t. As with multiple

linear regression, the y vector holds the response values. Multi-way Analysis of Variance may be performed

using the more general ANCOVA class. Also, a more traditional implementation called Anova, not following

the GLM approach, is also provided in the stat package.

ANOVA1 Class

Class Methods:

@param t the treatment/categorical variable vector

@param y the response/output vector

@param fname_ the feature/variable names

@param technique the technique used to solve for b in x.t*x*b = x.t*y

class ANOVA1 (t: VectoI, y: VectoD, fname_ : Strings = null, technique: RegTechnique = QR)

extends Regression (VectorD.one (t.dim) +^: Variable.dummyVars (t), y, fname_, null, technique)

with ExpandableVariable

def expand (t: VectoD, nCat: Int = 1): VectoD =

def predict_ex (zt: VectoD): Double = predict (expand (zt))

4.16.3 ANCOVA Implementation

When there is only one categorical/binary variable, x consists of the usual k = n−1 continuous variables xj .

Assuming there is a single categorical variable, call it t, it will need to be expanded into ndv − 1 additional

dummy variables.

t expands to d = [d0, . . . , dl] where l = ndv − 2

Therefore, the regression equation becomes the following:

y = b · x + ε = b0 + b1x1 + . . . + bkxk + bk+1d0 + . . . + bk+ldl + ε (4.38)

The dummy variables are binary and are used the determine the level of a categorical variable. See http:

//www.ams.sunysb.edu/~zhu/ams57213/Team3.pptx.

In general, there may be multiple categorical variables and an expansion will be done for each such

variable. Then the data for continuous variable are collected into matrix X and the values for the categorical

variables are collected into matrix T .
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In ScalaTion, ANCOVA is implemented using regular multiple linear regression. An augmented

data/input matrix X is build from X corresponding to the continuous variables with additional columns cor-

responding to the multiple levels for columns in the treatment matrix T . As with multiple linear regression,

the y vector holds the response values.

ANCOVA Class

Class Methods:

@param x_ the data/input matrix of continuous variables

@param t the treatment/categorical variable matrix

@param y the response/output vector

@param fname_ the feature/variable names

@param technique the technique used to solve for b in x.t*x*b = x.t*y

class ANCOVA (x_ : MatriD, t: MatriI, y: VectoD, fname_ : Strings = null, technique: RegTechnique = QR)

extends Regression (x_ ++^ ANCOVA.dummyVars (t), y, fname_, null, technique)

with ExpandableVariable

def expand (zt: VectoD, nCat: Int = nCatVar): VectoD =

def predict_ex (zt: VectoD): Double = predict (expand (zt))

4.16.4 Exercises

1. Use the map2Int function in the Converter object within the scalation.linalgebra package to

convert the given strings into encoded integers. Turn this vector into a matrix and pass it into the

dummyVars function to produce the dummy variable columns. Print out the values xe, xm and xd.

val x1 = VectorS ("English", "French", "German", "Spanish")

val (xe, map) = Converter.map2Int (x1) // map strings to integers

val xm = MatrixI (xe) // form a matrix from vector

val xd = ANCOVA.dummyVars (xm) // make dummy variable columns

Add code to recover the string values from the encoded integers using the returned map.

2. Use the ANOVA1 class to predict responses based on treatment levels trained using the following treat-

ment t and response y vectors. Plot the given versus predicted responses.

val t = VectorI (1, 1, 1, 2, 2, 2, 3, 3, 3) // treatment level data

val y = VectorD (755.0, 865.0, 815.0,

442.0, 420.0, 401.0,

282.0, 250.0, 227.0)

val levels = 3
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val arg = new ANOVA1 (t, y, levels)

arg.analyze ()

println (arg.report)

banner ("test predictions")

val yp = new VectorD (y.dim)

for (i <- yp.range) yp(i) = arg.predict (t(i))

println (s" y = $y \n yp = $yp")

new Plot (t.toDouble, y, yp, "ANOVA1")

3. Compare the results of using the ANCOVA class versus the Regression class for the following dataset.

// 6 data points: constant term, x_1 coordinate, x_2 coordinate

val x = new MatrixD ((6, 3), 1.0, 36.0, 66.0, // 6-by-3 matrix

1.0, 37.0, 68.0,

1.0, 47.0, 64.0,

1.0, 32.0, 53.0,

1.0, 42.0, 83.0,

1.0, 1.0, 101.0)

val t = new MatrixI ((6, 1), 0, 0, 1, 1, 2, 2) // treatments levels

val y = VectorD (745.0, 895.0, 442.0, 440.0, 643.0, 1598.0) // response vector

val z = VectorD (1.0, 20.0, 80.0, 1) // new instance

val ze = VectorD (1.0, 20.0, 80.0, 2, 1) // encoded and expanded

val xt = x ++^ t.toDouble

val rg = new Regression (xt, y) // treated as ordinal

val anc = new ANCOVA (x, t, y) // treated as categorical
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Chapter 5

Classification

When the output/response y is defined on small domains (categorical response), e.g., B or Zk = {0, 1, . . . , k−
1}, then the problem shifts from prediction to classification. This facilitates giving the response meaningful

class names, e.g., low-risk, medium-risk and high-risk. When the response is discrete, but unbounded (e.g,

Poisson Regression), the problem is considered to be a prediction problem.

y = f(x; b) + ε

As with Regression in continuous domains, some of the modeling techniques in this chapter will focus on

estimating the conditional expectation of y given x.

y = E [y|x] + ε (5.1)

Others will focus on maximizing the conditional probability of y given x, i.e., finding the conditional mode.

y∗ = argmax P (y|x) = M [y|x] (5.2)

Rather than find a real number that is the best predictor, one of a set of distinct given values (e.g., 0 (false),

1 (true); negative (-1), positive (1); or low (0), medium (1), high (2)) is chosen. Abstractly, we can label

the classes C0, C1, . . . , Ck−1. In the case of classification, the train function is still used, but the classify

method replaces the predict method.

Let us briefly contrast the two approaches based on the two equations (5.1 and 5.2). For simplicity,

a selection (not classification) problem is used. Suppose that the goal is to select one of three actors

(y ∈ {0, 1, 2}) such that they have been successful in similar films, based on characteristics (features) of the

films (captured in variables x). From the data, the frequency of success for the actors in similar films has

been 20, 0 and 30, respectively. Consequently, the expected value is 1.2 and one might be tempted to select

actor 1 (the worst choice). Instead selecting the actor with maximum frequency (and therefore probability)

will produce the best choice (actor 2).
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5.1 Classifier

The Classifier trait provides a common framework for several classifiers such as NaiveBayes.

Trait Methods:

trait Classifier

def size: Int // typically = m

def train (itest: IndexedSeq [Int]): Classifier

def train (testStart: Int, testEnd: Int): Classifier = train (testStart until testEnd)

def train (): Classifier = train (0, 0)

def classify (z: VectoI): (Int, String, Double)

def classify (z: VectoD): (Int, String, Double)

def test (itest: IndexedSeq [Int]): Double

def test (testStart: Int, testEnd: Int): Double = test (testStart until testEnd)

def crossValidate (nx: Int = 10, show: Boolean = false): Double =

def crossValidateRand (nx: Int = 10, show: Boolean = false): Double =

def fit (y: VectoI, yp: VectoI, k: Int = 2): VectoD =

def fitLabel: Seq [String] = Seq ("acc", "prec", "recall", "kappa")

def fitMap (y: VectoI, yp: VectoI, k: Int = 2): Map [String, String] =

def reset ()

For modeling, a user chooses one the of classes extending the trait Classifier (e.g., DecisionTreeID3) to

instantiate an object. Next the train method would be typically called. While the modeling techniques

in the last chapter focused on minimizing errors, the focus in this chapter will be on minimizing incorrect

classifications. Generally, this is done by dividing a dataset up into a training dataset and test dataset. A

way to utilize one dataset to produce multiple training and test datasets is called cross-validation.

As discussed in the Model Validation section in the Prediction chapter, k-fold cross-validation is a useful

general purpose strategy for examining the quality of a model. The first cross-validation method takes the

number of folds k (nx in the software) and a show flag. It performs k iterations of training (train method)

and testing (test method).

def crossValidate (nx: Int = 10, show: Boolean = false): Double =

{

val testSize = size / nx // number of instances in test set

var sum = 0.0

for (it <- 0 until nx) {

val testStart = it * testSize // test set start index (inclusive)

val testEnd = testStart + testSize // test set end index (exclusive)

train (testStart, testEnd) // train on opposite instances

val acc = test (testStart, testEnd) // test on test set

if (show) println (s"crossValidate: for it = $it, acc = $acc")

sum += acc // accumulate accuracy
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} // for

sum / nx.toDouble // return average accuracy

} // crossValidate

The second cross-validation method is more complicated, but usually preferred, since it randomizes the

instances selected for the test dataset, so that patterns coincidental to the index are broken up.

def crossValidateRand (nx: Int = 10, show: Boolean = false): Double =

The crossValidateRand method calls the following methods:

train (itest: IndexedSeq [Int])

test (itest: IndexedSeq [Int])

while the crossValidate method calls the following methods:

train (testStart: Int, testEnd: Int)

test (testStart: Int, testEnd: Int)

Once a model/classifier has been sufficiently trained and tested, it is ready to be put into practice on

new data via the classify method.
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5.2 ClassifierInt

The ClassifierInt abstract class provides a common foundation for several classifiers that operate on

integer-valued data.

Class Methods:

@param x the integer-valued data vectors stored as rows of a matrix

@param y the integer-valued classification vector, where y_i = class for row i of matrix x

@param fn the names of the features/variables

@param k the number of classes

@param cn the names for all classes

@param hparam the hyper-parameters

abstract class ClassifierInt (x: MatriI, y: VectoI, protected var fn: Strings = null,

k: Int, protected var cn: Strings = null, hparam: HyperParameter)

extends ConfusionFit (y, k) with Classifier

def size: Int = m

def vc_default: Array [Int] = Array.fill (n)(2)

def vc_fromData: Array [Int] = (for (j <- x.range2) yield x.col(j).max() + 1).toArray

def vc_fromData2 (rg: Range): Array [Int] = (for (j <- rg) yield x.col(j).max() + 1).toArray

def shiftToZero () { x -= VectorI (for (j <- x.range2) yield x.col(j).min()) }

def test (itest: Ints): Double =

def test (xx: MatriI, yy: VectoI): Double =

def eval (xx: MatriD, yy: VectoD = null): ClassifierInt =

def crossValidate (nx: Int = 10, show: Boolean = false): Array [Statistic] =

def crossValidateRand (nx: Int = 10, show: Boolean = false): Array [Statistic] =

def hparameter: HyperParameter = hparam

def report: String =

def classify (z: VectoD): (Int, String, Double) = classify (roundVec (z))

def classify (xx: MatriI = x): VectoI =

def calcCorrelation: MatriD =

def calcCorrelation2 (zrg: Range, xrg: Range): MatriD =

def featureSelection (TOL: Double = 0.01)

ClassifierInt provides methods to determine the value count (vc) for the features/variables. A method

to shift values in a vector toward zero by subtracting the minimum value. It has base implementations

for test methods and methods for calculating correlations. Finally, the featureSelection method will

eliminate features that have little positive impact on the quality of the model. Rather than considering all n

features/variables, a proper subset fset ⊂ {0, 1, . . . , n−1} of the features is selected. Various algorithms can

be used to search for an optimal feature set fset. ScalaTion currently uses a simple backward elimination

algorithm that removes the least significant feature, in terms of cross-validation accuracy, in each round.
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5.3 Confusion Matrix

The ConfusionMat class provides methods to produce a confusion matrix and associated quality metrics. In

ScalaTion when k = 2, the confusion matrix C is configured as follows:[
c00 = tn c01 = fp

c10 = fn c11 = tp

]
The first column indicates the classification is negative (no or 0), while the second column indicates it is

positive (yes or 1). The first letter indicates whether the classification is correct (true) or not (false). The

row (0, 1) indicates the actual class label, while the column (0, 1) indicates the response of the classifier.

Class Methods:

@param y the actual class labels

@param yp the precicted class labels

@param k the number class values

class ConfusionMat (y: VectoI, yp: VectoI, k: Int = 2)

def confusion: MatriI = conf

def pos_neg (con: MatriI = conf): (Double, Double, Double, Double) =

def accuracy: Double = conf.trace / conf.sum.toDouble

def prec_recl: (VectoD, VectoD, Double, Double) =

def f1_measure (prec: Double, recl: Double): Double = 2.0 * prec * recl / (prec + recl)

def kappa: Double =
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5.4 Bayes Classifier

The BayesClassifier abstract class provides common methods for several Bayes classifiers.

Class Methods:

@param x the integer-valued data vectors stored as rows of a matrix

@param y the class vector, where y(l) = class for row l of the matrix x, x(l)

@param fn_ the names for all features/variables

@param k the number of classes

@param cn_ the names for all classes

abstract class BayesClassifier (x: MatriI, y: VectoI, fn_ : Strings = null, k: Int = 2,

cn_ : Strings = null)

extends ClassifierInt (x, y, fn_, k, cn_) with BayesMetrics

def toggleSmooth () { smooth = ! smooth}

def calcCMI (idx: IndexedSeq [Int], vca: Array [Int]): MatrixD =

def cmiJoint (p_y: VectoD, p_Xy: HMatrix3 [Double], p_XZy: HMatrix5 [Double]): MatrixD =

def getParent: Any = null

protected def updateFreq (i: Int) {}

def printClassProb () { println (s"ClassProb = $p_y") }
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5.5 Null Model

The NullModel class implements a simple Classifier suitable for discrete input data. Corresponding to the

Null Model in the Prediction chapter, one could imagine estimating probabilities for outcomes of a random

variable y. Given an instance, this random variable indicates the classification or decision to be made. For

example, it may be used for a decision on whether or not to grant a loan request. The model may be trained

by collecting a training dataset. Probabilities may be estimated from data stored in an m-dimensional

response/classification vector y within the training dataset. These probabilities are estimated based on the

frequency ν (nu in the code) with which each class value occurs.

ν(y = c) = |{i | yi = c}| = mc

The right hand side is simply the size of the set containing the instance/row indices where yi = c for

c = 0, . . . , k − 1. The probability that random variable y equals c can be estimated by the number of

elements in the vector y where yi equals c divided by the total number of elements.

P (y = c) =
ν(y = c)

m
=

mc

m
(5.3)

Exercise 1 below is the well-known toy classification problem on whether to play tennis (y = 1) or not (y = 0)

based on weather conditions. Of the 14 days (m = 14), tennis was not played on 5 days and was played on

9 days, i.e.,

P (y = 0) =
5

14
and P (y = 1) =

9

14

This information, class frequencies and class probabilities, can be placed into a Class Frequency Vector

(CFV) as shown in Table 5.1 and

Table 5.1: Class Fequency Vector

y 0 1

5 9

a Class Probability Vector (CPV) as shown in Table 5.8.

Table 5.2: Class Probability Vector

y 0 1

5/14 9/14

Picking the maximum probability case, one should always predict that tennis will be played, i.e., y∗ = 1.

This modeling technique should outperform purely random guessing, since it factors in the relative

frequency with which tennis is played. As with the NullModel for prediction, more sophisticated modeling

techniques should perform better than this NullModel for classification. If they are unable to provide higher

accuracy, they are of questionable value.
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NullModel Class

Class Methods:

@param y the class vector, where y(i) = class for instance i

@param k the number of classes

@param cn_ the names for all classes

class NullModel (y: VectoI, k: Int = 2, cn_ : Strings = null)

extends ClassifierInt (null, y, null, k, cn_)

def train (itest: IndexedSeq [Int]): NullModel =

def classify (z: VectoI): (Int, String, Double) =

override def classify (xx: MatriI): VectoI = VectorI.fill (xx.dim1)(p_y.argmax ())

def classify (xx: MatriD): VectoI = classify (xx.toInt)

override def test (itest: IndexedSeq [Int]): Double =

def reset () { /* NA */ }

The train method for this modeling technique is very simple. It takes the parameter itest as input

that indicates which instance/row indices make up the test dataset. The training dataset is made up of the

rest on the instances.

def train (itest: IndexedSeq [Int]): NullModel =

{

val idx = 0 until m diff itest // training dataset - opposite of tesing

nu_y = frequency (y, k, idx) // frequency vector for y

p_y = toProbability (nu_y, idx.size) // probability vector for y

if (DEBUG) println (s" nu_y = $nu_y \n p_y = $p_y")

this

} // train

Typically, one dataset is divided into a training dataset and testing dataset. For example, 80% may

be used for training (estimating probabilities) with the remaining 20% used for testing the accuracy of the

model. Furthermore, this is often done repeatedly as part of a cross-validation procedure.

The frequency and toProbability are functions from the Probability object in the scalation.analytics

package.

def frequency (x: VectoI, k: Int, idx_ : IndexedSeq [Int] = null): VectoI =

{

val idx = if (idx_ == null) IndexedSeq.range (0, x.dim) else idx_

val nu = new VectorI (k)

for (i <- idx) nu(x(i)) += 1

nu
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} // frequency

def toProbability (nu: VectoI, n: Int): VectoD =

{

val nd = n.toDouble

VectorD (for (i <- nu.range) yield nu(i) / nd)

} // toProbability

5.5.1 Exercises

1. The NullModel classifier can be used to solve problems such as the one below. Given the Out-

look, Temperature, Humidity, and Wind determine whether it is more likely that someone will (1)

or will not (0) play tennis. The data set is widely available on the Web. If is also available in

scalation.analytics.classifier.ExampleTennis. Use the NullModel for classification and evalu-

ate its effectiveness using cross-validation.

//:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

/** The ‘ExampleTennis‘ object is used to test all integer based classifiers.

* This is the well-known classification problem on whether to play tennis

* based on given weather conditions. Applications may need to slice ’xy’.

* val x = xy.sliceCol (0, 4) // columns 0, 1, 2, 3

* val y = xy.col (4) // column 4

* @see euclid.nmu.edu/~mkowalcz/cs495f09/slides/lesson004.pdf

*/

object ExampleTennis

{

// dataset ----------------------------------------------------------------

// x0: Outlook: Rain (0), Overcast (1), Sunny (2)

// x1: Temperature: Cold (0), Mild (1), Hot (2)

// x2: Humidity: Normal (0), High (1)

// x3: Wind: Weak (0), Strong (1)

// y: the response/classification decision

// variables/features: x0 x1 x2 x3 y // combined data matrix

val xy = new MatrixI ((14, 5), 2, 2, 1, 0, 0, // day 1

2, 2, 1, 1, 0, // day 2

1, 2, 1, 0, 1, // day 3

0, 1, 1, 0, 1, // day 4

0, 0, 0, 0, 1, // day 5

0, 0, 0, 1, 0, // day 6

1, 0, 0, 1, 1, // day 7

2, 1, 1, 0, 0, // day 8

2, 0, 0, 0, 1, // day 9

0, 1, 0, 0, 1, // day 10

2, 1, 0, 1, 1, // day 11

1, 1, 1, 1, 1, // day 12

1, 2, 0, 0, 1, // day 13

0, 1, 1, 1, 0) // day 14
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val fn = Array ("Outlook", "Temp", "Humidity", "Wind") // feature names

val cn = Array ("No", "Yes") // class names for y

val k = cn.size // number of classes

} // ExampleTennis object

2. Build a NullModel classifier for the Breast Cancer problem (data in breast-cancer.arff file).
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5.6 Naive Bayes

The NaiveBayes class implements a Naive Bayes (NB) Classifier suitable for discrete input data. A Bayesian

Classifier is a special case of a Bayesian Network where one of the random variables is distinguished as the

basis for making decisions, call it random variable y, the class variable. The NullModel ignores weather

conditions which are the whole point of the ExampleTennis exercise. For Naive Bayes, weather conditions

(or other data relevant to decision making) are captured in an n-dimensional vector of random variables.

x = [x0, . . . , xn−1],

For the exercise, n = 4 where x0 is Outlook, x1 is Temperature, x2 is Humidity, and x3 is Wind. The

decision should be conditioned on the weather, i.e., rather than computing P (y), we should compute P (y|x).

Bayesian classifiers are designed to find the class (value for random variable y) that maximizes the conditional

probability of y given x.

It may be complex and less robust to estimate P (y|x) directly. Often it is easier to examine the conditional

probability of x given y. This answers the question of how likely it is that the input data comes from a

certain class y. Flipping the perspective can be done using Bayes Theorem.

P (y|x) =
P (x|y)P (y)

P (x)

Since the denominator is the same for all y, it is sufficient to maximize the right hand side of the following

proportionality statement.

P (y|x) ∝ P (x|y)P (y)

Notice that the right hand side is the joint probability of all the random variables.

P (x, y) = P (x|y)P (y) (5.4)

One could in principle represent the joint probability P (x, y) or the conditional probability P (x|y) in

a matrix. Unfortunately, with 30 binary random variables, the matrix would have over one billion rows

and exhibit issues with sparsity. Bayesian classifiers will factor the probability and use multiple matrices to

represent the probabilities.

5.6.1 Factoring the Probability

A Bayesian classifier is said to be näıve, when it is assumed that the xj ’s are sufficiently uncorrelated to

factor P (x| y) into the product of their conditional probabilities (independence rule).

P (x| y) =

n−1∏
j=0

P (xj |y)

Research has shown that even though the assumption that given response/class variable y, the x-variables

are independent is often violated by a dataset, Näıve Bayes still tends to perform well [27]. Substituting this

factorization in equation 5.4 yields

P (x, y) = P (y)

n−1∏
j=0

P (xj |y) (5.5)
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The classification problem then is to find the class value for y that maximizes this probability, i.e., let y∗ be

the argmax of the product of the class probability P (y) and all the conditional probabilities P (xj |y). The

argmax is the value in the domain Dy = {0, . . . , k − 1} that maximizes the probability.

y∗ = argmax
y∈{0,...,k−1}

P (y)

n−1∏
j=0

P (xj |y) (5.6)

5.6.2 Estimating Conditional Probabilities

For Integer-based classifiers xj ∈ {0, 1, ..., vcj − 1} where vcj is the value count for the jth variable/feature

(i.e., the number of distinct values). The Integer-based Näıve Bayes classifier is trained using an m-by-n

data matrix X and an m-dimensional classification vector y. Each data vector/row in the matrix is classified

into one of k classes numbered 0, 1, . . . , k − 1. The frequency or number of instances where column vector

x j = h and vector y = c is as follows:

ν(x j = h, y = c) = |{i |xij = h, yi = c}|

The conditional probability for random variable xj given random variable y can be estimated as the ratio of

two frequencies.

P (xj = h | y = c) =
ν(x j = h, y = c)

ν(y = c)
(5.7)

In other words, the conditional probability is the ratio of the joint frequency count for a given h and c divided

by the class frequency count for a given c. These frequency counts can be collected into Joint Frequency

Matrices/Tables (JFTs) and a Class Frequency Vector (CFV). From these, it is straightforward to compute

Conditional Probability Matrices/Tables (CPTs) and a Class Probability Vector (CPV).

ExampleTennis Problem

For the ExampleTennis problem, the Joint Frequency Matrix/Table (JFT) for Outlook random variable x0

is shown in Table 5.3.

ν(x 0 = h, y = c) for h ∈ {0, 1, 2}, c ∈ {0, 1}

Table 5.3: JFT for x 0

x0\y 0 1

0 2 3

1 0 4

2 3 2

The column sums in the above matrix are 5 and 9, repsectively. The corresponding Conditional Probability

Matrix/Table (CPT) for random variable x0, i.e., P (x0 = h | y = c), is computed by dividing each entry in

the joint frequency matrix by its column sum.
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Table 5.4: CPT for x 0

x0\y 0 1

0 2/5 3/9

1 0 4/9

2 3/5 2/9

Continuing with the ExampleTennis problem, the Joint Frequency Matrix/Table for Wind random variable

x3 is shown in Table 5.5.

ν(x 3 = h, y = c) for h ∈ {0, 1}, c ∈ {0, 1}

Table 5.5: JFT for x 3

x3\y 0 1

0 2 6

1 3 3

As expected, the column sums in the above matrix are again 5 and 9, repsectively. The corresponding

Conditional Probability Matrix/Table for random variable x0, i.e., P (x0 = h | y = c), is computed by dividing

each entry in the joint frequency matrix by its column sum as shown in table 5.6

Table 5.6: CPT for x 3

x3\y 0 1

0 2/5 6/9

1 3/5 3/9

Similar matrices/tables can be created for the other random variables: Temperature x1 and Humdity x2.

5.6.3 Laplace Smoothing

When there are several possible class values, a dataset may exhibit zero instances for a particular class. This

will result in a zero in the CFV vector and cause a divide-by-zero error when computing CPTs. One way to

avoid the divide-by-zero, is to add one (me = 1) fake instance for each class, guaranteeing no zeros in the

CFV vector. If m-estimates are used, the conditional probability is adjusted slightly as follows:

P (xj = h | y = c) =
ν(x j = h, y = c) + me/vcj

ν(y = c) + me

where me is the parameter used for the m-estimate. The term added to the numerator, takes the one (or

me) instance(s) and adds uniform probability for each possible values for xj of which there are vcj of them.
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Table 5.7 shows the result of adding 1/3 in the numerator and 1 in the denominator, (e.g., for h = 0 and c

= 0, (2 + 1/3)/(5 + 1) = 7/18).

Table 5.7: CPT for x 0 with me = 1

x0\y 0 1

0 7/18 10/30

1 1/18 13/30

2 10/18 7/30

Another problem is when a conditional probability in a CPT is zero. If any CPT has a zero element, the

corresponding product for the column (where the CPV and CPTs are multiplied) will be zero no matter how

high the other probabilities may be. This happens when the frequency count is zero in the corresponding

JFT (see element (1, 0) in Table 5.3). The question now is whether this is due to the combination of x0 = 1

and y = 0 being highly unlikely, or that the dataset is not large enough to exhibit this combination. Laplace

smoothing guards against this problem as well.

Other values may be used for me as well. ScalaTion uses a small value for the default me to reduce

the disortion of the CPTs.

5.6.4 Hypermatrices

The values within the class probability table and the conditional probability tables are assigned by the

train method. In ScalaTion, vectors and third level hypermatrices are used for storing frequencies (nu)

and probabilities (p).

val nu_y = new VectorI (k) // frequency of y with classes 0, ..., k-1

val nu_Xy = new HMatrix3 [Int] (k, n, vc) // joint frequency of features x_j’s and class y

val p_y = new VectorD (k) // probability of y with classes 0, ..., k-1

val p_Xy = new HMatrix3 [Double] (k, n, vc) // conditional probability of features x_j’s

// given class y

where k is the number of class values, n is the number of x-random variables (features) and vc is the value

count per feature. Note, one third level hypermatix is able to store multiple matrices.

For the ExampleTennis problem where k = 2 and n = 4, the frequency counters (nu would be defined as

follows:

nu_y = new VectorI (2) // Class Frequency Vector (CFV)

nu_Xy = new HMatrix3 [Int] (2, 4, Array (3, 3, 2, 2)) // all Joint Frequency Tables (JFTs)

The dimensionality of the hypermatrix nu Xy could have been 2-by-4-by-3, but this would in general be

wasteful of space. Each variable only needs space for the values it allows, as indicated by Array (3, 3, 2,

2) for the value counts vc. The user may specify the optional vc parameter in the constructor call. If the vc

parameter is unspecified, then Scalation uses the vc fromData method to determine the value counts from

the training data. In some cases, the test data may include a value unseen in the training data. Currently,

Scalation requires the user to pass vc into the constructor in such cases.
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5.6.5 The classify Method

A new instance can now be classified by simply matching its values with with those in the class probability

table and conditional probability tables and multiplying all the entries. This is done for all k class values

and the class with the highest product is chosen.

def classify (z: VectoI): (Int, String, Double) =

{

val prob = new VectorD (p_y)

for (c <- 0 until k; j <- 0 until n) prob(c) *= p_Xy(c, j, z(j)) // P(x_j = z_j | y = c)

val best = prob.argmax () // class with the highest relative probability

(best, cn(best), prob(best)) // return the best class and its name

} // classify

In situations where there are many variables/features the product calculation may underflow. An alternative

calculation would be to take the log of the probability.

logP (x, y) = P (y) +

n−1∑
j=0

P (xj |y)

5.6.6 Feature Selection

Suppose that x1 and x2 are not consisdered useful for classifying a day as to its suitability for playing tennis.

For z = [2, 1], i.e,. z0 = 2 and z3 = 1, the two relative probabilities are the following:

Table 5.8: Joint Data-Class Probability

P 0 1

y 5/14 9/14

z0 3/5 2/9

z3 3/5 3/9

z, y 9/70 1/21

The two probabilities are approximately 0.129 for c = 0 (Do not Play) and 0.0476 for c = 1 (Play). The

higher probability is for c = 0.

To perform feature selection in a systematic way ScalaTion provides an fset array that indicates the

features/variables to be kept in the model. This array is assigned by calling the featureSelection method

in the ClassifierInt abstract class.

5.6.7 Efficient Cross-Validation

There are actually two classes NaiveBayes0 and NaiveBayes. The former uses conventional “additive”

cross-validation where frequency counters are reset to zero and are incremented for each fold. The latter

uses a more efficient “subtractive” cross-validation where frequency counters are reset to the counts for the

entire dataset and are decremented for each fold.
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NaiveBayes0 Class

Class Methods:

@param x the integer-valued data vectors stored as rows of a matrix

@param y the class vector, where y(l) = class for row l of the matrix x, x(l)

@param fn_ the names for all features/variables

@param k the number of classes

@param cn_ the names for all classes

@param vc the value count (number of distinct values) for each feature

@param me use m-estimates (me == 0 => regular MLE estimates)

class NaiveBayes0 (x: MatriI, y: VectoI, fn_ : Strings = null, k: Int = 2, cn_ : Strings = null,

protected var vc: Array [Int] = null, me: Double = me_default)

extends BayesClassifier (x, y, fn, k, cn)

def train (itest: IndexedSeq [Int]): NaiveBayes0 =

protected def frequencies (idx: IndexedSeq [Int])

protected def updateFreq (i: Int)

def classify (z: VectoI): (Int, String, Double) =

def lclassify (z: VectoI): (Int, String, Double) =

protected def vlog (p: VectoD): VectoD = p.map (log (_))

def reset ()

def printConditionalProb ()

NaiveBayes Class

This class is the same as the one above, butuses an optimized cross-validation technique.

Class Methods:

@param x the integer-valued data vectors stored as rows of a matrix

@param y the class vector, where y(l) = class for row l of the matrix x, x(l)

@param fn_ the names for all features/variables

@param k the number of classes

@param cn_ the names for all classes

@param vc_ the value count (number of distinct values) for each feature

@param me use m-estimates (me == 0 => regular MLE estimates)

class NaiveBayes (x: MatriI, y: VectoI, fn_ : Strings = null, k: Int = 2, cn_ : Strings = null,

vc_ : Array [Int] = null, me: Float = me_default)

extends NaiveBayes0 (x, y, fn, k, cn, vc_, me)
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def frequenciesAll ()

protected override def updateFreq (i: Int)

override def reset ()

5.6.8 Exercises

1. Complete the ExampleTennis problem given in this section by creating CPTs for random variables x1

and x2 and then computing the relative probabilties for z = [2, 2, 1, 1].

2. Use ScalaTion’s Integer-based NaiveBayes class to build a classifier for the ExampleTennis problem.

import scalation.analytics.classifier.ExampleTennis._

println ("Tennis Example")

println ("xy = " + xy) // combined matrix [x | y]

val nb = NaiveBayes (xy, fn, k, cn, null, 0) // create a classifier

nb.train () // train the classifier

val z = VectorI (2, 2, 1, 1) // new data vector

println (s"classify ($z) = ${nb.classify (z)}") // classify z

3. Compare the confusion matrix, accuracy, precision and rcall of NaiveBayes on the full dataset to that

of NullModel.

val x = xy.sliceCol (0, xy.dim2 - 1) // data matrix

val y = xy.col (xy.dim2 - 1) // response/class label vector

val yp = new VectorI (xy.dim1) // predicted class label vector

for (i <- x.range1) {

yp(i) = nb.classify (x(i))._1

println (s"Use nb to classify (${x(i)}) = ${yp(i)}")

} // for

val cm = new ConfusionMat (y, yp, k) // confusion matrix

println ("Confusion Matrix = " + cm.confusion)

println ("accuracy = " + cm.accuracy)

println ("prec-recall = " + cm.prec_recl)

4. Compare the accuracy of NaiveBayes using 10-fold cross-validation (cv) to that of NullModel.

println ("nb cv accu = " + nb.crossValidateRand (10, true)) // 10-fold cross-validation

5. Compare the confusion matrix, accuracy, precision and rcall of RoundRegression on the full dataset

to that of NullModel.

6. Perform feature selection on the ExampleTennis problem. Which feature/variable is removed from

the model, first, second and third. Explain the basis for the featureSelection method’s decision to

remove a feature.
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7. Use the Integer-based NaiveBayes class to build a classifier for the Breast Cancer problem (data in

breast-cancer.arff file). Compare its accuracy to that of NullModel.
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5.7 Tree Augmented Näıve Bayes

The TANBayes class implements a Tree Augmented Näıve (TAN) Bayes Classifier suitable for discrete in-

put data. Unlike Näıve Bayes, a TAN model can capture more, yet limited dependencies between vari-

ables/features. In general, xj can be dependent on the class y as well as one other variable xp(j). Represent-

ing the dependency pattern graphically, y becomes a root node of a Directed Acyclic Graph (DAG), where

each node/variable has at most two parents.

Starting with the joint probability given in equation 5.5,

P (x, y) = P (x|y)P (y)

we can obtain a better factored approximation (better than Näıve Bayes) by keeping the most important

dependencies amongst the random variables. Each xj , except a selected x-root, xr, will have one x-parent

(xp(j)) in addition to its y-parent. The dependency pattern among the x random variables forms a tree and

this tree augments the Näıve Bayes structure where each x random variable has y as its parent.

P (x, y) = P (y)

n−1∏
j=0

P (xj |xp(j), y)

Since the root xr, has no x-parent, it can be factored out as special case.

P (x, y) = P (y)P (xr|y)
∏
j 6=r

P (xj |xp(j), y) (5.8)

As with Näıve Bayes, the goal is to find an optimal value for the random variable y that maximizes the

probability.

y∗ = argmax
y∈Dy

P (y)P (xr|y)

n−1∏
j=0

P (xj |xp(j), y)

5.7.1 Structure Learning

Näıve Bayes has a very simple structure that does not require any structural learning. TAN Bayes, on the

other hand, requires the tree structure among the x random variables/nodes to be learned. Various algorithms

can be used to select the best parent xp(j) for each xj . ScalaTion does this by constructing a maximum

spanning tree where the edge weights are Conditional Mutual Information (alternatively correlation).

The Mutual Information (MI) between two random variables xj and xl is

I(xj ;xl) =
∑
xj

∑
xl

p(xj , xl)log
p(xj , xl)

p(xj)p(xl)
(5.9)

The Conditional Mutual Information (CMI) between two random variables xj and xl given a third random

variable y is

I(xj ;xl|y) = (5.10)

The steps involved in the structure learning algorithm for TAN Bayes are the following:

1. Compute the CMI I(xj ;xl|y) for all combinations of random variables, j 6= l.
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2. Build a complete undirected graph with a node for each xj random variable. The weight on undirected

edge {xj , xl} is its CMI value.

3. Apply a Maximum Spanning Tree algorithm (e.g., Prim or Kruskal) to the undirected graphs to cre-

ate a maximum spanning tree (those n − 1 edges that (a) connect all the nodes, (b) form a tree,

and (c) have maximum cumulative edge weights). Note, ScalaTion’s MinSpanningTree in the

scalation.graph db package can be used with parameter min = false.

4. Pick one of the random variables to be the root node xr.

5. To build the directed tree, start with root node xr and traverse from there giving each edge direction-

ality as you go outward from the root.

5.7.2 Conditional Probability Tables

For the ExampleTennis problem limited to two variables, x0 and x3, suppose that structure learning algo-

rithm found the x-parents as shown in Table 5.9.

Table 5.9: Parent Table

xj xp(j)

x0 x3

x3 null

In this case, the only modification to the CPV and CPTs from the Näıve Bayes solution, is that the JFT

and CPT for x0 are extended. The extended Joint Frequency Table (JFT) for x0 is shown in Table 5.10.

Table 5.10: Extended JFT for x 0

x0\x3, y 0, 0 0, 1 1, 0 1, 1

0 0 3 2 0

1 0 2 0 2

2 2 1 1 1

The column sums are 2, 6, 3, 3, repsectively. Again they must add up to same total of 14. Dividing each

element in the JFT by its column sum yields the extended Conditional Probability Table (CPT) shown in

Table 5.11

In general for TANBayes, the x-root will have a regular CPT, while all other x-variables will have an

extended CPT, i.e., the extended CPT for xj is calculated as follows:

P (xj = h |xp = l, y = c) =
ν(x j = h, x p = l, y = c)

ν(x p = l, y = c)
(5.11)
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Table 5.11: Extended CPT for x 0

x0\x3, y 0, 0 0, 1 1, 0 1, 1

0 0 1/2 2/3 0

1 0 1/3 0 2/3

2 1 1/6 1/3 1/3

5.7.3 Smoothing

The analog of Laplace smoothing used in Näıve Bayes is the following.

P (xj = h |xp = l, y = c) =
ν(x j = h, x p = l, y = c) + me/vcj

ν(x p = l, y = c) + me

In Friedman’s paper [9], he suggests using the marginal distribution rather than uniform (as shown above),

which results in the following formula.

