
Introduction to Data Science

Using ScalaTion

Release 2

Lesson Plans

John A. Miller

Department of Computer Science

University of Georgia

April 29, 2020

2

Contents

1 Introduction to Data Science 7

1.1 Lesson Plan . 7

2 Mathematical Preliminaries 9

2.1 Lesson Plan: Probability . 9

2.1.1 Joint Probability . 10

2.1.2 Log-Probability . 11

3 Data Management and Preprocessing 13

3.1 Lesson Plan . 13

4 Prediction 15

4.1 Lesson Plan . 15

5 Classification 17

5.1 Lession Plan: Classification . 17

5.2 Null Model . 19

5.3 Lession Plan: Näıve Bayes . 20

5.3.1 Factoring the Probability . 20

5.3.2 Laplace Smoothing . 21

5.3.3 Entropy . 22

5.4 Lession Plan: Decision Tree ID3 . 24

5.4.1 Example Problem . 24

3

6 Classification: Continuous Variables 27

6.1 Lesson Plan: Simple Logistic Regression . 28

6.2 Lesson Plan: Maximum Likelihood Estimation . 31

6.3 Final Exam: Two Day Exam . 33

6.4 Term Project . 36

7 Generalized Linear Models 37

7.1 Lesson Plan . 37

8 Generalized Additive Models 39

8.1 Lesson Plan . 39

9 Non-Linear Models and Neural Networks 41

9.1 Lession Plan: Perceptron . 41

9.2 Lession Plan: Multi-Output Prediction . 42

9.2.1 Model Equation . 42

9.2.2 Forward Selection . 43

9.3 Lesson Plan: Three-Layer Neural Network . 50

9.3.1 Model Equation . 51

9.3.2 Training/Optimization . 53

9.3.3 Example Error Calculation Problem . 55

9.4 Lesson Plan: Deep Neural Network . 57

9.4.1 Model Equation . 57

9.4.2 Training/Optimization . 57

9.5 Lesson Plan: Extreme Learning Machines . 59

9.5.1 Model Equation . 59

10 Time-Series/Temporal Models 61

10.1 Lesson Plan: Time-Series Models . 62

10.1.1 Model Equation . 62

10.1.2 Auto-Correlation Function . 62

10.1.3 Auto-Regressive (AR) Models . 63

4

11 Clustering 65

11.1 Lesson Plan . 65

12 Dimensionality Reduction 67

12.1 Lesson Plan . 67

13 Functional Data Analysis 69

13.1 Lesson Plan . 69

14 Simulation Models 71

14.1 Lesson Plan . 71

15 Optimization Used in Data Science 73

15.1 Lesson Plan . 73

5

6

Chapter 1

Introduction to Data Science

This chapter positions the field of Data Science inclusively between Statistics and Machine Learn-

ing. Data Science often focuses on a collecting large dataset(s) to address a problem, selecting

appropriate models for making predictions or decisions, training the models on the dataset(s), and

then using the trained models to underestand and help address the problem at hand.

1.1 Lesson Plan

7

8

Chapter 2

Mathematical Preliminaries

This chapter serves as a quick review of the two principal mathematical foundations: Probability

and Linear Algebra (Vectors and Matrices).

2.1 Lesson Plan: Probability

ClassDate : Day 1−DueDate : Day 2

Read Sections 5.1-5.5 in the Introduction to Data Science in ScalaTion textbook. Turn

in all the ITEMS listed until the next class.

Consider a discrete random variable y. By being discrete, the variable can only take on a finite

or countably infinite number of values. For example, the number of possible values for the variable

for the cases of a coin flip, roll of two dice, and number of coin flips until a head are 2, 11 and ∞,

respectively. Knowing the domain of values for the random is useful, but hardly stastifying. Surely,

somne the possible values may be more likely or probable than others. We can start with a fixed

amount of probabilistic mass and spread it over the domain values in order to guage the likelihood

of each possible value. This notion can be captured by the probability mass function (pmf).

py(yi) = P (y = yi)

ITEM 1: Coin flipping experiments may be modeled using a random variable y ∼ Bernoulli(p)

where ∼ mean distributed as and p indicates the probability of flipping a coin and having it land

heads up. The domain for y is 0 (tail) and 1 (head). Since this domain is so simple and regular, it

9

is convenient to represent the possible values using k ∈ {0, 1}, as y0 = 0 and y1 = 1. What is the

pmf for random variable y?

py(k) = p?(1− p)? for k ∈ {0, 1}

ITEM 2: Experiments in which two coins are flipped y = z1+z2 where z1 and z2 ∼ Bernoulli(p)

can be modeled using the Binomial(p, 2) distribution. What is y pmf? In order to determine the

form of the pmf, use the fact that the result for each coin is independent, so that the probabiliites

multiply.

py(k) =

(
2

k

)
p?(1− p)? for k ∈ {0, 1, 2}

ITEM 3: The number of flips required to get a head can be modeled using random variable

y ∼ Geometric(p). What is y pmf?

2.1.1 Joint Probability

The joint probabilitiy measures the likelihood of multiple random variables taking on certain values.

As a simple case, the joint probability for a 2-dimensional random vector y = [y0, y1] is

py(k) = P (y0 = k0, y1 = k1)

If the random variables y0 and y1 are independent, then

py(k) = py0(k0) py1(k1)

For example, after flipping 10 coins with the first 6 being tails and the last 4 being heads, the joint

probability for k = [0, 0, 0, 0, 0, 0, 1, 1, 1, 1] results from taking the product of the ten individual

probabilities.

py(k) = (1− p)6p4

ITEM 4: For two fair coins p = .5, compute the joint probability for all possible values of

vector k = [k1, k2]. Also, try this for unfair coins with p = .6.

py(k) = ?

10

2.1.2 Log-Probability

While probabilities are often combined using multiplication, log-probabilities are often combined

using addition. Given the pmf for a random variable y) its log-probability is given by

logpy(k) = − log2(py(k))

The negative log is used since logorithms of values less than 1 are negative. It is common to use

base 2 logarithms, although other bases may be used as well.

For the example above of flipping 10 coins, the log-probability is

logpy(k) = − 6 log2(1− p)− 4 log2 p

ITEM 5: Plot the probability and log-probability for the first 16 Binomial(p, n) distributions,

i.e., for the number of coins n = 1, . . . , 16. Try with p = .6 and p = .5.

11

12

Chapter 3

Data Management and Preprocessing

This chapter provides a quick overview of the support provided by ScalaTion for data management

and data preprocessing.

3.1 Lesson Plan

13

14

Chapter 4

Prediction

This chapter focuses on linear models used for making predictions (e.g., Multiple Linear Regression).

4.1 Lesson Plan

15

16

Chapter 5

Classification

5.1 Lession Plan: Classification

ClassDate : Tuesday,April 7−DueDate : Wednesday,April 8

Read Sections 5.1-5.5 in the Introduction to Data Science in ScalaTion textbook. Turn

in all the ITEMS listed until the next class.

This chapter focuses on models used to classify a data/input vector x, amongst k possible

values for the response variable y. The response variable may be categorical (e.g., English, French,

Spanish) or ordinal (e.g., low, medium, high). For categorical variables, the < (less than) operator is

undefined and averages do not make sense (average of English and Spanish is not French), while for

ordinal, the < operator is defined and the average may arguably make some sense. For the average

to be precise, though, the ordinal number also must be cardinal, meaning that distance between

subsequent values is the same. In any case, the number of possible values is finite. Whatever

the type of response, its values can be mapped into k integer values. However, when the possible

values are countably infinite (like the integers Z) or uncountably infinite (like the reals R), then

classification models will not be appropriate.

Classification models may be thought of as applying a function (or algorithm) f , often with

parameters b to an input vector x to estimate a response y ∈ {0, 1, . . . , k − 1}.

y = f(x; b)− ε

17

For making it easier to remember certain Quality of Fit (QoF) measures, negative error will be

used. While regression models focus on estimating the conditional expectation of y given x,

ŷ = E [y|x]

the classification models often focus on maximizing the conditional probability of y given x, i.e.,

finding the conditional mode.

y∗ = argmax P (y|x) = M [y|x]

ITEM 1: When k = 2, the classification problem becomes binary, e.g.,

0 meaning: no or negative

1 meaning: yes or positive

Such problems are very common. Consider the error term ε. Before, the error term took on real

values (e.g., 2.71828, -3.14159). What values could the error random variable ε now take on?

ε = y∗ − y = ∈ { ? }

ITEM 2: For regression, the Quality of Fit (QoF) includes sum of squared errors sse, mean

squared errormse, sum of absolute errors sae, and mean absolute errormae. Assumingm instances,

give a formula involving the error vector ε to calculate mae

sae = || ? ||? =
∑

?

ITEM 3: How would sse differ from sae for such binary classification?

ITEM 4: How would you characterize the following values for ε?

−1 [false | true] but classified [negative | positive]

0 [false | true]

1 [false | true] but classified [negative | positive]

Note, false means misclassication, while true means correct classification. Also, the “but classified”

phrase is usually dropped.

18

ITEM 5: There are actually two ways of getting true, name them. Now there are four possible

outcomes. Imagine a plot of y∗ (predicted) versus y (actual) where the horizontal axis has the

values for y (0, 1) and the vertical axis has the values for y∗ (0, 1). Make four quadrants and place

counts for the number of cases given the following two vectors y (y) and y∗ (yp).

yp = [0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0]

y = [0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0]

e =

Note, the plot can be caputured in a 2-by-2 matrix that is referred to as a confusion matrix.

Correctly label each quadrant with one of the following labels fn, fp, tn, tp. Unfortunately, the

order of cells in confusion matrices varies based on the source and the data science tool.

ITEM 6: From the confusion matrix, calculate the error rate er, accuracy acc, precision p,

recall/sensitivity r, and F1-measure, F1.

5.2 Null Model

As with other types of data science problems, there is a Null Model for classification problems.

The Null Model simply guesses the most likely case based on the response vector y ignoring the

input/data matrix X.

y∗ = argmax P (y) = M [y]

Given m instances, the probabilities may be estimated based on frequency counts for each class

c ∈ {0, 1, . . . , k − 1}.

νc(y) =
m−1∑
i=0

I(yi = c)

where the indicator predicate (Boolean function) returns 1 (0) when the condition is true (false).

Now the probability is calulated as the ratio of the number instances where yi is c, divided by the

total number of instances m.

P (y = c) =
νc(y)

m

19

ITEM 7: Use the Null Model to provide new classifications for yp.

yp =

ITEM 8: Determine the confusion matrix and calculate er, acc, p, r and F1.

5.3 Lession Plan: Näıve Bayes

ClassDate : Wednesday,April 8−DueDate : Thursday,April 9

Read Sections 5.6 in the Introduction to Data Science in ScalaTion textbook. Turn in

all the ITEMS listed until the next class.

The goal is to estimate the conditional probabilities,

y∗ = argmax P (y|x) = M [y|x]

which indicate the probability that y = c given the input data vector x, and then pick a class c

that is maximal. Clearly the input features [x0, x1, . . . xn−1] should influence the these probabilies.

Conditioning on a vector can be unweildy and performance of models that do so, tends to be

less robust. By using Bayes Theorem, one can condition on a single variable and in particular one

that only has k values.

P (y|x) =
P (x|y)P (y)

P (x)

Finding a class c with maximal conditional probability is now easy since the denonimator is common

to all classes and P (y) has already been calculated for the Null Model, i.e., the focus is on calculating

the following conditional probabilities:

P (x|y)

5.3.1 Factoring the Probability

Such conditional probabilities can be closely approximated using Bayesian Networks, but unfortu-

nately in their unrestricted form are intractable. Making an assumption that each random variable

xj can only conditionally depend (as an approximation) on one other variable xk leads to either

20

Tree-Augmented Näıve (TAN) Bayes or Forest-Augmented Näıve (FAN) Bayes models. Ignoring

all conditional dependencies between the features xj leaves each one only dependent on only y.

This allows the conditional probability to be factored (independance approximation).

P (x|y) =

n−1∏
j=0

P (xj |y)

Thus, one needs for calculate a Conditional Probability Table (CPT) for each feature xj . For the

“Play Tennis?” example given in the textbook in section 5.5, there are four features: x0 is Outlook,

x1 is Temporature, x2 is Humdity, and x3 is Wind.