P (xj = h |xp = l, y = c) =
ν(x j = h, x p = l, y = c) + me ∗mpj

ν(x p = l, y = c) + me

where

mpj =
ν(x j)

m

5.7.4 The classify Method

As with NaiveBayes, the classify simply multiplies entries in the CPV and CPTs (all except the root are

extended). Again the class with the highest product is chosen.

def classify (z: VectoI): (Int, String, Double) =

{

val prob = new VectorD (p_y)

for (i <- 0 until k; j <- 0 until n if fset(j)) {

prob(i) *= (if (parent(j) > -1) p_XyP(i, j, z(j), z(parent(j)))

else p_XyP(i, j, z(j), 0))

} // for

val best = prob.argmax ()

(best, cn(best), prob(best))

} // classify

5.7.5 Cross-Validation

Again there are two classes: TANBayes0 that uses conventional “additive” cross-validation and TANBayes

that uses nore efficient “subtractive” cross-validation.
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TANBayes0 Class

Class Methods:

@param x the integer-valued data vectors stored as rows of a matrix

@param y the class vector, where y(l) = class for row l of the matrix, x(l)

@param fn_ the names for all features/variables

@param k the number of classes

@param cn_ the names for all classes

@param me use m-estimates (me == 0 => regular MLE estimates)

@param vc the value count (number of distinct values) for each feature

class TANBayes0 (x: MatriI, y: VectoI, fn_ : Strings = null, k: Int = 2, cn_ : Strings = null,

me: Double = me_default, protected var vc: Array [Int] = null)

extends BayesClassifier (x, y, fn_, k, cn_)

def train (itest: IndexedSeq [Int]): TANBayes0 =

def computeParent (idx: IndexedSeq [Int])

override def getParent: VectoI = parent

protected def updateFreq (i: Int)

def maxSpanningTree (ch: Array [SET [Int]], elabel: Map [Pair, Double]): MinSpanningTree =

def computeVcp ()

def classify (z: VectoI): (Int, String, Double) =

def reset ()

def printConditionalProb ()

The TANBayes class is similar, but uses a more efficient cross-validation method.

5.7.6 Exercises

1. Use the Integer-based TANBayes to build classifiers for (a) the ExampleTennis problem and (b) the

Breast Cancer problem (data in breast-cancer.arff file). Compare its accuracy to that of NullModel

and NaiveBayes.

2. Re-engineer TANBayes to use correlation instead of conditional mutual information. Compare the

results with the current TANBayes implementation.
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5.8 Forest Augmented Näıve Bayes

The FANBayes class implements a Forest Augmented Näıve (FAN) Bayes Classifier suitable for discrete input

data.
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5.9 Network Augmented Näıve Bayes

The TwoNANBayes class implements a Network Augmented Näıve (NAN) Bayes Classifier suitable for discrete

input data, that is restricted to at most two x-parents. It is a special case of a general Network Augmented

Näıve (NAN) Bayes Classifier, also know as a Bayesian Network Classifier.

5.9.1 Bayesian Network Classifier

A Bayesian Network Classifier [2] is used to classify a discrete input data vector x by determining which of

k classes has the highest Joint Probability of x and the response/outcome y (i.e., one of the k classes) of

occurring.

P (y, x0, x1, . . . , xn−1)

Using the Chain Rule of Probability, the Joint Probability calculation can factored into multiple calcu-

lations of conditional probabilities as well as the class probability of the response. For example, given three

variables, the joint probability may be factored as follows:

P (x0, x1, x2) = P (x0)P (x1|x0)P (x2|x0, x1)

Conditional dependencies are specified using a Directed Acyclic Graph (DAG). A feature/variable rep-

resented by a node in the network is conditionally dependent on its parents only,

y∗ = argmax
y∈Dy

P (y)

n−1∏
j=0

P (xj |xp(j), y)

where xp(j) is the vector of features/variables that xj is dependent on, i.e., its parents. In our model, each

variable has dependency with the response variable y (a defacto parent). Note, some more general BN

formulations do not distinguish one of the variables to be the response y as we do.

Conditional probabilities are recorded in tables referred to as Conditional Probability Tables (CPTs).

Each variable will have a CPT and the number of columns in the table is governed by the number of other

variables it is dependent upon. If this number is large, the CPT may become prohibitively large.

5.9.2 Structure Learning

For TwoNANBayes the parents of variable xj are recoded in a vector xp(j) of length 0, 1 or 2. Although the

restriction to at most 2 parents might seem limiting, the problem of finding the optimal structure is still

NP-hard [5].

5.9.3 Conditional Probability Tables

Example Problem:

Class Methods:
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@param dag the directed acyclic graph specifying conditional dependencies

@param table the array of tables recording conditional probabilities

@param k the number of classes

class BayesNetwork (dag: DAG, table: Array [Map [Int, Double]], k: Int)

extends Classifier with Error

def jp (x: VectoI): Double =

def cp (i: Int, key: VectoI): Double =

def train ()

override def classify (z: VectoI): Int =

def classify (z: VectoD): Int =
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5.10 Markov Network

A Markov Network is a probabilistic graphical model where directionality/causality between random variables

is not considered, only their bidirectional relationships. In general, let x be an n-dimensional vector of random

variables.

x = [x0, . . . xn−1]

Given a data instance x, its likelihood of occurrence is given by the joint proabability.

P (x = x)

In order to compute the joint proabability, it needs to be factored based on conditional independencies. These

conditional independencies may be illustrated graphically, by creating a vertex for each random variable xi

and letting the structure of the graph reflect the conditional independencies,

xi ⊥ xk | {xj}

such that removal of the vertices in the set {xj} will disconnect xi and xk in the graph. These conditional

independencies may be exploited to factor the joint probability, e.g.,

P (xi, xk | {xj}) = P (xi | {xj})P (xk | {xj})

When two random variables are directedly connected by an undirected edge (denoted xi − xj) they cannot

to separated by removal of other vertices. Together they form an Undirected Graph G(x, E) where the

vertex-set is the set of random variables x and the edge-set is defined as follows:

E = {xi − xj |xi and xj are not conditionally independent}

When the random variables are distributed in space, the Markov Network may from a grid, in which case

the network is often referred to as a Markov Random Field (MRF).

5.10.1 Markov Blanket

A vertex in the graph xi will be conditionally independent of all other vertices, except those in its Markov

Blanket. The Markov Blanket for random variable xi is simply the immediate neighbors of xi in G:

B(xi) = {xj |xi − xj ∈ E} (5.12)

The edges E are selected so that random variable xi will be conditionally independent of any other (k 6= i)

random variable xk that is not in its Markov blanket.

xi ⊥ xk |B(xi) (5.13)
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5.10.2 Factoring the Joint Probability

Factorization of the joint probability is based on the graphical structure of G that reflects the conditional

independencies. It has been shown (see the Hammersley-Clifford Theorem) that P (x) may be factored

according the set of maximal cliques1 Cl in graph G.

P (x) =
1

Z

∏
c∈Cl

φc(xc) (5.14)

For each clique c in the set Cl, a potential function φc(xc) is defined. (Potential functions are non-negative

functions that are used in place of marginal/conditional probabilities and need not sum to one; hence the

normalizing constant Z).

Suppose a graph G([x0, x1, x2, x3, x4], E) has two maximal cliques, Cl = {[x0, x1, x2], [x2, x3, x4]} then

P (x) =
1

Z
φ0(x0, x1, x2)φ1(x2, x3, x4)

5.10.3 Exercises

1. Consider the random vector x = [x0, x1, x2] with conditional independency

x0 ⊥ x1 |x2

show that

P (x0, x1, x2) = P (x2)P (x0 |x2)P (x1 |x2)

1a clique is a set of vertices that are fully connected
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5.11 Decision Tree ID3

A Decision Tree (or Classification Tree) classifier [21, 20] will take an input vector x and classify it, i.e., give

one of k class values to y by applying a set of decision rules configured into a tree. Abstractly, the decision

rules may be viewed as a function f .

y = f(x) = f(x0, x1, . . . , xn−1) (5.15)

The DecisionTreeID3 [17] class implements a Decision Tree classifier using the Iterative Dichotomiser

3 (ID3) algorithm. The classifier is trained using an m-by-n data matrix X and a classification vector y.

Each data vector in the matrix is classified into one of k classes numbered 0, 1, . . . , k − 1. Each column in

the matrix represents a x-variable/feature (e.g., Humidity). The value count vc vector gives the number of

distinct values per feature (e.g., 2 for Humidity).

5.11.1 Entropy

In decision trees, the goal is to reduce the disorder in decision making. Assume the decision is of the

yes(1)/no(0) variety and consider the following decision/classification vectors: y = (1, 1, . . . , 1, 1) or y′ =

(1, 0, . . . , 1, 0). In the first case all the decisions are yes, while in the second, three are an equal number of yes

and no decisions. One way to measure the level of disorder is Shannon entropy. To compute the Shannon

entropy, first convert the m-dimensional decision/classification vector y into a k-dimensional probability

vector p. The frequency and toProbability functions in the Probability object may be used for this

task (see NullModel from the last chapter).

For the two cases, p = (1, 0) and p′ = (.5, .5), so computing the Shannon entropy H(p),

H(p) = −
k−1∑
i=0

pi log2(pi) (5.16)

we obtain H(p) = 0 and H(p′) = 1, which indicate that there is no disorder in the first case and maximum

disorder in the second case.

def entropy (p: VectoD): Double =

{

var sum = 0.0

for (pi <- p if pi > 0.0) sum -= pi * log2 (pi)

sum // return entropy, a number in the interval [0, max]

} // entropy

Letting the dimensionality of the probability vector be k, the maximum entropy is given by log2(1/k), which

is 1 for k = 2. The maximum base-k entropy is always 1.

H(p) = −
k−1∑
i=0

pi logk(pi)

Entropy is used as measure of the impurity of a node (e.g., to what degree is it a mixture of ‘-’ and ‘+’).

For a discussion of additional measures see [20]. For a deeper dive into entropy, relative entropy and mutual

information see [6].
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5.11.2 Example Problem

Let us consider the Tennis example from NullModel and NaiveBayes and compute the entropy level for the

decision of whether to play tennis. There are 14 days worth of training data see Table 5.12, which indicate

that for 9 of the days the decision was yes (play tennis) and for 5 it was no (do not play). Therefore, the

entropy (if no features/variables are considered) is

Table 5.12: Tennis Example

Day x−0 x−1 x−2 x−3 y

1 2 2 1 0 0

2 2 2 1 1 0

3 1 2 1 0 1

4 0 1 1 0 1

5 0 0 0 0 1

6 0 0 0 1 0

7 1 0 0 1 1

8 2 1 1 0 0

9 2 0 0 0 1

10 0 1 0 0 1

11 2 1 0 1 1

12 1 1 1 1 1

13 1 2 0 0 1

14 0 1 1 1 0

H(p) = H( 5
14 ,

9
14 ) = − 5

14 log2( 5
14 )− 9

14 log2( 9
14 ) = 0.9403

Recall that the features are Outlook x0, Temp x1, Humidity x2, and Wind x3. To reduce entropy, find

the feature/variable that has the greatest impact on reducing disorder. If feature/variable j is factored into

the decision making, entropy is now calculated as follows:

vcj−1∑
v=0

ν(x:j = v}
m

H(px:j=v)

where ν(x:j = v} is the frequency count of value v for column vector x:j in matrix X. The sum is the

weighted average of the entropy over all possible vcj values for variable j.

To see how this works, let us compute new entropy values assuming each feature/variable is used, in turn,

as the principal feature for decision making. Starting with feature j = 0 (Outlook) with values of Rain (0),

Overcast (1) and Sunny (2), compute the probability vector and entropy for each value and weight them by

how often that value occurs.

2∑
v=0

ν(x−0 = v)

m
H(px−0=v)
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For v = 0, we have 2 no (0) cases and 3 yes (1) cases (2−,3+), for v = 1, we have (0−,4+) and for v = 2,

we have (3−,2+).

ν(x−0 = 0)

14
H(px−0=0) +

ν(x−0 = 1)

14
H(px−0=1) +

ν(x−0 = 2)

14
H(px−0=2)

5
14H(px−0=0) + 4

14H(px−0=1) + 5
14H(px−0=2)

We are left with computing three entropy values:

H(px−0=0) = H( 2
5 ,

3
5 ) = − 2

5 log2( 2
5 )− 3

5 log2( 3
5 ) = 0.9710

H(px−0=1) = H( 0
4 ,

4
4 ) = − 0

4 log2( 0
4 )− 4

4 log2( 4
4 ) = 0.0000

H(px−0=2) = H( 3
5 ,

2
5 ) = − 3

5 log2( 3
5 )− 2

5 log2( 2
5 ) = 0.9710

The weighted average is then 0.6936, so that the drop in entropy (also called information gain) is 0.9403 -

0.6936 = 0.2467. As shown in Table 5.13, the other entropy drops are 0.0292 for Temperature (1), 0.1518

for Humidity (2) and 0.0481 for Wind (3).

Table 5.13: Choices for Principal Feature

j Variable/Feature Entropy Entropy Drop

0 Outlook 0.6936 0.2467

1 Temperature 0.9111 0.0292

2 Humidity 0.7885 0.1518

3 Wind 0.8922 0.0481

Hence, Outlook (j = 0) should be chosen as the principal feature for decision making. As the entropy is

too high, make a tree with Outlook (0) as the root and make a branch for each value of Outlook: Rain (0),

Overcast (1), Sunny (2). Each branch defines a sub-problem.

Sub-problem x0 = 0

The sub-problem for Outlook: Rain (0) see Table 5.14 is defined as follows: Take all five cases/rows in the

data matrix X for which x−0 = 0.

Table 5.14: Sub-problem for node x0 and branch 0

Day x−1 x−2 x−3 y

4 1 1 0 1

5 0 0 0 1

6 0 0 1 0

10 1 0 0 1

14 1 1 1 0

If we select Wind (j = 3) as the next variable, we obtain the following cases: For v = 0, we have (0−,3+),

so the probability vector and entropy are
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px−3=0 = ( 0
5 ,

3
5 ) H(px−3=0) = 0

For v = 1, we have (2−,0+), so the probability vector and entropy are

px−3=1 = ( 2
5 ,

0
5 ) H(px−3=1) = 0

If we stop expanding the tree at this point, we have the following rules.

if x0 = 0 then

if x3 = 0 then yes

if x3 = 1 then no

if x0 = 1 then yes

if x0 = 2 then no

The overall entropy can be calculated as the weighted average of all the leaf nodes.

3
14 · 0 + 2

14 · 0 + 4
14 · 0 + 5

14 · .9710 = .3468

Sub-problem x0 = 2

Note that if x0 = 1, the entropy for this case is already zero, so this node need not be split and remains as

a leaf node. There is still some uncertainty left when x0 = 2, so this node may be split. The sub-problem

for Outlook: Rain (2) see Table 6.1 is defined as follows: Take all five cases/rows in the data matrix X for

which x0 = 2.

Table 5.15: Sub-problem for node x0 and branch 2

Day x−1 x−2 x−3 y

1 2 1 0 0

2 2 1 1 0

8 1 1 0 0

9 0 0 0 1

11 1 0 1 1

It should be obvious that y = 1− x−2. For v = 0, we have (0−,2+), so the probability vector and entropy

are

px−2=0 = ( 0
5 ,

2
5 ) H(px−3=0) = 0

For v = 1, we have (3−,0+), so the probability vector and entropy are

px−2=1 = ( 3
5 ,

0
5 ) H(px−3=0) = 0

At this point, the overall entropy is zero and the decsiion tree is the following (shown as a pre-order

traveral from ScalaTion).
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Decision Tree:

[ Node[0] b-1 : f = x0 ( 5-, 9+ ) ]

[ Node[1] b0 : f = x3 ( 2-, 3+ ) ]

[ Leaf[2] b0 : y = 1 ( 0-, 3+ ) ]

[ Leaf[3] b1 : y = 0 ( 2-, 0+ ) ]

[ Leaf[4] b1 : y = 1 ( 0-, 4+ ) ]

[ Node[5] b2 : f = x2 ( 3-, 2+ ) ]

[ Leaf[6] b0 : y = 1 ( 0-, 2+ ) ]

[ Leaf[7] b1 : y = 0 ( 3-, 0+ ) ]

The above process of creating the decision tree is done by a recursive, greedy algorithm. As with many

greedy algorithms, it does not guarantee an optimal solution.

5.11.3 Early Termination

Producing a complex decision tree with zero entropy may suggest overfitting, so that a simpler tree may

be more robust. One approach would be terminate once entropy decreases to a certain level. One problem

with this is that expanding a different branch could have led to a lower entropy with a tree of no greater

complexity. Another approach is simply to limit the depth of the tree. Simple decision trees with limited

depth are commonly used in Random Forests, a more advanced technique discussed in Chapter 6.

5.11.4 Pruning

An alternative to early termination is to build a complex tree and then prune the tree. Pruning involves

selecting a node whose children are all leaves and undoing the split that created the children. Compared

to early termination, pruning will take more time to come up with the solution. For the tennis example,

pruning could be used to turn node 5 into a leaf node (pruning away two nodes) where the decision would

be the majority decision y = 1. The entropy for this has already been calculated to be .3468. Instead node

1 could be turned into a leaf (pruning away two nodes). This case is symmetric to the other one, so the

entropy would be .3468, but the decision would be y = 0. The original ID3 algorithm did not use pruning,

but its follow on algorithm C4.5 does (see Chapter 6). The ScalaTion implementation of ID3 does support

pruning.

DecisionTreeID3 Class

Class Methods:

@param x the data vectors stored as rows of a matrix

@param y the class array, where y_i = class for row i of the matrix x

@param fn_ the names for all features/variables

@param k the number of classes

@param cn_ the names for all classes

@param vc the value count array indicating number of distinct values per feature

@param td the maximum tree depth to allow
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class DecisionTreeID3 (x: MatriI, y: VectoI, fn_: Strings = null, k: Int = 2, cn_: Strings = null,

private var vc: Array [Int] = null, td: Int = -1)

extends ClassifierInt (x, y, fn_, k, cn_)

def frequency (dset: Array [(Int, Int)], value: Int): (Double, VectoI, VectoD) =

def gain (f: Int, path: List [(Int, Int)]): (Double, VectoI) =

def train (itest: IndexedSeq [Int]): DecisionTreeID3 =

def calcEntropy (listOfLeaves: ArrayBuffer [LeafNode]): Double =

def buildTree (path: List [(Int, Int)], depth: Int): FeatureNode =

def prune (threshold: Double, fold: Int = 5): DecisionTreeID3 =

def compareModel (folds: Int, threshold: Double) =

def printTree ()

def classify (z: VectoI): (Int, String, Double) =

def reset ()

5.11.5 Exercises

1. Show for k = 2 where pp = [p, 1− p], that H(pp) = p log2(p) + (1− p) log2(1− p). Plot H(pp) versus

p.

val p = VectorD.range (1, 100) / 100.0

val h = p.map (p => -p * log2 (p) - (1-p) * log2 (1-p)

new Plot (p, h)

2. The Tennis example (see NaiveBayes) can also be analyzed using decisions trees.

val id3 = new DecisionTreeID3 (x, y, fn, k, cn, vc) // create the classifier

id3.train ()

val z = VectorI (2, 2, 1, 1) // new vector to classify

println (s"classify ($z) = ${id3.classify (z)}")

Use DecisionTreeID3 to build classifiers for the ExampleTennis problem. Compare its accuracy to

that of NullModel, NaiveBayes and TANBayes.

3. Do the same for the Breast Cancer problem (data in breast-cancer.arff file).

4. For the Breast Cancer problem, evaluate the effectiveness of the prune method.

5. Again for the Breast Cancer problem, explore the results for various limitations to the maximum tree

depth via the td parameter.
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5.12 Hidden Markov Model

A Hidden Markov Model (HMM) provides a natural way to study a system with an internal state and

external observations. One could image looking at a flame and judging the temperature (internal state) of

the flame by its color (external observation). When this is treated as a discrete problem, an HMM may be

used; whereas, as a continuous problem, a Kalman Filter may be used (see section FIX). For HMMs, we

assume that the internal state is unknown (hidden), but may be predicted by from the observations.

Consider two discrete-valued, discrete-time stochastic processes. The first process represents the internal

state of a system

{xt : t ∈ {0, . . . T − 1}}

while the second process represents corresponding observations of the system

{yt : t ∈ {0, . . . T − 1}}

The internal state influences the observations. In a deterministic setting, one might imagine

yt = f(xt)

Unfortunately, since both xt and yt are both stochastic processes, their trajectories need to be described

probabilistically. For tractability and because it often suffices, the assumption is made that the state xt is

only significantly influenced by its previous state xt−1.

P (xt|xt−1, xt−2, x0) = P (xt|xt−1)

In other words, the transitions from state to state are governed by a discrete-time Markov chain and char-

acterized by state-transtion probability matrix A = [aij ], where

aij = P (xt = j|xt−1 = i)

The influence of the state upon the observation is also characterized by emission probability matrix B = [bkj ],

where

bjk = P (yt = k|xt = j)

is the conditional probability of the observation being k when the state is j. This represents a second

simplifying assumption that the observation is effectively independent of prior states or observations. To

predict the evolution of the system, it is necessary to characterize the initial state of the system x0.

πj = P (xt = j)

The dynamics of an HMM model is thus represented by two matrices A, B and an intial state probability

vector π.
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5.12.1 Example Problem

Let the system under study be a lane of road with a sensor to count traffic flow (number of vehicles passing

the sensor in a five minute period). As a simple example, let the state of the road be whether or not there

is an accident ahead. In other words, the state of road is either 0 (No-accident) or 1 (Accident). The only

information avialable is the traffic counts and of course historical information for training an HMM model.

Suppose the chance of an accident ahead is 10%.

π = [0.9, 0.1]

From historical information, two transition probabilities are estimated: the first is for the transition from

no accident to accident which is 20%; the second from accident to no-accident state (i.e., the accident has

been cleared) which is 50% (i.e., probability of one half that the accident will be cleared by the next time

increment). The number of states n = 2. Therefore, the state-transition probability matrix A is[
0.8 0.2

0.5 0.5

]
As A maps states to state, A is an n-by-n matrix.

Clearly, the state will influence the traffic flow (tens of cars per 5 minutes) with possible values of 0, 1,

2, 3. The number of observed values m = 4. Again from historical data the emission probability matrix B

is estimated to be [
0.1 0.2 0.3 0.4

0.5 0.2 0.2 0.1

]
As B maps states to observed values, B is an n-by-m matrix.

One question to address is, given a time series (observations sequence), what corresponding sequence of

states gives the highest probability of occurrence to the observed sequences.

y = [3, 3, 0]

This may be done by computing the joint probability P (x,y)

P (NNN,y) = π0 · b03 · a00 · b03 · a00 · b00 = 0.9 · 0.4 · 0.8 · 0.4 · 0.8 · 0.1 = 0.009216

P (NNA,y) = π0 · b03 · a00 · b03 · a01 · b10 = 0.9 · 0.4 · 0.8 · 0.4 · 0.2 · 0.5 = 0.011520

P (NAN,y) = π0 · b03 · a01 · b13 · a10 · b00 = 0.9 · 0.4 · 0.2 · 0.1 · 0.5 · 0.1 = 0.000360

P (NAA,y) = π0 · b03 · a01 · b13 · a11 · b10 = 0.9 · 0.4 · 0.2 · 0.1 · 0.5 · 0.5 = 0.001800

P (ANN,y) = π1 · b03 · a10 · b03 · a00 · b00 = 0.1 · 0.1 · 0.5 · 0.4 · 0.8 · 0.1 = 0.000160

P (ANA,y) = π1 · b03 · a10 · b03 · a01 · b10 = 0.1 · 0.1 · 0.5 · 0.4 · 0.2 · 0.5 = 0.000200

P (AAN,y) = π1 · b03 · a11 · b13 · a10 · b00 = 0.1 · 0.1 · 0.5 · 0.1 · 0.5 · 0.1 = 0.000025

P (AAA,y) = π1 · b03 · a11 · b13 · a11 · b10 = 0.1 · 0.1 · 0.5 · 0.1 · 0.5 · 0.5 = 0.000125

The state giving the highest probability is x = NNA. The marginal probability of the observed sequence

P (y) can be computed by summing over all eight states.
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P (y) =
∑
x

P (x,y) = 0.023406

The algorithms given in the subsections below are adapted from [25]. For these algorithms, we divide

the time series/sequence of obseverations into two parts (past and future).

yt− = [y0, y1, yt]

yt+ = [yt+1, yt+2, yT−1]

They allow one to calculate (1) the probability of arriving in a state at time t with observations yt−, (2) the

conditional probability of seeing future observations yt+ from a given state at time t, and (3) the conditional

probability of being in a state at time t given all the observations y.

5.12.2 Forward Algorithm

For longer observation sequences/time series, the approach of summing over all possible state vectors (of

which there are nT ) will become intractable. Much of the computation is repetitive anyway. New matrices

A, B and Γ are defined to save such intermediate calculations.

The forward algorithm (α-pass) computes the A matrix. The probability of being in state j at time t

having observations up to time t is given by

αtj = P (xt = j,y = yt−)

Computation of αtj may be done efficiently using the following recurrence.

αtj = bj,yt

n−1∑
i=0

αt−1,i aij = bj,yt [αt−1 · a:j ]

To get to state j at time t, the system must transition from some state i at time t − 1 and at time t emit

the value yt. These values may be saved in a T -by-n matrix A = [αtj ] and efficiently computed by moving

forward in time.

def forwardEval0 (): MatrixD =

{

for (j <- rstate) alp(0, j) = pi(j) * b(j, y(0))

for (t <- 1 until tt) {

for (j <- rstate) {

alp(t, j) = b(j, y(t)) * (alp(t-1) dot a.col(j))

} // for

} // for

alp

} // forwardEval0

The marginal probability is now simply the sum of the elements in the last row of the α matrix

P (y) =

n∑
j=0

αT−1,j

ScalaTion also provides a forwardEval method that uses scaling to avoid underflow.
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5.12.3 Backward Algorithm

The backward algorithm (β-pass) computes the B matrix. The conditional probability of having future

observations after time t (y = yt+) given the current state xt = i is

βti = P (y = yt+|xt = i)

Computation of βtj may be done efficiently using the following recurrence.

βti =

n−1∑
j=0

aij bj,yt+1
βt+1,j

From state i at time t, the system must transition to some state j at time t+ 1 and at time t+ 1 emit the

value yt+1. These values may be saved in a T -by-n matrix B = [βti] and efficiently computed by moving

backward in time.

def backwardEval0 (): MatrixD =

{

for (i <- rstate) bet(tt-1, i) = 1.0

for (t <- tt-2 to 0 by -1) {

for (i <- rstate) {

bet(t, i) = 0.0

for (j <- rstate) bet(t, i) += a(i, j) * b(j, y(t+1)) * bet(t+1, j)

} // for

} // for

bet

} // backwardEval0

ScalaTion also provides a backwardEval method that uses scaling to avoid underflow.

5.12.4 Viterbi Algorithm

The Viterbi algorithm (γ-pass) computes the Γ matrix. The conditional probability of the state at time t

being i, given all observations (y = y) is

γti = P (xt = i|y = y)

As αti captures the probability up to time t and βti captures the probability after time t, the conditional

probability may be calculated as follows:

γti =
αtiβti
P (y)

In ScalaTion, the Γ = [γti] matrix is calculated using the Hadamard product.

def gamma (alp: MatriD, bet: MatriD): MatriD = (alp ** bet) / probY (alp)

The conditional probability of being in state i at time t and transitioning to state j at time t+ 1 given

all observations (y = y) is
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γtij = P (xt = i, xt+1 = j|y = y)

Note, this equation is not defined for the last time point T − 1, since there is no next state. Getting to state

i at time t is characterized by αti, the probability of the state transitioning to from i to j is characterized

aij , the probability of emitting yt+1 from state j at time t+ 1 is bj,yt+1
, and finally going from state j to the

end is characterized by βt+1,j .

γtij =
αtiaijbj,yt+1

βt+1,j

P (y)

The Viterbi Algorithm viterbiDecode computes the Γ matrix (gam in code) from scaled versions of alp and

bet. It also computes the Γ = [γtij ] tensor (gat in code).

5.12.5 Training

The train method will call forwardEval, backwardEval and viterbiDecode to calculate updated values

for the A, B and Γ matrices as well as for the Γ tensor. These values are used to reestimate the π, A and

B parameters.

def train (itest: Ints): HiddenMarkov =

{

var oldLogPr = 0.0

for (it <- 1 to MIT) {

val logPr = logProbY (true)

if (logPr > oldLogPr) {

oldLogPr = logPr

forwardEval ()

backwardEval ()

viterbiDecode ()

reestimate ()

} else {

println (s"train: HMM model converged after $it iterations")

return this

} // if

} // for

println (s"train: HMM model did not converged after $MIT iterations")

this

} // train

The training loop will terminate early when there is no improvement to P (y). To avoid underflow −log(P (y)

is used.

5.12.6 Reestimation of Parameters

The parameters for an HMM model are π,A and B and may be adjusted to maximize the probability of

seeing the observation vector P (y). Since α0i = πibi,y(0), we can reestimation π as follows:

πi =
α0i

bi,y0
= γ0i
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The A matrix can re-estimated as follows:

aij =

∑T−2
t=0 γtij∑T−2
t=0 γti

Similarly, the B matrix can re-estimated as follows:

bik =

∑T−1
t=0 Iyt=k γti∑T−1

t=0 γti

The detailed derivations are left to the exercises.

HiddenMarkov Class

Class Methods:

@param y the observation vector/observed discrete-valued time series

@param m the number of observation symbols/values {0, 1, ... m-1}

@param n the number of (hidden) states in the model

@param cn_ the class names for the states, e.g., ("Hot", "Cold")

@param pi the probabilty vector for the initial state

@param a the state transition probability matrix (n-by-n)

@param b the observation probability matrix (n-by-m)

class HiddenMarkov (y: VectoI, m: Int, n: Int, cn_ : Strings = null,

private var pi: VectoD = null,

private var a: MatriD = null,

private var b: MatriD = null)

extends ClassifierInt (null, y, null, n, cn_)

override def size: Int = n

def parameter: VectoD = pi

def parameters: (MatriD, MatriD) = (a, b)

def jointProb (x: VectoI): Double =

def forwardEval0 (): MatriD =

def probY (scaled: Boolean = false): Double =

def logProbY (scaled: Boolean = false): Double =

def backwardEval0 (): MatriD =

def gamma (): MatriD = (alp ** bet) / probY ()

def forwardEval (): MatriD =

def getC: VectoD = c

def backwardEval (): MatriD =

def viterbiDecode (): MatriD =

def reestimate ()

def train (itest: Ints): HiddenMarkov =
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override def report: String =

def classify (z: VectoI): (Int, String, Double) =

def reset () {}

5.12.7 Exercises

1. Show that for t ∈ {0, . . . T − 2},

γti =

n−1∑
j=0

γtij

2. Show that

πi =
α0i

bi,y0
= γ0i

3. Show that

aij =

∑T−2
t=0 γtij∑T−2
t=0 γti

4. Show that

bik =

∑T−1
t=0 Iyt=k γti∑T−1

t=0 γti
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Chapter 6

Classification: Continuous Variables

For the problems in this chapter, the response/classification variable is still discrete, but some/all of the

feature variables are now continuous. Techniquely, classification problems fit in this category, if it is infeasible

or nonproductive to compute frequency counts for all values of a variable (e.g., for xj , the value count

vcj = ∞). If a classification problem almost fits in the previous chapter, one may consider the use of

binning to convert numerical variables into categorical variables (e.g, convert weight into weight classes).

Care should be taken since binning represents hidden parameters in the model and arbitrary choices may

influence results.
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6.1 ClassifierReal

The ClassifierReal abstract class provides a common foundation for several classifiers that operate on

continuous (or real-valued) data.

Class Methods:

@param x the real-valued training data vectors stored as rows of a matrix

@param y the training classification vector, where y_i = class for row i of the matrix x

@param fn the names of the features/variables

@param k the number of classes

@param cn the names for all classes

@param hparam the hyper-parameters

abstract class ClassifierReal (x: MatriD, y: VectoI, protected var fn: Strings,

k: Int, protected var cn: Strings, hparam: HyperParameter)

extends ConfusionFit (y, k) with Classifier

def vc_default: Array [Int] = Array.fill (n)(2)

def size: Int = m

def test (itest: Ints): Double =

def test (xx: MatriD, yy: VectoI): Double =

def eval (xx: MatriD, yy: VectoD = null): ClassifierReal =

def crossValidate (nx: Int = 10, show: Boolean = false): Array [Statistic] =

def crossValidateRand (nx: Int = 10, show: Boolean = false): Array [Statistic] =

def hparameter: HyperParameter = hparam

def report: String =

def classify (z: VectoI): (Int, String, Double) = classify (z.toDouble)

def classify (xx: MatriD = x): VectoI =

def calcCorrelation: MatriD =

def calcCorrelation2 (zrg: Range, xrg: Range): MatriD =

def featureSelection (TOL: Double = 0.01)
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6.2 Gaussian Naive Bayes

The NaiveBayesR class implements a Gaussian Näıve Bayes Classifier, which is the most commonly used

such classifier for continuous input data. The classifier is trained using a data matrix X and a classification

vector y. Each data vector in the matrix is classified into one of k classes numbered 0, 1, . . . , k − 1.

Class probabilities are calculated based on the population of each class in the training-set. Relative

probabilities are computed by multiplying these by values computed using conditional density functions

based on the Normal (Gaussian) distribution. The classifier is näıve, because it assumes feature independence

and therefore simply multiplies the conditional densities.

Starting with main results from the section on Näıve Bayes (equation 4.5),

y∗ = argmax
y∈{0,...,k−1}

P (y)

n−1∏
j=0

P (xj |y)

if all the variables xj are continuous, we may switch from conditional probabilities P (xj |y) to conditional

densities f(xj |y). The best prediction for class y is the value y∗ that maximizes the product of the conditional

densities multiplied by the class probability.

y∗ = argmax
y∈{0,...,k−1}

P (y)

n−1∏
j=0

f(xj |y) (6.1)

Although the formula assumes the conditional independence of xjs, the technique can be applied as long as

correlations are not too high.

Using the Gaussian assumption, the conditional density of xj given y, is approximated by estimating the

two parameters of the Normal distribution,

xj |y ∼ Normal(µc, σ
2
c )

where class c ∈ {0, 1, . . . , k − 1}, µc = E [x|y = c] and σ2
c = V [x|y = c]). Thus, the conditional density

function is

f(xj |y = c) =
1√

2πσc
e
− (x−µc)2

2σ2c

Class probabilities P (y = c) may be estimated as mc
m , where mc is the frequency count of the number of

occurrences of c in the class vector y. Conditional densities are needed for each of the k class values, for each

of the n variables (each xj) (i.e., kn are needed). Corresponding means and variances may be estimated as

follows:

µ̂cj =
1

mc

m−1∑
i=0

(xij |yi = c)

σ̂2
cj =

1

mc − 1

m−1∑
i=0

((xij − µ̂cj)2|yi = c)

Using conditional density (cd) functions estimated in the train function (see code for details), an input

vector z can be classified using the classify function.
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def classify (z: VectoD): Int =

{

for (c <- 0 until k; j <- 0 until n) prob(c) *= cd(c)(j)(z(j))

prob.argmax () // class c with highest probability

} // classify

Class Methods:

@param x the real-valued data vectors stored as rows of a matrix

@param y the class vector, where y_i = class for row i of the matrix x, x(i)

@param fn_ the names for all features/variables

@param k the number of classes

@param cn_ the names for all classes

class NaiveBayesR (x: MatriD, y: VectoI, fn_ : Strings = null, k: Int = 2,

cn_ : Strings = null)

extends ClassifierReal (x, y, fn_, k, cn_)

def calcStats ()

def calcHistogram (x_j: VectoD, intervals: Int): VectoD =

def train (itest: IndexedSeq [Int]): NaiveBayesR =

override def classify (z: VectoD): (Int, String, Double) =

def reset ()

6.2.1 Exercises

1. Use NaiveBayesR to classify manufactured parts according whether they should pass quality con-

trol based on curvature and diameter tolerances. See people.revoledu.com/kardi/tutorial/LDA/

Numerical%20Example.html for details.

// features/variable:

// x1: curvature

// x2: diameter

// y: classification: pass (0), fail (1)

// x1 x2 y

val xy = new MatrixD ((7, 3), 2.95, 6.63, 0, // joint data matrix

2.53, 7.79, 0,

3.57, 5.65, 0,

3.16, 5.47, 0,

2.58, 4.46, 1,

2.16, 6.22, 1,
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3.27, 3.52, 1)

val fn = Array ("curvature", "diameter") // feature names

val cn = Array ("pass", "fail") // class names

val cl = NaiveBayesR (xy, fn, 2, cn) // create NaiveBayesR classifier
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6.3 Simple Logistic Regression

The SimpleLogisticRegression class supports simple logistic regression. In this case, the predictor vector

x is two-dimensional [1, x1]. Again, the goal is to fit the parameter vector b in the regression equation

y = b · x + ε = b0 + b1x1 + ε

where ε represents the residuals (the part not explained by the model). This looks like simple linear regression,

with the difference being that the response variable y is binary (y ∈ {0, 1}). Since y is binary, minimizing

the distance, as was done before, may not work well. First, instead of focusing on y ∈ {0, 1}, we focus on

the conditional probability of success py(x) ∈ [0, 1], i.e.,

py(x) = P (y = 1|x)

For example, the random variable y could be used to indicate whether a customer will pay back a loan (1)

or not (0). The predictor variable x1 could be the customer’s FICA score.

6.3.1 mtcars Example

Another example is from the Motor Trends Cars (mtcars) dataset (see https://stat.ethz.ch/R-manual/

R-devel/library/datasets/html/mtcars.html), gist.github.com/seankross/a412dfbd88b3db70b74b).

Try using mpg to predict/classify the car’s engine as either V-shaped(0) or Straight(1), as in V-6 or S-4. First,

use SimpleRegression to predict py(x) where y is V/S and x1 is mpg, (x = [1, x1]). Plot y versus x1 and then

add a vector to the plot for the predicted values for py. Utilizing simple linear regression to predict py(x)

would correspond to the following equation.

py(x) = b0 + b1x1

6.3.2 Logistic Function

The linear relationship between y and x1 may be problematic, in the sense that there is likely to be a range

of rapid transition before which loan default is likely and after which loan repayment is likely. Similarly,

there is rapid transition from S(1) to V(0) as mpg increases. This suggests that some “S-curve” function such

as the logistic function may be more useful. The standard logistic function (sigmoid function) is

logistic(z) =
1

1 + e−z
=

ez

1 + ez
(6.2)

Letting z = b0 + b1x1, we obtain

py(x) = logistic(b0 + b1x1) =
eb0+b1x1

1 + eb0+b1x1
(6.3)

6.3.3 Logit Function

The goal now is to transform the right hand side into the usual linear form (i.e., b · x).

py(x) =
eb·x

1 + eb·x
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Multiplying through by 1 + eb·x gives

py(x) + eb·xpy(x) = eb·x

Solving for eb·x yields

eb·x =
py(x)

1− py(x)

Taking the natural logarithm of both sides gives

ln
py(x)

1− py(x)
= b · x = b0 + b1x1 (6.4)

where the function on the left hand side is called the logit function.

logit(py(x)) = b · x = b0 + b1x1 (6.5)

Putting the model in this form shows it is a special case of a Generalized Linear Model (see Chapter 7) and

will be useful in the estimation procedure.