Item 1: Create a Joint Frequency Table (JFT) for each feature, e.g., for x0 it is

Table 5.1: JFT for x 0

x0\y 0 1

0 2 3

1 0 4

2 3 2

Item 2: From the Joint Frequency Table (JFT) for each feature, calculate the Conditional

Probability Table, e.g., for x0 it is

Table 5.2: CPT for x 0

x0\y 0 1

0 2/5 3/9

1 0 4/9

2 3/5 2/9

5.3.2 Laplace Smoothing

When zeros show up in CPTs it can cause problems, because multiplying any value by zero gives

0. The zero may have only showed up due to lack a data, so giving zero as the product could be

21

misleading. It is better to give it small value, rather than zero. One way to do this when calculating

the CPT for a given xj is to add one fake instance that is equally likely of taking on any possible

value for xj . For example if x0 (Outlook) can take on three values, then add one third to each

frequency count.

P (xj = h | y = c) =
νh,c(x:j ,y) + 1/vcj

νc(y) + 1

where vcj is the value count (or number of distanct values) for xj . Note, that this will also ensure

that there will be no “divide-by-zero” error.

Item 3: Use Näıve Bayes to provide new classifications for yp.

yp =

ITEM 4: Determine the confusion matrix and calculate er, acc, p, r and F1.

5.3.3 Entropy

The entropy of a discrete random variable y with probability mass function (pmf) py(yi) captured

in a k-dimensional probability vector py = [p0, . . . pk−1] is the negative of the expected value of the

log of the probability.

H(y) = H(py) = − E [log2(py)] = −
k−1∑
i=0

log2(pi) pi

Under this definition of entropy, H(y) ranges from 0 to log2(k). Low entropy (close to 0) means

that there is low uncertainty/risk in predicting an outcome of an experiment involving the random

variable y, while high entropy (close to log2(k)) means that there is high uncertainty/risk in pre-

dicting an outcome of such an experiment. For binary classification (k = 2), the upper bound on

entropy is 1.

The entropy may be normalized by setting the base of the logarithm to the dimensionaliry of

the probability vector k, in whch case, the entropy will be in the interval [0, 1].

Hk(y) = Hk(py) = − E [logk(py)] = −
k−1∑
i=0

logk(pi) pi

See section 5.11.1 in the textbook, page 154 for more details. Also, see section 2.1 in these

lesson plans for background on probability and log-probability.

22

ITEM 5: A random variable y ∼ Bernoulli(p) may be used to model the flip of a single coin

that has a probability of success/head (1) of p. Its pmf is

p(y) = py(1− p)1−y

Using spreadsheet software, plot its entropy

H(y) = H(p) = H([p, 1− p]) = log2(p) p+ log2(1− p) (1− p)

versus p, as probability p ranges from 0 to 1. Describe the curve.

————- 6 and 7 ADDED AFTER QUIZ

ITEM 6: A random variable y = z1 + z2 where z1, z2 are distributed as Bernoulli(p) may be

used to model the sum of flipping two coins. Using spreadsheet software, plot its entropy

H(y) = H(p) = H([p2, 2p(1− p), (1− p)2])

versus p, as probability p ranges from 0 to 1. Describe the curve.

ITEM 7: Plot the entropy H and normalized entropy Hk for the first 16 Binomial(p, n) distri-

butions, i.e., for the number of coins n = 1, . . . , 16. Try with p = .6 and p = .5.

23

5.4 Lession Plan: Decision Tree ID3

ClassDate : Wednesday,April 9−DueDate : Thursday,April 14

Read Section 5.11 in the Introduction to Data Science in ScalaTion textbook. Turn in

all the ITEMS listed until the next class.

5.4.1 Example Problem

See section 5.11.2 in textbook page 155.

One way to start a Decision Tree for the “Play Tennis?” problem is to try Outlook (x0) as

the root feature/variable. The resulting tree is shown below where the node is designated by the

variable (in this case x0). The edges indicate the values that this variable can take on, while the

two numbers n−p+ indicate the number of negative and positive cases.

x0

5−9+

.

2−3+

.

0−4+

.

3−2+

= 0 = 1 = 2

Figure 5.1: Decision Tree for “Play Tennis?” Example

ITEM 1: Redraw figure 5.1. Compute the entropies for each of the four nodes (show steps)

and place them next the node. Note, the n−p+ are all that is needed for computing entropies;

convert them to a probability vector p and calculate H(p).

ITEM 2: Compute the average entropy over all the decision nodes (i.e., the leaves of the tree).

The average must be weighted by the fraction of cases applicable to each node. How much did the

entropy drop?

24

ITEM 3: An alternative is to use Humidity (x2) for the root feature/variable. Draw the

Decision Tree with x2 as the root. Be sure to label nodes with the negative and positive cases.

ITEM 4: For this alternative decision tree, compute the average entropy over all the decision

nodes (i.e., the leaves of the tree). How much did the entropy drop in this case. Which is the better

choice for the root node?

ITEM 5: Choose a decision/leaf node where the entropy is above a threshold (its entropy is

too high). Assume in this case it is 0.1. Pick the first node above the threshold (alternatively the

node with the highest entropy) and determine the variable/feature that will result in the greatest

entropy drop when the node is replaced with a subtree.

ITEM 6: Under what conditions can Decision Trees when expanded sufficently drive the

entropy to zero?

ITEM 7: Might driving the entropy to zero produce overfitting where performance on test

data is substantially worse than it was on training data.

In this sense, Decision Trees can be brittle. A more robust modeling technique is to use several

simple (or height limited) Decision Trees and have them vote on the decision. This is the idea

behind Random Forests.

25

26

Chapter 6

Classification: Continuous Variables

This chapter broadens the previous chapter by allowing variables used for making decisions be

continuous as well.

27

6.1 Lesson Plan: Simple Logistic Regression

ClassDate : Tuesday,April 14−DueDate : Thursday,April 16

Read Section 6.3 in the Introduction to Data Science in ScalaTion textbook. Turn in all

the ITEMS listed until the next class.

Simple Logistic Regression looks like Simple Regression, except the response variable y is now

binary (0, 1). First, let us consider what happens is we ignore this change in y and just create a

Simple Regression model.

y = b · x + ε = b0 + b1x1 + ε

The Motor Trend Cars mtcars dataset is available in ScalaTion.

val x = ExampleMtcars.xy.sliceCol (0, 2)

val x1 = ExampleMtcars.xy.col (1)

val y = ExampleMtcars.xy.col (2).toInt

ITEM 1: Train a Simple Regression model using the mtcars dataset. The goal is to pre-

dict/classify a car’s engine type as either V-shaped (0) or Straight (1) based on its mpg. Give the

QoF measures and plot y and yp versus mpg.

val srg = new SimpleRegression (x, y.toDouble}

srg.analyze ()

println (srg.report)

val yq = srg.predict ()

new Plot (x1, y.toDouble, yq, "Simple: y, yq (red) versus mpg")

ITEM 2: Simple Regression will make predictions based on the best line that fits the data of

the engine type versus mpg. The predictions will be continuous values that will be in the vicinity

of 0 and 1. Try turning the prediction into a classification by rounding the value of yp.

val yr = new VectorD (yq.dim)

for (i <- yr.range) yr(i) = round (yq(i)) + 0.04

new Plot (x1, y.toDouble, yr, "Rounded: y, yr (red) versus mpg")

28

ITEM 3: Determine the confusion matrix and calculate er, acc, p, r and F1.

ITEM 4: Notice that none of the QoF measures in the last item were used in finding optimal

values for parameters b0 and b1. Prehaps a more direct approach could yield better results. Rather

than rounding the response, apply a transformation function that pushes the value to either 0 or

1, such as the sigmoid function. Under this transformation, the values will be in the range of [0, 1]

and may be interpreted as the conditional probability that y = 1 given data instance x, call this

py. A threshold such as 0.5 may be set for deciding between classifying as 0 or 1.

py = sigmoid(b · x) = sigmoid(b0 + b1x1)

Note, the sigmoid function is a special case of the logistic function (hence the name). The inverse

of the sigmoid function is the logit function, so the above equation may be rewritten as follows:

logit(py) = b · x = b0 + b1x1

Show that the logit function is the inverse of the sigmoid function.

sigmoid(z) =
1

1 + e−z

logit(p) = ln
p

1− p

ITEM 5: Use ScalaTion’s SimpleLogisticRegression class to train a model for the mtcars

dataset. Plot y and yp versus mpg. Compare with the results from Rounded Simple Regression.

val lrg = new SimpleLogisticRegression (x, y}

lrg.train ()

val yp = lrg.classify ()

lrg.confusion (yp)

println (lrg.report)

println (lrg.summary (lrg.parameter))

new Plot (x1, y.toDouble, yp.toDouble, "Logistic: y, yp (red) versus mpg")

ITEM 6: Determine the confusion matrix and calculate er, acc, p, r and F1. Compare the

Quality of Fit (QoF) measures for Rounded Simple Regression versus Simple Logistic Regression.

29

ITEM 7: Try changing the classification/decision threshold hyper-parameter cThresh from its

default of 0.5 to see how it affects the false positive rate (fpr) and the false negative rate (fnr).

As cThresh increares, fpr does what? As cThresh increares, fnr does what?

30

6.2 Lesson Plan: Maximum Likelihood Estimation

ClassDate : Wednesday,April 15−DueDate : Thursday,April 16

Read Section 6.3 in the Introduction to Data Science in ScalaTion textbook. No Quiz.

In this section, rather than estimating parameters using Least Sqaures Estimation (LSE), Max-

imum Likelihood Estimation (MLE) will be used. Given a dataset with m instances, the model

will produce an error for each instance. When the error is large, the model is in disagreement with

the data. When errors are normally distributed, the probability density will low for a large error,

meaning this is an unlikely case. If this is true for many of the instances, the problem is not the

data, its the values given for the parameters. The parameter vector b should be set to maximize

the likelihood of seeing instances in the dataset. This notion is captured in the likelihood function

L(b). Note, for the Simpler Regression model there is only a single parameter, the slope b.

Given an m instance dataset (x,y) where both are m-dimensional vectors and a Simpler Re-

gression model

y = bx+ ε

where ε ∼ N(0, σ2). Since εi = yi − bxi, we may write the likelihood function L(b) as the product

of m Normal density functions (making the assumption that the instances are independent).

L(b) =

m−1∏
i=0

1√
2πσ

e−(yi−bxi)
2/2σ2

Taking the natural logarithm gives the log-likelihood function l(b)

l(b) =

m−1∑
i=0

−ln(
√

2πσ)− (yi − bxi)2/2σ2

The derivative of l(b) w.r.t. b is

d l

d b
=

m−1∑
i=0

−2xi(yi − bxi)/2σ2

For optimization, the derivative may be aet to zero

m−1∑
i=0

xi(yi − bxi) = 0

31

Solving for b gives

b =

∑
xiyi∑
x2i

=
x · y
x · x

32

6.3 Final Exam: Two Day Exam

Start: Thursday, April 30 at 12:00 noon - same as start of UGA scheduled final exam

End: Friday, May 1 at 12:00 midnight - email pdf file with answers by this time

Each Question requires a two page answer (1 page or 3 page answers not accepted)

1. Topic: Prediction

Question: Consider the following 3 approaches for conducting Feature/Variable Selection

for Multiple Linear Regression: (1) Pick the xj that has the highest absolute correlation with

y, and repeat. (2) Pick the xj that has the smallest p value, and repeat. (4) Pick the xj that

improves a QoF measure (e.g., R̄2) the most, and repeat. Explain why each approach could

potentially work. Will these approaches result in the same features/variables being selected?

Explain. Compare and rank the three approaches in terms of how well they work for feature

selection. Explain.

2. Topic: Classification

Question: Consider a Näıve Bayes Classifier. Take Equation 5.6 on page 138 in the Scala-

Tion textbook and simplify it for the case of Binary Classification. Explain why each part

of your new simplified equation is needed. Explain the theorem and assumption that underly

this technique.

3. Topic: Neural Networks

Question: Define epoch. Define mini-batch. During a single epoch, for a given mini-batch

explain how backpropogation is used to improve the model’s parameters (weights and bi-

ases). What problems may occur and explain how different optimization algorithms and loss

functions can be used to address these problems.

4. Topic: Convolutional Neural Networks

Question: Given 10,000 grayscale images with 28 by 28 pixels, describe the construction of a

Convolutional Neural Network consisting of one input layer, one convolutional-pooling layer,

followed by a 10 node fully-connected output layer. For the combined convolutional-pooling

layer, assume there are two 5 by 5 filters, with each using 2 by 2 max-pooling (the max value

in each non-overlapping 2 by 2 region is selected). Give the sizes for all the components in

33

the network and explain how they are connected. Assume the (convolutional) stride is 1 and

padding is not used. How many parameters (weights and biases) are there to be trained?

After training, explain how the network classifies an image as one of 10 digits.