6.3.4 Maximum Likelihood Estimation

Imagine you wish to create a model that is able to generate data that looks like the observed data (i.e., the

data in the dataset). The choice of values for the parameters b (treated as a random vector) will impact the

quality of the model. Define a function of b that will be maximized when the parameters are ideally set to

generate the observed data.

6.3.5 Likelihood Function

We can think of this function as the likelihood of b given the predictor vector x and the response variable y.

L(b|x, y)

In this case, y ∈ {0, 1}, so if we estimate the likelihood for a single data instance (or row), we have

L(b|x, y) = py(x)y (1− py(x))1−y (6.6)

If y = 1, then L = py(x) and otherwise L = 1− py(x). These are the probabilities for the two outcomes for

a Bernoulli random variable (and equation 6.5 concisely captures both).

For each instance i ∈ {0, . . . ,m− 1}, a similar factor is created. These are multiplied together for all the

instances (in the dataset, or training or testing). The likelihood of b given the predictor matrix X and and

the response vector y is then

L(b|x, y) =

m−1∏
i=0

py(xi)
yi (1− py(xi))

1−yi (6.7)
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6.3.6 Log-likelihood Function

To reduce round-off errors, a log (e.g., natural log, ln) is taken

l(b|x, y) =

m−1∑
i=0

yi ln(py(xi)) + (1− yi)ln(1− py(xi))

This is referred as the log-likelihood function. Collecting yi terms give

l(b|x, y) =

m−1∑
i=0

yi ln
py(xi)

1− py(xi)
+ ln(1− py(xi))

Substituting b · xi for logit(py(xi)) gives

l(b|x, y) =

m−1∑
i=0

yi b · xi + ln(1− py(xi))

Now substituting
eb·xi

1 + eb·xi
for py(xi) gives

l(b|x, y) =

m−1∑
i=0

yi b · xi − ln(1 + eb·xi) (6.8)

Multiplying the log-likelihood by -2 makes the distribution approximately Chi-square [?].

−2l = − 2

m−1∑
i=0

yi b · xi − ln(1 + eb·xi)

Or since b = [b0, b1],

−2l = − 2

m−1∑
i=0

yi(b0 + b1xi1)− ln(1 + eb0+xi1)

Letting βi = b0 + b1xi1 gives

−2l = − 2

m−1∑
i=0

yiβi − ln(1 + eβi)

It is more numerically stable to perform a negative rather than positive ez function.

− 2l = − 2

m−1∑
i=0

yiβi − βi − ln(e−βi + 1) (6.9)

6.3.7 Computation in Scalation

The computation of −2l is carried out in ScalaTion via the ll method. It loops through all instances

computing βi (bx in the code) and summing all the terms given in equation 6.9.
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def ll (b: VectoD): Double =

{

var sum = 0.0

var bx = 0.0 // beta

for (i <- y.range) {

bx = b(0) + b(1) * x(i, 1)

sum += y(i) * bx - bx - log (exp (-bx) + 1.0)

} // for

-2.0 * sum

} // ll

6.3.8 Making a Decision

So far, SimpleLogisticRegression is a model for predicting py(x). In order to use this for binary classi-

fication a decision needs to be made: deciding on either 0 (no) or 1 (yes). A natural way to do this is to

choose 1 when py(x) exceeds 0.5.

override def classify (z: VectoD): (Int, String, Double) =

{

val p_y = sigmoid (b dot z)

val c = if (p_y > cThresh) 1 else 0

(c, cn(c), p_y)

} // classify

In some cases, this may results in imbalance between false positives and false negatives. Quality of

Fit (QoF) measures may improve by tuning the classification/descision threshold cThresh. Decreasing the

threshold pushes false negatives to false positives. Increasing the threshold does the opposite. Ideally, the

tuning of the threshold will also push more cases into the diagonal of the confusion matrix and minimize

errors. Finally, in some cases it may be more important to reduce one more than the other, false negatives

vs. false positives (see the exercises).

SimpleLogisticRegression Class

Class Methods:

@param x the input/input matrix augmented with a first column of ones

@param y the binary response vector, y_i in {0, 1}

@param fn_ the names for all features/variable

@param cn_ the names for both classes

class SimpleLogisticRegression (x: MatriD, y: VectoI, fn_ : Strings = Array ("one", "x1"),

cn_ : Strings = null)

extends ClassifierReal (x, y, fn_, 2, cn_)

def ll (b: VectoD): Double =

175



def ll_null (b: VectoD): Double =

def train (itest: IndexedSeq [Int]): SimpleLogisticRegression =

def train_null ()

def parameter: VectoD = b

override def fit (y: VectoI, yp: VectoI, k: Int = 2): VectoD =

override def fitLabel: Seq [String] = super.fitLabel ++

Seq ("n_dev", "r_dev", "aic", "pseudo_rSq")

override def classify (z: VectoD): (Int, String, Double) =

def reset () { /* Not Applicable */ }

6.3.9 Exercises

1. Plot the standard logistic function (sigmoid).

import scalation.analytics.ActivationFun.sigmoidV

val z = VectorD.range (0, 160) / 10.0 - 8.0

val fz = sigmoidV (z)

new Plot (z, fz)

2. For the mtcars dataset, determine the model parameters b0 and b1 directly (i.e., do not call train).

Rather perform a grid search for a minimal value of the ll function. Use the x matrix (one, mpg) and

y vector (V/S) from SimpleLogisticRegressionTest.

// 32 data points: One Mpg

val x = new MatrixD ((32, 2), 1.0, 21.0, // 1 - Mazda RX4

1.0, 21.0, // 2 - Mazda RX4 Wa

1.0, 22.8, // 3 - Datsun 710

1.0, 21.4, // 4 - Hornet 4 Drive

1.0, 18.7, // 5 - Hornet Sportabout

1.0, 18.1, // 6 - Valiant

1.0, 14.3, // 7 - Duster 360

1.0, 24.4, // 8 - Merc 240D

1.0, 22.8, // 9 - Merc 230

1.0, 19.2, // 10 - Merc 280

1.0, 17.8, // 11 - Merc 280C

1.0, 16.4, // 12 - Merc 450S

1.0, 17.3, // 13 - Merc 450SL

1.0, 15.2, // 14 - Merc 450SLC

1.0, 10.4, // 15 - Cadillac Fleetwood

1.0, 10.4, // 16 - Lincoln Continental

1.0, 14.7, // 17 - Chrysler Imperial

1.0, 32.4, // 18 - Fiat 128

1.0, 30.4, // 19 - Honda Civic
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1.0, 33.9, // 20 - Toyota Corolla

1.0, 21.5, // 21 - Toyota Corona

1.0, 15.5, // 22 - Dodge Challenger

1.0, 15.2, // 23 - AMC Javelin

1.0, 13.3, // 24 - Camaro Z28

1.0, 19.2, // 25 - Pontiac Firebird

1.0, 27.3, // 26 - Fiat X1-9

1.0, 26.0, // 27 - Porsche 914-2

1.0, 30.4, // 28 - Lotus Europa

1.0, 15.8, // 29 - Ford Pantera L

1.0, 19.7, // 30 - Ferrari Dino

1.0, 15.0, // 31 - Maserati Bora

1.0, 21.4) // 32 - Volvo 142E

// V/S (e.g., V-6 vs. I-4)

val y = VectorI (0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0,

0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1)

3. Compare the effectiveness of SimpleLogisticRegression versus SimpleRegression on the mtcars

dataset. See SimpleLogisticRegressionTest.

4. If the treatment for a disease is risky and consequences of having the disease are minimal, would you

prefer to focus on reducing false positives or false negatives?

5. If the treatment for a disease is safe and consequences of having the disease may be severe, would you

prefer to focus on reducing false positives or false negatives?
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6.4 Logistic Regression

The LogisticRegression class supports logistic regression. In this case, x may be multi-dimensional

[1, x1, . . . , xk]. Again, the goal is to fit the parameter vector b in the regression equation

y = b · x + ε = b0 + b1x1 + . . . + bkxk + ε

where ε represents the residuals (the part not explained by the model). This looks like multiple linear

regression. The difference being that the response variable y is binary (y ∈ {0, 1}). Since y is binary,

minimizing the distance, as was done before may not work well. First, instead of focusing on y ∈ {0, 1}, we

focus on the conditional probability of success py(x) ∈ [0, 1], i.e.,

py(x) = P (y = 1|x)

Still, py(x) is bounded, while b · x is not. We therefore, need a transformation, such as the logit transfor-

mation, and fit b · x to this function. Treating this as a GZLM problem,

y = µ(x) + ε

g(µ(x)) = b · x

we let the link function g = logit.

logit(µ(x)) = ln
py(x)

1− py(x)
= b · x

This is the logit regression equation. Second, instead of minimizing the sum of squared errors, we wish to

maximize the likelihood of predicting correct outcomes. For the ith training case xi with outcome yi, the

likelihood function is based on the Bernoulli distribution.

py(xi)
yi(1− py(xi))

1−yi

The overall likelihood function is the product over all m cases. The equation is the same as 6.6 from the

last section.

L(b|x, y) =

m−1∏
i=0

py(xi)
yi (1− py(xi))

1−yi (6.10)

Following the same derivation steps, will give the same log-likelihood that is in equation 6.7.

l(b|x, y) =

m−1∑
i=0

yi b · xi − ln(1 + eb·xi) (6.11)

Again, multiplying the log-likelihood function by -2 makes the distribution approximately Chi-square.

−2l = − 2

m−1∑
i=0

yi b · xi − ln(1 + eb·xi)

The likelihood can be maximized by minimizing −2l, which is a non-linear function of the parameter vector

b. Various optimization techniques may be used to search for optimal values for b. Currently, ScalaTion

uses BFGS, a popular general-purpose QuasiNewton NLP solver. Other possible optimizers include LBFGS

and IRWLS. For a more detailed derivation, see http://www.stat.cmu.edu/~cshalizi/350/lectures/26/

lecture-26.pdf.
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LogisticRegression Class

Class Methods:

@param x the input/data matrix augmented with a first column of ones

@param y the binary response vector, y_i in {0, 1}

@param fn_ the names for all features/variable

@param cn_ the names for all classes

class LogisticRegression (x: MatriD, y: VectoI, fn_ : Strings = null,

cn_ : Strings = null)

extends ClassifierReal (x, y, fn_, 2, cn_)

def ll (b: VectoD): Double =

def ll_null (b: VectoD): Double =

def train (itest: IndexedSeq [Int]): LogisticRegression =

def train_null ()

def parameter: VectoD = b

override def fit (y: VectoI, yp: VectoI, k: Int = 2): VectoD =

override def fitLabel: Seq [String] = super.fitLabel ++

Seq ("n_dev", "r_dev", "aic", "pseudo_rSq")

override def classify (z: VectoD): (Int, String, Double) =

def forwardSel (cols: Set [Int], adjusted: Boolean = true):

(Int, VectoD, VectoD) =

def backwardElim (cols: Set [Int], adjusted: Boolean = true, first: Int = 1):

(Int, VectoD, VectoD) =

def vif: VectoD =

def reset () { /* Not Applicable */ }

6.4.1 Exercises

1. Use Logistic Regression to classify whether stock market will be increasing or not. The Smarket

dataset is in the ISLR library, see [13] section 4.6.2.

2. Use Logistic Regression to classify whether a customer will purchase caraavan insurance. The

Caravan dataset is in the ISLR library, see [13] section 4.6.6.
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6.5 Simple Linear Discriminant Analysis

The SimpleLDA class support Linear Discriminant Analysis which is useful for multiway classification of

continuously valued data. The response/classification variable can take on k possible values, y ∈ {0, 1, . . . , k−
1}. The feature variable x is one dimensional for SimpleLDA, but can be multi-dimensional for LDA discussed

in the next section. Given the data about an instance stored in variable x, pick the best (most probable)

classification y = c.

As was done for Näıve Bayes classifiers, we are interested in the probability of y given x.

P (y|x) =
P (x|y)P (y)

P (x)

Since x is now continuous, we need to work with conditional densities as is done Gaussian Näıve Bayes

classifiers,

P (y|x) =
f(x|y)P (y)

f(x)
(6.12)

where

f(x) =

k−1∑
c=0

f(x|y = c)P (y = c)

Now let us assume the conditional probabilities are normally distributed with a common variance.

x|y ∼ Normal(µc, σ
2)

where class c ∈ {0, 1, . . . , k − 1}, µc = E [x|y = c] and σ2 is the pooled variance (weighted average of

V [x|y = c]). Thus, the conditional density function is

f(x|y = c) =
1√
2πσ

e−
(x−µc)2

2σ2

Substituting into eqaution 6.10 gives

P (y|x) =

1√
2πσ

e−
(x−µc)2

2σ2 P (y)

f(x)
(6.13)

where

f(x) =

k−1∑
c=0

1√
2πσ

e−
(x−µc)2

2σ2 P (y = c)

Because of differing means, each conditional density will be shifted resulting in a mountain range appear-

ance when plotted together. Given a data point x, the question becomes, which mountain is it closest to in

the sense of maximizing the conditional proabability expressed in equation 6.11.

P (y|x) ∝ 1√
2πσ

e−
(x−µc)2

2σ2 P (y)

Since the term
1√
2πσ

is same for all values of y, it may be ignored. Taking the natural logarithm yields
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ln(P (y|x)) ∝ −(x− µc)2

2σ2
+ ln(P (y))

Expanding −(x− µc)2 gives −x2 + 2xµc − µ2
c and the first term may be ignored (same for all y).

ln(P (y|x)) ∝ xµc
σ2
− µ2

c

2σ2
+ ln(P (y)) (6.14)

The right hand side functions in 4.12 are linear in x and are called discriminant functions δc(x).

Given training data vectors x and y, define xc (or xc in the code) to be the vector of all xi values where

yi = c and let its length be denoted by mc. Now the k means may be estimated as follows:

µ̂c =
1 · xc

mc

The common variance my be estimated using a pooled variance estimator.

σ̂2 =
1

m− k

k−1∑
c=0

||xc − µc||2

Finally, mcm can be used to estimate P (y).

These can easily be translated into ScalaTion code. Most of the calculations are done in the train

method. It estimates the class probability vector py, the group means vector mu and the pooled variance.

The vectors term1 and term2 capture the x-term (µc/σ
2) and the constant term (µ2

c/2σ
2 − ln(P (y))) in

equation 6.12.

def train (itest: IndexedSeq [Int]): SimpleLDA =

{

py = VectorD (xc.map (_.dim / md)) // probability y = c

mu = VectorD (xc.map (_.mean)) // group means

var sum = 0.0

for (c <- 0 until k) sum += (xc(c) - mu(c)).normSq

sig2 = sum / (m - k).toDouble // pooled variance

term1 = mu / sig2

term2 = mu~^2 / (2.0 * sig2) - py.map (log (_))

this

} // train

Given the two precomputed terms, the classify method simply multiplies the first by z(0) and subtracts

the second. Then it finds the argmax of the delta vector to return the class with the maximum delta,

which corresponds the most probable classification.

y∗ = argmaxc
zµc
σ2
− µ2

c

2σ2
+ ln(P (y)) (6.15)

override def classify (z: VectoD): (Int, String, Double) =

{

val delta = term1 * z(0) - term2

val best = delta.argmax ()

(best, cn(best), delta(best))

} // classify
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Class Methods:

@param x the real-valued training/test data values stored in a vector

@param y the training/test classification vector, where y_i = class for x_i

@param fn_ the name of the feature/variable

@param k the number of possible values for y (0, 1, ... k-1)

@param cn_ the names for all classes

class SimpleLDA (x: VectoD, y: VectoI, fn_ : Strings = Array ("x1"), k: Int = 2,

cn_ : Strings = null)

extends ClassifierReal (MatrixD (x), y, fn_, k, cn_)

def train (itest: IndexedSeq [Int]): SimpleLDA =

override def classify (z: VectoD): (Int, String, Double) =

def reset () { /* Not Applicable */ }

6.5.1 Exercises

1. Generate two samples using Normal (98.6, 1.0) and Normal (101.0, 1.0) with 100 in each sample.

Put the data instances into a single x vector. Let the y vector be 0 for the first sample and 1 for the

second. Use SimpleLDA to classify all 200 data points and determine the values for tp, tn, fn and

fp. See scalation.analytics.classifier.SimpleLDATest2.
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6.6 Linear Discriminant Analysis

Like SimpleLDA, the LDA class support Linear Discriminant Analysis that is used for multiway classification

of continuously valued data. Similarly, the response/classification variable can take on k possible values,

y ∈ {0, 1, . . . , k − 1}. Unlike SimpleLDA, this class is intended for cases where the feature vector x is multi-

dimensional. The classification y = c is chosen to maximize the conditional probability of class y given the

n-dimensional data/feature vector x.

P (y|x) =
f(x|y)P (y)

f(x)
(6.16)

where

f(x) =

k−1∑
c=0

f(x|y = c)P (y = c)

In the multi-dimensional case, x|y has a multivariate Gaussian distribution, Normal(µc,Σ), where µc are

the mean vectors E [x|y = c] and Σ is the common covariance matrix (weighted average of C [x|y = c]. The

conditional density function is given by

f(x|y = c) =
1

(2π)
n
2 |Σ| 12

e−
1
2 (x−µc)

tΣ−1(x−µc)

Dropping factors independent of c and multiplying by P (y = c) gives

f(x|y = c)P (y = c) ∝ e−
1
2 (x−µc)

tΣ−1(x−µc)P (y = c)

Taking the natural logarithm

ln(P (y|x)) ∝ − 1
2 (x− µc)tΣ−1(x− µc) + ln(P (y = c))

The discriminant functions are obtained by multiplying out and again dropping terms independing of c.

δc(x) = xtΣ−1µc −
µc

tΣ−1µc
2

+ ln(P (y = c)) (6.17)

As in the last section, the means for each class c (µc), the common covariance matrix (Σ), and the class

probabilities (P (y)) must be estimated.

Class Methods:

@param x the real-valued training/test data vectors stored as rows of a matrix

@param y the training/test classification vector, where y_i = class for row i of the matrix x

@param fn_ the names for all features/variables

@param k the number of classes (k in {0, 1, ...k-1}

@param cn_ the names for all classes

class LDA (x: MatrixD, y: VectoI, fn_ : Strings = null, k: Int = 2, cn_ : Strings = null)

extends ClassifierReal (x, y, fn_, k, cn_)

def corrected_cov (xc: MatriD): MatriD = (xc.t * xc) / xc.dim1

183



def train (itest: IndexedSeq [Int]): LDA =

def reset () { /* Not Applicable */ }

override def classify (z: VectoD): (Int, String, Double) =

6.6.1 Exercises

1. Use LDA to classify manufactured parts according whether they should pass quality control based on

curvature and diameter tolerances. See people.revoledu.com/kardi/tutorial/LDA/Numerical%

20Example.html for details.
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6.7 K-Nearest Neighbors Classifier

The KNN Classifier class is used to classify a new vector z into one of k classes y ∈ {0, 1, . . . , k − 1}. It

works by finding its κ-nearest neighbors to the point z. These neighbors essentially vote according to their

classification. The class with the most votes is selected as the classification of vector z. Using a distance

metric, the κ vectors nearest to z are found in the training data, which are stored row-wise in data matrix

X. The corresponding classifications are given in vector y, such that the classification for vector xi is given

by yi.

In ScalaTion to avoid the overhead of calling sqrt, the square of the Euclidean distance is used

(although other metrics can easily be swapped in). The squared distance from vector x to vector z is then

d(x) = d(x, z) = ||x− z||2

The distance metric is used to collect the κ nearest vectors into set topκ(z), such that there does not exists

any vector xj /∈ topκ(z) that is closer to z.

topκ(z) = {xi|i ∈ {0, . . . , κ− 1} and @(xj /∈ topκ(z) and d(xj) < d(xi)}

In case of ties for the most distant point to include in topκ(z) one could pick the first point encountered or

the last point. A less biased approach would be to randomly break the tie.

Now y(topκ(z)) can be defined to be the vector of votes from the members of the set, e.g., y(top3(z)) =

[1, 0, 1]. The ultimate classification is then simply the mode (most frequent value) of this vector (e.g., 1 in

this case).

y∗ = mode y(topκ(z))

6.7.1 Lazy Learning

Training in the KNN Classifier class is lazy, i.e., the work is done in the classify method, rather than the

train method.

override def classify (z: VectoD): (Int, String, Double) =

{

kNearest (z) // set topK to kappa nearest

for (i <- 0 until kappa) count(y(topK(i)._1)) += 1 // tally votes per class

val best = count.argmax () // class with maximal count

reset () // reset topK and counters

(best, cn(best), count(best)) // return best class, its name and votes

} // classify

The kNearest method finds the κ x vectors closest to the given vector z. This method updates topK by

replacing the most distant x vector in topK with a new one if it is closer. Each element in the topK array is

a tuple (j, d(j)) indicating which vector and its distance from z. Each of these selected vectors will have

their vote taken, voting for the class for which it is labelled. These votes are tallied in the count vector.

The class with the highest count will be selected as the best class.
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KNN Classifier Class

Class Methods:

@param x the vectors/points of classified data stored as rows of a matrix

@param y the classification of each vector in x

@param fn_ the names of the features/variables

@param k the number of classes

@param cn_ the names for all classes

@param kappa the number of nearest neighbors to consider

class KNN_Classifier (x: MatriD, y: VectoI, fn_ : Strings = null, k: Int = 2,

cn_ : Strings = null, kappa: Int = 3)

extends ClassifierReal (x, y, fn_, k, cn_)

def distance (x: VectoD, z: VectoD): Double = (x - z).normSq

def kNearest (z: VectoD)

def train (itest: IndexedSeq [Int]): KNN_Classifier =

override def classify (z: VectoD): (Int, String, Double) =

def reset ()

6.7.2 Exercises

1. Create a KNN Classifier for the joint data matrix given below and determine its tp, tn, fn, fp values

upon re-classification of the data matrix. Let k = 3. Use Leave-One-Out validation for computing

tp, tn, fn, fp.

// x1 x2 y

val xy = new MatrixD ((10, 3), 1, 5, 1, // joint data matrix

2, 4, 1,

3, 4, 1,

4, 4, 1,

5, 3, 0,

6, 3, 1,

7, 2, 0,

8, 2, 0,

9, 1, 0,

10, 1, 0)

2. Under what circumstances would one expect a KNN Classifier to perform better than

LogisticRegression?

3. How could KNN Classifier be adpated to work for prediction problems?
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6.8 Decision Tree C45

The DecisionTreeC45 class implements a Decision Tree classifier that uses the C4.5 algorithm. The classifier

is trained using an m-by-n data matrix X and an n-dimensional classification vector y. Each data vector in

the matrix is classified into one of k classes numbered 0, . . . , k − 1. Each column in the matrix represents a

feature (e.g., Humidity). The value count vc vector gives the number of distinct values per feature (e.g., 2

for Humidity).

Depending on the data type of a column, ScalaTion’s implementation of C4.5 works like ID3 unless

the column is continuous. A column is flagged isCont if it is continuous or relatively large ordinal. For a

column that isCont, values for the feature are split into a left group and a right group based upon whether

they are ≤ or > an optimal threshold, respectively.

Candidate thresholds/split points are all the mid points between all column values that have been sorted.

The threshold giving the maximum entropy drop (or gain) is the one that is chosen.

6.8.1 Example Problem

Consider the following continuous version of the play tennis example. The x1 and x2 columns (Temperature

and Humidity) are now listed as continuous measurements rather than as categories as was the case for ID3.

//:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

/** The ‘ExampleTennis‘ object is used to test all integer based classifiers.

* This is the well-known classification problem on whether to play tennis

* based on given weather conditions.

* The ’Cont’ version uses continuous values for Temperature and Humidity,

* @see sefiks.com/2018/05/13/a-step-by-step-c4-5-decision-tree-example

*/

object ExampleTennisCont

{

// combined data matrix [ x | y ]

// dataset ----------------------------------------------------------------

// x0: Outlook: Rain (0), Overcast (1), Sunny (2)

// x1: Temperature: Continuous

// x2: Humidity: Continuous

// x3: Wind: Weak (0), Strong (1)

// y: the response/classification decision

// variables/features: x0 x1 x2 x3 y

val xy = new MatrixD ((14, 5), 2, 85, 85, 0, 0, // day 1

2, 80, 90, 1, 0, // day 2

1, 83, 78, 0, 1, // day 3

0, 70, 96, 0, 1, // day 4

0, 68, 80, 0, 1, // day 5

0, 65, 70, 1, 0, // day 6

1, 64, 65, 1, 1, // day 7

2, 72, 95, 0, 0, // day 8

2, 69, 70, 0, 1, // day 9

0, 75, 80, 0, 1, // day 10

2, 75, 70, 1, 1, // day 11
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1, 72, 90, 1, 1, // day 12

1, 81, 75, 0, 1, // day 13

0, 71, 80, 1, 0) // day 14

val fn = Array ("Outlook", "Temp", "Humidity", "Wind") // feature names

val isCon = Array (false, true, true, false) // continuous feature flag

val cn = Array ("No", "Yes") // class names for y

val k = cn.size // number of classes

} // ExampleTennisCont object

As with the ID3 algorithm, the C4.5 algorithm picks x0 as the root node. This feature is not continuous

and has three branches. Branch b0 will lead to a node where as before x3 is chosen. Branch b1 will lead to

a leaf node. Finally, branch b2 will lead to a node where continuous feature x2 is chosen.

Sub-problem x0 = 2

Note that if x0 = 0 or 1, the algorithm works like ID3. However, there is still some uncertainty left when

x0 = 2, so this node may be split and it turn out the split will involve continuous feature x2. The sub-problem

for Outlook: Rain (2) see Table 6.1 is defined as follows: Take all five cases/rows in the data matrix X for

which x0 = 2.

Table 6.1: Sub-problem for node x0 and branch 2

Day x−1 x−2 x−3 y

1 85 85 0 0

2 80 90 1 0

8 72 95 0 0

9 69 70 0 1

11 75 70 1 1

The distinct values for feature x2 in sorted order are the following: [70.0 ,85.0, 90.0, 95.0]. Therefore, the

candidate threshold/split points for continuous feature x2 are their midpoints: [77.5, 87.5, 92.5]. Threshold

77.5 yields (0-, 2+) on the left and (3-, 0+) on the right, 87.5 yields (1-, 2+) on the left and (2-, 0+) on the

right, and 92.5 yields (2-, 2+) on the left and (1-, 0+) on the right. Clearly, the best threshold value is 77.5.

Since a continuous feature splits elements into low (left) and high (right) groups, rather than branching on

all possible values, the same continuous feature may be chosen again by a descendant node.

DecisionTreeC45 Class

Class Methods:

@param x the data vectors stored as rows of a matrix

@param y the class array, where y_i = class for row i of the matrix x

@param fn_ the names for all features/variables

@param isCont ‘Boolean‘ value to indicate whether according feature is continuous
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@param k the number of classes

@param cn_ the names for all classes

@param vc the value count array indicating number of distinct values per feature

@param td the maximum tree depth allowed (defaults to 0 => n, -1 => no depth constrint)

class DecisionTreeC45 (val x: MatriD, val y: VectoI, fn_ : Strings = null, isCont: Array [Boolean],

k: Int = 2, cn_ : Strings = null, private var vc: Array [Int] = null,

private var td: Int = 0)

extends ClassifierReal (x, y, fn_, k, cn_)

def frequency (dset: (MatriD, VectoI), f: Int, value: Double, cont: Boolean = false, thres: Double = 0):

def gain (dset: (MatriD, VectoI), f: Int): (Double, VectoI) =

def calThreshold (f: Int, dset: (MatriD, VectoI))

def train (itest: IndexedSeq [Int]) = // FIX the logic

def buildTree (dset: (MatriD, VectoI), path: List [(Int, Int)], depth: Int): Node =

def printTree ()

override def classify (z: VectoD): (Int, String, Double) =

def reset ()

6.8.2 Exercises

1. Run DecisionTreeC45 on the ExampleTennis dataset and verify that it produces the same answer as

DecisionTreeID3.

2. Complete the C45 Decision Tree for the ExampleTennisComp problem.

3. Run DecisionTreeC45 on the winequality-white dataset. Plot the accuracy versus the maximum

tree depth (td).
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6.9 Random Forest

The RandomForest class builds multiple decision trees for a given problem. Each decision tree is built using

a sub-sample (rows) of the data matrix ’x’ and a subset of the columns/features. The fraction of rows used

is given by ’bR’ the bagging ratio, while the number of columns used is given by ’fS’ the number of features

used in building trees. Given a new instance vector ’z’, each of the trees will classify it and the class with

the most number of votes (one from each tree), will be the overall response of the random forest.

Class Methods:

@param x the data matrix (instances by features)

@param y the response class labels of the instances

@param nF the number of trees

@param bR bagging ratio (the portion of samples used in building trees)

@param fS the number of features used in building trees

@param k the number of classes

@param s seed for randomness

@param fn_ feature names (array of string)

@param cn_ class names (array of string)

class RandomForest (x: MatriD, y: VectoI, nF: Int, bR: Double, fS: Int, k: Int, s: Int,

val fn_ : Strings = null, val cn_ : Strings = null)

extends ClassifierReal (x, y, fn_ , k , cn_ ) with Error

def createSubsample (): MatriD =

def selectSubFeatures (subSample: MatriD): (MatrixD, VectorI) =

def train (testStart:Int, testEnd:Int)

def classify (z: VectoD): (Int, String, Double) =

def reset() {}
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6.10 Support Vector Machine

The SupportVectorMachine class implements linear support vector machines (SVM). A set of vectors stored

in a matrix are divided into positive(1) and negative(-1) cases. The algorithm finds a hyperplane that best

divides the positive from the negative cases. Each vector xi is stored as a row in the x matrix.

ZZ

Example Problem:

Class Methods:

@param x the matrix consisting of vectors

@param y the vector of outcomes (e.g., positive(1), negative(-1))

@param fn_ the names of the features/variables

@param cn_ the class names

class SupportVectorMachine (x: MatriD, y: VectoI, fn_ : Strings = null, cn_ : Strings = Array ("-", "+"))

extends ClassifierReal (x, y, fn_, 2, cn_)

def l_D (a: VectoD): Double =

def g (a: VectoD): Double = a dot y

def find_w ()

def find_b ()

def train ()

def fit: (VectoD, Double) = (w, b)

def classify (z: VectoD): Int = (signum (w dot z + b)).toInt
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Chapter 7

Generalized Linear Models

A Generalized Linear Model (GZLM) can be developed using the GZLM class. One way to think about such

models is to separate the GLM regression equation into two steps. In the first step, y is determined by

summing a mean function µ(x) = E [y|x] and an error term (or multiplying in the case of multiplicative

errors).

y = µ(x) + ε

In the second step, the mean function is related to a linear combination of the predictor variables, i.e., b · x

g(µ(x)) = b · x

where g is a function that links y’s mean to a linear combination of the predictor variables. When g is the

identify function and residuals/errors are Normally distributed, we have a General Linear Model (GLM).

Several additional combinations of link functions and residual distributions are commonly used as shown

in the table below.

Model Type Response Type (y) Link Function Residual Distribution

Logistic Regression binary {0, 1} logit Bernoulli Distribution

Poisson Regression integer {0, . . . ,∞} ln Poisson Distribution

Exponential Regression continuous [0,∞) ln or reciprocal Exponential Distribution

General Linear Model (GLM) continuous (−∞,∞) identity Normal Distribution

Table 7.1: Types of Generalized Linear Models

See http://idiom.ucsd.edu/~rlevy/lign251/fall2007/lecture_13.pdf and http://link.springer.

com/article/10.1023%2FA%3A1022436007242#page-1. for additional details.

Since the response variable for Logistic Regression is defined on finite domains, it has been placed under

Classification (see the next chapter).

Example Problem:

Class Methods:
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object GZLM extends GLM

def apply (x: MatriD, y: VectoI, cn: Array [String]): LogisticRegression =

def apply (x: MatriD, y: VectoI, fn: Array [String], poisson: Boolean): PoissonRegression =

def apply (x: MatriD, nonneg: Boolean, y: VectoD): ExpRegression =

7.0.1 Further Reading

1. Generalized Linear Models (GLM) [26]
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7.1 Exponential Regression

The ExpRegression class can be used for developing Exponential Regression models. The response variable

y is estimated by the product of a mean function and exponentially distributed residuals/errors ε.

y = µ(x) ε

The probability density function (pdf) for the Exponential distribution may be defined as follows:

f(t;λ) = λe−λt

The link function g for Exponential Regression is the ln function (alternatively the reciprocal function).

g(µ(x)) = ln(µ(x)) = b · x

Expanding the dot product and using the inverse link function yields the following:

µ(x) = eb·x = eb0 + b1x1 + ... + bkxk

The residuals εi = yi/µ(xi) are distributed Exponential(1), so

f(yi/µ(xi)) =
1

µ(xi)
e−yi/µ(xi)

Therefore, the likelihood function for Exponential Regression is as follows:

L =

m−1∏
i=0

1

µ(xi)
e−yi/µ(xi)

Substituting for µ(xi) gives

L =

m−1∏
i=0

e−b·xi e−yi/e
b·xi

Taking the natural logarithm gives the log-likelihood function.

LL =

m−1∑
i=0

−b · xi −
yi
eb·xi

See http://www.stat.uni-muenchen.de/~leiten/Lehre/Material/GLM_0708/chapterGLM.pdf for more

details.

ExpRegression Class

Class Methods:
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@param x the data/input matrix

@param y the response vector

@param nonneg whether to check that responses are nonnegative

class ExpRegression (x: MatriD, y: VectoD, nonneg: Boolean)

extends PredictorMat (x, y)

def ll (b: VectoD): Double =

def ll_null (b: VectoD): Double =

def train (yy: VectoD = y): ExpRegression =

def train_null ()

def crossVal (k: Int = 10, rando: Boolean = true): Array [Statistic]
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7.2 Poisson Regression

The PoissonRegression class can be used for developing Poisson Regression models. In this case, a response

y may be thought of as a count that may take on a nonnegative integer value. The probability density function

(pdf) for the Poisson distribution with mean λ may be defined as follows:

f(y;λ) =
λy

y!
e−λ

Again, treating this as a GZLM problem,

y = µ(x) + ε

g(µ(x)) = b · x

The link function g for Poisson Regression is the ln (natural logarithm) function.

ln(µ(x)) = b · x

The residuals εi are distributed according to the Poisson distribution.

µ(xi)
yi

yi!
e−µ(xi)

Therefore, the likelihood function for Poisson Regression is as follows:

L =

m−1∏
i=0

µ(xi)
yi

yi!
e−µ(xi)

Taking the natural logarithm gives the log-likelihood function.

LL =

m−1∑
i=0

yiln(µ(xi)− µ(xi)− ln(yi!)

Substituting µ(xi) = eb·xi yields the following:

LL =

m−1∑
i=0

yib · xi − eb·xi − ln(yi!)

Since the last term is independent of the parameters, removing it will not affect the optimization.

LL2 =

m−1∑
i=0

yib · xi − eb·xi

See http://www.stat.uni-muenchen.de/~helmut/Geo/stat_geo_11_Handout.pdf for more details.

Example Problem:

Class Methods:
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@param x the input/data matrix augmented with a first column of ones

@param y the integer response vector, y_i in {0, 1, ... }

@param fn the names of the features/variable

class PoissonRegression (x: MatriD, y: VectoI, fn: Array [String] = null)

extends Classifier with Error

def ll (b: VectoD): Double =

def ll_null (b: VectoD): Double =

def train (yy: VectoD) { throw new UnsupportedOperationException ("train (yy) not implemented yet") }

def train ()

def train_null ()

override def fit: VectoD =

override def fitLabels: Seq [String] = Seq ("n_dev", "r_dev", "aic", "pseudo_rSq")

def predict (z: VectoD): Double = (round (exp (b dot z))).toDouble
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Chapter 8

Generalized Additive Models

A Generalized Additive Model (GAM) can be developed using the GZLM class.
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8.1 Regression Trees

As with Decision (or Classification) Trees, Regression Trees make predictions based upon what range each

variable/feature is in. If the tree is binary, there are two ranges for each feature split: low (below a threshold)

and high (above a threshold). Building a Regression Tree essentially then requires finding thresholds for

splitting variables/features. A threshold will split a dataset into two groups. Letting θk be a threshold for

splitting variable xj , we may split the rows in the X matrix into left and right groups.

leftk(X) = {xi|xij ≤ θk} (8.1)

rightk(X) = {xi|xij > θk} (8.2)

For splitting variable xj , the threshold θk should be chosen to minimize the sum of the Mean Squared

Error (MSE) of the left and right sides. Alternatively, one can minimize the Sum of Squared Errors (SSE).

This variable becomes the root node of the regression tree. The dataset for the root node’s left branch

consists of leftk(X), while the right branch consists of rightk(X). If the maximum tree depth is limited

to one, the root’s left child and right child will be leaf nodes. For a leaf node, the prediction value that

minimizes MSE is the mean µ(y).

8.1.1 Example Problem

Consider the following small dataset with just one predictor variable x0.

val x = new MatrixD ((10, 1), 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

val y = VectorD (5.23, 5.7, 5.91, 6.4, 6.8, 7.05, 8.9, 8.7, 9.0, 9.05)

In this case, θ0 = 6.5 divides the dataset into

left0(X) = {1, 2, 3, 4, 5, 6}

right0(X) = {7, 8, 9, 10}

with means µ0(y) = 6.18 (left) and µ1(y) = 8.91 (right). Further spliting may occur on x0 (or xj for

multidimensional examples). If we let the maximum tree depth be two, we obtain the following four regions,

corresponding to the four leaf nodes,

Root (-Inf, Inf]

Node x0 in (-Inf, 6.5]

Leaf x0 in (-Inf, 3.5]

Leaf x0 in (3.5, 6.5]

Node x0 in (6.5, Inf]

Leaf x0 in (6.5, 8.5]

Leaf x0 in (8.5, Inf]

with means µ0(y) = 5.61, µ1(y) = 6.75, µ2(y) = 8.80 and µ3(y) = 9.03. Each internal (non-leaf) node will

have a threshold. They are θ0 = 6.5, θ1 = 3.5 and θ2 = 8.5.
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8.1.2 Regions

The number of regions (or leaf nodes) is always one greater than the number of thresholds. The region for leaf

node l, Rl = (xj , (al, bl]), defines the feature/variable being split and the interval of inclusion. Corresponding

to each region Rl is an indictor function,

Il(x) = xj ∈ (al, bl] (8.3)

which simply indicates (false/true) whether variable xj is in the interval (al, bl]. Now define I∗l (x) as the

product of the indicator funtions from leaf l until (not including) the root of the tree,

I∗l (x) =
∏

h∈anc(l)

Ih(x) (8.4)

where anc(l) is the set of ancestors of leaf node l (inclusive of l, exclusive of root). Since only one of these I∗

indicator functions can be true for any given x vector, we may concisely express the regression tree model

as follows:

y =
∑

l∈ leaves

I∗l (x)µl(y) + ε (8.5)

Thus, given a predictor vector x, predicting a value for the response variable y corresponds to taking the

mean y-value of the vectors in x’s composite region (the intersection of regions from the leaf until the root).

As locality determines the prediction for Regression Trees, they are similar to K-NN Predictors.

8.1.3 Determining Thresholds

For the kth split, a simple way to determine the best threshold is to take each feature/variable xj and find

a value θk that minimizes the sum of the MSEs.

min
θk

mse(leftk(X)) + mse(rightk(X)) (8.6)

Possible values for θk are the values between any two consecutive values in vector x:j sorted. This will allow

any possible split of x:j to be considered. For example, {1, 10, 11, 12} should not be split in the middle,

e.g., into {1, 10} and {11, 12}, but rather into {1} and {10, 11, 12}. Possible thresholds (split points) are the

averages of any two consective values, i.e., 5.5, 10.5 and 11.5. A straitforward way to implement determing

the next variable xj and its threshold θk would be to iterate over all features/variables and split points.

Calculating the sum of left and right mse (or sse) from scratch for each candidate split point is inefficient.

These values may be computed incrementally using the fast thresholding algorithm [7]

RegressionTree Class

Class Methods:

@param x the data vectors stored as rows of a matrix

@param y the dependent value

@param fn the names for all features/variables
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@param maxDepth the depth limit for tree

@param curDepth current depth

@param branchValue parameter used to record the branchValue for the tree node

@param thres parameter used to record the threshold for the tree’s parent node

@param feature parameter used to record the feature for the tree’s parent node

class RegressionTree (x: MatriD, y: VectoD, fn: Array [String], maxDepth: Int,

curDepth: Int, branchValue: Int, thres: Double, feature: Int)

extends PredictorMat (x, y)

def split (f: Int, thresh: Double): (Array [Int], Array [Int]) =

def fastThreshold (f: Int, subSamle: VectoI = null)

def nextXY (f: Int, side: Int): (MatriD, VectoD) =

def train (yy: VectoD): RegressionTree =

def train (interval: VectoI)

def buildTree (opt: (Int, Double))

override def eval (xx: MatriD, yy: VectoD) =

def printTree ()

override def predict (z: VectoD): Double =

override def predict (z: MatriD): VectorD =

def crossVal (k: Int = 10, rando: Boolean = true): Array [Statistic]

def reset ()

8.1.4 Exercises

1.

2. Consider the following two-dimensional Regression Tree problem. FIX.

3. Contrast K-NN Predictors with Regression Trees in terms of the shape of and how regions are formed.
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Chapter 9

Non-Linear Models and Neural

Networks
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9.1 Non-Linear Regression

The NonLinRegression class supports non-linear regression. In this case, x can be multi-dimensional

[1, x1, ...xk] and the function f is non-linear in the parameters b.

9.1.1 Model Equation

As before, the goal is to fit the parameter vector b in the model/regression equation,

y = f(x; b) + ε (9.1)

where ε represents the residuals (the part not explained by the model). Note that y = b0 + b1x1 + b2x
2
1 + ε

is still linear in the parameters. The example below is not, as there is no transformation that will make the

formula linear in the parameters.

y = (b0 + b1x1)/(b2 + x1) + ε

9.1.2 Training

A training dataset consisting of m input-output pairs is used to minimize the error in the prediction by

adjusting the parameter vector b. Given an input matrix X consisting of m input vectors and an output

vector y consisting of m output values, minimize the distance between the target output vector y and the

predicted output vector f(X; b).

minb‖y − f(X; b)‖ (9.2)

Again, it is convenient to minimize the dot product of the error with itself,

(y − f(X; b)) · (y − f(X; b)) (9.3)

9.1.3 Optimization

For non-linear regression, a Least-Squares (minimizing the residuals) method can be used to fit the parameter

vector b. Unlike the linear case (where one simply sets the gradient to zero), since the formula is non-linear

in b, Non-Linear Programming (NLP) is used to minimize the sum of squares error (sse). A user defined

function taking a vector of inputs x and a vector of parameters b,

f: (VectoD, VectoD) => Double

is passed as a class parameter. This function is used to create a predicted output value zi for each input

vector xi. The sseF method applies this function to all m input vectors to compute predicted output values.

These are then subtracted from the target output to create an error vector e, which when dot producted

with itself yields sse.

def sseF (b: VectoD): Double =

{

val z = new VectorD (m) // create vector z to hold predicted outputs

for (i <- 0 until m) z(i) = f (x(i), b) // compute values for z
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val e = y - z // residual/error vector

e dot e // residual/error sum of squares

} // sseF

ScalaTion’s minima and maxima packages provide several solvers for linear, quadratic, integer and non-

linear programming. Currently, the QuasiNewton class is used for finding an optimal b by minimizing sseF.

The QuasiNewton optimizer requires an initial guess for the parameter vector b.

val bfgs = new QuasiNewton (sseF) // minimize sse using NLP

b = bfgs.solve (b_init) // estimate for b from optimizer

For more information see http://www.bsos.umd.edu/socy/alan/stats/socy602_handouts/kut86916_ch13.

pdf.

NonLinRegression Class

Class Methods:

@param x the data/input matrix augmented with a first column of ones

@param y the response/output vector

@param f the non-linear function f(x, b) to fit

@param b_init the initial guess for the parameter vector b

@param fname_ the feature/variable names

@param hparam the hyper-parameters (currently has none)

class NonLinRegression (x: MatriD, y: VectoD, f: FunctionP2S,

b_init: VectorD, fname_ : Strings = null,

hparam: HyperParameter = null)

extends PredictorMat (x, y, fname_, hparam) with NoFeatureSelectionMat

def sseF (b: VectoD): Double =

def train (x_r: MatriD = x, y_r: VectoD = y): NonLinRegression =

override def predict (z: VectoD): Double = f(z, b)
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9.2 Perceptron

The Perceptron class supports single-valued 2-layer (input and output) Neural Networks. The inputs into

a Neural Net are given by the input vector x, while the outputs are given by the output value y. Each

component of the input xj is associated with an input node in the network, while the output y is associated

with the single output node. The input layer consists of n input nodes, while the output layer consists of 1

output node. An edge connects each input node with the output node, i.e., there are n edges in the network.

To include an intercept in the model (sometimes referred to as bias) one of the inputs (say x0) must always

be set to 1. Alternatively, a bias value can be associated with the output node and added to the weighted

sum (see below).

9.2.1 Model Equation

The weights on the edges are analogous to the parameter vector b in regression. The output y has an

associated parameter vector b, where parameter value bj is the edge weight connecting input node xj with

output node y.

Recall the basic multiple regression model (equation 4.1).

y = b · x + ε = b0 + b1x1 + ...bn−1xn−1 + ε

We now take the linear combination of the inputs, b · x, and apply an activation function f .

y = f(b · x) + ε = f(

n−1∑
j=0

bjxj) + ε (9.4)

9.2.2 Training

Given several input vectors and output values (e.g., in a training dataset), optimize/fit the weights b con-

necting the layers. After training, given an input vector x, the net can be used to predict the corresponding

output value y.

A training dataset consisting of m input-output pairs is used to minimize the error in the prediction

by adjusting the parameter/weight vector b. Given an input matrix X consisting of m input vectors and

an output vector y consisting of m output values, minimize the distance between the actual/target output

vector y and the predicted output vector ŷ,

ŷ = f(Xb) (9.5)

where f : Rm → Rm is the vectorized version of the activation function f . The vectorization may occur over

the entire training set or more likely, an iterative algorithm may work with a group/batch of instances at a

time. In other words, the goal is to minmize some norm of the error vector.

ε = y − ŷ = y − f(Xb) (9.6)

Using the Euclidean (`2) norm, we have

minb‖y − f(Xb)‖
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As was the case with regression, it is convenient to minimize the dot product of the error with itself (||ε||2 =

ε · ε). In particular, we aim to minimize half of this value, half sse (hse).

hse(b) =
1

2
(y − f(Xb)) · (y − f(Xb)) (9.7)

9.2.3 Optimization

Optimization for Perceptrons and Neural Networks is typically done using an iterative optimization algorithm

that utilizes gradients. Popular optimizers include Gradient Descent (GD), Stochastic Gradient Descent

(SGD), Stochastic Gradient Descent with Momentum (SGDM), Root Mean Square Propogation (RMSProp)

and Adaptive Moment Estimation (Adam) (see Chapter on Optimization for details).

The gradient of the objective/cost function hse is calculated by computing all of the partial derivatives

with respect to the parameters/weights.

∇hse(b) =
∂hse

∂b
=

[
∂hse

∂b0
, . . . ,

∂hse

∂bn−1

]

Partial Derivative for bj

Taking the partial derivative with respect to the jth parameter/weight, bj , is a bit complicated since we

need to use the chain rule and the product rule. First, letting u = Xb (the pre-activation response) allows

equation 9.4 to be simplied to

hse =
1

2
(y − f(u)) · (y − f(u)) (9.8)

The chain rule from vector calculus to be applied is

∂hse

∂bj
=

∂hse

∂u
· ∂u

∂bj
(9.9)

The first partial derivative is

∂hse

∂u
= − f ′(u) (y − f(u)) (9.10)

where the first part of the r.h.s. is f ′(u) which is the derivative of f with respect to vector u and the

second part is the difference between the actual and predicted output/response vectors. The two vectors are

multiplied together, elementwise.

The second partial derivative is

∂u

∂bj
= x:j (9.11)

where x:j is the jth column of matrix X (see Exercises 4, 5 and 6 for details).

The dot product of the two partial derivatives gives

∂hse

∂bj
= − x:j · f ′(Xb)(y − f(Xb))
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Since the error vector ε = y − f(Xb), we may simplify the expression.

∂hse

∂bj
= − x:j · f ′(Xb) ε (9.12)

The jth partial derivative (or jth element of the gradient) indicates the relative amount to move (change bj)

in the jth dimension to reduce hse.

The δ Vector

It is helpful especially for multi-layer neural networks to define the delta vector δ as follows:

δ =
∂hse

∂u
= − f ′(Xb) ε (9.13)

It multiplies the derivative of f by the error vector, elementwise. If the error is small or the gradient is

small, the adjustment to the parameter should be small. The partial derivative of hse with respect to bj

now simplifies to

∂hse

∂bj
= x:j · δ (9.14)

Note, if we consider a single instance (xi, yi), equation 9.11 becomes

∂hse

∂bj
= − xijf ′(xi · b) εi = xijδi

Example

Assume that the activation function is the sigmoid function. Starting with the parameter/weight vector

b = [.1, .2, .1], compute the m-dimensional vectors, ε and δ, for Exercise 7. With these parameters, the

predicted output/response vector ŷ may be computed in two steps: The first step computes the response,

pre-activation Xb. The second step takes this vector and applies the activation function to each of its

elements. This requires looking ahead to the section on activation functions. The sigmoid(t) function is

[1 + e−t]−1.

ŷ = sigmoid(Xb) = sigmoid([.1, .15, .2, .2, .25, .3, .3, .35, .4])

= [.5249, .5374, .5498, .5498, .5621, .5744, .5744, .5866, .5986]

The error vector ε is simply the difference between the actual and predicted output/response vectors.

ε = y − ŷ

[.5000, .3000, .2000, .8000, .5000, .3000, 1.0000, .8000, .5000] −

[.5249, .5374, .5498, .5498, .5621, .5744, .5744, .5866, .5986] =

[−.0249,−.2374,−.3498, .2501,−.0621,−.2744, .4255, .2133,−.0986]

To compute the delta vector δ, we must look ahead to get the derivative of the activation function.
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sigmoid′(t) = sigmoid(t) [1− sigmoid(t)]

Therefore, since sigmoid(Xb) = ŷ

δ = − ŷ (1− ŷ) ε

[.0062, .0590, .0865,−.0619, .0153, .0670,−.1040,−.0517, .0237]

Forming the Gradient

Combining the partial derivatives in equation 9.11 into an n-dimensional vector (i.e., the gradient) yields

∇hse(b) =
∂hse

∂b
= −Xt[f ′(Xb) ε] = Xtδ (9.15)

Since many optimizers such as gradient-descent, move in the direction opposite to the gradient by a dis-

tance governed by the learning rate η (alternatively step size), the following term should be added to the

weight/parameter vector b.

Xt [f ′(Xb) ε] η = −Xtδ η (9.16)

The right hand side is an n-by-m matrix, m vector product yielding an n vector result. The factor in

brackets, [f ′(Xb) ε], is the elementwise vector product. Since gradient-based optimizers move in the negative

gradient direction by an amount determined by the magnitude of the gradient times a learning rate η, the

parameter/weight vector b is updated as follows:

b = b − Xt δ η (9.17)

9.2.4 Initializing Weights/Parameters

The weight/parameter vector b should be randomly set to start the optimization.

Set the initial weight/parameter vector b with values in (0, limit) before training.

@param stream the random number stream to use

@param limit the maximum value for any weight

def setWeights (stream: Int = 0, limit: Double = 1.0 / sqrt (x.dim2))

{

val rvg = new RandomVecD (n, limit, 0.0, stream = stream) // may change stream

b = rvg.gen

} // setWeights

For testing or learning purposes, the weights may also be set manually.

def setWeights (w0: VectoD) { b = w0 }
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9.2.5 Activation Functions

An activation function f takes an aggregated signal and transforms it. In general, to reduce the chance

of signals being amplified to infinity, the range of an activation may be limited. The simplest activation

function is the id or identity function where the aggregated signal is passed through unmodified. In this

case, Perceptron is in alignment with Regression (see Exercise 8). This activation function is usually not

intended for neural nets with more layers, since theorectically they can be reduced to a two-layer network

(although it may be applied in the last layer). More generally useful activation functions include reLU, lreLU,

eLU, sigmoid, tanh and gaussian. Several activation functions are compared in [14]. For these activation

functions the outputs in the y vector need to be transformed into the range specified for the activation

function, see Table 9.1. It may be also useful to transform/standardize the inputs.

Table 9.1: Activation Functions: Identity, Rectified Linear Unit, Leaky Rectified Linear Unit, Exponential

Linear Unit, Sigmoid, Hyperbolic Tangent, Gaussian

Name Function u = f(t) Domain Range Derivative f ′(t) Inverse t = f−1(u)

id t R R 1 u

reLU max(0, t) R R+ It>0 u for u > 0

lreLU max(αt, t), α < 1 R R ift<0(α, 1) min( uα , u)

eLU ift<0(α(et − 1), t) R R ift<0(f(t) + α, 1) ift<0(ln( uα + 1), u)

sigmoid [1 + e−t]−1 R (0, 1) f(t)[1− f(t)] −ln( 1
u − 1)

tanh tanh(t) R (−1, 1) 1− f(t)2 .5 ln
(

1+u
1−u

)
gaussian e−t

2 R (0, 1] −2te−t
2 √

−ln(u)

The sigmoid function has an ‘S’ shape, which facilitates its use as a smooth and differentiable version of

a step function, with larger negative values tending to zero and larger positive values tending to one. In the

case of using sigmoid for the activation function, f ′(t) = f(t)[1− f(t)], so equation 9.12 becomes

∂hse

∂b
= −Xt[f(Xb)[1− f(Xb)] ε] = Xt δ

A simple form of gradient-descent iteratively moves in the negative gradient direction by an amount deter-

mined by the magnitude of the gradient times a learning rate η. Therefore, the parameter/weight vector b

is adjusted as follows:

b = b − Xt δ η

Assuming the learning rate η = 1 and taking the δ vector from the example, the update to parameter/weight

vector b is

Xt δ η = [.0402,−.1218, .1886]

Consequently, the updated value for the parameter/weight vector b is

b = [.1, .2, .1] − [.0402,−.1218, .1886] = [.0597, .3218,−.0886]
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Check to see if the new values for b have improved the objective function hse.

The iterative process is typically terminated when the drop in hse is small or a maximum number of

iterations is exceeded. The parameters η and max epochs need careful adjustment to obtain nearly (locally)

optimal values for hse. Gradient-descent works by iteratively moving in the opposite direction as the gradient

until the error changes fall below a threshold. The rate of convergence can be adjusted using the learning

rate η which multiplies the gradient. Setting it too low, slows convergence, while setting it too high can

cause oscillation. In ScalaTion, the learning rate η (eta in the code) is a hyper-parameter that defaults

to 0.1, but is easily adjusted, e.g.,

Optimizer.hp ("eta") = 0.05

The train0 method contains the main training loop that is shown below. Inside the loop, new values

yp are predicted, from which an error vector e is determined. This is used to calculate the delta vector d,

which along x.t and eta are used to update the parameter/weight vector b.

def train0 (x_r: MatriD = x, y_r: VectoD = y): Perceptron =

{

if (b == null) b = weightVec (n) // initialize parameters/weights

var sse0 = Double.MaxValue // hold prior value of sse

for (epoch <- 1 until maxEpochs) { // iterate over each epoch

val yp = f0.fV (x_r * b) // predicted output vector yp = f(Xb)

e = y_r - yp // error vector for y

val d = -f0.dV (yp) * e // delta vector for y

b -= x_r.t * d * eta // update the parameters/weights

val sse = sseF (y, f0.fV (x_r * b)) // recompute sum of squared errors

if (DEBUG) println (s"train0: parameters for $epoch th phase: b = $b, sse = $sse")

if (sse >= sse0) return this // return when sse increases

sse0 = sse // save prior sse

} // for

this

} // train

The vector function f0.fV is the vectorization of the activation function f0.f, and is created in ScalaTion

using the vectorize high-order function, e.g., given a scalar function f , it can produce the corresponding

vector function f .

def vectorize (f: FunctionS2S): FunctionV_2V = (x: VectoD) => x.map (f(_))

val fV = vectorize (f)

The function f0.dV is the derivative of the vector activation function. The core of the algorithm is the first

four lines in the loop. Table 9.2 show the correspondence between these lines of code and the main/boxed

equations derived in this section. Note, all the equations in the table are vector assignments.

The third line of code appears to be different from the mathematical equation, in terms of passing the pre-

activation versus the post-activation response. It turns out that all derivatives for the activation functions

(except Gaussian) are either formulas involving constants or simple functions of the activation function itself,

so for efficiency, the yp vector is passed in.
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Table 9.2: Correspondence between Code and Boxed Equations

Code Equation Equation Number

yp = f0.fV (x * b) ŷ = f(Xb) 9.2

e = yy - yp ε = y − ŷ 9.3

d = -f0.dV (yp) * e δ = −f ′(Xb)ε 9.10

b -= x.t * d * eta b = b−Xtδη 9.14

A perceptron can be considered to be a special type of non-linear or transformed regression, see Exercise

9. The Perceptron class defaults to the f sigmoid Activation Function Family (AFF), which is defined in

the ActivationFun object.

val f_sigmoid = AFF (sigmoid, sigmoidV, sigmoidM, sigmoidDV, sigmoidDM, (0, 1))

In general, the AFF for family f0 contains the following:

val f0 = AFF (f, fV, fM, dV, dM, (lb, ub))

The first three are the activation function in scalar, vector and matrix forms, respectively, the next two are

the derivative of the activation function in vector and matrix forms, respectively, and the last is a tuple

giving the lower and upper bounds for the range of the activation function. Note, if the actual response

vector y is outside the bounds, it will be impossible for the predicted response vector ŷ to approximate it,

so rescaling will be necessary.

Other activation functions should be experimented with, as one may produce better results. All the

activation functions shown in Table 9.1 are available in the ActivationFun object.

Essentially, parameter optimization in perceptrons involves using/calculating several vectors as summa-

rized in Table 9.3 where n is the number of parameters and m is the number of instances used at a particular

point in the iterative optimization algorithm, for example, corresponding to the total number of instances

in a training set for Gradient Descent or the number of instances in a batch (subsample) for Stochastic

Gradient Descent.

Table 9.3: Vectors used in Perceptrons

Vector Space Formula Description

xi Rn given the ith row of the input/data matrix

x:j Rm given the jth column of the input/data matrix

b Rn given the parameter vector (updated per iteration)

u Rm Xb the pre-activation vector

y Rm given the actual output/response vector

ŷ Rm f(u) the predicted output/response vector

ε Rm y − ŷ the error/residual vector

δ Rm -f ′(u)ε the negative-slope-weighted error vector

[b0]⊕w Rn b concatenation of bias scalar and weight vector
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Perceptron Class

Class Methods:

@param x the data/input m-by-n matrix (data consisting of m input vectors)

@param y the response/output m-vector (data consisting of m output values)

@param fname_ the feature/variable names

@param hparam the hyper-parameters for the model/network

@param f0 the activation function family for layers 1->2 (input to output)

@param itran the inverse transformation function returns responses to original scale

class Perceptron (x: MatriD, y: VectoD,

fname_ : Strings = null, hparam: HyperParameter = Optimizer.hp,

f0: AFF = f_sigmoid, val itran: FunctionV_2V = null)

extends PredictorMat (x, y, fname_, hparam)

def setWeights (w0: VectoD)

def reset (eta_ : Double) { eta = eta_ }

def train0 (x_r: MatriD = x, y_r: VectoD = y): Perceptron =

def train (x_r: MatriD = x, y_r: VectoD = y): Perceptron =

override def train2 (x_r: MatriD = x, y_r: VectoD = y): Perceptron =

def trainSwitch (which: Int, x_r: MatriD = x, y_r: VectoD = y): Perceptron =

override def predict (z: VectoD): Double = f0.f (b dot z)

override def predict (z: MatriD = x): VectoD = f0.fV (z * b)

def buildModel (x_cols: MatriD): Perceptron =

The train0 method uses Gradient Descent with a simple stopping rule and a non-adaptive learning rate.

A better optimzer is used by the train method which uses Stochastic Gradient Descent, a better stopping rule

(see StoppingRule class), and an adaptive learning rate. The work is delegated to the Optimizer SGD object

and can easily be changes to use Stochastic Gradient Descent with Momentum using the Optimizer SGDM

object. The train2 method simply calls the train method with various learning rates over a given interval

to find the best one. The trainSwitch method makes it easy to switch between these three methods by

setting the which parameter to 0, 1 or 2.

9.2.6 Exercises

1. Plot the sigmoid and tanh activation functions in the same plot and compare them.

2. The Texas Temperature regression problem can also be analyzed using a perceptron.

// 16 data points: Constant x1 x2 x3

// Lat Elev Long County

val x = new MatrixD ((16, 4), 1.0, 29.767, 41.0, 95.367, // Harris
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1.0, 32.850, 440.0, 96.850, // Dallas

1.0, 26.933, 25.0, 97.800, // Kennedy

1.0, 31.950, 2851.0, 102.183, // Midland

1.0, 34.800, 3840.0, 102.467, // Deaf Smith

1.0, 33.450, 1461.0, 99.633, // Knox

1.0, 28.700, 815.0, 100.483, // Maverick

1.0, 32.450, 2380.0, 100.533, // Nolan

1.0, 31.800, 3918.0, 106.400, // El Paso

1.0, 34.850, 2040.0, 100.217, // Collington

1.0, 30.867, 3000.0, 102.900, // Pecos

1.0, 36.350, 3693.0, 102.083, // Sherman

1.0, 30.300, 597.0, 97.700, // Travis

1.0, 26.900, 315.0, 99.283, // Zapata

1.0, 28.450, 459.0, 99.217, // Lasalle

1.0, 25.900, 19.0, 97.433) // Cameron

val y = VectorD (56.0, 48.0, 60.0, 46.0, 38.0, 46.0, 53.0, 46.0,

44.0, 41.0, 47.0, 36.0, 52.0, 60.0, 56.0, 62.0)

val nn = new Perceptron (x, y)

nn.train ().eval ()

println (nn.report)

val z = VectorD (1.0, 30.0, 1000.0, 100.0)

println (s"predict ($z) = ${nn.predict (z)})

3. Analyze the ExampleConcrete dataset, which has three output variables y0, y1 and y2. Create a

perceptron for each output variable.

4. Use the following formula for matrix-vector multiplication

u = Xb =
∑
j

bjx:j

to derive the formula for the following partial derivative

∂u

∂bj
= x:j

5. Given equation 9.5, the formula for the objective/cost function hse : Rm → R expressed in terms of

the pre-activation vector u = Xb and the vectorized activation function f : Rm → Rm,

hse(u) =
1

2
(y − f(u)) · (y − f(u))

derive equation 9.7, the formula for the gradient of hse with respect to u.
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∇hse =
∂hse

∂u
= − f ′(u)(y − f(u))

Hint: Take the gradient,
∂hse

∂u
, using the product rule (d1 · f2 + f1 · d2).

∂hse

∂u
= − ∂f(u)

∂u
· (y − f(u))

where f1 = f2 = y − f(u) and d1 = d2 = −∂f(u)

∂u
. Next, assuming

∂f(u)

∂u
is a diagonal matrix, show

that the above equation can be rewritten as

∂hse

∂u
= − f ′(u) (y − f(u))

where f ′(u) = [f ′(u0), . . . , f ′(um−1)] and the two vectors, f ′(u) and y− f(u), are multiplied, element-

wise.

6. Show that the m-by-m Jacobian matrix, J f(u) =
∂f(u)

∂u
, is a diagonal matrix, i.e.,

J f(u) =

[
∂fi(u)

∂uj

]
= 0 if i 6= j

where fi = f the scalar activation function. Each diagonal element is the derivative of the activation

function applied to the ith input, f ′(ui). See the section on Vector Calculus in Chapter 2 that discusses

Gradient Vectors, Jacobian Matrices and Hessian Matrices.

7. Show the first 10 iterations that update the parameter/weight matrix b that is initialized to [.1, .2, .1].

Use the following combined input-output matrix. Let the perceptron use the default sigmoid function.

// 9 data points: Constant x1 x2 y

val xy = new MatrixD ((9, 4), 1.0, 0.0, 0.0, 0.5,

1.0, 0.0, 0.5, 0.3,

1.0, 0.0, 1.0, 0.2,

1.0, 0.5, 0.0, 0.8,

1.0, 0.5, 0.5, 0.5,

1.0, 0.5, 1.0, 0.3,

1.0, 1.0, 0.0, 1.0,

1.0, 1.0, 0.5, 0.8,

1.0, 1.0, 1.0, 0.5)

val hp = Optimizer.hp.updateReturn ("eta", 2.0) // try several values for eta

val nn = Perceptron (xy, null, hp) // create a perceptron

For each iteration, do the following: Print the weight/parameter update vector bup and the new value

for weight/parameter vector b, Make a table with m rows showing values for

x1, x2, y, ŷ, ε, ε
2, ŷ(1− ŷ) and ŷ(1− ŷ) ε η
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Try letting η = 1 then 2. Also, compute sse and R2.

8. Show that when the activation function f is the id function, that f ′(u) is the one vector, 1. Plug this

into equation 9.12 to obtain the following result.

∂hse

∂b
= −Xt[1 ε] = −Xt(y −Xb)

Setting the gradient equal to zero, now yields XtXb = Xty, the Normal Equations.

9. Show that a Perceptron with an invertible activation function f is similar to TranRegression with

tranform f−1. Explain any differences in the parameter/weight vector b and the sum of squared errors

sse. Use the sigmoid activation function and the AutoMPG dataset and make the following two plots

(using PlotM): y, ypr, ypt vs. t and y, ypr, ypp vs. t, where y is the actual response/output, ypr is

the prediction from Regression, ypt is the prediction from TranRegression and ypp is the prediction

from Perceptron.
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9.3 Multi-Output Prediction

The PredictorMat2 abstract class provides the basic structure and API for a variety of modeling techniques

that produce multiple responses/outputs, e.g., Neural Networks, Extreme Learning Machines and Multi-

Variate Regression. It serves the same role that PredictorMat has for the regression modeling techniques.

9.3.1 Model Equation

For modeling techniques extending this abstract class, the model equation takes an input vector x, pre-

multiplies it by the transpose of the parameter matrix B, applies a function f to the resulting vector and

adds an error vector ε,

y = f(B · x) + ε = f(Btx) + ε (9.18)

where

• y is an ny-dimensional output/response random vector,

• x is an nx-dimensional input/data vector,

• B is an nx-by-ny parameter matrix,

• f : Rny → Rny is a function mapping vectors to vectors, and

• ε is an ny-dimensional residual/error random vector.

For Multi-Variate Regression, f is the identity function.

9.3.2 Training

The training equation takes the model equation and several instances in a dataset to provide estimates for

the values in parameter matrix B. Compared to the single response/output variable case, the main difference

is that the response/output vector, the parameter vector, and the error vector now all become matrices.

Y = f(XB) + E (9.19)

where X is an m-by-nx data/input matrix, Y is an m-by-ny response/output matrix, B is an nx-by-ny

parameter matrix, f is a function mapping onem-by-ny matrix to another, and E is anm-by-ny residual/error

matrix. Note, a bold function symbol f is used is used to denote a function mapping either vectors to vectors

(as was the case in the Model Equation subsection) or matrices to matrices (as is the case here).

f : Rm×ny → Rm×ny

If one is interested in refering to the kth component (or column) of the output, equation 9.16 becomes.

y:k = f(Xb:k) + ε:k (9.20)

Recall that yk indicates the kth row of matrix Y , while y:k indicates the kth column.

Analogous to other predictive modeling techniques, PredictorMat2 constructor takes four arguments:

the data/input matrix x, the response/output matrix y, the feature/variable names fname, and the hyper-

parameters for the model/network hparam.
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PredictorMat2 Class

Class Methods:

@param x the m-by-nx data/input matrix (data consisting of m input vectors)

@param y the m-by-ny response/output matrix (data consisting of m output vectors)

@param fname the feature/variable names (if null, use x_j’s)

@param hparam the hyper-parameters for the model/network

abstract class PredictorMat2 (x: MatriD, y: MatriD,

protected var fname: Strings, hparam: HyperParameter)

extends Predictor with Error

def getX: MatriD = x

def getY: VectoD = y(0)

def getYY: MatriD = y

def reset (eta_ : Double) { eta = eta_ }

def train0 (x_r: MatriD = x, y_r: MatriD = y): PredictorMat2

def train (x_r: MatriD = x, y_r: MatriD = y): PredictorMat2

def train (x_r: MatriD, y_r: VectoD): PredictorMat2 = train (x_r, MatrixD (y_r))

def train2 (x_r: MatriD = x, y_r: MatriD = y): PredictorMat2 = train (x_r, y_r)

def trainSwitch (which: Int, x_r: MatriD = x, y_r: MatriD = y): PredictorMat2 =

def resetDF (df_update: PairD)

def eval (x_e: MatriD = x, y_e: VectoD = y.col(0)): PredictorMat2 =

def eval (x_e: MatriD, y_e: MatriD): PredictorMat2 =

def analyze (x_r: MatriD = x, y_r: VectoD = y(0),

def residual: VectoD = ee.col(0)

def residuals: MatriD = ee

def fitLabel: Seq [String] = fitA(0).fitLabel

def fitMap: IndexedSeq [Map [String, String]] =

def hparameter: HyperParameter = hparam

def parameter: VectoD = parameters (0).w(0)

def parameters: NetParams

def report: String =

def buildModel (x_cols: MatriD): PredictorMat2

def forwardSel (cols: Set [Int], index_q: Int = index_rSqBar): (Int, PredictorMat2) =

def forwardSelAll (index_q: Int = index_rSqBar): (Set [Int], MatriD) =

def backwardElim (cols: Set [Int], index_q: Int = index_rSqBar, first: Int = 1):

(Int, PredictorMat2) =

def vif (skip: Int = 1): VectoD =

def predict (z: VectoD): Double = predictV (z)(0)

def predict (z: MatriD = x): VectoD = predictV (z)(0)

def predictV (z: VectoD): VectoD
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def predictV (z: MatriD = x): MatriD

def crossValidate (k: Int = 10, rando: Boolean = true): Array [Statistic] =

The default hyper-parameters are defined in the Optimizer object.

val hp = new HyperParameter

hp += ("eta", 0.1, 0.1) // learning/convergence rate

hp += ("bSize", 10, 10) // mini-batch size

hp += ("maxEpochs", 10000, 10000) // maximum number of epochs/iterations

hp += ("lambda", 0.0, 0.0) // regularization hyper-parameter

NetParam Class

A model producing multiple output variables will have parameters as weight matrices. They may also have

bias vectors. To unify these cases, ScalaTion utilizes the NetParam case class for holding a weight matrix

along with an optional bias vector. Linear algebra like operators are provided for convenience, e.g., the *:

allows one to write x *: p, corresponding to the mathematical expression XP where X is the input/data

matrix and P holds the parameters. If the bias b is null, this is just matrix multiplication.

def *: (x: MatriD): MatriD = x * w + b

Inside, the x is multiplied by the weight matrix w and the bais vector b is added. Note, the *: is right

associative since the NetParam object is on right (see NeuralNet 2L for an example of its usage).

Class Methods:

@param w the weight matrix

@param b the optional bias/intercept vector (null => not used)

case class NetParam (w: MatriD, var b: VectoD = null)

def copy: NetParam = NetParam (w.copy, b.copy)

def set (c: NetParam) { w.set (c.w); b.set (c.b()) }

def set (cw: MatriD, cb: VectoD = null)

def += (c: NetParam) { w += c.w; b += c.b }

def += (cw: MatriD, cb: VectoD = null)

def -= (c: NetParam) { w -= c.w; b -= c.b }

def -= (cw: MatriD, cb: VectoD = null)

def * (x: MatriD): MatriD = x * w + b

def *: (x: MatriD): MatriD = x * w + b

def dot (x: VectoD): VectoD = (w dot x) + b

override def toString: String = s"b.w = $w \n b.b = $b"
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9.4 Two-Layer Neural Networks

The NeuralNet 2L class supports multi-valued 2-layer (input and output) Neural Networks. The inputs into

a Neural Net are given by the input vector x, while the outputs are given by the output vector y. Each

input xj is associated with an input node in the network, while each output yk is associated with an output

node in the network, The input layer consists of nx input nodes, while the output layer consists of ny output

nodes. An edge connects each input node with each output node, i.e., there are nxny edges in the network.

To include an intercept in the model (sometimes referred to as bias) one of the inputs (say x0) must always

be set to 1.

9.4.1 Model Equation

The weights on the edges are analogous to the parameter vector b in regression. Each output variable yk,

has its own parameter vector b:k. These are collected as column vectors into a parameter/weight matrix B,

where parameter value bjk is the edge weight connecting input node xj with output node yk.

After training, given an input vector x, the network can be used to predict the corresponding output

vector y. The network predicts an output/response value for yk by taking the weighted sum of its inputs

and passing this sum through activation function f .

yk = f(b:k · x) + εk = f
( nx−1∑
j=0

bjkxj
)

+ εk

The model equation for NeuralNet 2L can written in vector form as follows:

y = f(B · x) + ε = f(Btx) + ε (9.21)

9.4.2 Training

Given several input vectors and output vectors in a training dataset (i = 0, . . . ,m − 1), the goal is to

optimize/fit the paramters/weights B. The training dataset consisting of m input-output pairs is used to

minimize the error in the prediction by adjusting the parameter/weight matrix B. Given an input matrix X

consisting of m input vectors and an output matrix Y consisting of m output vectors, minimize the distance

between the actual/target output matrix Y and the predicted output matrix Ŷ ,

Ŷ = f(XB) (9.22)

This will minimize the error matrix E = Y − Ŷ

minB‖Y − f(XB)‖F (9.23)

where ‖ · ‖F is the Frobenius norm, X is a m-by-nx matrix, Y is a m-by-ny matrix, and B is a nx-by-ny

matrix. Other norms may be used as well, but the square of the Frobenius norm will give the overall sum of

squared errors sse.
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9.4.3 Optimization

As was the case with regression, it is convenient to minimize the dot product of the error with itself. We do

this for each of the columns of the Y matrix to get the sse for each yk and sum them up. The goal then is

to simply minimize the objective function sse(B). As in the Perceptron section, we work with half of the

sum of squared errors sse (or hse). Summing the error over each column vector y:k in matrix Y gives

hse(B) =
1

2

ny−1∑
k=0

(y:k − f(Xb:k)) · (y:k − f(Xb:k)) (9.24)

This nonlinear optimization problem may be solved by a variety of optimization techniques, including

Gradient-Descent, Stochastic Gradient Descent or Stochastic Gradient Descent with Momentum.

Most optimizers require a derivative and ideally these should be provided in functional form (otherwise

the optimizer will need to numerically approximate them). Again, for the sigmoid activation function,

sigmoid(t) =
1

1 + e−t

the derivative is

sigmoid(t)[1− sigmoid(t)]

To minimize the objective function given in equation 9.20, we decompose it into ny functions.

hse(b:k) = 1
2 (y:k − f(Xb:k)) · (y:k − f(Xb:k))

Notice that this is the same equation as 9.4, just with subscripts on y and b.