Sources for CNN:

1. “Chapter 9: Convolutional Networks”

http://www.deeplearningbook.org/contents/convnets.html

2. “An Intuitive Explanation of Convolutional Neural Networks”

https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets

3. “Convolutional Neural Networks (CNNs / ConvNets)”

https://cs231n.github.io/convolutional-networks

4. “1D Convolutional Neural Networks and Applications – A Survey”

https://arxiv.org/pdf/1905.03554.pdf

5. “Understanding Convolutional Neural Networks”

https://davidstutz.de/wordpress/wp-content/uploads/2014/07/seminar.pdf

General Sources:

1. Textbook (ScalaTion): Introduction to Data Science Using ScalaTion, 2018. John A. Miller

2. Introduction to Data Science Using ScalaTion: Lesson Plans, 2020. John A. Miller

3. Textbook (ISL): An Introduction to Statistical Learning, 2013. Gareth James, Daniela Wit-

ten, Trevor Hastie and Robert Tibshirani

4. TextBook (ESL): The Elements of Statistical Learning, 2nd Ed., 2009. Trevor Hastiei, Robert

Tibshirani and Jerome Friedman

5. Neural Networks and Deep Learning, 2018. Michael Nielsen

Additional Rules:

1. May only use the ten sources listed above.

34

2. Do not copy-paste or copy-paraphrase from any of the sources

3. Answers must be developed individually (no group work).

4. Answers must be emailed as one pdf file (may have embedded images)

5. Do not send multiple emails (only the first one will be graded).

35

6.4 Term Project

1. Serve as Zoom cohost to present your slides at the time scheduled by the TA.

2. May have suggestions for improvement given to boost your score if you introduce the change/addition

before submitting the project.

3. Submit the term project following the TA instruction by midnight on Friday, April 24.

4. Scores for each of the nine items on pages 38-40 will be assigned. Each items except 8

(Reporting of Results) will be worth 10 points, while 8 will be worth 20 points.

5. Please make it easy for the TA to reproduce your results by having a good ReadMe file and

scripts that make it easy to run the software.

36

Chapter 7

Generalized Linear Models

This chapter focuses on familty of models that become linear when a link function is used to

transform the data.

7.1 Lesson Plan

37

38

Chapter 8

Generalized Additive Models

This chapter focuses on

8.1 Lesson Plan

39

40

Chapter 9

Non-Linear Models and Neural

Networks

This chapter focuses on models that are nonlinear in their parameters. The majority of the coverage

is on Neural Networks.

9.1 Lession Plan: Perceptron

41

9.2 Lession Plan: Multi-Output Prediction

ClassDate : Tuesday,March 31−DueDate : Wednesday,April 1

Read Section 9.3 in the Introduction to Data Science in ScalaTion textbook. Turn in all

the ITEMS listed until the next class.

9.2.1 Model Equation

For multi-output prediction, the response becomes a vector.

y = f(B · x) + ε = f(Btx) + ε

where y is an ny-dimensional output/response random vector,

x is an nx-dimensional input/data vector,

B is an nx-by-ny parameter matrix,

f : Rny → Rny is a function mapping vectors to vectors, and

ε is an ny-dimensional residual/error random vector.

The PredictorMat2 serves as an abstract base class for several types of models, including Muli-

Variate Regression and many types of Neural Networks.

abstract class PredictorMat2 (x: MatriD, y: MatriD,

protected var fname: Strings,

hparam: HyperParameter)

extends Predictor with Error

Much of the basic functionality for such models is implemented in this abstract class. For example,

the important capabilities for forward selection are provided.

ITEM 1: The Concrete Dataset has 7 predictor variables (not including the intercept) and 3

response variables. Define the dimensionality for x, y and B.

ITEM 2: If f is the identity function (maps a values to itself), then an MV Regression model

may be used. Removing ε from the model equation gives the prediction equation for ŷ. Write the

equation for computing the ŷ vector.

ITEM 3: Drill down to the element level and write the equations for

42

ŷ =

ŷ0 = ? · ?

ŷ1 = ? · ?

ŷ2 = ? · ?

Hint: Draw a matrix for Bt [?] and a column vector for x [?] and carry out a matrix-vector

product operation. Each formula is the dot product of two vectors.

9.2.2 Forward Selection

Forward selection starts with a given set of columns (predictor variables) and adds the variable

xj that improves the model the most. Improvement is measured in terms of the index q Qual-

ity of Fit (QoF) measure, which defaults to index rSqBar. A new model is tried by calling the

buildModel abstract method that’s implemented in the subclasses. For example, its implementa-

tion in NeuralNet 3L class is shown below.

def buildModel (x_cols: MatriD): NeuralNet_3L =

{

new NeuralNet_3L (x_cols, y, -1, null, hparam, f0, f1, itran)

} // buildModel

ITEM 4: Translate ScalaTion’s forwardSel method Scala to Python. The forwardSelAll

or something equivalent will need to be implemented for Project 2 (but is not part of the quiz).

def forwardSel (cols: Set [Int], index_q: Int = index_rSqBar): (Int, PredictorMat2) =

{

var j_mx = -1 // best column, so far

var rg_mx = null.asInstanceOf [PredictorMat2] // best model, so far

var fit_mx = noDouble // best fit, so far

for (j <- x.range2 if ! (cols contains j)) {

val cols_j = cols + j // try adding variable x_j

val x_cols = x.selectCols (cols_j.toArray) // x projected onto cols_j

val rg_j = buildModel (x_cols) // regress with x_j added

rg_j.train ().eval () // train model, evaluate QoF

val fit_j = rg_j.fitA(0).fit(index_q) // new fit for first response

if (fit_j > fit_mx) { j_mx = j; rg_mx = rg_j; fit_mx = fit_j }

43

} // for

if (j_mx == -1) {

flaw ("forwardSel", "could not find a variable x_j to add: j = -1")

} // if

(j_mx, rg_mx) // return best column, model

} // forwardSel

Here is a partial translation to Python.

forwardSel.py

Sample Python code for ScalaTion’s forwardSel method

Replace Model class with a one from a Python library

import sys

class definition for Model

class Model:

def __init__ (self, xx):

self.x = xx

self.q = 1

def train (self):

print ("train the model")

def eval (self):

print ("evaluate the model")

def fit (self, index_q):

print ("return the QoF")

self.q = self.q + 1

return self.q

definition of buildModel function

def buildModel (x_cols):

print ("build a model using ", x_cols)

return Model (x_cols)