In Regression, we took the gradient and set it equal to zero. Here, gradients will need to be computed

by the optimizer. The equations will be the same as given in the Perceptron section, just with subscripts

added. The boxed equations from the Perceptron section become the following: The prediction vector for

the kth response/output is

ŷ:k = f(Xb:k) (9.25)

The error vector for the kth response/output is

ε:k = y:k − ŷ:k = y:k − f(Xb:k) (9.26)

The delta vector for the kth response/output is

δ:k =
∂hse

∂uk
= − f ′(Xb:k) ε:k (9.27)

where uk = Xb:k. The gradient with respect to the kth parameter vector is

∂hse

∂b:k
= −Xt[f ′(Xb:k) ε:k] = Xtδ:k

Finally, the update for the kth parameter vector is

b:k = b:k − Xt δ:k η (9.28)
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Sigmoid Case

For the sigmoid function, f ′(Xb:k) = f(Xb:k)[1− f(Xb:k)], so

∂hse

∂b:k
= −Xt[f(Xb:k)[1− f(Xb:k)] ε:k]

Again, moving in the direction opposite to the gradient by a distance governed by the learning rate η the

following term should be added to the weight/parameter vector b:k.

Xt [f(Xb:k)(1− f(Xb:k)) ε:k] η = −Xtδ:k η (9.29)

9.4.4 Matrix Version

Of course the boxed equations may be rewritten in matrix form. The m-by-ny prediction matrix Ŷ has a

column for each output variable.

Ŷ = f(XB) (9.30)

The m-by-ny negative of the error matrix E is the difference between the predicted and actual/target

output/response.

E = Ŷ − Y (9.31)

The m-by-ny delta matrix ∆ adjusts the error according to the slopes within f ′(XB) and is the elementwise

matrix (Hadamard) product of f ′(XB) and E.

∆ = f ′(XB) ◦ E (9.32)

In math, the Hadamard product is denoted by the ◦ operator, while in ScalaTion it is denoted by the **

operator. Finally, the nx-by-ny parameter matrix B is updated by −Xt∆η.

B = B −Xt∆η (9.33)

The corresponding code in the train0 method is shown below:

def train0 (x_r: MatriD = x, y_r: MatriD = y): NeuralNet_2L =

{

var sse0 = Double.MaxValue // hold prior value of sse

for (epoch <- 1 to maxEpochs) { // iterate over each epoch

val yp = f0.fM (x_r *: b) // Yp = f0(XB)

ee = yp - y_r // negative of error matrix

val d = f0.dM (yp) ** ee // delta matrix for yp

b -= x_r.t * d * eta // update ’b’ parameters

val sse = sseF (y_r, f0.fM (x_r *: b))

if (DEBUG) println (s"train0: parameters for $epoch th epoch: b = $b, sse = $sse")

if (sse > sse0) return this // return when sse increases

sse0 = sse // save prior sse

} // for
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this

} // train0

Note: f0.fM is the matrix version of the activation function and it is created using the matrixize high-order

function that takes a vector function as input.

def matrixize (f: FunctionV_2V): FunctionM_2M = (x: MatriD) => x.map (f(_))

val fM = matrixize (fV)

Similary, f0.dM is the matrix version of the derivative of the activation function. The NeuralNet 2L class

also provides train (typically better than train0) and train2 (with built in η search) methods.

NeuralNet 2L Class

Class Methods:

@param x the m-by-nx input matrix (training data consisting of m input vectors)

@param y the m-by-ny output matrix (training data consisting of m output vectors)

@param fname_ the feature/variable names (if null, use x_j’s)

@param hparam the hyper-parameters for the model/network

@param f0 the activation function family for layers 1->2 (input to output)

@param itran the inverse transformation function returns responses to original scale

class NeuralNet_2L (x: MatriD, y: MatriD,

fname_ : Strings = null, hparam: HyperParameter = Optimizer.hp,

f0: AFF = f_sigmoid, val itran: FunctionV_2V = null)

extends PredictorMat2 (x, y, fname_, hparam)

def parameters: NetParams = Array (b)

def train0 (x_r: MatriD = x, y_r: MatriD = y): NeuralNet_2L =

def train (x_r: MatriD = x, y_r: MatriD = y): NeuralNet_2L =

override def train2 (x_r: MatriD = x, y_r: MatriD = y): NeuralNet_2L =

def buildModel (x_cols: MatriD): NeuralNet_2L =

def predictV (z: VectoD): VectoD = f0.fV (b dot z)

def predictV (z: MatriD = x): MatriD = f0.fM (b * z)

9.4.5 Exercises

1. The dataset in ExampleConcrete consists of 7 input variables and 3 output variables.

// Input Variables (7) (component kg in one M^3 concrete):

// 1. Cement
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// 2. Blast Furnace Slag

// 3. Fly Ash

// 4. Water

// 5. Super Plasticizer (SP)

// 6. Coarse Aggregate

// 7. Fine Aggrregate

// Output Variables (3):

// 1. SLUMP (cm)

// 2. FLOW (cm)

// 3. 28-day Compressive STRENGTH (Mpa)

Create a NeuralNet 2L model to predict values for the three outputs y0, y1 and y2. Compare with the

results of using three Perceptrons.

2. Create a NeuralNet 2L model to predict values for the one output for the AutoMPG dataset. Compare

with the results of using the following models: (a) Regression, (b) Perceptron.

3. Were the results in for AutoMPG dataset the same for Perceptron and NeuralNet 2L? Please explain.

In general, is a NeuralNet 2L equivalent to ny Perceptrons?

4. Draw a NeuralNet 2L with nx = 4 input nodes and ny = 2 output nodes. Label the eight edges with

weights from the 4-by-2 weight matrix B = [bjk]. Write the two model equations, one for y0 and one

for y1. Combine these two equations into one vector equation for y = [y0, y1]. Given column vector

x = [1, x1, x2, x3], express ŷ = f(Btx) at the scalar level.
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9.5 Three-Layer Neural Networks

The NeuralNet 3L class supports 3-layer (input, hidden and output) Neural Networks. The inputs into a

Neural Net are given by the input vector x, while the outputs are given by the output vector y. Between

these two layers is a single hidden layer, whose intermediate values will be denoted by the vector z. Each

input xj is associated with an input node in the network, while each output yk is associated with an output

node in the network. The input layer consists of nx input nodes, the hidden layer consists of nz hidden

nodes, and the output layer consists of ny output nodes.

There are two sets of edges. Edges in the first set connect each input node with each hidden node, i.e.,

there are nxnz such edges in the network. The parameters (or edge weights) for the first set of edges are

maintained in matrix A = [ajh]nx×nz . Edges in the second set connect each hidden node with each output

node, i.e., there are nzny such edges in the network. The parameters (or edge weights) for the second set of

edges are maintained in matrix B = [bhk]nz×ny .

9.5.1 Model Equation

The model equation for NeuralNet 3L can written in vector form as follows:

y = f1(B · f0(A · x)) + ε = f1(Btf0(Atx)) + ε (9.34)

The innermost matrix-vector product multiplies the transpose of the nx-by-nz matrix A by the nx-by-1

vector x, producing an nz-by-1 vector, which is passed into the f0 vectorized activation function. The

outermost matrix-vector product multiplies the transpose of the nz-by-ny matrix B by the nz-by-1 vector

results, producing an ny-by-1 vector, which is passed into the f1 vectorized activation function.

Intercept/Bias

As before, one may include an intercept in the model (sometimes referred to as bias) by having a special

input node (say x0) that always provides the value 1. A column of all one in an input matrix (see below)

can achieve this. This approach could be carried forward to the hidden layer by including a special node

(say z0) that always produces the value 1. In such case, the computation performed at node z0 would be

thrown away and replaced with 1. The alternative is to replace the uniform notion of parameters with two

types of parameters, weights and biases. ScalaTion supports this with the NetParam case class.

@param w the weight matrix

@param b the optional bias/intercept vector (null => not used)

case class NetParam (w: MatriD, var b: VectoD = null)

def dot (x: VectoD): VectoD = (w dot x) + b

Following this approach, there is no need for the special nodes and the dot product is re-defined to add the

bias b to the regular matrix-vector dot product (w dot x). Note, the NetParam class defines several other

methods as well. The vector version of the predict method in NeuralNet 3L uses this dot product to make

predictions.

def predictV (v: VectoD): VectoD = f1.fV (b dot f0.fV (a dot v))
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9.5.2 Training

Given a training dataset made up of an m-by-nx input matrix X and an m-by-ny output matrix Y , training

consists of making a prediction Ŷ ,

Ŷ = f1(f0(XA)B) (9.35)

and determining the error in prediction E = Y − Ŷ with the goal of minimizing the error.

minB‖Y − f1(f0(XA)B)‖F (9.36)

Training involves an interative procedure (e.g., stochastic gradient descent) that adjusts parameter values

(for weights and biases) to minimize an objective/loss function such as sse or in this section half sse (or hse).

Before the main loop, random parameter values (for weights and biases) need to be assigned to NetParam A

and NetParam B. Roughly as outlined in section 3 of [19], the training can be broken into four steps:

1. Compute predicted values for output ŷ and compare with actual values y to determine the error y− ŷ.

2. Back propagate the adjusted error to determine the amount of correction needed at the output layer.

Record this as vector δ1.

3. Back propagate the correction to the hidden layer and determine the amount of correction needed at

the hidden layer. Record this as vector δ0.

4. Use the delta vectors, δ1 and δ0, to makes updates to NetParam A and NetParam B, i.e., the weights

and biases.

9.5.3 Optimization

In this subsection, the basic elements of the backpropagation algorithm are presented. In particular, we

now go over the four steps outlined above in more detail. Biases are ignored for simplicity, so the A and B

NetParams are treated as weight matrices. In the code, the same logic includes the biases (so nothing is lost,

see exercises).

1. Compute predicted values: Based on the randomly assigned weights to the A and B matrices, predicted

outputs ŷ are calculated. First values for the hidden layer z are calculated, where the values for hidden

node h, zh, is given by

zh = f0(a:h · x) for h = 0, . . . , nz − 1

where f0 is the first activation function (e.g., sigmoid), a:h is column-h of the A weight matrix, and x

is an input vector for a training sample/instance (row in the data matrix). Typically, several samples

(referred to as a batch) are used in each step. Next, the values computed at the hidden layer are used

to produce predicted outputs ŷ, where the value for output node k, ŷk, is given by

ŷk = f1(b:k · z) for k = 0, . . . , ny − 1
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where the second activation function f1 may be the same as (or different from) the one used in the

hidden layer and b:k is column-k of the B weight matrix. Now the difference between the actual and

predicted output can be calculated by simply subtracting the two vectors, or elementwise, the error

for the kth output, εk, is given by

εk = yk − ŷk for k = 0, . . . , ny − 1

Obviously, for subsequent iterations, the updated/corrected weights rather than the initial random

weights are used.

2. Back propagate from output layer: Given the computed error vector ε, the delta/correction vector δ1

for the output layer may be calculated, where for output node k, δ1
k is given by

δ1
k = − f ′1(b:k · z) εk for k = 0, . . . , ny − 1 (9.37)

where f ′1 is the derivative of the activation function (e.g., for sigmoid, f ′(t) = f(t)[1 − f(t)]). The

partial derivative of hse with respect to the weight connecting hidden node h with output node k, bhk,

is given by

∂hse

∂bhk
= zhδ

1
k (9.38)

3. Back propagate from hidden layer: Given the delta/correction vector δ1 from the output layer, the

delta vector for the hidden layer δ0 may be calculated, where for hidden node h, δ0
h is given by

δ0
h = f ′0(a:h · x) [bh · δ1] for h = 0, . . . , nz − 1 (9.39)

This equation is parallel to the one given for δ1
k in that an error-like factor multiplies the derivative of

the activation function. In this case, the error-like factor is the weighted average of the δ1
k for output

nodes connected to hidden node h times row-h of weight matrix B. The weighted average is computed

using the dot product.

bh · δ1 =

ny−1∑
k=0

bhk δ
1
k

The partial derivative of hse with respect to the weight connecting input node j with hidden node h,

ajh, is given by

∂hse

∂ajh
= xjδ

0
h (9.40)

4. Update weights: The weight matrices A and B, connecting input to hidden and hidden to output layers,

respectively, may now be updated based on the partial derivatives. For gradient descent, movement

is in the opposite direction, so the sign flips from positive to negative. These partial derivatives are

multiplied by the learning rate η which moderates the adjustments to the weights.
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bhk = bhk − zh δ
1
k η (9.41)

ajh = ajh − xj δ
0
h η (9.42)

To improve the stability of the algorithm, weights are adjusted based on accumulated corrections over a

batch of instances, where a batch is a subsample of the training dataset and may be up to the size the of the

entire training dataset (for i = 0, . . . ,m − 1). Once training has occurred over the current batch including

at the end updates to the A and B estimates, the current epoch is said to be complete. Correspondingly,

the above equations may be vectorized/matrixized so that calculations are performed over many instances

in a batch using matrix operations. Each outer iteration (epoch) typically should improve the A and B

estimates. Simple stopping rules include specifying a fixed number of iterations or breaking out of the outer

loop when the decrease in hse has been sufficiently small for q iterations.

9.5.4 Matrix Version

Given a training dataset consisting of an m-by-nx input data matrix X and an m-by-ny output data matrix

Y , the optimization equations may be re-written in matrix form as shown below.

The gradient descent optimizer used by the train0 method has one main loop, while the stochastic

gradient descent optimzer used by the train has two main loops. The outer loop iterates over epochs which

serve to improve the parameters/weights with each iteration. If the fit does not improve in several epochs,

the algorithm likely should break out of this loop.

The four boxed equations from the previous section become seven due to the extra layer. The optimizers

compute predicted outputs taking differences between the actual/target values and these predicted values to

compute an error matrix. Computed matrices are then used to compute delta matrices that form the basis

for updating the weight matrices.

1. The hidden values for all m instances and all nz hidden nodes are computed by applying the first

matrixized activation function f0 to the matrix product XA. The predicted output values Ŷ are

similarly computed by applying the second matrixized activation function f1 to the matrix product

ZB.

Z = f0(XA) (9.43)

Ŷ = f1(ZB) (9.44)

2. The negative of the error matrix E is just the difference between the predicted and actual/target

values.

E = Ŷ − Y (9.45)
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3. This information is sufficient to calculate delta matrices: ∆1 for adjusting B and ∆0 for adjusting A.

The ∆1 matrix is the elementwise matrix (Hadamard) product of f ′1(ZB) and E.

∆1 = f ′1(ZB) ◦ E (9.46)

The ∆0 matrix is the elementwise matrix (Hadamard) product of f ′0(XA) and ∆1Bt.

∆0 = f ′0(XA) ◦ (∆1Bt) (9.47)

4. As mentioned, the delta matrices form the basis (a matrix transpose × delta × the learning rate η)

for updating the parameter/weight matrices, A and B.

B = B − Zt∆1 η (9.48)

A = A − Xt∆0 η (9.49)

The corresponding Scalation code for the train0 method is show below.

def train0 (x_r: MatriD = x, y_r: MatriD = y): NeuralNet_3L =

{

var sse0 = Double.MaxValue // hold prior value of sse

for (epoch <- 1 to maxEpochs) { // iterate over each epoch

var z = f0.fM (x_r *: a) // Z = f0(XA)

var yp = f1.fM (z *: b) // Yp = f1(ZB)

ee = yp - y_r // negative of the error matrix

val d1 = f1.dM (yp) ** ee // delta matrix for yp

val d0 = f0.dM (z) ** (d1 * b.w.t) // delta matrix for z

a -= (x_r.t * d0 * eta, d0.mean * eta) // update ’a’ weights & biases

b -= (z.t * d1 * eta, d1.mean * eta) // update ’b’ weights & biases

val sse = sseF (y_r, f1.fM (f0.fM (x_r *: a)) *: b)

if (DEBUG) println (s"train0: parameters for $epoch th epoch: b = $b, sse = $sse")

if (sse > sse0) return this // return early if moving up

sse0 = sse // save prior sse

this

} // for

this

} // train0

For stochastic gradient descent in the Optimizer object, the inner loop divides the training dataset

into nB batches. A batch is a randomly selected group/batch of rows. Each batch (ib) is passed to the

updateWeight (x(ib), y(ib)) method that updates the A and B parameter/weight matrices.

Neural networks may be used for prediction/regression as well as classification problems. For predic-

tion/regression, the number of output nodes would corresponding to the number of responses. For example,

in the ExampleConrete example there are three response columns, requiring three instances of Regression

229



or one instance of NeuralNet 3L. Three separate NeuralNet 3L instances each with one output node could

be used as well. Since some activation functions have limited ranges, it is common practice for these types of

problems to let the activation function in the last layer be identity id. If this is not done, response columns

need to be re-scaled based on the training dataset. Since the testing dataset may have values outside this

range, this approach may not be ideal.

For classification problems, it is common to have an output node for each response value for the categorical

variable, e.g., “no”, “yes” would have y0 and y1, while “red”, “green”, “blue” would have y0, y1 and y2. The

softmax activation function is a common choice to the last layer for classification problems.

fi(t) =
eti

1 · et
for i = 0, . . . , n− 1

9.5.5 Example Error Calculation Problem

Draw a 3-layer (input, hidden and output) Neural Network (with sigmoid activation), where the number of

nodes per layer are nx = 2, nz = 2 and ny = 1.

Input to Hidden Layer Parameters

Initialize bias vector ab to [.1, .1] and weight matrix A (nx-by-nz) to[
.1 .2

.3 .4

]

Hidden to Output Layer Parameters

Initialize bias vector bb to [.1] and weight matrix B (nz-by-ny) to[
.5

.6

]

Compute the Error for the First Iteration

Let x = [x0, x1] = [2, 1] and y0 = .8, and then compute the error ε0 = y0 − ŷ0, by feeding the values from

vector x forward. First compute values at the hidden layer for z.

zh = f0(a:h · x + abh)

z0 = f0(a:0 · x + ab0)

z0 = f0([2.0, 1.0] · [0.1, 0.3] + 0.1)

z0 = f0(0.6) = 0.645656

z1 = f0(a:1 · x + bb0)

z1 = f0([2.0, 1.0] · [0.2, 0.4] + 0.1)

z1 = f0(0.9) = 0.710950

One may compute the values for sigmoid activation function as follows:
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println (ActivationFun.sigmoidV (VectorD (0.6, 0.9)))

Then compute predicted values at the output layer for ŷ.

yk = f1(b:k · z + bbk)

y0 = f1(b:0 · z + bb0)

y0 = f1([0.5, 0.6] · [0.645656, 0.71095] + 0.1)

y0 = f1(0.749398) = 0.6790458

Therefore, the error is

ε0 = y0 − ŷ0

ε0 = 0.8− 0.6790458 = 0.1209542

NeuralNet 3L Class

Class Methods:

@param x the m-by-nx input matrix (training data consisting of m input vectors)

@param y the m-by-ny output matrix (training data consisting of m output vectors)

@param nz the number of nodes in hidden layer

@param fname_ the feature/variable names (if null, use x_j’s)

@param hparam the hyper-parameters for the model/network

@param f0 the activation function family for layers 1->2 (input to hidden)

@param f1 the activation function family for layers 2->3 (hidden to output)

@param itran the inverse transformation function returns responses to original scale

class NeuralNet_3L (x: MatriD, y: MatriD,

private var nz: Int = -1,

fname_ : Strings = null, hparam: HyperParameter = hp,

f0: AFF = f_tanh, f1: AFF = f_id,

val itran: FunctionV_2V = null)

extends PredictorMat2 (x, y, fname_, hparam) // sets eta in parent class

def compute_df_m (n: Int): Int = (nx + 2) * n

def parameters: NetParams = Array (a, b)

def train0 (x_r: MatriD = x, y_r: MatriD = y): NeuralNet_3L =

def train (x_r: MatriD = x, y_r: MatriD = y): NeuralNet_3L =

override def train2 (x_r: MatriD = x, y_r: MatriD = y): NeuralNet_3L =

def buildModel (x_cols: MatriD): NeuralNet_3L =

def predictV (v: VectoD): VectoD = f1.fV (b dot f0.fV (a dot v))

def predictV (v: MatriD = x): MatriD = f1.fM (b * f0.fM (a * v))

def showEstat ()
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9.5.6 Exercises

1. Delta Vectors: For the example error calculation problem, calculate the δ1 = [δ1
0 ] vector. Explain

equation 9.31 (with explicit weights and biases included) for computing δ1
k and use it for the calculation.

δ1
k = − f ′1(b:k · z + bbk) εk

Calculate the δ0 = [δ0
0 , δ

0
1 ] vector. Explain equation 9.33 (with explicit weights and biases included)

for computing δ0
h and use it for the calculation.

δ0
h = f ′0(a:h · x + abh) [bh · δ1]

2. Parameter Update Equations: Use the δ1 vector to update weight matrix B, i.e., for each row h,

bh = bh − zhδ1η

and update the bias vector bb as follows:

bb = bb − δ1η

Use the δ0 vector to update weight matrix A, i.e., for each row j,

aj = aj − xjδ0η

and update the bias vector ab as follows:

ab = ab − δ0η

3. Derive equation 9.32 for the partial derivative of hse w.r.t. bhk,

∂hse

∂bhk
= zhδ

1
k

by defining pre-activation value vk = b:k · z and applying the following chain rule:

∂hse

∂bhk
=

∂hse

∂vk

∂vk
∂bhk

4. Explain the formulations for the two delta matrices.

∆1 = f ′1(ZB) ◦ E

∆0 = f ′0(XA) ◦ (∆1Bt)
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5. The dataset in ExampleConcrete consists of 7 input variables and 3 output variables. See the

NeuralNet 2L section for details. Create a NeuralNet 3L model to predict values for the three outputs

y0, y1 and y2. Compare with the results of using a NeuralNet 2L model.

6. Create a NeuralNet 3L model to predict values for the one output for the AutoMPG dataset. Compare

with the results of using the following models: (a) Regression, (b) Perceptron, (c) NeuralNet 2L.

233



9.6 Multi-Hidden Layer Neural Networks

The NeuralNet XL class supports basic x-layer (input, {hidden} and output) Neural Networks. For example

a four layer neural network with have four layers of nodes with (one input layer numbered 0, two hidden

layers numbered 1 and 2, and one output layer numbered 3). Note, since the input layer’s purpose is just to

funnel the input into the model, it is also common to refer to such a neural network as a three layer network.

This has the advantage that number layers now corresponds to the number parameter/weight matrices. In

ScalaTion, the number of active layers is denoted by nl (which in this case equals 3). Since arrays of

matrices are used in the ScalaTion code, multiple layers of hidden nodes are supported. In particular,

parameter b which holds the weights and biases for all layers is of type NetParams where

type NetParams = IndexedSeq [NetParam]

9.6.1 Model Equation

The equations for NeuralNet XL are the same as those used for NeuralNet 3L, except that the calculations

are repeated layer by layer in a forward direction for prediction. The model equation for a four layer

NeuralNet XL can written in vector form as follows:

y = f2(B2 · f1(B1 · f0(B0 · x))) + ε (9.50)

where Bl is the NetParam (weight matrix and bias vector) connecting layer l to layer l + 1 and fl is the

vectorized activation function at layer l + 1.

9.6.2 Training

As before, the training dataset consists of an m-by-nx input matrix X and an m-by-ny output matrix Y .

During training, the predicted values Ŷ are compared to actual/target values Y ,

Ŷ = f2(f1(f0(XB0)B1)B2) (9.51)

to compute an error matrix E = Y − Ŷ , to be minimized.

minB‖Y − f2(f1(f0(XB0)B1)B2)‖F (9.52)

Corrections based on these errors are propogated backward through the network to improve the parameter

estimates (weights and biases) layer by layer.

9.6.3 Optimization

The seven boxed equations from the previous section become six due to unification of the last two. As before,

the optimizers compute a predicted output matrix and then take differences between the actual/target values

and these predicted values to compute an error matrix. These computed matrices are then used to compute

delta matrices that form the basis for updating the weight matrices. Again for simplicity, biases are ignore in

the equations below, but are taken care of in the code through the NetParam abstraction. See the exercises

for details.

234



1. The values are feed forward through the network, layer by layer. For layer l, these values are stored

in matrix Zl. The first layer is the input, so Z0 = X. For the rest of the layers, Zl+1 equals the

result of activation function fl being applied to the product of the previous layer’s Zl matrix times its

parameter matrix Bl.

Z0 = X (9.53)

For each layer l in the forward direction:

Zl+1 = fl(ZlBl) (9.54)

2. The negative of the error matrix E is just the difference between the predicted and actual/target

values, where Ŷ = Znl.

E = Ŷ − Y (9.55)

3. This information is sufficient to calculate delta matrices ∆l. For the last layer:

∆nl−1 = f ′nl−1(Znl−1Bnl−1) ◦ E (9.56)

For the rest of layers in the backward direction with l being decremented:

∆l = f ′l (ZlBl) ◦ (∆l+1Btl+1) (9.57)

4. As mentioned, the delta matrices form the basis (a matrix transpose × delta × the learning rate η)

for updating the parameter/weight matrices, Bl for each layer l.

Bl = Bl − Ztl∆
l η (9.58)

The implementation of the train0 encodes these equation and uses gradient descent to improve the

parameters Bl over several epochs, terminating early when the objective/cost function fails to improve.

def train0 (x_r: MatriD = x, y_r: MatriD = y): NeuralNet_XL =

{

var sse0 = Double.MaxValue // hold prior value of sse

val z = Array.ofDim [MatriD] (nl+1); z(0) = x_r // storage: activations f(Z_l B_l)

val d = Array.ofDim [MatriD] (nl) // storage: deltas

for (epoch <- 1 to maxEpochs) { // iterate over each epoch

for (l <- layers) z(l+1) = f(l).fM (z(l) *: b(l)) // feedforward and store activations

ee = z.last - y_r // negative of error matrix

d(nl-1) = f.last.dM (z.last) ** ee // delta for last layer before output

for (l <- nl-2 to 0 by -1)

d(l) = f(l).dM (z(l+1)) ** (d(l+1) * b(l+1).w.t) // deltas for previous hidden layers

for (l <- layers) b(l) -= (z(l).t * d(l) * eta, d(l).mean * eta) // update (weights, biases)
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val sse = ee.normFSq

if (DEBUG) println (s"train0: parameters for $epoch th epoch: b = $b, sse = $sse")

if (sse > sse0) return this // return early if moving up

sse0 = sse // save prior sse

} // for

this

} // train0

The train0 method is kept simple to facilitate understanding. In practice, the train and train2 methods

should be used.

9.6.4 Number of Nodes in Hidden Layers

The array nz gives the number of nodes for each of the hidden layers. If the user does not specify the number

of nodes for each hidden layer, then based on the number of input nodes nx and number of output nodes ny,

defaults are utilized according to one of two rules. The comments should be switched to change rules.

// if (nz == null) nz = compute_nz (nx) // Rule [1] default # nodes for hidden layers

if (nz == null) nz = compute_nz (nx, ny) // Rule [2] default # nodes for hidden layers

val df_m = compute_df_m (nz) // degrees of freedom for model

resetDF (df_m, x.dim1 - df_m) // degrees of freedom for (model, error)

If the array is null, then default numbers for the hidden layers are utilized. Rule [1] (drop one), simply

decreases the number of nodes in each hidden layer by one, starting with nx - 1, nx - 2, etc. Rule [2]

(average), takes the average between nx and ny for the first hidden layer, averages that with ny for the

second layer, etc. The number of nodes in each layer is used make a rough estimate of the degrees of freedom

for the model [?]. Currently, the degrees of freedom is only considered for the first output variable.

9.6.5 Avoidance of Overfitting

If efforts are not made to avoid overfitting, NeuralNet XL models are likely to suffer from this problem. When

R2, R̄2 are much higher than R2
cv there may be two causes. One is that the tuning of hyper-parameters on

the full dataset, is different from the tuning on training set slices. Two is that the optimization algorithm

finished with the signal and continued on to fit the noise. The simplest way to reduce overfitting is to make

the optimizer quit before focusing its efforts on the noise. If only we knew. A crude way to this is to reduce

the maximum number of epochs. A better way to do this is to split a training set into two parts, one for

training (iteratively adjusting the parameters) and other for the stopping rule. The stopping rule would

compute the objective/loss function only using the validation data. Regularization of the parameters, as was

done for Ridge and Lasso Regression, may help as well.

NeuralNet XL Class

Class Methods:

@param x the m-by-nx data/input matrix (training data having m input vectors)
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@param y the m-by-ny response/output matrix (training data having m output vectors)

@param nz the number of nodes in each hidden layer, e.g., Array (5, 10)

@param fname_ the feature/variable names (if null, use x_j’s)

@param hparam the hyper-parameters for the model/network

@param f the array of activation function families between every pair of layers

@param itran the inverse transformation function returns responses to original scale

class NeuralNet_XL (x: MatriD, y: MatriD,

private var nz: Array [Int] = null,

fname_ : Strings = null, hparam: HyperParameter = Optimizer.hp,

f : Array [AFF] = Array (f_tanh, f_tanh, f_id),

val itran: FunctionV_2V = null)

extends PredictorMat2 (x, y, fname_, hparam) // sets eta in parent class

def compute_nz (nx: Int): Array [Int] =

def compute_nz (nx: Int, ny: Int): Array [Int] =

def compute_df_m (n: Array [Int]): Int =

def parameters: NetParams = b

def train0 (x_r: MatriD = x, y_r: MatriD = y): NeuralNet_XL =

def train (x_r: MatriD = x, y_r: MatriD = y): NeuralNet_XL =

override def train2 (x_r: MatriD = x, y_r: MatriD = y): NeuralNet_XL =

def buildModel (x_cols: MatriD): NeuralNet_XL =

def getNetParam (layer: Int = 1) = b(layer)

def predictV (v: VectoD): VectoD =

def predictV (v: MatriD = x): MatriD =

When a neural network is being used to for prediction/regression problems, it is often the case the there

will be a single output node. ScalaTion provides the NeuralNet XL1 class for this.

NeuralNet XL1 Class

Class Methods:

@param x the m-by-nx data/input matrix (training data having m input vectors)

@param y the m response/output vector (training data having m output valaues)

@param nz_ the number of nodes in each hidden layer, e.g., Array (9, 8)

@param fname_ the feature/variable names (if null, use x_j’s)

@param hparam the hyper-parameters for the model/network

@param f the array of activation function families between every pair of layers

@param itran the inverse transformation function returns responses to original scale

class NeuralNet_XL1 (x: MatriD, y: VectoD,
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nz_ : Array [Int] = null,

fname_ : Strings = null, hparam: HyperParameter = hp,

f: Array [AFF] = Array (f_tanh, f_tanh, f_id),

itran: FunctionV_2V = null)

extends NeuralNet_XL (x, MatrixD (y), nz_, fname_, hparam, f, itran)

9.6.6 Exercises

1. Examine the implementation of the train0 method and the NetParam case class, where the net pa-

rameter b has two parts: the weight matrix b.w and the bias vector b.b. Show how the biases affect

the calculation of prediction matrix Ŷ = Znl in the feed forward process.

2. Examine the implementation of the train0 method and the NetParam case class and show how the

biases affect the update of the weights b.w in the back propogation process.

3. Examine the implementation of the train0 method and the NetParam case class and show how the

biases b.b are updated in the back propogation process.

4. The dataset in ExampleConcrete consists of 7 input variables and 3 output variables. See the

NeuralNet 2L section for details. Create a NeuralNet XL model with four layers to predict values

for the three outputs y0, y1 and y2. Compare with the results of using a NeuralNet 3L model.

5. Create a NeuralNet XL model with four layers to predict values for the one output for the AutoMPG

dataset. Compare with the results of using the following models: (a) Regression, (b) Perceptron,

(c) NeuralNet 2L, (d) NeuralNet 3L.

6. Tuning the Hyper-Parameters: The learning rate η (eta in the code) needs frequent tuning.

ScalaTion as with most packages has limited auto-tuning of the learning rate. Tune the other hyper-

parameters for the AutoMPG dataset.

/** hyper-parameters for tuning the optimization algorithms - user tuning

*/

val hp = new HyperParameter

hp += ("eta", 0.1, 0.1) // learning/convergence rate

hp += ("bSize", 20, 20) // mini-batch size, common range 10 to 30

hp += ("maxEpochs", 500, 500) // maximum number of epochs/iterations

hp += ("patience", 4.0, 4.0) // number of subsequent upward steps before stopping

hp += ("lambda", 0.01, 0.00) // regularization hyper-parameter

// example adjustments - to be done before creating the neural network model

hp("eta") = 0.05

hp("bSize") = 25

hp("maxEpochs") = 200

hp("patience") = 5

hp("lambda") = 0.02
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Note, in other packages patience is number of upward steps, not the number of subsequent upward

steps.

7. Tuning the Network Architecture: The architecture of the neural network can be tuned by (1)

changing the number of layers, (2) changing the number of nodes in each hidden layer, and (3) changing

the activation functions. Tune the architecture for the AutoMPG dataset. The number of layers and

number of nodes in each layer should only be increased when there is non-trivial improvement.
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9.7 Transfer Learning

The first sets of transformations (from input to the first hidden layer and between the first and second

hidden layers) in a Neural Network allow nonlinear effects to be created to better capture characteristics of

the system under study. These are taken in combination in later latter layers of the Neural Network. The

thought is that related problems share similar nonlinear effects. In other words, two datasets on related

problems used to train two Neural Networks are likely to develop similar nonlinear effects at some point

in their training. If this is case, the traininhg of the first Neural Netork could expedite the training of the

second Neural Network. Some research has show the Quality of Fit (QoF) may also be enhanced [?] as well.

The easiest way to imagine this is to have two four-layer Neural Networks, say with 30 inputs for the first

and 25 for the second. Let the first hidden layer have 50 nodes and third have 20 nodes, with an output layer

for the single output/response value. The only difference in node count is in the input layer. For the first

Neural Network, the sizes of the parameter/weight matrices are 30-by-50, 50-by-20 and 20-by-1. The only

difference in the second Neural Network is that the first matrix is 25-by-50. After the first Neural Network is

trained, its second matrix (50-by-20) along with its associated bias vector could be transferred to the second

Neural Network. When training starts for the second Neural Network, random initialization is skipped for

this matrix (and its associated bias vector). A training choice is whether to freeze this layer or allow its

values to be adjusted during back-propogation.

NeuralNet XLT Class

Class Methods:

@param x the m-by-nx input matrix (training data consisting of m input vectors)

@param y the m output vector (training data consisting of m output integer values)

@param nz the number of nodes in each hidden layer, e.g., Array (9, 8) => sizes 9 and 8

@param fname_ the feature/variable names (if null, use x_j’s)

@param hparam the hyper-parameters for the model/network

@param f the array of activation function families between every pair of layers

@param l_tran the first layer to be transferred in

@param transfer the saved network parameters from layers of a related neural network

@param itran the inverse transformation function returns responses to original scale

class NeuralNet_XLT (x: MatriD, y: MatriD,

nz: Array [Int], fname_ : Strings = null,

hparam: HyperParameter = hp,

f: Array [AFF] = Array (f_tanh, f_tanh, f_id),

l_tran: Int = 1, transfer: NetParams = null,

itran: FunctionV_2V = null)

extends NeuralNet_XL (x, y, nz, fname_, hparam, f, itran)

def trim (bl: NetParam, tl: NetParam): NetParam =
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9.7.1 Exercises

1.
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9.8 Extreme Learning Machines

An Extreme Learning Machine (ELM) may be viewed as three-layer Neural Network with the first set of

fixed-parameters (weights and biases) frozen. The values for these parameters may be randomly generated

or transferred in from a Neural Network. With the first set of fixed-parameters frozen, only the second set

of parameters needs to be optimized. When the second activation function is the identity function (id), the

optimization problem is the same as for the Regression problem, so that matrix factorization may be used

to train the model. This greatly reduces the training time over Neural Networks. Although the first set of

fixed-parameters is not optimized, nonlinear effects are still created at the hidden layer and there may be

enough flexibility left in the second set of parameters to retain some of the advantages of Neural Networks.

9.8.1 Model Equation

A relatively simple form of Extreme Learning Machine in ScalaTion is ELM 3L1. It allows for a single

output/response variable y and multiple input/predictors variables x = [x0, x1, . . . xn−1]. The number of

nodes per layer are nx for input, nz for hidden and ny = 1 for output. The second activation function f1 is

implicitly id and be left out.

The model equation for ELM 3L1 can written in vector form as follows,

y = b · f0(Atx)) + ε (9.59)

where A is the first layer NetParam consisting of an nx-by-nz weight matrix and an nz bias vector. In

ScalaTion, these parameters are initilized as follows (see exercises for details):

private var a = new NetParam (weightMat3 (n, nz, s),

weightVec3 (nz, s))

The second layer is simply an nz weight vector b. The first layer’s weights and biases A are frozen, while

the second layer parameters b are optimized.

9.8.2 Training

Given a dataset (X,y), training will be used to adjust values of the parameter vector b. The objective is to

minimize the distance between the actual and predicted response vectors.

fobj = ||y − b · f0(XA)|| (9.60)

9.8.3 Optimization

An optimal value for parameter vector b may be found using Regression.

def train (x_r: MatriD = x, y_r: VectoD = y): ELM_3L1 =

{

val z = f0.fM (x_r *: a) // Z = f(XA)

val rg = new Regression (z, y_r) // Regression

rg.train ()

b = rg.parameter
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this

} // train

Extreme Learning Machines typically are competitive with lower order polynomial regression and may

have fewer parameters than CubicXRegression.

ELM 3L1 Class

Class Methods:

@param x the m-by-n input matrix (training data consisting of m input vectors)

@param y the m output vector (training data consisting of m output scalars)

@param nz the number of nodes in hidden layer (-1 => use default formula)

@param fname_ the feature/variable names (if null, use x_j’s)

@param hparam the hyper-parameters for the model/network

@param f0 the activation function family for layers 1->2 (input to hidden)

@param itran the inverse transformation function returns responses to original scale

class ELM_3L1 (x: MatriD, y: VectoD, private var nz: Int = -1,

fname_ : Strings = null, hparam: HyperParameter = null,

f0: AFF = f_tanh, val itran: FunctionV_2V = null)

extends PredictorMat (x, y, fname_, hparam)

def compute_df_m (nz_ : Int): Int = nz_

def parameters: VectoD = b

def train (x_r: MatriD = x, y_r: VectoD = y): ELM_3L1 =

def buildModel (x_cols: MatriD): ELM_3L1 =

override def predict (v: VectoD): Double = b dot f0.fV (a dot v)

override def predict (v: MatriD = x): VectoD = f0.fM (a * v) * b

When the second activation function is not id, then the optimization of the second set of parameters

works like it does for Transformed Regression. Also, when multiple outputs are needed, the ELM 3L may be

used.

9.8.4 Exercises

1. Create an ELM 3L1 model to predict values for the AutoMPG dataset. Compare with the results of

using the following models: (a) Regression, (b) Perceptron, (c) NeuralNet 2L, (d) NeuralNet 3L,

(e) NeuralNet XL

2. Time each of the six model given above using ScalaTion’s time method (import scalation.util.time).

def time [R] (block: => R): R =
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This method can time the execution of any block of code (time { block }).

3. Compare the following stategies for intializing NetParam A (weights and biases for the first layer). ...
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Chapter 10

Time-Series/Temporal Models

Time-Series/Temporal Models are used in order to make forecasts into the future. Applications are numerous

and include weather, sales projections, energy consumption, economic indicators, financial instruments and

traffic conditions. So far, predictive models have been of the form

y = f(x; b) + ε

where x is the vector of predictive variables/features, y is the response variable and ε is the residual/error.

In order to fit the parameters b, m samples are collected into a data/input matrix X and a re-

sponse/output vector y. The samples are treated as though they are independent. In many case, such

as data collected over time, they are often not independent. For example, the current Gross Domestic Prod-

uct (GDP) will likely show dependency upon the previous quarter’s GDP. If the model is to forecast the

next quarter’s GDP, surely it should take into account the current (or recent) GDP values.

To begin with, one could focus on forecasting the value of response y at time t as a function of prior

values of y, e.g.,

yt = f(yt−1, . . . , yt−p;φ) + εt (10.1)

where φ is a vector of parameters analogous to b.

Of course, other predictor variables x may be included in the forecasting model as well, see the section

on ARIMAX. Initially in this chapter, time will be treated as discrete time.
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10.1 ForecasterVec

The ForecasterVec abstract class within the scalation.analytics.forecaster package provides a com-

mon framework for several forecasters. Note, the train method must be called first followed by eval. The

forecast method is used to make forecasts h steps (time units) into the future.

ForecasterVec Abstract Class

Class Methods:

@param y the response vector (time series data)

@param n the number of parameters

@param hparam the hyper-parameters

abstract class ForecasterVec (y: VectoD, n: Int, hparam: HyperParameter = null)

extends Fit (y, n, (n - 1, y.dim - n)) with Predictor

def train (yy: VectoD = y): ForecasterVec

def eval (xx: MatriD, yy: VectoD): ForecasterVec =

def eval (yy: VectoD = y): ForecasterVec =

def hparameter: HyperParameter = hparam

def report: String =

def residual: VectoD = e

def predict (yy: VectoD = null): Double = forecast ()(0)

def predictAll: VectoD

def forecast (h: Int = 1): VectoD

def plotFunc (fVec: VectoD, name: String)

ForecasterVec Companion Object

The ForecasterVec companion obejct defines the Auto-Correlation Function (ACF). It returns the variance,

the auto-covariance vector and the auto-correlation vector.

def acf (y_ : VectoD, lags: Int = MAX_LAGS): (Double, VectoD, VectoD) =

{

val y = if (y_.isInstanceOf [VectorD]) y_.asInstanceOf [VectorD]

else y_.toDense

val sig2 = y.variance // the sample variance

val acv = new VectorD (lags + 1) // auto-covariance vector

for (k <- acv.range) acv(k) = y acov k // k-th lag auto-covariance

val acr = acv / sig2 // auto-correlation function

(sig2, acv, acr)

} // acf
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10.1.1 Auto-Correlation Function

To better understand the dependencies in the data, it is useful to look at the auto-correlation. Consider the

following time series data used in forecasting lake levels recorded in the Lake Level Times-series Dataset.

(see cran.r-project.org/web/packages/fpp/fpp.pdf):

val m = 98

val t = VectorD.range (0, m)

val y = VectorD (580.38, 581.86, 580.97, 580.80, 579.79, 580.39, 580.42, 580.82, 581.40, 581.32,

581.44, 581.68, 581.17, 580.53, 580.01, 579.91, 579.14, 579.16, 579.55, 579.67,

578.44, 578.24, 579.10, 579.09, 579.35, 578.82, 579.32, 579.01, 579.00, 579.80,

579.83, 579.72, 579.89, 580.01, 579.37, 578.69, 578.19, 578.67, 579.55, 578.92,

578.09, 579.37, 580.13, 580.14, 579.51, 579.24, 578.66, 578.86, 578.05, 577.79,

576.75, 576.75, 577.82, 578.64, 580.58, 579.48, 577.38, 576.90, 576.94, 576.24,

576.84, 576.85, 576.90, 577.79, 578.18, 577.51, 577.23, 578.42, 579.61, 579.05,

579.26, 579.22, 579.38, 579.10, 577.95, 578.12, 579.75, 580.85, 580.41, 579.96,

579.61, 578.76, 578.18, 577.21, 577.13, 579.10, 578.25, 577.91, 576.89, 575.96,

576.80, 577.68, 578.38, 578.52, 579.74, 579.31, 579.89, 579.96)

First plot this dataset and then look at its Auto-Correlation Function (ACF).

new Plot (t, y, null, "Plot of y vs. t", true)

The Auto-Correlation Function (ACF) measures how much the past can influence a forecast. If the

forecast is for time t, then the past time points are t − 1, . . . , t − p. The kth lag auto-covariance (auto-

correlation), γk (ρk) is the covariance (correlation) of yt and yt−k.

γk = C [yt, yt−k] (10.2)

ρk = corr(yt, yt−k) (10.3)

Note that γ0 = V [yt] and ρk = γk/γ0. These equations assume the stochastic process {yt|t ∈ [0,K]} is

covariance stationary (see exercises).

Although vectors need not be created, to compute corr(yt, yt−2) one could imagine computing the cor-

relation between y.slice (2, m) and y.slice (0, m-2). In ScalaTion, the ACF is computed using the

acf function from the ForecasterVec companion object.

import ForecasterVec._

val (sig2, acv, acr) = acf (y)

val zero = new VectorD (acr.dim)

new Plot (t(0 until acr.dim), acr, zero, "ACF vs. k", true)

The first point in plot is the auto-correlation of yt with itself, while the rest of the points are ACF(k), the

kth lag auto-correlation.
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10.2 Auto-Regressive (AR) Models

One of the simplest types of forecasting models of the form given in equation 10.1, is to make the future value

yt be linearly dependent on the last p of y values. In particular, a pth-order Auto-Regressive AR(p) model

predicts the next value yt from the sum of the last p values each weighted by its own coefficient/parameter

φj

yt = δ + φ1yt−1 + ... φpyt−p + εt

where δ = µ(1 − 1 · φ) and the error/noise is represented by εt. εt represents noise that shocks the system

at each time step. We require that E [εt] = 0, V [εt] = σ2
ε , and that all the noise shocks be independent.

To better capture the dependency, the data need to be zero-centered, which can be accomplished by

subtracting the mean µ, zt = yt − µ.

zt = φ1zt−1 + ... φpzt−p + εt (10.4)

Notice that since zt is zero-centered, the formulas for the mean, variance and covariance are simplified.

E [zt] = 0 (10.5)

V [zt] = E
[
z2
t

]
(10.6)

C [zt, zt−k] = E [ztzt−k] = γk (10.7)

10.2.1 AR(1) Model

When the future is mainly dependent only on the most recent value, e.g., ρ1 is high and rest ρ2, ρ3, etc. are

substantially lower, then an AR(1) model may be sufficient.

zt = φ1zt−1 + εt (10.8)

An estimate for the parameter φ1 may be determined from the ACF. Take equation 10.8 and multiply it by

zt−k (k = 1, 2, . . . , p).

ztzt−k = φ1zt−1zt−k + εtzt−k

Taking the expected value of the above equation gives,

E [ztzt−k] = φ1E [zt−1zt−k] + E [εtzt−k]

Using the definition in Equation 10.7 for γk, this can be rewritten as

γk = φ1γk−1 + 0

where past value zt−k is independent of future noise shock εt. Now dividing by γ0 yields

ρk = φ1ρk−1 (10.9)

An estimate for parameter φ1 may be easily determined by simply setting k = 1 in equation 10.9.

φ1 = ρ1 (10.10)
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10.2.2 AR(p) Model

The model equation for an AR(p) model includes the past p values of zt.

yt = δ + φ1zt−1 + φ2zt−2 + . . . + φpzt−p + εt

Subtracting the mean µ from the response yt gives

zt = φ1zt−1 + . . . + φpzt−p + εt (10.11)

Multiplying by zt−k and then taking the expectation produces

γk = φ1γk−1 + φ2γk−2 + . . . + φpγk−p

Dividing by γ0 yields

ρk = φ1ρk−1 + φ2ρk−2 + . . . + φpρk−p (10.12)

Equation 10.12 contains p unknowns and by letting k = 1, 2, . . . , p, it can be used to generate p equations,

or one matrix equation.

ρ1 = φ1ρ0 + φ2ρ1 + . . . + φpρp−1

ρ2 = φ1ρ1 + φ2ρ0 + . . . + φpρp−2

. . .

ρp = φ1ρp−1 + φ2ρp−2 + . . . + φpρ0

These are the Yule-Walker equations (often ρ0 is removed since it equals 1). Letting ρ be the p-dimensional

vector of lag auto-correlations and φ be the p-dimensional vector of parameters/coefficients, we may concisely

write

ρ =
[
ρ|i−j|

]
i,j
φ = P φ (10.13)

where P is a p-by-p symmetric Toeplitz matrix with ones on the main diagonal. One way to solve for the

parameter vector φ is to take the inverse (or use related matrix factorization techniques).

φ = P−1 ρ (10.14)

Due to the special structure of the P matrix, more efficient techniques may be used, see the next subsection.

10.2.3 Training

The first step in training is to zero-center the response and compute the Auto-Correlation Function.

val z = y - mu // work with mean zero time series

val (sig2, acv, acr) = acf (z, ml) // variance, auto-covariance, auto-correlation
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The parameter/coefficient vector φ can be estimated from values in the ACF. In ScalaTion, the coefficients

φ are estimated using the Durbin-Levinson algorithm and extracted from the pth row of the ψ (psi) matrix.

Define ψkj to be φj for an AR(k) model. Letting k range up to p allows the φj parameters to be

calculated. Letting k range up to the maximum number of lags (ml) allows the Partial Auto-Correlation

Function (PACF) to be computed.

private var phi: VectoD = null // AR(p) parameters/coefficients

private var psi = new MatrixD (ml+1, ml+1) // psi matrix (ml = max lags)

Invoke the durbinLevinson method [18] passing in the auto-covariance vector γ (g) and the maximum

number of lags (ml). From 1 up to the maximum number of lags, iteratively compute the following:

ψkk =
γk − Σk−1

j=1ψk−1,j γk−j

rk−1

ψkj = ψk−1,j − ψkk ψk−1,k−j

rk = rk−1(1− ψ2
kk)

private def durbinLevinson (g: VectoD, ml: Int): MatriD =

{

val r = new VectorD (m+1); r(0) = g(0)

for (k <- 1 to ml) { // range up to max lags

var sum = 0.0

for (j <- 1 until k) sum += psi(k-1, j) * g(k-j)

val a = (g(k) - sum) / r(k-1)

psi(k, k) = a

for (j <- 1 until k) psi(k, j) = psi(k-1, j) - a * psi(k-1, k-j)

r(k) = r(k-1) * (1.0 - a * a)

} // for

} // durbinLevinson

The train method simply calls the durbinLevinson method to create the Ψ matrix. The parameter/coefficient

vector corresponds to the pth row of the Ψ matrix, while the PACF is found in the main diagonal of the Ψ

matrix.

def train (yy: VectoD = y): AR =

{

durbinLevinson (acv, ml) // pass in auto-covariance and max lags

pacf = psi.getDiag () // PACF is the diagonal of the psi matrix

phi = psi(p).slice (1, p+1) // AR(p) coefficients: phi_0, ..., phi_p-1

this

} // train
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Partial Auto-Correlation Function

The Partial Auto-Correlation Function (PACF) that is extracted from the main diagonal of the Ψ matrix

can be used along with ACF to select the appropropriate type of model. As k increases, the ρk will decrease

and adding more parameters/coefficients will become of little help. Deciding where to cut off ρk from the

ACF is somewhat arbitrary, but ψkk drops toward zero more abruptly giving a stronger signal as to what

model to select. See the exercises for details.

10.2.4 Forecasting

After the parameters/coefficients have been estimated as part of the train method, the AR(p) model can

be used for forecasting.

AR.hp("p") = p // reassign hyper-parameter p

val ar = new AR (y) // time series data

ar.train ().eval () // train for AR(p) model

val ar_f = ar.forecast (2) // make forecasts for 1 and 2 steps

The forecast method takes the parameter steps to indicate how many steps into the future to forecast. It

uses the last p actual values to make the first forecast, and then uses the last p − 1 actual values and the

first forecast to make the next forecast. As expected, the quality of the forecast will degrade as steps gets

larger.

def forecast (steps: Int = 1): VectoD =

{

val zf = z.slice (z.dim - p) ++ new VectorD (steps)

for (t <- p until zf.dim) {

var sum = 0.0

for (j <- 0 until p) sum += (j) * zf(t-1-j)

zf(t) = sum

} // for

zf.slice (p) + mu

} // forecast

AR Class

Class Methods:

@param y the response/output vector (time series data)

@param hparam the hyper-parameters

class AR (y: VectoD, hparam: HyperParameter = AR.hp)

extends ForecasterVec (y, hparam("p").toInt, hparam)

def acF: VectoD = acr
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def pacF: VectoD = pacf

def train (yy: VectoD = y): AR =

def retrain (pp: Int): AR =

def parameter: VectoD = phi

def predictAll: VectoD =

def forecast (steps: Int = 1): VectoD =

10.2.5 Exercises

1. Compute ACF for the Lake Level Time-series Dataset. Set parameter φ1 to ρ1, the first lag auto-

correlation. Compute ŷt by letting ŷ0 = y0 and for k <- 1 until y.dim

zt = yt − µ

ŷt = ρ1zt−1 + µ

Plot ŷt and yt versus t.

2. Consider the following AR(2) Model.

zt = φ1zt−1 + φ2zt−2 + εt

Derive the following equation:

ρk = φ1ρk−1 + φ2ρk−2

Setting k = 1 and then k = 2 produces two equations which have two unknowns φ1 and φ2. Solve

for φ1 and φ2 in terms of the first and second lag auto-correlations, ρ1 and ρ2. Compute ŷt by letting

ŷ0 = y0, ŷ1 = y1 and for k <- 2 until y.dim

zt = yt − µ

ŷt = φ1zt−1 + φ2zt−2 + µ

Plot ŷt and yt versus t.

3. Use the ScalaTion class AR to develop Auto-Regressive Models for p = 1, 2, 3, for the Lake Level

Time-series Dataset. Plot ŷt and yt versus t for each model. Also, compare the first two models with

those developed in the previous exercises.

4. Generate a dataset for an AR(p) model as follows:
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val sig2 = 10000.0

val noise = Normal (0.0, sig2)

val n = 50

val t = VectorD.range (0, n)

val y = VectorD (for (i <- 0 until n) yield 40 * (i-1) - (i-2) * (i-2) + noise.gen)

Now create an AR(1) model, train it and show its report.

val ar = new AR (y) // time series data

ar.train ().eval () // train for AR(1) model

println (ar.report)

Also, plot ŷt and yt versus t. Look at the ACF and PACF to see if some other AR(p) might be better.

ar.plotFunc (ar.acF, "ACF")

ar.plotFunc (ar.pacF, "PACF")

Choose a value for p and retrain the model.

ar.retrain (p).eval () // retrain for AR(p) model

println (ar.report)

Also, plot ŷt and yt versus t.

5. The kth lag auto-covariance is useful when the stochastic process {yt|t ∈ [0,K]} is covariance stationary.

γk = C [yt, yt−k]

When yt is covariance stationary, the covariance is only determined by the lag between the variables

and not where they occur in the time series, e.g., C [y4, y3] = C [y2, y1] = γ1. Covariance stationary also

requires that E [yt] = µ, i.e., the mean is time invariant. Repeat the previous exercise, but generate a

time series from a process that is not covariance stationary. What can be done to transform such a

process into a covariance stationary process?
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10.3 Moving-Average (MA) Models

The Auto-Regressive (AR) models predict future values based on past values. Let us suppose the daily

values for a stock are 100, 110, 120, 110, 90. To forecast the next value, one could look at these values or

focus on each days errors or shocks. In the simplest case,

yt = µ + θ1εt−1 + εt

To make the data zero-centered, again let zt = yt − µ

zt = θ1εt−1 + εt (10.15)

Errors are computed in the usual way.

εt = yt − ŷt

The forecast ŷt will be µ+ θ1εt−1, that is, the mean of the process plus some fraction of yesterday’s shock.

Let us assume that µ = 100 and the parameter/coefficient θ1 had been estimated to be 0.8. Now, if the

mean is 100 dollars and yesterday’s shock was that stock went up an extra 10 dollars, then the new forecast

would be 100 + 8 = 108 (day 2). This can be seen more clearly in the Table 10.3.

Table 10.1: MA(q) Sample Process (to one decimal place)

t yt zt εt−1 ẑt = θ1εt−1 ŷt εt

0 100.0 0.0 - - - 0.0

1 110.0 10.0 0.0 0.0 100.0 10.0

2 120.0 20.0 10.0 8.0 108.0 12.0

3 110.0 10.0 12.0 9.6 109.6 0.4

4 90.0 -10.0 0.4 0.3 100.3 -10.3

The question of AR versus MA may be viewed as which column zt or εt leads to better forecasts. It

depends on the data, but considering the GDP example again, zt indicates how far above or below the mean

the current GDP is. One could imagine shocks to GDP, such as new tarriffs, tax cuts or bad weather being

influencial shocks to the economy. In such cases, an MA model may provide better forecasts than an AR

model.

10.3.1 MA(q) Model

The model equation for an MA(q) model includes the past q values of εt.

yt = µ + θ1εt−1 + . . . + θqεt−q + εt

Zero-centering the data zt = yt − µ produces

zt = θ1εt−1 + . . . + θqεt−q + εt (10.16)

In order to estimate the parameter vector θ = [θ1, . . . , θq], we would like to develop a system of equations

like the Yule-Walker equation. Proceding likewise, the auto-covariance function for MA(q) is
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γk = C [zt, zt−k] = E [zt, zt−k]

γk = E [(θ1εt−1 + . . . + θqεt−q + εt)(θ1εt−k−1 + . . . + θqεt−k−q + εt)] (10.17)

Letting k = 0 will give the variance γ0 = V [zt]

γ0 = E [(θ1εt−1 + . . . + θqεt−q + εt)(θ1εt−1 + . . . + θqεt−q + εt)]

Since the noise shocks are indendent, i.e., C [εt, εu] = 0 unless t = u, many of the terms in the product drop

out.

γ0 = θ2
1E
[
εt−1

2
]

+ . . . + θ2
qE
[
εt−q

2
]

+ E
[
εt

2
]

The variance of the noise shocks is defined, for any t, to be V [εt] = E
[
εt

2
]

= σ2
ε , so

γ0 = (θ2
1 + . . . + θ2

q + 1)σ2
ε (10.18)

For k ∈ [1, . . . , q], similar equations will be created, only with parameter index swifted so the noise shocks

match up.

γk = (θ1θk+1 + . . . + θqθq−k + θk)σ2
ε (10.19)

As before the Auto-Correlation Function (ACF) is simply γk/γ0,

ρk = (θ1θk+1 + . . . + θqθq−k + θk)
σ2
ε

γ0
(10.20)

Notice that when k > q, the ACF will be zero. This is because only the last q noise shocks are included in

the model, so any earlier noise shocks before that are forgotten. MA processes will tend to exhibit a more

rapid drop off of the ACF compared to the slow decay for AR processes.

Unfotunately, the system of equations that can be generated from equation 10.20 are nonlinear. Conse-

quently, training is more difficult and less efficient.

10.3.2 Training

Training for MA(1)

Training for Moving Average models is easiest to understand for thr case of a single parameter θ1. In general,

training is about errors and so rearranging equation 10.15 gives the following:

et = zt − θ1et−1 (10.21)

Given a value for parameter θ1, this is a recursive equation that can be used to compute subsequent errors

from previous ones. Unfortunately, the equation cannot be used to compute the first error e0. One approach

to deal with indeterminancy of e0 is to assume (or condition on) it being 0.

e0 = 0 (10.22)
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Note, this affects more than the first error, since the first affects the second and so on. Next, we may compute

a sum of squared errors, in this case called Conditional Sum of Squared Errors (denoted in ScalaTion as

csse.

csse =

m−1∑
t=0

e2
t =

m−1∑
t=1

(zt − θ1et−1)2 (10.23)

One way to find a near optimal value for θ1 is to minimize the Conditional Sum of Squared Error.

argminθ1

m−1∑
t=1

(zt − θ1et−1)2 (10.24)

As the parameter θ1 ∈ (−1, 1), an optimal value minimizing csse may be found using Grid Search. A more

efficient approach is to use the Newton method for optimization.

θi1 = θi−1
1 − d csse

dθ1
/
d2csse

dθ2
1

(10.25)

where

d csse

dθ1
= − 2

m−1∑
t=1

et−1(zt − θ1et−1)

d2 csse

dθ2
1

= 2

m−1∑
t=1

e2
t−1

Substituting gives

θi1 = θi−1
1 +

m−1∑
t=1

et−1(zt − θ1et−1)/

m−1∑
t=1

e2
t−1 (10.26)

10.3.3 Exercises

1. For an MA(1) model, solve for θ1 using Equation 10.20.

γ0 = (1 + θ2
1)σ2

ε

ρ1 = (θ1)
σ2
ε

γ0
=

θ1

1 + θ2
1

Solve for θ1 in terms of ρ1.

2. Develop an MA(1) model for the Lake Level Time-series Dataset using the solution you derived in the

previous question. Plot yt and ŷt vs. t.

3. Use ScalaTion to assess the quality of an MA(1) model versus an MA(2) model for the Lake Level

Time-series Dataset.

256



10.4 ARMA

The ARMA class provide basic time series analysis capabilities for Auto-Regressive (AR) and Moving Average

(MA) models. In an ARMA(p, q) model, p and q refer to the order of the Auto-Regressive and Moving

Average components of the model. ARMA models are often used for forecasting.

A pth-order Auto-Regressive AR(p) model predicts the next value yt from a weighted combination of

prior values.

yt = δ + φ1yt−1 + ...+ φpyt−p + εt

A qth-order Moving Average MA(q) model predicts the next value yt from the combined effects of prior

noise/disturbances.

yt = µ + θ1εt−1 + ...+ θqεt−q + εt

A combined pth-order Auto-Regressive, qth-order Moving Average ARMA(q) model predicts the next value

yt from both a weighted combination of prior values and the combined effects of prior noise/disturbances.

yt = δ + φ1yt−1 + ...+ φpyt−p + θ1εt−1 + ...+ θqεt−q + εt (10.27)

There are multiple ways to combine multiple regression with time series analysis. One common technique

called Time Series Regression is to use multiple linear regression and model its residuals using ARMA models.

10.4.1 Selection Based on ACF and PACF

The Auto-correlation Function (ACF) and partial auto-correlation (PACF) may be used for chosing values

for the hyper-parameters p and q. When the PACF as a function of p drops in value toward zero, one may

select a value of for p to be in this region. Similarly, when the ACF as a function of q drops in value toward

zero, one may select a value of for q to be in this region. See the exercise to explore why.

ARMA Class

Class Methods:

@param y the input vector (time series data)

@param t the time vector

class ARMA (y: VectoD, t: VectoD)

extends Predictor with Error

def est_ar (p: Int = 1): VectoD =

def durbinLevinson: MatriD =

def ar (phi: VectoD): VectoD =

def est_ma (q: Int = 1): VectoD =

def ma (theta: VectoD): VectoD =

def train ()

257



def predict (y: VectoD): Double =

def predict (z: MatriD): VectoD =

def plotFunc (fVec: VectoD, name: String)

def smooth (l: Int): VectoD =

10.4.2 Exercises

1. Plot the ACF for the Lake Level Time-series Dataset and use it to pick a value for q. Assess the quality

of an MA(q) with this value for q. Try it for q being one lower and one higher.

2. Plot the PACF for the Lake Level Time-series Dataset and use it to pick a value for p. Assess the

quality of an AR(p) with this value for p. Try it for q being one lower and one higher.

3. Using the selected values for p and q from the two previous exercises, assess the quality of an ARMA(p,

q). Try the four possibilities around the point (p, q).

4. For an ARMA (p, q) model, explain why the Partial Auto-correlation Function (PACF) is useful in in

chosing a value for the p AR hyper-parameter.

5. For an ARMA (p, q) model, explain why the Auto-correlation Function (ACF) is useful in in chosing

a value for the q MA hyper-parameter.
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10.5 ARIMA

1.
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10.6 ARIMAX
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10.7 SARIMA
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10.8 Exponential Smoothing
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10.9 Dynamic Linear Models

As with a Hidden Markov Model (HMM), a Dynamic Linear Model (DLM) may be used to represent a

system in terms of two stochatic processes, the state of system at time t, xt and the observed values from

measurements of the system at time t, yt. The main difference is that the state and its observation are

treated as continuous quantities. For time series analysis, it is natural to treat time as discrete values.

For a basic DLM, the dynamics of the system are described by two equations: The State Equation

indicates how the next state vector xt is dependent on the previous state vector xt−1 and a process noise

vector wt ∼ N(0, Q)

xt = Axt−1 + wt (10.28)

where Q is the covariance matrix for the process noise. If the dynamics are deterministic, then the covariance

matrix is zero, otherwise it can capture uncertainity in the relationships between the state variables (e.g.,

simple models of the flight of a golf ball often ignore the effects due to the spin on the golf ball).

The Observation/Measurement Equation indicates how at time t, the observation vector yt is dependent

on the current state xt and a measurement noise vector vt ∼ N(0, R)

yt = Cxt + vt (10.29)

where R is the covariance matrix for the measurement noise/error. The process noise and measurement noise

are assumed to be independent of each other. The state transition matrix A indicates the linear relationships

between the state variables, while the C matrix establishes linear relationships between the state of system

and its obsevations/measurements.

10.9.1 Example: Traffic Sensor

Consider the operation of a road sensor that records traffic flow (vehicles per 15 minutes) and average speed

(km per hour). Let xt = [xt0, xt1] be the flow of vehicles (xt0) and their average speed (xt1) at time t.

Assume that the flow is high enough that it can be treated as a continuous quanity and that the covariance

matrices are diagonal (uncertainty of flow and speed are independent). The dynamics of the system then

may be described by the following state equations (see equation 10.22):

xt0 = a00xt−1,0 + a01xt−1,1 + wt0

xt1 = a10xt−1,0 + a11xt−1,1 + wt1

The sensor tries to capture the dynamics of the system, but depending on the quality of the sensor there

will be measurement errors. The observation/measurement variables yt = [yt0, yt1] may correspond to the

state variables in a one-to-one correspondence or by some linear relationship. The observation of the system

then may be described by the following observation equations (see equation 10.23):

yt0 = c00xt0 + c01xt1 + vt0

yt1 = c10xt0 + c11xt1 + vt1

263



Further assume that estimates for the A and C parameters of the model have been found (see the subsection

on Training).

xt0 = 0.9xt−1,0 + 0.2xt−1,1 + wt0

xt1 = − 0.4xt−1,0 + 0.8xt−1,1 + wt1

These state equations suggest that the flow will be a high percentage of the previous flow, but that higher

speed suggests increasing flow. In addition, the speed is based on the previous speed, by higher flow suggests

that speeds may be decreasing (e.g., due to congestion).

yt0 = 1.0xt0 − 0.1xt1 + vt0

yt1 = − 0.1xt0 + 1.0xt1 + vt1

These observation equations suggest that higher speed makes it more likely for a vehicle to pass the sensor

without being counted and higher flow makes under-estimation of speed to be greater.

10.9.2 Kalman Filter

A Kalman Filter is a Dynamic Linear Model that incorporates an outside influence on the system. If a

driving force or control is applied to the system, an additional term But is added to the state equation [?],

xt = Axt−1 +But + wt (10.30)

where ut is the control vector and the B matrix establishes as linear relationships between the control vector

and the state vector. The observation equation remains the same.

yt = Cxt + vt

The process noise wt and the measurement noise vt also remain the same. The Kalman Filter model,

therefore includes five matrices.

Table 10.2: Matrices Used in Kalman Filter Model
matrix dimensions description

A n-by-n state transition matrix

B n-by-l state-control matrix

C m-by-n measurement-state matrix

Q n-by-n process noise covariance matrix

R m-by-m measurement noise covariance matrix

The first three matrices are named A, B and C here to maintain consistency with the rest of the models, but

are often named F , G and H in the literature. The Kalman Filter model at time t includes three vectors:
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Table 10.3: Vectors Used in Kalman Filter Model
vector dimension description

x n state vector

u l control vector

y m measurement vector

10.9.3 Training

The main goal of training is to minimize the error in estimating the state. At time t, a new measurement

yt becomes available. The errors before and after this event are the differences between the actual state xt

and the estimated state before x̂−t and after x̂t [?].

e−t = xt − x̂−t
et = xt − x̂t

Since wt has a zero mean, the covariances of the before and after errors may be computed as expectations

of their outer products.

C
[
e−t
]

= E
[
e−t ⊗ et−

]
(10.31)

C [et] = E [et ⊗ et] (10.32)

The essential insight by Kalman was that the after estimate should be the before estimate adjusted by a

weighted difference between the actual measured value yt and its before estimate Cx̂−t .

x̂t = x̂−t +K[yt − Cx̂−t ] (10.33)

The n-by-mK matrix is called the Kalman gain. If the actual measurement is very close to its predicted value,

little adjustment to the predicted state value is needed. On the other hand, when there is a disagreement, the

adjustment based upon the measurement should be tempered based upon the reliablity of the measurement.

A small gain will dampen the adjustment, while a high gain may result in large adjustments. The trick is

to find the optimal gain K.

Using a Minimum Variance Unbiased Estimator (MVUE) for parameter estimation for a Kalman Filter

means that the trace of the error covariance matrix should be minimized (see exercises for details).

V [||et||] = E
[
||et||2

]
= trace C [et] (10.34)

Plugging equation (10.27) into (10.26) gives the following optimization problem:

min trace E
[
(x̂−t +K[yt − Cx̂−t )⊗ (x̂−t +K[yt − Cx̂−t )

]
(10.35)

10.9.4 Exercises

1. For a DLM, consider the case where m = n = 1. Equations (10.22) and (10.23) become
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xt = axt−1 + wt

yt = cxt + vt

where wt ∼ N(0, σ2
q ) and vt ∼ N(0, σ2

r). Compare this model with an AR(1) model.

2. For the Traffic Sensor Example, let Q = σ2
qI and R = σ2

rI. Develop a DLM model using ScalaTion

and try low, medium and high values for the variances σ2
q and σ2

r (9 combinations). Let the initial

state of the system be x00 = 100.0 vehicles per 15 minutes and x01 = 100.0 km per hour. How does

the relative amount of process and measurement error affect the dynamics/observation of the syetem?

3. Consider the state and observation equations given in the Traffic Sensor Example and assume that the

state equations are deterministic (no uncertainty in system, only in its observation). Reduce the DLM

to a simpler type of time series model. Explain.

4. Use the Traffic Sensor Dataset (traffic.csv) to estimate values for the 2-by-2 covariance matrices Q

and R.

5. Use the Traffic Sensor Dataset (traffic.csv) to estimate values for the parameters of a DLM model,

i.e., for the A and C 2-by-2 matrices.

6. Suppose that fog negatively affects traffic and speed. Use the Traffic Sensor with Fog Dataset (traffic fog.csv)

to estimate values for the 2-by-2 covariance matrices Q and R.

7. Use the Traffic Sensor with Fog Dataset (traffic fog.csv) to estimate values for the parameters of

a Kalman Filter model, i.e., for the A, B and C 2-by-2 matrices.

8. Show that if ŷ is an unbiased estimator for y (i.e., E [ŷ] = E [y]) that the minimum error variance

V [||y − ŷ||] is

E
[
||y − ŷ||2

]
= trace E [(y − ŷ)⊗ ((y − ŷ)]

9. Explain why minimizing the trace of the covariance C [et] leads to optimal Kalman gain K.
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10.10 Recurrent Neural Networks (RNN)

10.10.1 Gate Recurrent Unit (GRU) Networks

10.10.2 Long Short Term Memory (LSTM) Networks
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10.11 Temporal Convolutional Networks (TCN)
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10.12 ODE Parameter Estimation

y = x(t) + ε

dx(t)

dt
= f(x(t); b)

10.12.1 Non-Linear Least Squares (NLS)

10.12.2 Least Squares Approximation (LSA)
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10.13 Spatial Models
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10.14 Convolutional Neural Networks
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Chapter 11

Clustering

Clustering is related to classification, except that specific classes are not prescribed. Instead data points

(vectors) are placed into clusters based on some similarity or distance metric (e.g., Euclidean or Manhattan

distance). It is also related to prediction in the sense that a predictive model may be associated with each

cluster. Points in a cluster, are according to some metric, closer to each other than to points not in their

cluster. Closeness or similarity may be defined in terms of `p distance ||x−z||p, correlation ρ(x, z), or cosine

cos(x, z). Abstractly, we may represents any of these by distance d(x, z). In ScalaTion, the function dist

in the package object computes the square of Euclidean distance between two vectors, but may easlily be

changed (e.g., (u - v).norm1 for Manhattan distance).

def dist (u: VectoD, v: VectoD): Double =

{

(u - v).normSq // squared Euclidean norm used for efficiency, may use other norms

} // dist

Consider a general modeling equation, where the parameters b are estimated based on a dataset (X, y).

y = f(x; b) + ε

Rather than trying to approximate the function f over the whole data domain, one might think that given

point z, that points similar to (or close to) z, might be more useful in making a prediction f(z).

A simple way to do this would be to find the κ-nearest neighbors to point z,

topκ(z) = {xi ∈ X |xi is among the κ closest points to z}

and simply average the responses or y-values.

Instead of surveying the responses from the κ-nearest neighbors, one could instead survey an entire group

of similar points and take their averaged response (or utilize a linear model where each cluster c has its own

parameters bc). The groups may be pre-computed and the averages/parameters can be maintained for each

group. The groups are make by clustering the points in the X matrix into say k groups.

Clustering will partition the m-points {xi ∈ X} into k groups/clusters. Group membership is based on

closeness or similarity between the points. Commonly, algorithms form groups by establishing a centroid (or

center) for each group/cluster. Centroids may defined as means (or medians) of the points in the group. In

this way the data matrix X is partitioned into k submatrices
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{Xc | c ∈ {0, . . . , k − 1}}

each with centroid ξc = µ(Xc). Typically, point xi is in cluster c because it is closer to its centriod than any

other centroid, i.e.,

xi ∈ Xc =⇒ d(xi, ξc) ≤ d(xi, ξh)

Define the cluster assignment function ξ to take a point xi and assign it to the cluster with the closest

centroid ξc, i.e.,

ξ(xi) = c

The goal becomes to find an optimal cluster assignment function by minimizing the following objective/cost

function:

minξ

m∑
i=0

d(xi, ξξ(xi)
)

If the distance d is ||xi − ξξ(xi)
||22 (the default in ScalaTion), then above sum may be viewed as a form of

sum of squared errors (sse).

If one knew the optimal centroids ahead of time, finding an optimal cluster assignment function ξ would

be trivial and would take O(kmn) time. Unfortunately, k centroids must be initially chosen, but then as

assignments are made, the centroids will move, causing assignments to need re-evaluation. The details vary

by clustering algorithm, but it is useful to know that finding an optimal cluster assignment function is

NP-hard [?].

Other factors that can be considering in forming clusters include, balancing the size of clusters and

maximizing the distance between clusters.
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11.1 KNN Predictor

Similar to the KNN Classifier class, the KNN Predictor class makes predictions based on individual pre-

dictions of its κ-nearest neighbors. For prediction, its function is analogous to using clustering for prediction

and will be compared in the exercises in later sections of this chapter.

Training in KNN Predictor is lazy and is done in the predict method, based on the following equation:

ŷ =
1

κ
1 · y(topκ(z)) (11.1)

Given point z, find κ points that are the closest, sum there response values y, and return the average.

override def predict (z: VectoD): Double =

{

kNearest (z) // set top-kappa to kappa nearest

var sum = 0.0

for (i <- 0 until kappa) sum = y(topK(i)._1) // sum the individual predictions

val yp = sum / kappa // divide to get average

reset () // reset topK

yp // return the predicted value

} // predict

The kNearest method is same as the one in KNN Classifier.

KNN Predictor Class

Class Methods:

@param x the vectors/points of predictor data stored as rows of a matrix

@param y the response value for each vector in x

@param fname_ the names for all features/variables

@param hparam the number of nearest neighbors to consider

class KNN_Predictor (x: MatriD, y: VectoD,

fname_ : Strings = null, hparam: HyperParameter = KNN_Predictor.hp)

extends PredictorMat (x, y, fname_, hparam)

def distance (x: VectoD, z: VectoD): Double = (x - z).normSq

def train (yy: VectoD = y): KNN_Predictor = this

override def eval (xx: MatriD = x, yy: VectoD = y): KNN_Predictor =

override def predict (z: VectoD): Double =

def reset ()

def forwardSel (cols: Set [Int], adjusted: Boolean): (Int, VectoD, VectoD) =

def backwardElim (cols: Set [Int], adjusted: Boolean, first: Int): (Int, VectoD, VectoD) =

def crossVal (xx: MatriD = x, k: Int = 10, rando: Boolean = true): Array [Statistic] =
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Note, the forwardSel and backwardElim methods are not relevant and just throw exceptions if called. Also,

the train method has nothing to do, so it need not be called.