44

definition of forwardSel function

def forwardSel (cols, index_q, x, xcolumns):

j_mx = -1 # best column, so far

fit_mx = - sys.float_info.max # best fit, so far

print ("start for loop")

for j in xcolumns:

print ("process column ", j)

if not j in cols:

cols_j = cols.union ({j}) # try adding variable x_j

x_cols = [x[index] for index in cols_j] # x projected onto cols_j

rg_j = buildModel (x_cols) # regress with x_j added

rg_j.train () # train model

rg_j.eval () # evaluate QoF

fit_j = rg_j.fit(index_q) # new fit for first response

if fit_j > fit_mx:

j_mx = j

fit_mx = fit_j

if j_mx == -1:

print ("forwardSel: could not find a variable x_j to add: j = -1")

return j_mx # return best column

main

x = [[1.0, 3.0], # marrix stored column-wise

[2.0, 4.0]]

xcolumns = [0, 1]

print (x)

cols = {0}

index_q = 0

next_j =forwardSel (cols, index_q, x, xcolumns)

print ("the next variable/column to add is ", next_j)

end

45

The forwardSel method works by trying each variable currently not in the model and picking

the one giving the most improvement in the first response variable y(0). If a data science software

package does not support Forward Selection, this logic can be readily added using the language

for that package. It is straighforward to write a method that calls forwardSel until thesre is no

further improvement.

def forwardSelAll (index_q: Int = index_rSqBar): (Set [Int], MatriD) =

{

val rSq = new MatrixD (x.dim2 - 1, 3) // R^2, R^2 Bar, R^2 cv

val cols = Set (0) // start with x_0 in model

breakable { for (l <- 0 until x.dim2 - 1) {

val (j, rg_j) = forwardSel (cols) // find most predictive x_j

if (j == -1) break

cols += j // add variable x_j

val fit_j = rg_j.fitA(0).fit

rSq(l) = Fit.qofVector (fit_j, rg_j.crossValidate ()) // use new model, rg_j

if (DEBUG) {

val k = cols.size + 1

println (s"forwardSel: add (#$k) variable $j, qof = ${fit_j(index_q)}")

} // if

}} // breakable for

(cols, rSq.slice (0, cols.size-1))

} // forwardSelAll

ITEM 5: Two-Page Term Project Proposal.

A two-page project proposal giving a detailed description of the application you propose to

develop must be submitted as part of this quiz. The project includes data collection, data analytics,

interpretation and recommendations for a real-world project. May use ScalaTion, R, Keras, Spark,

Scikit-Learn or other approved data science/machine learning toolkit. The term project including a

20-minute presentation and demo will be presented during the last week of class. It must address the

nine points/questions listed below. Submit the Presentation (e.g., PowerPoint) slides by midnight

on the last day of class. Worth twice the points of regular projects.

For additional information about these nine points, read section 1.3 in the textbook.

46

1. Problem Statement. Describe a problem that can be partially addressed by collecting

data to train models. The trained models will then be used to make predictions, forecasts or

decisions/classifications. All projects must be of the supervised learning type. Pick only one

of the three.

ŷ = f(x) ∈ R Prediction

ŷt = f(y[t−1,t−p],x) ∈ R Forecasting

ŷ = f(x) ∈ {0, 1} Binary Classification

The study should be focused and the purpose of the study should be clearly stated. An

example of a forecasting problem would be to predict the future curve (number infected

vs. time) for the Coronvirus (Covid-19). An example of a classification problem would be to

classify an individual based upon demographics and symptoms for the Coronvirus (Covid-19).

Only two groups may work on the same problem and the same type of supervised learning.

2. Collection and Description of Datasets. The study must include at least two large

datasets. Their relevance to the study and relationship to each other must be clearly ex-

plained. Unrelated datasets are not permitted.

3. Data Preprocessing Techniques Applied. It is convenient to load data as is into the

toolkit’s data frame or associated database. First remove key/id columns and columns with

zero variance and then convert strings into integers. Next, missing values should be handled

by (i) removing columns with too many missing values, or (ii) imputing values for them.

Finally, extract a matrix from the data frame or database. Read chapter 3 for details.

4. Visual Examination. Pick a response column/variable from the matrix and see how the

other columns/variables relate to it. Before modeling techniques are chosen, perform Ex-

ploratory Data Analysis (EDA), by plotting the response variable versus each of the

other (predictor) variables. The correlations between each of the columns may be examined

by looking at the correlation matrix.

5. Modeling Techniques Chosen. All projects must include models from five Complexity

Classes: (i) NullModel, (ii) Simple, easy to explain models (e.g., Simple Linear Regression

47

for highest correlated feature), (iii) Standard, easy to explain models (e.g., Multiple Linear

Regression), (iv) Intermediate, performant models (e.g., Quadratic Cross Regression, Extreme

Learning Machines) (v) Complex, time-consuming models (e.g., Neural Networks). At least

one modeling technique should be chosen from each class.

Table 9.1: Example Modeling Techniques per Problem Type and Complxity Class

Complexity Class Prediction Forecasting Classification

NullModel NullModel NullModel NullModel

Simple SimpleRegression RandomWalk NäıveBayes

Standard Regression AR(1) Logistic Regression

Intermediate QuadXRegression ARIMA Random Forest

Complex NeuralNet XL LSTM NeuralNet Classif XL

Avoid these two problems with datasets:

• Avoid datasets that are too easy as Simple and Standard modeling techniques perform

so well that there is no room for improvement left for advanced modeling techniques.

• Avoid datasets that are too hard as no commonly used modeling technique seems to not

work at all. Could be that there is no relationship between the response variable and

the predictor variables, or complex domain-specific, theory-based models are needed.

Replace the dataset with another one in either case.

6. Explanation of Why Techniques Were Chosen. For the Intermediate and Complex

models, ideally try more than one modeling technique and have a reason for the ones that

were picked.

7. Feature Selection. Discuss when in the modeling process and how features were eliminated.

8. Reporting of Results. Explain the experimental setup in sufficient detail that the TA

can reproduce your results. Produce tables and plots to summarize your results. Be sure

to provide the Quality of Fit (QoF) measures. Finally, plot the actual response and the

predicted response vs. the instance index. Ideally, sort on the the actual response to made

this plot easier to interpret.

48

9. Interpretation of Results. What insights or understanding of the system or process under

study can be gained from the results? What issues are brought forward by the study. What

changes do the results suggest? As a concise summary, list a few overall Recommendations

of the Study.