11.1.1 Exercises

1. Apply KNN Predictor to the following combined data matrix.

// x1 x2 y

val xy = new MatrixD ((10, 3), 1, 5, 1, // joint data matrix

2, 4, 1,

3, 4, 1,

4, 4, 1,

5, 3, 0,

6, 3, 1,

7, 2, 0,

8, 2, 0,

9, 1, 0,

10, 1, 0)

val knn = KNN_Predictor (xy)

val (x, y) = PredictorMat.pullResponse (xy)

val yp = knn.predict (x)

knn.eval (x, y) // due to lazy/late training

println (knn.report)

new Plot (xy.col(0), y, yp, lines = true)
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11.2 Clusterer

The Clusterer trait provides a common framework for several clustering algorithms.

Clusterer Trait

Trait Methods:

trait Clusterer

def name_ (nm: Strings) { _name = nm }

def name (c: Int): String =

def setStream (s: Int) { stream = s }

def train (): Clusterer

def cluster: Array [Int]

def csize: VectoI

def centroids: MatriD

def initCentroids (): Boolean = false

def calcCentroids (x: MatriD, to_c: Array [Int], sz: VectoI, cent: MatriD)

def classify (z: VectoD): Int

def distance (u: VectoD, cn: MatriD, kc_ : Int = -1): VectoD =

def sse (x: MatriD, to_c: Array [Int]): Double =

def sse (x: MatriD, c: Int, to_c: Array [Int]): Double =

def sst (x: MatriD): Double =

def checkOpt (x: MatriD, to_c: Array [Int], opt: Double): Boolean = sse (x, to_c) <= opt

For readability, names may be given to clusters (see name and name ). To obtain a new (and likely different)

cluster assignment, setStream method may be called to change the random number stream. The train

methods in the implementing classes will take a set of points (vectors) and apply iterative algorithms to find

a “good” cluster assignment function. The cluster method may be called after train to see the cluster

assignments. The centroids are returned as rows in a matrix by calling centroids, whose cluster sizes are

given by csize. The initCentroid method initializes the centroids, while the calcCentroids calculates

the centroids based in the points contained in the each cluster.

def calcCentroids (x: MatriD, to_c: Array [Int], sz: VectoI, cent: MatriD)

{

cent.set (0.0) // set cent matrix to all zeros

for (i <- x.range1) {

val c = to_c(i) // x_i currently assigned to cluster c

cent(c) = cent(c) + x(i) // add the next vector in cluster

} // for

for (c <- cent.range1) cent(c) = cent(c) / sz(c) // divide to get averages/means

} // calcCentroids
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Given a new point/vector z, the classify method will indicate which cluster it belongs to (in the range

0 to k-1). The distances between a point and the centroids is computed by the distance method. The

objective/cost function is defined to be the sum of squared errors (sse). If the cost of an optimal solution

is known, checkOpt will return true if the cluster assignment is optimal.
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11.3 K-Means Clustering

The KMeansClustering class clusters several vectors/points using k-means clustering. The user selects the

number of clusters desired (k). The algorithm will partition the points in X into k clusters. Each cluster

has a centroid (mean) and each data point xi ∈ X is placed in the cluster whose centroid it is nearest to.

11.3.1 Initial Assignment

There are two ways to intialize the algorithm: Either (1) randomly assign points to k clusters or (2) randomly

pick k points as initial centroids. Technique (1) tends to work better and is the primary technique used in

ScalaTion. Using the primary technique, the first step is to randomly assign each point xi to a cluster.

ξ(xi) = random integer from {0, . . . , k − 1}

In ScalaTion, this is carried out by the assign method, that uses the Randi random integer generator.

It also uses multiple counters for determining the size sz of each cluster (i.e., the number of points in each

cluster).

protected def assign ()

{

val ran = new Randi (0, k-1, s) // for random integers: 0, ..., k-1

for (i <- x.range1) {

to_c(i) = ran.igen // randomly assign x(i) to a cluster

sz(to_c(i)) += 1 // increment size of that cluster

} // for

} // assign

See the exercises for more details on the second technique for initializing clusters/centroids.

Handling Empty Clusters

If any cluster turns out to be empty, move a point from another cluster. In ScalaTion this is done by

removing a point from the largest cluster and adding it to the empty cluster. This is performed by the

fixEmptyClusters method.

protected def fixEmptyClusters ()

After the assign and fixEmptyClusters methods have been called, the data matrix X will be logically

partitioned into k non-empty submatrices Xc with cluster c having nc (sz(c)) points/rows.

Calculating Centroids

The next step is to calculate the centroids using the calcCentroids method. For cluster c, the centroid is

the vector mean of the rows in submatrix Xc.

ξc =
1

nc

∑
xi∈Xc

xi

ScalaTion iterates over all points and based on their cluster assignment adds them to one of the k centroids

(stored in the cent matrix). After the loop, these sums are divided by the cluster sizes sz to get means.

The calcCentroids method is defined in the base trait Clusterer.
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11.3.2 Reassignment of Points to Closest Clusters

After initialization, the algorithm iteratively reassigns each point to the cluster containing the closest cen-

troid. The algorithm stops when there are no changes to the cluster assignments. For each iteration, each

point xi needs to be re-evaluated and moved (if need be) to the cluster with the closest centroid. Reas-

signment is based on taking the argmin of all the distances to the centroids with ties going to the current

cluster.

ξ(xi) = argminc d(xi, ξc)

In ScalaTion, this is done by the reassign method which iterates over each xi ∈ X computing the distance

to each of k centroids. The cluster (c2) with the closest centroid is found using the argmin method. The

distance to c2’s centroid is then compared to the distance to its current cluster c1’s centroid, and if the

distance to c2’s centroid is less, xi will be moved and a done flag will be set to false, indicating that during

this reassignment phase at least one change was made.

protected def reassign (): Boolean =

{

var done = true // done indicates no changes

for (i <- x.range1) { // standard order for index i

val c1 = to_c(i) // c1 = current cluster for point x_i

if (sz(c1) > 1) { // if size of c1 > 1

val d = distance (x(i), cent) // distances to all centroid

val c2 = d.argmin () // c2 = cluster with closest centroid to x_i

if (d(c2) < d(c1)) { // if closest closer than current

sz(c1) -= 1 // decrement size of current cluster

sz(c2) += 1 // increment size of new cluster

to_c(i) = c2 // reassign point x_i to cluster c2

done = false // changed clusters => not done

if (immediate) return false // optionally return after first change

} // if

} // if

} // for

done

} // reassign

The exercises explore a change to this algorithm by having it return after the first change.

11.3.3 Training

The train method simply uses these methods until the reassign method returns true (internally the done

flag is true). The method is set up to work for this and derived classes. It assigns points to clusters and

then either initilizes/picks centroids or calculates centroids from the first cluster assignment. Inside the loop,

reassign and calcCentroid are called until there is no change to the cluster assignment. After the loop, an

exception is thrown if there are any empty clusters (a useful safe-guard since this method is used by derived

classes). Finally, if post-processing is to be performed (post = true), then the swap method is called. This

method will swap two points in different clusters, if the swap results in a lower sum of squared errror (sse).
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def train (): KMeansClusterer =

{

sz.set (0) // cluster sizes initialized to zero

raniv = PermutedVecI (VectorI.range (0, x.dim1), stream) // for randomizing index order

assign () // randomly assign points to clusters

fixEmptyClusters () // move points into empty clusters

if (! initCentroids ()) calcCentroids (x, to_c, sz, cent) // pick points for initial centroids

breakable { for (l <- 1 to MAX_ITER) {

if (reassign ()) break // reassign points (no change => break)

calcCentroids (x, to_c, sz, cent) // re-calculate the centroids

}} // for

val ce = sz.indexOf (0) // check for empty clusters

if (ce != -1) throw new Exception (s"Empty cluster c = $ce")

if (post) swap () // swap points to improve sse

this

} // train

KMeansClusterer Class

The KMeansClusterer class and its derived classes take a data matrix, the desired number clusters and

an array of flags as input parameters. The array of flags are used to make adjustments to the algorithms.

For this class, there are two: flags(0) or post indicates whether to use post-processing, and flags(1) or

immediate indicates whether return upon the first change in the reassign method.

Class Methods:

@param x the vectors/points to be clustered stored as rows of a matrix

@param k the number of clusters to make

@param flags the array of flags used to adjust the algorithm

default: no post processing, no immediate return upon change

class KMeansClusterer (x: MatriD, k: Int, val flags: Array [Boolean] = Array (false, false))

extends Clusterer with Error

def train (): KMeansClusterer =

def cluster: Array [Int] = to_c

def centroids: MatriD = cent

def csize: VectoI = sz

protected def assign ()

protected def fixEmptyClusters ()

protected def reassign (): Boolean =

protected def swap ()

def classify (z: VectoD): Int = distance (z, cent).argmin ()

def show (l: Int) { println (s"($l) to_c = ${to_c.deep} \n($l) cent = $cent") }
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11.3.4 Exercises

1. Plot the following points.

// x0 x1

val x = new MatrixD ((6, 2), 1.0, 2.0,

2.0, 1.0,

4.0, 5.0,

5.0, 4.0,

8.0, 9.0,

9.0, 8.0)

new Plot (x.col(0), x.col(1), null, "x0 vs. x1")

For k = 3, determine the optimal cluster assignment ξ. What is the sum of squared errors sse for this

assignment?

2. Using the data from the previous exercise, apply the K-Means Clustering Algorithm by hand to com-

plete the following cluster assignment function table. Let the number of clusters k be 3 (clusters 0, 1

and 2). The ξ0 column is the initial random cluster assignment, while the next two columns represent

the cluster assignments for the next two iterations.

Table 11.1: Cluster Assignment Function Table

point (x0, x1) ξ0 ξ1 ξ2

0 (1, 2) 0 ? ?

1 (2, 1) 2 ? ?

2 (4, 5) 0 ? ?

3 (5, 4) 1 ? ?

4 (8, 9) 1 ? ?

5 (9, 8) 2 ? ?

3. The test function in the Clusterer object is used test various configurations of classes extending

Clusterer, such as the KMeansClusterer class.

@param x the data matrix holding the points/vectors

@param fls the array of flags

@param alg the clustering algorithm to test

@param opt the known optimum for see (ignore if not known)

def test (x: MatriD, fls: Array [Boolean], alg: Clusterer, opt: Double = -1.0)

Explain the meaning of each of the flags: post and immediate. Call the test function, passing in x

and k from the last exercise. Also, let the value opt be the value determined in the last exercise. The

test method will give the number of test cases out of NTESTS that are correct in terms of achieving

the minimum sse.
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4. The primary versus secondary techniques for initializing the clusters/centroids are provided by the

KMeansClusterer class and the KMeansClusterer2 class, respectively. Test the quality of these two

techniques.

5. Show that the time complexity of the reassign method is O(kmn). The time complexity of K-Means

Clustering using Lloyd’s Algorithm is simply the complexity of the reassign method times the number

of iterations. In practice, the number of iterations tends to be small, but in the worst case only upper

and lower bounds are known, see [1] for details.

6. Consider the objective/cost function given in ISL equation 10.11 in [13]. What does it measure and

how does it compare to sse used in this book?
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11.4 K-Means Clustering - Hartigan-Wong

An alternative to the Lloyd algorithm that often produces more tightly packed clusters is the Hartigan-

Wong algorithm. Improvement is seen in the fraction of times that optimal clusters are formed as well as

the reduction in sum of squared errors (sse). The change to the code is minimal in that only the reassign

method needs to be overriden.

The basic difference is that rather than simply reassigning each point to the cluster with the closest

centroid (the Lloyd algorithm), the Hartigan-Wong algorithm weights the distance by the relative changes

in the number of points in a cluster. For example, if a point is to be moved into a cluster with 10 points

currently, the weight would be 10/11. If the point is to stay in its present cluster with 10 points currently,

the loss in removing it would be weighted as 10/9. The weighting scheme has two effects: First it makes it

more likely to move a point out of its current cluster. Second it makes it more likely to join a small cluster.

Mathematically, the weighted distance d′ to cluster c when the point xi /∈ Xc is given by

d′(xi, ξc) =
nc

nc + 1
d(xi, ξc) (11.2)

When the point xi ∈ Xc, the weighted distance d′ to cluster c is given by

d′(xi, ξc) =
nc

nc − 1
d(xi, ξc) (11.3)

The code for the reassign method is similar to the one in KMeansClusterer, except that the private

method closestByR2 calculates weighted distances to return the closest centroid.

protected override def reassign (): Boolean =

{

var done = true // done indicates no changes

for (i <- raniv.igen) { // randomize order of index i

val c1 = to_c(i) // c1 = current cluster for point x_i

if (sz(c1) > 1) { // if size of c1 > 1

val d = distance2 (x(i), cent, c1) // adjusted distances to all centroid

val c2 = d.argmin () // c2 = cluster with closest centroid to x_i

if (d(c2) < d(c1)) { // if closest closer than current

sz(c1) -= 1 // decrement the size of cluster c1

sz(c2) += 1 // increment size of cluster c2

to_c(i) = c2 // reassign point x_i to cluster c2

done = false // changed clusters => not done

if (immediate) return false // optionally return after first change

} // if

} // if

} // for

done

} // reassign

Besides switching from distance d to weighted distance d′, the code also randomizes the index order and has

the option of returning immediately after a change is made.
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11.4.1 Adjusted Distance

The distance2 method computes the adjusted distance of point u to all of the centroids cent, where cc is

the current centroid that u is assigned to. Notice the inflation of distance when c == cc, and its deflation,

otherwise.

def distance2 (u: VectoD, cent: MatriD, cc: Int): VectoD =

{

val d = new VectorD (cent.dim1)

for (c <- 0 until k) {

d(c) = if (c == cc) (sz(c) * dist (u, cent(c))) / (sz(c) - 1)

else (sz(c) * dist (u, cent(c))) / (sz(c) + 1)

} // for

d

} // distance2

KMeansClusteringHW Class

Class Methods:

@param x the vectors/points to be clustered stored as rows of a matrix

@param k the number of clusters to make

@param flags the flags used to adjust the algorithm

class KMeansClustererHW (x: MatriD, k: Int, flags: Array [Boolean] = Array (false, false))

extends KMeansClusterer (x, k, flags)

protected override def reassign (): Boolean =

def distance2 (u: VectoD, cent: MatriD, cc: Int): VectoD =

11.4.2 Exercises

1. Compare KMeansClustererHW with KMeansClusterer for a variety of datasets, starting with the six

points given in the last section (Exercise 1). Compare the quality of the solution in terms the fraction

of optimal clusterings and the mean of the sse over the NTESTS test cases.
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11.5 K-Means++ Clustering

The KMeansClustererPP class clusters several vectors/points using a k-means++ clustering algorithm. The

class may be derived from a K-Means clustering algorithm and in ScalaTion it is derived from the Hartigan-

Wong algorithm (KMeansClustererHW). The innovation for KMeansClustererPP is to pick the initial cen-

troids wisely, yet randomly. The wise part is to make sure points are well separated. The random part

involves making a probability mass function (pmf) where points farther away from the current centroids

are more likely to be selected as the next centroid. Picking the initial centroids entirely randomly leads

to KMeansClusterer2 which typically does not perform as well KMeansClusterer. However, maintaining

randomness while giving preference to more distant points becoming the next centroid has been shown to

work well.

11.5.1 Picking Initial Centroids

In order to pick k initial centoids, the first one, cent(0), is chosen entirely randomly, using the ranI random

variate generator object. The method call ranI.igen will pick one of the m = x.dim1 points as the first

centroid.

val ranI = new Randi (0, x.dim1-1, stream) // uniform random integer generator

cent(0) = x(ranI.igen) // pick first centroid uniformly at random

The rest of the centroids are chosen following a distance-derived discrete distribution, using the ranD random

variate generator object. The probability mass function (pmf) for this discrete distribution is produced so

that the probability of a point being selected as the next centroid is proportional to its distance to the closest

existing centroid.

for (c <- 1 until k) { // pick remaining centroids

val ranD = update_pmf (c) // update distance derived pmf

cent(c) = x(ranD.igen) // pick next centroid according to pmf

} // for

Each time a new centroid is chosen, the pmf must be updated as it is likely to be the closest centroid for

some of the remaining as yet unchosen points. Given that the next centroid to selected is the cth centroid,

the update pmf method will update the pmf and return a new distance-derived discrete distribution.

def update_pmf (c: Int): Discrete =

{

for (i <- x.range1) pmf(i) = distance (x(i), cent, c).min () // shortest distances

pmf /= pmf.sum // divide by sum

Discrete (pmf, stream = (stream + c) % NSTREAMS) // distance-derived generator

} // update_pmf

The pmf vector initially records the shortest distance from each point xi to any of the existing already

selected centroids {0, . . . , c−1}. These distances are turned into probabilities by dividing by their sum. The

pmf vector then defines a new distance-derived random generator that is returned.
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KMeansClustererPP Class

Class Methods:

@param x the vectors/points to be clustered stored as rows of a matrix

@param k the number of clusters to make

@param flags the flags used to adjust the algorithm

class KMeansClustererPP (x: MatriD, k: Int, flags: Array [Boolean] = Array (false, false))

extends KMeansClustererHW (x, k, flags)

override def initCentroids (): Boolean =

def update_pmf (c: Int): Discrete =

11.5.2 Exercises

1. Compare KMeansClustererPP with KMeansClustererHW and KMeansClusterer for a variety of datasets,

starting with the six points given in the KMeansClusterer section (Exercise 1). Compare the quality

of the solution in terms the fraction of optimal clusterings and the mean of the sse over the NTESTS

test cases.

287



11.6 Clustering Predictor

The ClusteringPredictor class is used to predict a response value for new vector z. It works by finding the

cluster that the point z would belong to. The recorded response value for y is then given as the predicted

response. The per cluster recorded response value is the consensus (e.g., average) of the response values yi

for each member of the cluster. Training involves clustering the points in data matrix X and then computing

each cluster’s response. Assuming the closest centroid to z is ξc, the predicted value ŷ is

ŷ =
1

nc

∑
ξ(xi)=c

yi (11.4)

where nc is the number points in cluster c and ξ(xi) = c means that the ith point is assigned to cluster c.

11.6.1 Training

The train method first clusters the points/rows in data matrix X by calling the train method of a clustering

algorithms (e.g., clust = KMeansClusterer (...)). It then calls the assignResponse method to assign a

consenus (average) response value for each cluster.

def train (yy: VectoD = y): ClusteringPredictor =

{

clust.train ()

val clustr = clust.cluster

assignResponse (clustr)

this

} // train

The computed consensus values are stored in yclus, so that the predict method may simply use the

underlying clustering algorithm to classify a point z to indicate which cluster it belongs to. This is then

used to index into the yclus vector.

override def predict (z: VectoD): Double = yclus (clust.classify (z))

ClusteringPredictor Class

Class Methods:

@param x the vectors/points of predictor data stored as rows of a matrix

@param y the response value for each vector in x

@param fname_ the names for all features/variables

@param hparam the number of nearest neighbors to consider

class ClusteringPredictor (x: MatriD, y: VectoD,

fname_ : Strings = null, hparam: HyperParameter = ClusteringPredictor.hp)

extends PredictorMat (x, y, fname_, hparam)

def train (yy: VectoD = y): ClusteringPredictor =
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override def eval (xx: MatriD = x, yy: VectoD = y): ClusteringPredictor =

def classify (z: VectoD): Int =

override def predict (z: VectoD): Double = yclus (classify (z))

def reset ()

def forwardSel (cols: Set [Int], adjusted: Boolean): (Int, VectoD, VectoD) =

def backwardElim (cols: Set [Int], adjusted: Boolean, first: Int): (Int, VectoD, VectoD) =

def crossVal (xx: MatriD = x, k: Int = 10, rando: Boolean = true): Array [Statistic] =

11.6.2 Exercises

1. Apply ClusteringPredictor to the following combined data matrix.

// x0 x1 y

val xy = new MatrixD ((10, 3), 1, 5, 1, // joint data matrix

2, 4, 1,

3, 4, 1,

4, 4, 1,

5, 3, 0,

6, 3, 1,

7, 2, 0,

8, 2, 0,

9, 1, 0,

10, 1, 0)

val cp = ClusteringPredictor (xy)

cp.train ().eval ()

val (x, y) = PredictorMat.pullResponse (xy)

val yp = cp.predict (x)

println (cp.report)

new Plot (xy.col(0), y, yp, lines = true)

Compare its results to that of KNN Predictor.

2. Compare Regression, KNN Predictor and ClusteringPredictor on the AutoMPG dataset.
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11.7 Hierarchical Clustering

One critique of K-Means Clustering is that the user choses the desired number of clusters (k) beforehand.

With modern computing power, several values for k may be tried, so this is less of an issue now. There is,

however, a clustering technique called Hierarchical Clustering where this a non-issue.

In ScalaTion the HierClusterer class starts with each point in the data matrix X forming its own

cluster (m clusters). For each iteration, the algorithm will merge two clusters into a one larger cluster,

thereby reducing the number of clusters by one. The two clusters that are closest to each other are chosen

as the clusters to merge. The train method is shown below.

def train (): HierClusterer =

{

sz.set (0) // initialize cluster sizes to zero

initClusters () // make a cluster for each point

for (kk <- x.dim1 until k by -1) {

val (si, sj) = bestMerge (kk) // find the 2 closest clusters

clust += si | sj // add the union of sets i and j

clust -= si // remove set i

clust -= sj // remove set j

if (DEBUG) println (s"train: for cluster (${kk-1}), clust = $clust")

} // for

finalClusters () // make final cluster assignments

calcCentroids (x, to_c, sz, cent) // calculate centroids for clusters

this

} // train

After reducing the number of clusters to the desired number k (which defaults to 2), final cluster assignments

are made and centroids are calculated. Intermediate clustering results are available making it easier for the

user to pick the desired number of clusters after the fact. The algorithm can be rerun with this value for k.

HierClusterer Class

Class Methods:

@param x the vectors/points to be clustered stored as rows of a matrix

@param k stop when the number of clusters equals k

class HierClusterer (x: MatriD, k: Int = 2)

extends Clusterer with Error

def train (): HierClusterer =

def cluster: Array [Int] = to_c

def centroids: MatriD = cent

def csize: VectoI = sz
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def classify (z: VectoD): Int = distance (z, cent).argmin ()

11.7.1 Exercises

1. Compare HierClusterer with KMeansClustererHW and KMeansClusterer for a variety of datasets,

starting with the six points given in the KMeansClusterer section (Exercise 1). Compare the quality

of the solution in terms the fraction of optimal clusterings and the mean of the sse over the NTESTS

test cases.

2. K-Means Clustering techniques often tend to produce better clusters (e.g., lower sse) than Hierarchical

Clustering techniques. For what types of datasets might Hierarchical Clustering be preferred?

3. What is the relationship between Hierarchical Clustering and Dendrograms?
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11.8 Markov Clustering

The MarkovClusterer class implements a Markov Clustering Algorithm (MCL) and is used to cluster nodes

in a graph. The graph is represented as an edge-weighted adjacency matrix (a non-zero cell indicates nodes

i and j are connected).

The primary constructor takes either a graph (adjacency matrix) or a Markov transition matrix as input.

If a graph is passed in, the normalize method must be called to convert it into a Markov transition matrix.

Before normalizing, it may be helpful to add self loops to the graph. The matrix (graph or transition) may

be either dense or sparse. See the MarkovClusteringTest object at the bottom of the file for examples.

MarkovClusterer Class

Class Methods:

@param t either an adjacency matrix of a graph or a Markov transition matrix

@param k the strength of expansion

@param r the strength of inflation

class MarkovClusterer (t: MatriD, k: Int = 2, r: Double = 2.0)

extends Clusterer with Error

def train (): MarkovClusterer =

def cluster: Array [Int] = clustr

def centroids: MatriD = throw new UnsupportedOperationException ("not applicable")

def csize: VectoI = throw new UnsupportedOperationException ("not applicable")

def addSelfLoops (weight: Double = 1.0)

def normalize ()

def processMatrix (): MatriD =

def classify (y: VectoD): Int = throw new UnsupportedOperationException ()

11.8.1 Exercises

1. Draw the directed graph obtained from the following adjacency matrix, where g(i, j) == 1.0 means

that a directed edge exists from node i to node j.

val g = new MatrixD ((12, 12),

0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0,

1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,

0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,

0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 1.0, 0.0,

0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0,

1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0,
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1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0,

0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0,

0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0,

1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0,

0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 1.0,

0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0)

Apply the MCL Algorithm to this graph and explain the significance of the resulting clusters.

val mg = new MarkovClusterer (g)

mg.addSelfLoops ()

mg.normalize ()

println ("result = " + mg.processMatrix ())

mg.train ()

println ("cluster = " + mg.cluster.deep)
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Chapter 12

Dimensionality Reduction

When data matrices are very large with high dimensionality, analytics becomes difficult. In addition, there is

likely to be co-linearity between vectors, making the computation of inverses or pseudo-inverses problematic.

In such cases, it is useful to reduce the dimensionality of the data.
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12.1 Reducer

The Reducer trait provides a common framework for several data reduction algorithms.

Trait Methods:

trait Reducer

def reduce (): MatriD

def recover (): MatriD
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12.2 Principal Component Analytics

The PrincipalComponents class computes the Principal Components (PCs) for data matrix x. It can be

used to reduce the dimensionality of the data. First find the PCs by calling ’findPCs’ and then call ’reduce’

to reduce the data (i.e., reduce matrix x to a lower dimensionality matrix).

Example Problem:

Class Methods:

@param x the data matrix to reduce, stored column-wise

class PrincipalComponents (x: MatriD)

def meanCenter (): VectoD =

def computeCov (): MatriD =

def computeEigenVectors (eVal: VectoD): MatriD =

def findPCs (k: Int): MatriD =

def reduceData (): MatriD =

def recover (): MatriD = reducedMat * featureMat.t + mu

def solve (i: Int): (VectoD, VectoD) =
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Chapter 13

Functional Data Analysis
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13.1 Basis Functions
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13.2 Functional Smoothing
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13.3 Functional Principal Component Analaysis
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13.4 Functional Regression
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Chapter 14

Simulation Models

14.1 Introduction to Simulation

ScalaTion supports multi-paradigm modeling that can be used for simulation, optimization and analytics.

The focus of this document is simulation modeling. Viewed as black-box, a simple model maps an input

vector x and a scalar time t to an output/response vector y.

y = f(x, t)

A simulation model adds to these the notion of state, represented by a vector-valued function s(t). Knowledge

about a system or process is used to define state as well as how state can change over time. Theoretically,

this should make such models more accurate, more robust, and have more explanatory power. Ultimately,

we may still be interested in how inputs affect outputs, but to increase the realism of the model with the

hope of improving its accuracy, much attention must be directed in the modeling effort to state and state

transitions. This is true to a degree with most simulation modeling paradigms or world views.

The most recent version of the Discrete-event Modeling Ontology (DeMO) lists five simulation modeling

paradigms or world-views for simulation (see the bullet items below). These paradigms are briefly discussed

below and explained in detail in [24].

• State-Oriented Models. State-oriented models, including Generalized Semi-Markov Processes (GSMPs),

can be defined using three functions,

– an activation function {e} = a(s(t)),

– a clock function t′ = c(s(t), e) and

– a state-transition function s(t′) = d(s(t), e).

In simulation, advancing to the current state s(t) causes a set of events {e} to be activated according to

the activation function a. Events occur instantaneously and may affect both the clock and transition

functions. The clock function c determines how time advances from t to t′ and the state-transition

function determines the next state s(t′). In this paper we tie in the input and output vectors. The

input vector x is used to initialize a state at some start time t0 and the response vector y can be a

function of the state sampled at multiple times during the execution of the simulation model.
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• Event-Oriented Models. State-oriented models may become unwieldy when the state-space becomes

very large. One option is to focus on state changes that occur by processing events in time order. An

event may indicate what other events it causes as well as how it may change state. Essentially, the

activation and state transition functions are divided into several simpler functions, one for each event

e:

– {e} = ae(s(t)) and

– s(t′) = de(s(t)).

Time advance is simplified to just setting the time t′ to the time of the most imminent event on a

future event list.

• Process-Oriented Models. One of the motivations for process-oriented models is that event-oriented

models provide a fragmented view of the system or phenomena. As combinations of low-level events

determine behavior, it may be difficult to see the big picture or have an intuitive feel for the behavior.

Process-oriented or process-interaction models aggregate events by putting them together to form a

process. An example of a process is a customer in a store. As the simulated customer (as an active

entity) carries out behavior it will conditionally execute multiple events over time. A simulation

then consists of many simultaneously active entities and may be implemented using co-routines (or

threads/actors as a more heavyweight alternative). One co-routine for each active entity. The overall

state of a simulation is then a combination of the states of each active entity and the global shared

state, which may include a variety of resources types.

• Activity-Oriented Models. There are many types of activity-oriented models including Petri-Nets

and Activity-Cycle Diagrams. The main characteristics of such models is a focus on the notion of

activity. An activity (e.g, customer checkout) corresponds to a distinct action that occurs over time

and includes a start event and an end event. Activities may be started because time advances to its

start time or a triggering condition becomes true. Activities typically involve one or more entities.

State information is stored in activities, entities and the global shared state.

• System Dynamics Models. System dynamics models were recently added to DeMO, since hybrid

models that combine continuous and discrete aspects are becoming more popular. In this section,

modeling the flight of a golf ball is considered. Let the response vector y = [y0 y1] where y0 indicates

the horizontal distance traveled, while y1 indicates the vertical height of the ball. Future positions y

depends on the current position and time t. Using Newton’s Second Law of Motion, y can be estimated

by solving a system of Ordinary Differential Equations (ODEs) such as

ẏ = f(y, t), y(0) = y0.

The Newtons2nd object uses the Dormand-Prince ODE solver to solve this problem. More accurate

models for estimating how far a golf ball will carry when struck by a driver can be developed based

on inputs/factors such as club head speed, spin rate, smash factor, launch angle, dimple patterns, ball

compression characteristics, etc. There have been numerous studies of this problem, including [?].

In addition to these main modeling paradigms, ScalaTion support a simpler approach called Tableau

Oriented Models.

306

http://www.cs.uga.edu/~jam/scalation_1.1//src/main/scala/apps/dynamics/Newtons2nd.scala


14.2 Tableau Oriented

In tableau oriented simulation models, each simulation entity’s event times are recorded in a row of a

matrix/tableau. For example in a Bank simulation, each row would store information about a particular

customer, e.g., when they arrived, how long they waited, their service time duration, etc. If 10 customers

are simulated, the matrix will have 10 rows. Average waiting and service times can be easily calculated by

summing columns and dividing by the number of customers. This approach is similar to, but not as flexible

as Spreadsheet simulation. The complete code for this example may be found in Bank.

object Bank extends App

{

val stream = 1 // random number stream (0 to 99)

val lambda = 6.0 // customer arrival rate (per hour)

val mu = 7.5 // customer service rate (per hour)

val maxCusts = 10 // stopping rule: simulate maxCusts

val iArrivalRV = Exponential (HOUR/lambda, stream) // inter-arrival time random variate

val serviceRV = Exponential (HOUR/mu, stream) // service time random variate

val label = Array ("ID-0", "IArrival-1", "Arrival-2", "Start-3", "Service-4",

"End-5", "Wait-6", "Total-7")

val mm1 = new Model ("M/M/1 Queue", maxCusts, Array (iArrivalRV, serviceRV), label)

mm1.simulate ()

mm1.report

} // Bank

14.2.1 Tableau.scala

The Model class support tableau oriented simulation models in which each simulation entity’s events are

recorded in tabular form (in a matrix). This is analogous to Spreadsheet simulation (http://www.informs-

sim.org/wsc06papers/002.pdf).

Class Methods:

@param name the name of simulation model

@param m the number entities to process before stopping

@param rv the random variate generators to use

@param label the column labels for the matrix

class Model (name: String, m: Int, rv: Array [Variate], label: Array [String])

def simulate ()

def report
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14.3 Event Oriented

ScalaTion supports two types of event oriented simulation modeling paradigms: Event Scheduling and its

extension, called Event Graphs. For both paradigms, the state of the system only changes at discrete event

times with the changes specified via event logic. A scheduler within the model will execute the events in time

order. A time-ordered priority queue is used to hold the future events and is often referred to as a Future

Event List (FEL). Event Graphs capture the event logic related to triggering other events in causal links. In

this way, Event Graph models are more declarative (less procedural) than Event Scheduling models. They

also facilitate a graphical representation and animation.

14.3.1 Event Scheduling

A simple, yet practical way to develop a simulation engine to support discrete-event simulation is to imple-

ment event-scheduling. This involves creating the following three classes: Event, Entity and Model. An

Event is defined as an instantaneous occurrence that can trigger other events and/or change the state of the

simulation. An Entity, such as a customer in a bank, flows through the simulation. The Model serves as a

container/controller for the whole simulation and carries out scheduling of event in time order.

For example, to create a simple bank simulation model, one could use the three classes defined in the

event-scheduling engine to create subclasses of Event, called Arrival and Departure, and one subclass of

Model, called BankModel. The complete code for this example may be found in Bank.

The event logic is coded in the occur method which in general triggers future events and updates the

current state. It indicates what happens when the event occurs. For the Arrival class, the occur method

will schedule the next arrival event (up to the limit), check to see if the teller is busy. If so, it will place

itself in the wait queue, otherwise it schedule its own departure to correspond to its service completion time.

Finally, it adjusts the state by incrementing both the number of arrivals (nArr) and the number in the

system (nIn).

@param customer the entity that arrives, in this case a bank customer

case class Arrival (customer: Entity) extends Event (customer, this) // entity, model

{

def occur ()

{

if (nArr < nArrivals-1) {

val iArrivalT = iArrivalRV.gen

val next2Arrive = Entity (clock + iArrivalT, serviceRV.gen) // next customer

schedule (iArrivalT, Arrival (next2Arrive))

} // if

if (nIn > 0) { // teller is busy

waitQueue.enqueue (customer)

} else {

t_q_stat.tally (0.0)

t_s_stat.tally (schedule (customer.serviceT, Departure (customer)))

} // if

nArr += 1 // update the current state

nIn += 1
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} // occur

} // Arrival class

For the Departure class, the occur method will check to see if there is another customer waiting in the

queue and if so, schedule that customer’s departure. It will then signal its own departure by updating the

state; in this case decrementing nIn and incrementing nOut.

@param customer the entity that departs, in this case a bank customer

case class Departure (customer: Entity) extends Event (customer, this) // entity, model

{

def occur ()

{

t_y_stat.tally (clock - customer.arrivalT)

if (nIn > 1) {

val next4Service = waitQueue.dequeue () // first customer in queue

t_q_stat.tally (clock - next4Service.arrivalT)

t_s_stat.tally (schedule (next4Service.serviceT, Departure (next4Service)))

} // if

nIn -= 1 // update the current state

nOut += 1

} // occur

} // Departure class

In order to collect statistical information, the occur methods of both event classes call the tally method

from the Statistics class to obtain statistics on the time in queue t q stat, the time in service t s stat

and the time in system t y stat.

The three classes used for creating simulation models following the Event Scheduling paradigm are

discussed in the next three subsections.

Event.scala

The Event class provides facilities for defining simulation events. A subclass (e.g., Arrival) of Event must

provide event-logic in the implementation of its occur method. The Event class also provides methods

for comparing act times for events and converting an event to its string representation. Note: unique

identification and the event/activation time (actTime) are mixed in via the PQItem trait.

Class Methods:

@param entity the entity involved in this event

@param director the controller/scheduler that this event is a part of

@param proto the prototype (serves as node in animation) for this event

abstract class Event (val entity: Entity, director: Model, val proto: Event = null)

extends PQItem with Ordered [Event]
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def compare (ev: Event): Int = ev.actTime compare actTime

def occur ()

override def toString = entity.toString + "\t" + me

Entity.scala

An instance of the Entity class represents a single simulation entity for event oriented simulation. For each

instance, it maintains information about that entity’s arrival time and next service time.

Class Methods:

@param arrivalT the time at which the entity arrived

@param serviceT the amount of time required for the entity’s next service

case class Entity (val arrivalT: Double, var serviceT: Double)

override def toString = "Entity-" + eid

Model.scala

The Model class schedules events and implements the time advance mechanism for event oriented simulation

models. It provides methods to schedule and cancel events. Scheduled events are place in the Future Event

List (FEL) in time order. The simulate method will cause the main simulation loop to execute, which will

remove the most imminent event from the FEL and invoke its occur method. The simulation will continue

until a stopping rule evaluates to true. Methods to getStatistics and report statistical results are also

provided.

Class Methods:

@param name the name of the model

@param animation whether to animate the model (only for Event Graphs)

class Model (name: String, animation: Boolean = false)

extends ModelT with Identity

def schedule (timeDelay: Double, event: Event): Double =

def cancel (event: Event)

def simulate (startTime: Double = 0.0): ListBuffer [Statistic] =

def report (eventType: String, links: Array [CausalLink] = Array ())

def report (vars: Array [Tuple2 [String, Double]])

def reports (stats: Array [Tuple2 [String, Statistic]])

def getStatistics: ListBuffer [Statistic] =

def animate (who: Identity, what: Value, color: Color, shape: Shape, at: Array [Double])

def animate (who: Identity, what: Value, color: Color,

shape: Shape, from: Event, to: Event, at: Array [Double] = Array ())

The animate methods are used with Event Graphs (see the next section).
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14.3.2 Event Graphs

Event Graphs operate in a fashion similar to Event Scheduling. Originally proposed as a graphical conceptual

modeling technique (Schruben, 1983) for designing event oriented simulation models, modern programming

languages now permit more direct support for this style of simulation modeling.

In ScalaTion, the simulation engine for Event Graphs consists of the following four classes: Entity,

Model, EventNode and CausalLink. The first two are shared with Event Scheduling. An Entity, such as

a customer in a bank, flows through the simulation. The Model serves as a container/controller for the

whole simulation. The last two are specify to Event Graphs. An EventNode (subclass of Event), defined

as an instantaneous occurrence that can trigger other events and/or change the state of the simulation,

is represented as a node in the event graph. A CausalLink emanating from an event/node is represented

as an outgoing directed edge in the event graph. It represents causality between events. One event can

conditionally trigger another event to occur some time in the future.

For example, to create a simple bank simulation, one could use the four classes provided by the Event

Graph simulation engine to create subclasses of EventNode, called Arrival and Departure, and one subclass

of Model, called BankModel. The complete code for this example may be found in Bank2. In more complex

situations, one would typically define a subclass of Entity to represent the customers in the bank.

class BankModel (name: String, nArrivals: Int, arrivalRV: Variate, serviceRV: Variate)

extends Model (name)

The Scala code below was made more declarative than typical code for event-scheduling to better mirror

event graph specifications, where the causal links specify the conditions and time delays. For instance,

() => nArr < nArrivals

is a closure returning Boolean that will be executed when arrival events are handled. In this case, it

represents a stopping rule; when the number of arrivals exceeds a threshold, the arrival event will no longer

schedule the next arrival. The serviceRV is a random variate to be used for computing service times.

In the BankModel class, one first defines the state variables: nArr, nIn and nOut. For animation of the

event graph, a prototype for each type of event is created and displayed as a node. The edges connecting these

prototypes represent the casual links. The aLinks array holds two causal links emanating from Arrival, the

first a self link representing triggered arrivals and the second representing an arrival finding an idle server,

so it can schedule its own departure. The dLinks array holds one causal link emanating from Departure, a

self link representing the departing customer causing the next customer in the waiting queue to enter service

(i.e., have its departure scheduled).

//:: define the state variables for the simulation

var nArr = 0.0 // number of customers that have arrived

var nIn = 0.0 // number of customers in the bank

var nOut = 0.0 // number of customers that have finished and left the bank

//:: define the nodes in the event graph (event prototypes)

val protoArrival = Arrival (null) // prototype for all Arrival events

val protoDeparture = Departure (null) // prototype for all Departure events
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//:: define the edges in the event graph (causal links between events)

val aLinks = Array (CausalLink ("link2A", this, () => nArr < nArrivals, protoArrival,

() => Arrival (null), arrivalRV),

CausalLink ("link2D", this, () => nIn == 0, protoDeparture,

() => Departure (null), serviceRV))

val dLinks = Array (CausalLink ("link2D", this, () => nIn > 1, protoDeparture,

() => Departure (null), serviceRV))

protoArrival.displayLinks (aLinks)

protoDeparture.displayLinks (dLinks)

An animation of the Event Graph consisting of two EventNodes Arrival and Departure and three

CausalLinks is depicted in Figure 14.1.

Figure 14.1: Event Graph Animation of a Bank.

The main thing to write within each subclass of EventNode is the occur method. To handle arrival

events, the occur method of the Arrival class first calls the super.occur method from the superclass to

trigger other events using the causal links and then updates the state by incrementing both the number of

arrivals (nArr) and the number in the system (nIn).

@param customer the entity that arrives, in this case a customer

case class Arrival (customer: Entity)

extends EventNode (customer, this, protoArrival, Array (150.0, 200.0, 50.0, 50.0), aLinks)

{

override def occur ()

{

super.occur () // handle casual links

nArr += 1 // update the current state

nIn += 1

} // occur

} // Arrival class
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To handle departure events, the occur method Departure class first calls the occur method of the

superclass to trigger other events using the causal links and then updates the state by decrementing the

number in the system (nIn) and incrementing the number of departures (nOut).

@param customer the entity that departs, in this case a customer

case class Departure (customer: Entity)

extends EventNode (customer, this, protoDeparture, Array (450.0, 200.0, 50.0, 50.0), dLinks)

{

override def occur ()

{

super.occur () // handle casual links

nIn -= 1 // update the current state

nOut += 1

} // occur

} // Departure class

Two of the three classes used for creating simulation models following the Event Scheduling paradigm

can be used for Event Graphs, namely Entity and Model. Event must be replaced with its subclass called

EventNode. These form the nodes in the Event Graphs. An edge in the Event Graph is an instance of the

CausalLink class. These two new classes (EventNode and CausalLink) are described in the subsections

below.

EventNode.scala

The ‘Event‘ class provides facilities for defining simulation events. Subclasses of Event provide event-logic

in their implementation of the occur method. Note: unique identification and the event/activation time

(actTime) are mixed in via the PQItem trait.

Class Methods:

@param proto the prototype (serves as node in animation) for this event

@param entity the entity involved in this event

@param links the causal links used to trigger other immediate/future events

@param director the controller/scheduler that this event is a part of

@param at the location of this event

abstract class EventNode (val proto: Event, entity: Entity, links: Array [CausalLink],

director: Model, at: Array [Double] = Array ())

extends PQItem with Ordered [Event]

def compare (ev: Event): Int = ev.actTime.compare (actTime)

def occur ()

def display ()

def displayLinks (outLinks: Array [CausalLink])
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CausalLink.scala

The ‘CausalLink‘ class provides casual links between events. After an event has updated the state, it checks

its causal links to schedule/cancel other events.

Class Methods:

@param _name the name of the causal link

@param condition the condition under which it is followed

@param makeEvent function to create an event

@param delay the time delay in scheduling the event

@param cancel whether to schedule (default) or cancel the event

case class CausalLink (_name: String, director: Model, condition: () => Boolean, causedEvent: Event,

makeEvent: () => Event, delay: Variate, cancel: Boolean = false)

extends Identity

def display (from: Event, to: Event)

def tally (duration: Double) { _durationStat.tally (duration) }

def accumulate (value: Double, time: Double) { _persistentStat.accumulate (value, time) }

def durationStat = _durationStat

def persistentStat = _persistentStat
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14.4 Process Interaction

Many discrete-event simulation models are written using the process-interaction world view, because the

code tends to be concise and intuitively easy to understand. Take for example the process-interaction model

of a bank (BankModel a subclass of Model) shown below. Following this world view, one simply constructs

the simulation components and then provides a script for entities (SimActors) to follow while in the system.

In this case, the act method for the customer class provides the script (what entities should do), i.e., enter

the bank, if the tellers are busy wait in the queue, then receive service and finally leave the bank.

The development of a simulation engine for process-interaction models is complicated by the fact that

concurrent (or at least quasi-concurrent) programming is required. Various language features/capabilities

from lightweight to middleweight include continuations, coroutines, actors and threads. Heavyweight concur-

rency via OS processes is infeasible, since simulations may require a very large number of concurrent entities.

The main requirement is for a concurrent entity to be able to suspend its execution and be resumed where

it left off (its state being maintained on a stack). Since preemption is not necessary, lightweight concurrency

constructs are ideal. Presently, ScalaTion uses Scala Actors for concurrency. Future implementations will

include use of continuations and Akka Actors.

ScalaTion includes several types of model components: Gate, Junction, Resource, Route, Sink,

Source, Transport and WaitQueue. A model may be viewed as a directed graph with several types of

nodes:

• Gate: a gate is used to control the flow of entities, they cannot pass when it is shut.

• Junction: a junction is used to connect two transports.

• Resource: a resource provides services to entities (typically resulting in some delay).

• Sink: a sink consumes entities.

• Source: a source produces entities.

• WaitQueue: a wait-queue provides a place for entities to wait, e.g., waiting for a resource to become

available or a gate to open.

These nodes are linked together with directed edges (from, to) that model the flow entities from node to

node. A Source node must have no incoming edges, while a Sink node must have no outgoing edges.

• Route: a route bundles multiple transports together (e.g., a two-lane, one-way street).

• Transport: a transport is used to move entities from one component node to the next.

The model graph includes coordinates for the component nodes to facilitate animation of the model.

Coordinates for the component edges are calculated based on the coordinates of its from and to nodes.

Small colored tokens move along edges and jump through nodes as the entities they represent flow through

the system.

The BankModel may be developed as follows: The BankModel first defines the component nodes entry,

tellerQ, teller, and door. Then two edge components, toTellerQ and toDoor, are defined. These six

components are added to the BankModel using the addComponent method. Note, the endpoint nodes for

an edge must be added before the edge itself. Finally, a inner case class called Customer is defined where
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the act method specifies the script for bank customers to follow. The act method specifies the behavior of

concurrent entities (Scala Actors) and is analogous to the run method for Java/Scala Threads.

class BankModel (name: String, nArrivals: Int, iArrivalRV: Variate,

nUnits: Int, serviceRV: Variate, moveRV: Variate)

extends Model (name)

{

val entry = Source ("entry", this, Customer, 0, nArrivals, iArrivalRV, (100, 290))

val tellerQ = WaitQueue ("tellerQ", (330, 290))

val teller = Resource ("teller", tellerQ, nUnits, serviceRV, (350, 285))

val door = Sink ("door", (600, 290))

val toTellerQ = new Transport ("toTellerQ", entry, tellerQ, moveRV)

val toDoor = new Transport ("toDoor", teller, door, moveRV)

addComponent (entry, tellerQ, teller, door, toTellerQ, toDoor)

case class Customer () extends SimActor ("c", this)

{

def act ()

{

toTellerQ.move ()

if (teller.busy) tellerQ.waitIn () else tellerQ.noWait ()

teller.utilize ()

teller.release ()

toDoor.move ()

door.leave ()

} // act

} // Customer

} // BankModel class

Note, that the bank model for event-scheduling did not include time delays and events for moving token along

transports. In BankModel2, the impact of transports is reduced by (1) using the transport’s jump method

rather than its move method and (2) reducing the time through the transport by an order of magnitude. The

jump method has the tokens jumping directly to the middle of the transport, while the move method simulates

smooth motion using many small hops. Both BankModel and BankModel2 are in the apps.process package

as well as CallCenterModel, ERoomModel, IntersectionModel, LoopModel MachineModel and RoadModel.

14.4.1 Component.scala

The Component trait provides basic common feature for simulation components. A component may function

either as a node or edge. Entities/sim-actors interact with component nodes and move/jump along compo-

nent edges. All components maintain sample/duration statistics (e.g., time in waiting queue) and all except

Gate, Source and Sink maintain time-persistent statistics (e,g., number in waiting queue).

Class Methods:
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trait Component extends Identity

def initComponent (label: String, loc: Array [Double])

def initStats (label: String)

def director = _director

def setDirector (dir: Model)

def display ()

def tally (duration: Double) { _durationStat.tally (duration) }

def accumulate (value: Double, time: Double) { _persistentStat.accumulate (value, time) }

def durationStat = _durationStat

def persistentStat = _persistentStat

14.4.2 Signifiable.scala

The Signifiable trait defines standard messages sent between actors implementing process interaction

simulations.

Class Methods:

trait Signifiable

14.4.3 SimActor.scala

The SimActor abstract class represents entities that are active in the model. The act abstract method,

which specifies entity behavior, must be defined for each subclass. Each SimActor extends Scala’s Actor

class and may be roughly thought of as running in its own thread. The script for entities/sim-actors to follow

is specified in the act method of the subclass as was done for the Customer case class in the BankModel.

Class Methods:

@param name the name of the entity/SimActor

@param director the director controlling the model

abstract class SimActor (name: String, director: Model)

extends Actor with Signifiable with PQItem with Ordered [SimActor] with Locatable

def subtype: Int = _subtype

def setSubtype (subtype: Int) { _subtype = subtype }

def trajectory: Double = traj

def setTrajectory (t: Double) { traj = t }

def compare (actor2: SimActor): Int = actor2.actTime compare actTime

def act ()

def yetToAct = _yetToAct

def nowActing () { _yetToAct = false }

def time = director.clock

def schedule (delay: Double)

def yieldToDirector (quit: Boolean = false)
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14.4.4 Source.scala

The Source class is used to periodically inject entities (SimActors) into a running simulation model (and a

token into the animation). It may act as an arrival generator. A Source is both a simulation Component

and a special SimActor, and therefore can run concurrently.

Class Methods:

@param name the name of the source

@param director the director controlling the model

@param makeEntity the function to make entities of a specified type

@param subtype indicator of the subtype of the entities to me made

@param units the number of entities to make

@param iArrivalTime the inter-arrival time distribution

@param at the location of the source (x, y, w, h)

class Source (name: String, director: Model, makeEntity: () => SimActor, subtype: Int, units: Int,

iArrivalTime: Variate, at: Array [Double])

extends SimActor (name, director) with Component

def this (name: String, director: Model, makeEntity: () => SimActor, units: Int,

def display ()

def act ()

14.4.5 Sink.scala

The Sink class is used to terminate entities (SimActors) when they are finished. This class will remove the

token from the animation and collect important statistics about the entity.

Class Methods:

@param name the name of the sink

@param at the location of the sink (x, y, w, h)

class Sink (name: String, at: Array [Double])

extends Component

def this (name: String, director: Model, makeEntity: () => SimActor, subtype: Int, units: Int,

iArrivalTime: Variate, xy: Tuple2 [Double, Double])

def display ()

def leave ()

14.4.6 Transport.scala

The Transport class provides a pathway between two other component nodes. The Components in a Model

conceptually form a graph in which the edges are Transport objects and the nodes are other Component

objects. An edge may be either a Transport or Route.

Class Methods:
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@param name the name of the transport

@param from the first/starting component

@param to the second/ending component

@param motion the speed/trip-time to move down the transport

@param isSpeed whether speed or trip-time is used for motion

@param bend the bend or curvature of the transport (0 => line)

@param shift1 the x-y shift for the transport’s first endpoint (from-side)

@param shift2 the x-y shift for the transport’s second endpoint (to-side)

class Transport (name: String, val from: Component, val to: Component,

motion: Variate, isSpeed: Boolean = false,

bend: Double = 0.0, shift1: R2 = R2 (0.0, 0.0), shift2: R2 = R2 (0.0, 0.0))

extends Component

def display ()

override def at: Array [Double] =

def jump ()

def move ()

14.4.7 Resource.scala

The Resource class provides services to entities (SimActors). The service provided by a resource typically

delays the entity by an amount of time corresponding to its service time. The Resource may or may not

have an associated waiting queue.

Class Methods:

@param name the name of the resource

@param line the line/queue where entities wait

@param units the number of service units (e.g., bank tellers)

@param serviceTime the service time distribution

@param at the location of the resource (x, y, w, h)

class Resource (name: String, line: WaitQueue, private var units: Int, serviceTime: Variate,

at: Array [Double])

extends Component

def this (name: String, line: WaitQueue, units: Int, serviceTime: Variate,

xy: Tuple2 [Double, Double])

def changeUnits (dUnits: Int)

def display ()

def busy = inUse == units

def utilize ()

def utilize (duration: Double)

def release ()
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14.4.8 WaitQueue.scala

The WaitQueue class is a wrapper for Scala’s Queue class, which supports FCSC Queues. It adds monitoring

capabilities and optional capacity restrictions. If the queue is full, entities (SimActors) attempting to enter

the queue are barred. At the model level, such entities may be (1) held in place, (2) take an alternate route,

or (3) be lost (e.g., dropped call/packet). An entity on a WaitQueue is suspended for an indefinite wait. The

actions of some other concurrent entity will cause the suspended entity to be resumed (e.g., when a bank

customer finishes service and releases a teller).

Class Methods:

@param name the name of the wait-queue

@param at the location of the wait-queue (x, y, w, h)

@param cap the capacity of the queue (defaults to unbounded)

class WaitQueue (name: String, at: Array [Double], cap: Int = Int.MaxValue)

extends Queue [SimActor] with Component

def this (name: String, xy: Tuple2 [Double, Double], cap: Int)

def isFull: Boolean = length >= cap

def barred: Int = _barred

def display ()

def waitIn ()

def noWait ()

14.4.9 Junction.scala

The Junction class provides a connector between two transports/routes. Since Lines and QCurves have

limitation (e.g., hard to make a loop back), a junction may be needed.

Class Methods:

@param name the name of the junction

@param director the director controlling the model

@param jTime the jump-time through the junction

@param at the location of the junction (x, y, w, h)

class Junction (name: String, director: Model, jTime: Variate, at: Array [Double])

extends Component

def this (name: String, director: Model, jTime: Variate, xy: Tuple2 [Double, Double])

def display ()

def move ()

14.4.10 Gate.scala

The Gate class models the operation of gates that can open and shut. When a gate is open, entities can flow

through and when shut, they cannot. When shut, the entities may wait in a queue or go elsewhere. A gate
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can model a traffic light (green =⇒ open, red =⇒ shut).

Class Methods:

@param name the name of the gate

@param director the model/container for this gate

@pram line the queue holding entities waiting for this gate to open

@param units number of units/phases of operation

@param onTime distribution of time that gate will be open

@param offTime distribution of time that gate will be closed

@param at the location of the Gate (x, y, w, h)

@param shut0 Boolean indicating if the gate is opened or closed

@param cap the maximum number of entities that will be released when the gate is opened

class Gate (name: String, director: Model, line: WaitQueue, units: Int, onTime: Variate, offTime: Variate,

at: Array [Double], shut0: Boolean, cap: Int = 10)

extends SimActor (name, director) with Component

def this (name: String, director: Model, line: WaitQueue, units: Int, onTime: Variate, offTime: Variate,

xy: Tuple2 [Double, Double], shut0: Boolean, cap: Int)

def shut: Boolean = _shut

def display ()

def release ()

def act ()

def gateColor: Color = if (_shut) red else green

def flip () { _shut = ! _shut }

def duration: Double = if (_shut) offTime.gen else onTime.gen

14.4.11 Route.scala

The Route class provides a multi-lane pathway between two other node components. The Components in

a Model conceptually form a graph in which the edges are Transports/Routes and the nodes are other

components. A route is a composite component that bundles several transports.

Class Methods:

@param name the name of the route

@param k the number of lanes/transports in the route

@param from the starting component

@param to the ending component

@param motion the speed/trip-time to move down the transports in the route

@param isSpeed whether speed or trip-time is used for motion

@param angle angle in radians of direction (0 => east, Pi/2 => north, Pi => west, 3Pi/2 => south)

@param bend the bend or curvature of the route (0 => line)

class Route (name: String, k: Int, from: Component, to: Component,

motion: Variate, isSpeed: Boolean = false,
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angle: Double = 0.0, bend: Double = 0.0)

extends Component

override def at: Array [Double] = lane(0).at

def display ()

14.4.12 Model.scala

The Model class maintains a list of components making up the model and controls the flow of entities

(SimActors) through the model, following the process-interaction world-view. It maintains a time-ordered

priority queue to activate/re-activate each of the entities. Each entity (SimActor) is implemented as a Scala

Actor and may be roughly thought of as running in its own thread.

Class Methods:

@param name the name of the model

@param animating whether to animate the model

class Model (name: String, animating: Boolean = true)

extends Actor with Signifiable with Modelable with Component

def addComponent (_parts: Component*) { for (p <- _parts) parts += p }

def addComponents (_parts: List [Component]*) { for (p <- _parts; q <- p) parts += q }

def theActor = _theActor

def simulate (startTime: Double = 0.0)

def reschedule (actor: SimActor) { agenda += actor }

def act ()

def report

def reportf { new StatTable (name + " statistics", getStatistics) }

def getStatistics: ListBuffer [Statistic] =

def display ()

def animate (who: Identifiable, what: Value, color: Color, shape: Shape, at: Array [Double])

def animate (who: Identifiable, what: Value, color: Color, shape: Shape,

from: Component, to: Component, at: Array [Double] = Array ())
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Appendix A

Optimization Used in Data Science

As discussed in earlier chapters, when matrix factorization cannot be applied for determining optimal values

for parameters, an optimization algorithm will often need to be applied. This chapter provides a quick

overview of optimization algorithms that are useful for data science. Note that the notation in the opti-

mization field differs in that we now focus on optimizing the vector x rather than the parameter vector

b.

Many optimization problems may be formulated as restricted forms of the following,

minimize f(x)

subject to g(x) ≤ 0

h(x) = 0

where f(x) is the objective function, g(x) ≤ 0 are the inequality constraints, and h(x) = 0 are the equality

constraints. Consider the example below.

minimize f(x) = (x1 − 4)2 + (x2 − 2)2

subject to g(x) = [x1 − 3, x2 − 1] ≤ 0

h(x) = x1 − x2 = 0

If we ignore all the constraints, the optimal solution is x = [4, 2] where f(x) = 0, while enforcing the

inequality constraints makes this solution infeasible. The new optimal solution is x = [3, 1] where f(x) = 2.

Finally, the optimal solution when all constraints are enforced is x = [1, 1] where f(x) = 10. Note, for this

example there is just one equality constraint that forces x1 = x2.
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A.1 Gradient Descent

One the simplest algorithms for unconstrained optimiztion is Gradient Descent. Imagine you are in a

mountain range at some point x with elevation f(x). Your goal is the find the valley (or ideally the lowest

valley). Look around (assume you cannot see very far) and determine the direction and magnitude of steepest

ascent. This is the gradient.

Using the objective/cost function from the beginning of the chapter,

minimize f(x) = (x1 − 4)2 + (x2 − 2)2

the gradient of the objective function ∇f(x) is the vector formed by the partial derivatives [ ∂
∂x1

, ∂
∂x2

]

∇f(x) = [2(x1 − 4), 2(x2 − 2)]

In its most elemental form the algorithm simply moves in the direction that is opposite to the gradient

−∇f(x) and a distance determined by the magnitude of the gradient. Unfortunately, at some points in

the search space the magnitude of the gradient may be very large and moving that distance may result

in divergence (you keep getting farther away from the valley). One solution is to temper the gradient by

multiplying it by a learning rate η (tunable hyper-parameter typically smaller than one). Using a tuned

learning rate, update your current location x as follows:

x = x − η∇f(x) (A.1)

Repeat this process until a stopping rule signals sufficient convergence. Examples of stopping rules include

stop when the change to x or f(x) becomes small or after the objective function has increased for too many

consecutive iterations/steps.

A.1.1 Line Search

Notice that the gradient is re-evaluated at every iteration/step and that it is unclear how far to move in the

direction opposite the gradient (hence the need/annoyance of tuning the learning rate). Adding a line search

may help with these issues. The idea is that the gradient gives you a direction to follow that may work well

for awhile. Using a line search, you may move in that direction (straight line) so long as it productive. The

line search induces a one dimensional function that reproduces the value of the original objective function

along the given line.

One approach is to move along the line so long as there is sufficent decrease. Once this stops, re-evaluate

the gradient and start another major iteration. An example of such an algorithm is the Wolfe Line Search.

An alterative when you are confident of the extent of line search (upper limit on the range to be considered)

is to use Golden Section Search that iteratively narrows down the search from the original extent.

The problem of learning rate is still there to some degree as the line search algorithms have step size as

hyper-parameter. Of course, more complex variants may utilize adpative learning rates or step sizes.
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A.1.2 Application to Data Science

The gradient descent algorithm may be applied to data science, simply by defining an appropriate objec-

tive/cost function. Since the goal is often to minimize the sum of squared errors sse or some similary Quality

of Fit (QoF) measure, it may be used for the objective function. For a Perceptron, the equation has been

developed for hse(b)

hse(b) = (y − f(Xb) · (y − f(Xb)

in which case the gradient is

∇hse(b) = −Xt[f ′(Xb) ε] (A.2)

where ε = y − f(Xb).

For each epoch, the parameter vector b is update according to equation 16.1.

b = b − η∇hse(b) (A.3)

A.1.3 Exercises

1. Write a ScalaTion program to solve the example problem given above.

// function to optimize

def f(x: VectoD): Double = (x(0) - 4)~^2 + (x(1) - 2)~^2

// gradient of objective function

def grad (x: VectoD): VectoD = VectorD (?, ?)

val x = new VectorD (2) // vector to optimize

val eta = 0.1 // learning rate

for (k <- 1 to MAX_ITER) {

x -= grad (x) * eta

println (s"$k: x = $x, f(x) = ${f(x)}, lg(x) = ${lg(x)}, p = $p, l = $l")

} // for

2. Add code to collect the trajectory of vector x in a matrix z and plot the two columns in the z matrix.

val z = new MatrixD (MAX_ITER, 2) // store x’s trajectory

z(k-1) = x.copy

new Plot (z.col(0), z.col(1)

327



A.2 Stochastic Gradient Descent

Continuing for a Perceptron, starting with hse(b)

hse(b) = (y − f(Xb) · (y − f(Xb)

an estimate of the gradient is computed for a limited number of instances (a batch). Several non-overlapping

batches are created simultaneous by taking a random permutation of the row indices of data/input matrix

X. The permutation is split into nB batches. Letting iB be the indices for the ith batch and X[iB ] be the

projection of matrix X onto the rows in iB , the estimate for the gradient is simply

∇hse(b) = −X[iB ]t[f ′(X[iB ]b) ε] (A.4)

where ε = y[iB ]− f(X[iB ]b). Using the definition of the delta vector

δ = − f ′(X[iB ]b) ε

the gradient becomes

∇hse(b) = X[iB ]tδ

For each epoch, nB batches are created. For each batch, the parameter vector b is update according to

equation 16.1, using that batch’s estimate for the gradient.

b = b − η∇hse(b) = b − X[iB ]tδη (A.5)

The corresponding ScalaTion code is in the Optimizer SGD object.

def optimize (x: MatriD, y: VectoD, b: VectoD,

eta_ : Double = hp.default ("eta"),

bSize: Int = hp.default ("bSize").toInt,

maxEpochs: Int = hp.default ("maxEpochs").toInt,

f1: AFF = f_sigmoid): (Double, Int) =

{

val idx = VectorI.range (0, x.dim1) // instance index range

val permGen = PermutedVecI (idx, ranStream) // permutation vector generator

val nB = x.dim1 / bSize // the number of batches

val stop = new StoppingRule () // rule for stopping early

var eta = eta_ // set initial learning rate

for (epoch <- 1 to maxEpochs) { // iterate over each epoch

val batches = permGen.igen.split (nB) // permute index, split into batches

for (ib <- batches) b -= updateWeight (x(ib), y(ib)) // iteratively update vector b

val sse = sseF (y, f1.fV (x * b)) // recompute sum of squared errors

val (b_best, sse_best) = stop.stopWhen (b, sse)

if (b_best != null) {

b.set (b_best())

328



return (sse_best, epoch - UP_LIMIT)

} // if

if (epoch % ADJUST_PERIOD == 0) eta *= ADJUST_FACTOR // adjust the learning rate

} // for

The above code shows the double loop (over epoch and ib). The parameter vector b is updated for each

batch by calling updateWeight. The rest of the outer simply looks for early termination based on a stopping

rule and records the best solution for b found so far. The final part of the outer loop, increases the learning

rate eta at the end of each adjustment period (as the algorithm get closer to an optimal solution, gradients

shrink and may slow down the algorithm).

def updateWeight (x: MatriD, y: VectoD): VectoD =

{

val yp = f1.fV (x * b) // yp = f(Xb)

val e = yp - y // negative error vector

val d = f1.dV (yp) * e // delta vector

val eta_o_sz = eta / x.dim1 // eta over current batch size

x.t * d * eta_o_sz // return change in vector b

} // updateWeight

(sseF (y, f1.fV (x * b)), maxEpochs) // return sse and # epochs

} // optimize

The above code shows the updateWeight nested method and the final line of the outer optimize method.

The updateWeight method simply encodes the boxed equations from the Perceptron section: computing

predicted output, the negative of the error vector, the delta vector, and a batch size normalized learning

rate, and finally, returning the parameter vector b update. The final line of optimize simply returns the

value of the objective function and number epochs used by the algorithm.
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A.3 Stochastic Gradient Descent with Momentum

To better handle situations where the gradient becomes small or erratic, previous values of the gradient can

be weighed in with the current gradient. Their contributions can be exponentially decayed, so that recent

gradients have greater influence. These contributions may be collected via the gradient-based parameter

updates to the parameter vector b.

bup = η∇hse(b) = X[iB ]tδη (A.6)

Again for a Perceptron, one can include a momentum vector mo to hold the weighted average of recent

gradients. The momentum vector mo is then simply the sum of the old momentum decayed by parameter

β and bup.

mo = βmo + bup (A.7)

Then the parameters are updated as follows:

b = b−mo (A.8)

If β is zero, that algorithm behaves the same as Stochastic Gradient Descent. At the other extreme, if β is

1, there is no decay and all previous gradients will weigh in, so eventually the new gradient value will have

little impact and the algorithm will become oblivious to its local environment. In ScalaTion, BETA is set to

0.9, but can easily be changed.

To add momentum into the code, the updateWeight method from the last section needs be slightly

modified.

def updateWeight (x: MatriD, y: VectoD): VectoD =

{

val yp = f1.fV (x * b) // yp = f(Xb)

val e = yp - y // negative of the error vector

val d = f1.dV (yp) * e // delta vector for y

val eta_o_sz = eta / x.dim1 // eta over the current batch size

val bup = x.t * d * eta_o_sz // gradient-based change in input-output weights

mo = mo * BETA + bup // update momentum

mo // return momentum

} // updateWeight

See the Optimzer SGDM for more coding details.
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A.4 Method of Lagrange Multipliers

The Method of Lagrange Multipliers (or Lagrangian Method) provides a means for solving constrained

optimizations problems. For optimization problems involving only one equality constraint, one may introduce

a Lagrange muliplier λ. At optimality, the gradient of f should be orthogonal to the surface defined by the

constraint h(x) = 0, otherwise, moving along the surface in the opposite direction to the gradient (−∇f(x)

for minimization) would improve the solution. Since the gradient of h, ∇h(x), is orthogonal to the surface

as well, this implies that the two gradients should only differ by a constant multiplier λ.

−∇f(x) = λ∇h(x) (A.9)

In general, such problems can solved by defining the Lagrangian

L(x,λ) = f(x)− λ · h(x) (A.10)

where λ is a vector of Lagrange multipliers. When there is a single equality constraint, this becomes

L(x, λ) = f(x)− λh(x)

Taking the gradient of the Lagrangian w.r.t. x and λ yields a vector of dimension n+ 1.

∇L(x, λ) = [∇f(x)− λ∇h(x), h(x) ]

Now we may try setting the gradient to zero and solving a system of equations.

A.4.1 Example Problem

The Lagrangian for the problem given at the beginning of the chapter is

L(x, λ) = (x1 − 4)2 + (x2 − 2)2 − λ (x1 − x2)

Computation of the gradient [ ∂
∂x1

, ∂
∂x2

, ∂∂λ ] of the Lagrangian yields the following three equations,

−2(x1 − 4) = λ

−2(x2 − 2) = −λ

x1 − x2 = 0

The first two equations are from the gradient w.r.t. x, while the third equation is simply the constraint itself

h(x) = 0. The equations may be rewritten in the following form.

2x1 + λ = 8

2x2 − λ = 4

x1 − x2 = 0

This is a linear system of equations with 3 variables [x1, x2, λ] and 3 equations that may be solved, for

example, by LU Factorization. In this case, the last equation gives x1 = x2, so adding equations 1 and 2

yields 4x1 = 12. Therefore, the optimal value is x = [3, 3] with λ = 2 where f(x) = 2.
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Adding an equality constraint is addressed by adding another Lagrange mutiplier, e.g., 4 variables

[x1, x2, λ1, λ2] and 4 equations, two from the gradient w.r.t. x and one for each of the two constraints.

Linear systems of equations are generated when the objective function is at most quadratic and the

constraints are linear. If this is not the case, a nonlinear system of equations may be generated.
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A.5 Karush-Kuhn-Tucker Conditions

Introducing inequality constraints makes the situation is a little more complicated. A generalization of

the Method of Lagrange Multipliers based on the Karush-Kuhn-Tucker (KKT) conditions is needed. For

minimization, the KKT conditions are as follows:

−∇f(x) = α · ∇g(x) + λ · ∇h(x) (A.11)

The original constraints must also hold.

g(x) ≤ 0 and h(x) = 0

Furthermore, the Lagrange multipliers for the inequality constraints α are themselves constrained to be

nonnegative.

α ≥ 0

When the objective function is at most quadratic and the constraints are linear, the problem of finding

an optimal value for x is referred to a Quadratic Programming. Many estimation/learning problems in

data science are of this form. Beyond Quadratic Programming lies problems in Nonlinear Programming.

Linear Programming (linear objective function and linear constraints) typically finds less use (e.g., Quantile

Regression) in estimation/learning, so it will not be covered in this Chapter, although it is provided by

ScalaTion.

A.5.1 Active and Inactive Constraints
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A.6 Augmented Lagrangian Method

The Augmented Lagrangian Method (also known as the Method of Multipliers) takes a constrained opti-

mization problem with equality constraints and solves it as a series of unconstrained optimization problems.

minimize f(x)

subject to h(x) = 0

where f(x) is the objective function and h(x) = 0 are the equality constraints.

In penalty form, the constrained optimization problem becomes.

minimize f(x) +
ρk
2
||h(x)||22

where k is the iteration counter. The square of the Euclidean norm indicates to what degree the equality

contraints are violated. Replacing the square of the Euclidean norm with the dot product gives.

minimize f(x) +
ρk
2

h(x) · h(x)

The value of ρk increases (e.g., linearly) with k and thereby enforces the equality constraints more strongly

with each iteration.

An alternative to minimizing f(x) with a quadratic penalty is to minimize using the Augmented La-

grangian L(x, ρk,λ).

L(x, ρk,λ) = f(x) +
ρk
2

h(x) · h(x)− λ · h(x) (A.12)

where λ is the vector of Lagrange multipliers. After each iteration, the Lagrange multipliers are updated.

λ = λ− ρk h(x)

This method allows for quicker convergence without the need for the penalty ρk to become as large (see the

exercises for a comparison of the Augmented Lagranian Method with the Penalty Method). This method

may be conbined with an algorithm for solving unconstrained optimization problems (see the exercises for

how it can be combined with the Gradient Descent algorithm). The method also can be extended to work

inequality contraints.

A.6.1 Example Problem

Consider the problem given at the beginning of the chapter with the inequality constraint left out.

minimize f(x) = (x1 − 4)2 + (x2 − 2)2

subject to h(x) = x1 − x2 = 0

where x ∈ R2, f is the objective function and h is the single equality contraint. The Augmented Lagrangian

for this problem is
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L(x, ρk, λ) = (x1 − 4)2 + (x2 − 2)2 +
ρk
2

(x1 − x2)2 − λ(x1 − x2) (A.13)

The gradient of the Augmented Lagrangian ∇L(x, ρk, λ) is made up of the following two partial derivatives.

∂/∂x1 = 2(x1 − 4) +
ρk
2

2(x1 − x2)− λ

∂/∂x2 = 2(x2 − 2)− ρk
2

2(x1 − x2) + λ

The Lagrange multiplier updates becomes

λ = λ− ρk (x1 − x2)

The code in the exercises tightly integrates the Gradient Descent algorithm with the Augmented Lagrangian

method by updating the penalty and Lagrange multiplier during each iteration.

A.6.2 Exercises

1. Write a ScalaTion program to solve the example problem given above.

// function to optimize

def f(x: VectoD): Double = (x(0) - 4)~^2 + (x(1) - 2)~^2

// equality constraint to maintain

def h(x: VectoD): Double = x(0) - x(1)

// augmented Lagrangian

def lg (x: VectoD): Double = f(x) + (p/2) * h(x)~^2 - l * h(x)

// gradient of Augmented Lagrangian

def grad (x: VectoD): VectoD = VectorD (?, ?)

val x = new VectorD (2) // vector to optimize

val eta = 0.1 // learning rate

val p0 = 0.25; var p = p0 // initial penalty (p = p0)

var l = 0.0 // initial value for Lagrange multiplier

for (k <- 1 to MAX_ITER) {

l -= p * h(x) // comment out for Penalty Method

x -= grad (x) * eta

println (s"$k: x = $x, f(x) = ${f(x)}, lg(x) = ${lg(x)}, p = $p, l = $l")

p += p0

} // for

2. Add code to collect the trajectory of vector x in a matrix z and plot the two columns in the z matrix.
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val z = new MatrixD (MAX_ITER, 2) // store x’s trajectory

z(k-1) = x.copy

new Plot (z.col(0), z.col(1)

3. Compare the Augmented Langragian Method with the Penalty Method by simply removing the La-

grange multiplier from the code.

336



A.7 Quadratic Programming

The QuadraticSimplex class solves Quadratic Programming (QP) problems using the Quadratic Simplex

Algorithm. Given a constraint matrix A, constant vector b, cost matrix Q and cost vector c, find values

for the solution/decision vector x that minimize the objective function f(x), while satisfying all of the

constraints, i.e.,

minimize f(x) =
1

2
x ·Qx + c · x

subject to g(x) = Ax− b ≤ 0

Before considering the type of optimization algorithm to use, we may simplify the problem by applying

the KKT conditions.

−∇f(x) = Qx + c = α · ∇g(x) = α ·A

Adding the constraints gives the following n equations and 2m constraints:

Qx + c = α ·A

Ax− b ≤ 0

α ≥ 0

These equations have two unknown vectors, x of dimension n and α of dimension m.

The algorithm creates an simplex tableau. This implementation is restricted to linear constraints Ax ≤ b

and Q being a positive semi-definite matrix. Pivoting must now also handle non-linear complementary

slackness.

Class Methods:

* @param a the M-by-N constraint matrix

* @param b the M-length constant/limit vector

* @param q the N-by-N cost/revenue matrix (second order component)

* @param c the N-length cost/revenue vector (first order component)

* @param x_B the initial basis (set of indices where x_i is in the basis)

*/

class QuadraticSimplex (a: MatrixD, b: VectorD, q: MatrixD, c: VectorD,

var x_B: Array [Int] = null)

extends Error

def setBasis (j: Int = N, l: Int = M): Array [Int] =

def entering (): Int =

def comple (l: Int): Int =

def leaving (l: Int): Int =
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def pivot (k: Int, l: Int)

def solve (): (VectorD, Double) =

def tableau: MatrixD = t

def primal: VectorD =

def dual: VectorD = null // FIX

def objValue (x: VectorD): Double = (x dot (q * x)) * .5 + (c dot x)

def showTableau ()
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A.8 Coordinate Descent
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A.9 Conjugate Gradient

340



A.10 Quasi-Newton Method
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A.11 Alternating Direction Method of Multipliers
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A.12 Nelder-Mead Simplex
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Appendix B

Parallel and Distributed Computing
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B.1 MIMD - Multithreading
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B.2 SIMD - Vector Instructions
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B.3 Message Passing
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B.4 Distributed Shared Memory
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B.5 Microservices
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B.6 Distributed Functional Programming
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