49

9.3 Lesson Plan: Three-Layer Neural Network

ClassDate : Wednesday,April 1−DueDate : Thursday,April 2

x0

z0

f0

α0

z1

α1x1

z2

α2

y0

f1

β0

y1

β1

a00

a01

a02

a10

a11

a12

b00

b01

b10
b11

b20

b21

Figure 9.1: Three-Layer (input, hidden, output) Neural Network

Table 9.2: Componenets of Three-Layer Neural Network

Component Elements Description

x [x0, x1] input vector

z [z0, z1, z2] hidden vector

y [y0, y1] output vector

A [ajh] ∈ Rnx×nz first weight matrix

α [α0, α1, α2] first bias vector

B [bhk] ∈ Rnz×ny second weight matrix

β [β0, β1] second bias vector

f0 f0 : Rnz → Rnz first activation function

f1 f1 : Rny → Rny second activation function

Read Section 9.5 in the Introduction to Data Science in ScalaTion textbook. Turn in all

the ITEMS listed until the next class date.

50

9.3.1 Model Equation

Recall the Model Equation for Three-Layer (with one hidden) Neural Networks.

y = f1(B · f0(A · x)) + ε = f1(Btf0(Atx)) + ε

It is not uncommon for the output/response y to be a scalar rather than vector, i.e., y. In this case

the output layer consists of a single node.

ITEM 1: Draw a Three-Layer Neural Network with nx = 2 input nodes, nz = 3 hidden nodes

and ny = 1 output node. Write out the 2-by-3 parameter/weight matrix A = [ajh] and label the

first set of 6 edges in the neural network with the approprate ajh weight.

A = [?]

Do the same for the 3-by-1 parameter/weight matrix B = [bhk] where k = 0 and label the second

set of 3 edges in the neural network with the approprate bh0 weight.

B = [?]

Note: for simplicity, the 3-dimensional bias vector α to be added before hidden layer and the 1-

dimensional bias vector β to be added before the ouput layer are ignored. Try adding these into

the equations (not part of the quiz).

ITEM 2: When the error term ε is removed, the model equation can be used for making

predictions. In this form it can be divided into two parts. The first part computes intermediate

values (or hidden/complex features) z.

z = f0(A · x) = f0(Atx)

The second part computes a predicted output/response value ŷ.

ŷ = f1(B · z) = f1(Btz)

Write the three equations for z, one for z0, one for z1 and one for z2. Write the one equation for ŷ.

ITEM 3: Since the B consists of a single column, it may be replaced by a vector b. Show the

resulting simplification to the model equation or one of its parts.

51

ITEM 4: Next, it may be useful to allow the neural network signals to scale out to the original

scale for the response/output variable y. This can be done making the last activation function f1

be the identity function (maps a value to itself). Show the resulting simplification of this step to

the model equation or one of its parts.

ITEM 5: Finally, what would happen is the first activation function f0 was also the identity

function. Show the resulting simplification of this step to the model equation.

ITEM 6: What other modeling technique is the simplified Model Equation now equivalent to.

Write both prediction equations.

ŷ = ? Simplified Neural Network

ŷ = ? Other Modeling Technique

52

ClassDate : Thursday,April 2−DueDate : Tuesday,April 7

Turn in all the ITEMS listed until the next class date.

9.3.2 Training/Optimization

Start with the Matrix Version of the training/optimization equations. Recall that m is the number

of instances currently in use (e.g., entire dataset, training dataset, or current mini-batch). The

numbers of nodes per layer are nx, nz and ny, for the input, hidden and output layers, respectively.

Dataset : X = [xij] ∈ Rm×nx , Y = [yik] ∈ Rm×ny

Parameters : A = [ajh] ∈ Rnx×nz , B = [bhk] ∈ Rnz×ny

Recall from the textbook that the biases are carried along in the NetParam class, so this quiz will

ignore them. The simplification of the NetParam abstraction allows a weight matrix and its bias

vector to be treated as a matrix-like construct.

ITEM 1: The m-by-nz hidden layer matrix Z has a row per instance and a column per

node in the hidden layer.

Z = f0(XA)

Letting vector z:h be the hth column in the Z matrix, derive its formula from the matrix equation.

z:h = f0(. . .)

Hint: Consider how information flows from all the nodes in the input layer to the hth node in the

hidden layer.

ITEM 2: The m-by-ny prediction matrix Ŷ has a row per instance and a column per per

node in the output layer.

Ŷ = f1(ZB)

Letting vector ŷ:k be the kth column in the Ŷ matrix, derive its formula from the matrix equation.

53

ŷ:k = f1(. . .)

ITEM 3: The m-by-ny negative error matrix E is the predicted minus the actual/target

values.

E = Ŷ − Y

Letting vector e:k be the kth column in the E matrix, derive its formula from the matrix equation.

ITEM 4: The m-by-ny delta one matrix ∆1, used for adjusting parameters B, is the ele-

mentwise matrix (Hadamard) product of f ′1(ZB) and E.

∆1 = f ′1(ZB) ◦ E

Letting vector δ1:k be the kth column in the ∆1 matrix, derive its formula from the matrix equation.

ITEM 5: The m-by-nz delta zero matrix ∆0 matrix, used for adjusting parameters A, is

the elementwise matrix (Hadamard) product of f ′0(XA) and ∆1Bt.

∆0 = f ′0(XA) ◦ (∆1Bt)

Letting vector δ0:h be the hth column in the ∆0 matrix, derive its formula from the matrix equation.

ITEM 6: The nz-by-ny one parameter matrix B, connecting the hidden layer to the output

layer, is updated based on the ∆1 matrix.

B = B − Zt∆1 η

Letting vector b:k be the kth column in the B matrix, derive its formula from the matrix equation.

ITEM 7: The nx-by-nz zero parameter matrix A, connecting the input layer to the hidden

layer, is updated based on the ∆0 matrix.

A = A − Xt∆0 η

Letting vector a:h be the hth column in the A matrix, derive its formula from the matrix equation.

54

ClassDate : Tuesday,April 7−DueDate : Wednesday,April 8

Turn in all the ITEMS listed until the next class date.

9.3.3 Example Error Calculation Problem

This example Neural Network calculation is partially worked out in section 9.5.5 in the textbook.

It follows a single (m = 1) instance vector

x = [x0, x1]

through the Neural Network showing how it could be used to update the parameters (weights and

biases) in the network. In practice, a mini-batch of instances would be used rather than a single

instance.

ITEM 1: Draw the Neural Network corresponding to the example problem. The number of

nodes per layer are nx = 2, nz = 2 and ny = 1 for the input, hidden and output layer, respectively.

ITEM 2: Compute the negative error matrix E for the first iteration. Do this by overlaying

all the calculations leading to E on the drawn neural network.

E = [ε0] = [?]

ITEM 3: Compute the delta (slope adjusted error) matrices ∆1 and ∆0 for the first iteration

(see Exerice 1 in section 9.5.6). Do this by overlaying all the calculations for the delta matrices on

the drawn neural network.

∆1 =

∆0 =

ITEM 4: Compute the updates to the B and A parameters for the first iteration (see Exerice

2 in section 9.5.6). Give the amount of change as well as the new updated values.

55

B = weight matrix

β = bias vector

A = weight matrix

α = bias vector

The rest of the exercises in 9.5.6 are recommended, but need not be turned in.

56

9.4 Lesson Plan: Deep Neural Network

ClassDate : Wednesday,April 8−DueDate : Thursday,April 9

Read Section 9.6 in the Introduction to Data Science in ScalaTion textbook. Turn in all

the ITEMS listed until the next class date.

9.4.1 Model Equation

Deep Neural Networks utilize more than the one hidden layer used by traditional Neural Networks.

ITEM 1: Rewrite the model equation for Three-Layer Neural Networks by denoting parameter

matrix A as B0 and parameter matrix B as B1.

y = f1(. . .) + ε

ITEM 2: Add a second hidden layer, splitting z into z1 and z2, and introduction a third

parameter matrix B2 and a third activation function f2.

y = f2(. . .) + ε

ITEM 3: By designating x as z0 and y + ε as z3, the equation may be rewritten recursively

where the values for layer l + 1 are determined by layer l,

zl+1 = fl(. . .)

9.4.2 Training/Optimization

Recall that the training equation is basically the model equation, except that multiple instances

are used.

ITEM 4: Take the recursive equation and convert vector zl to matrix Zl.

Zl+1 = fl(. . .)

The rest of matrix equations are roughly the same as for Three-Layer Neural Networks. In train0

these matrix equations are iteratively computed inside the following loop.

57

for (epoch <- 1 to maxEpochs) {

With Deep Neural Networks, overfitting may easily happen.

ITEM 5: What happens to the relative positions of the R2 and R2
cv curves that likely indicates

overfitting? Note, the curves correspond to those produced for Project 2 where the horizontal axis

is the number of paremeters in the model.

ITEM 6: How does reducing the number of nodes in the hidden layers affect these curves? Try

it and see (do not just speculate).

ITEM 7: In Keras, try utilizing a validation set to reduce overfitting and plot the loss function

vs. epoch on training data and on the validation data. How do these curves differ?

ITEM 8: List other techniques that may be used to reduce overfitting. Give a brief explanation

of why each on is thought to work.

The exercises in section 9.6.6 in the textbook are recommended, but are not part of this quiz.

In particular, exercise 6 on tuning hyper-parameters should be helpful for Project 2.

58

9.5 Lesson Plan: Extreme Learning Machines

ClassDate : Thursday,April 9−DueDate : Tuesday,April 14

Read Section 9.8 in the Introduction to Data Science in ScalaTion textbook. Turn in all

the ITEMS listed until the next class date.

9.5.1 Model Equation

The model equation for an Extreme Learning Machine (ELM) is similar to a Three-Layer Neurral

Network. The differnece is that the first set of parameters A are initialized, but are not updated.

This avoids the use of the slow back-propogation algorithm. Only the second set of parameters are

optimized (B). Although TranRegression may be used when there is a second activation function

f1, we consider the case where the second activation function is the identity function.

For simplicity, we only condsider the ELM 3L1 class that supports only a single output/response

variable.

y = b · f0(Atx) + ε

Note, for multiple output/response variables, the ELM 3L class may be used.

ITEM 1: Consider the example calculation for the Three-Layer Neural Network. Now suppose

the dataset (X,y) consits of m = 3 instances.

X =

2.0 1.0

1.5 0.9

1.0 1.1

 , y =

0.8

0.7

0.6

Using the same initializations for the bias vector ab and the weight matrix A as in the textbook’s

example in section 9.5.5, Calculate the m-by-nz Z matrix.

Z = f0(XA)

ITEM 2: Notice that the Z matrix will never change, so that multiplying it by the parameter

vector b will yield a predicted output value.

59

ŷ = Zb

Using the B weight matrix given in section 9.5.5, calculate the predicted response vector ŷ. Note

the single column matrix B may be treated as vector b. Ignore the biases for the time being.

ITEM 3: Calculate the error vector ε and the sum of squared errors (sse).

ITEM 4: Notice that the parameter vector b is unoptimized. Propose an efficient algorithm

for optimizing these parameters, not using an algorithm in the Gradient Descent family.

ITEM 5: Write the vector equation to solve for parameter vector b.

b = ?

ITEM 6: Carry out the calculation to compute optimized values for parameter vector b. Hint:

Try using Spreadsheet software.

ITEM 7: Recalculate the error vector ε and the sum of squared errors (sse). Has there been

improvement?

60

Chapter 10

Time-Series/Temporal Models

This chapter focuses on data that have a sequential order (e.g., time-series data). The typical

assumption that the instances making up a dataset are independent does not hold for such data

(dependencies between adjacent instance may be very high).

61

10.1 Lesson Plan: Time-Series Models

ClassDate : Teusday,April 14−DueDate : Wednesday,April 15

Read Sections 10.1-2 in the Introduction to Data Science in ScalaTion textbook. Turn

in all the ITEMS listed until the next class date.

Forecasting is similar to predictions, but differs in the following ways:

1. The instances are orderred, for example in time.

2. They are no longer Identically Distributed (ID), but may be highly dependent.

3. Forecasting depends heavily on previous values in the time-series.

Consequently, the model equation involves previous values of the response variable.

10.1.1 Model Equation

The value to be forecasted is yt is dependent on its last p values as well as possibly other exogeneous

variables x.

yt = f(y[t−1,t−p],x) + εt

The vector y[t−1,t−p] hold the most recent past values.

10.1.2 Auto-Correlation Function

The Auto-Correlation Function (AFC) measures correlation over time. The following two vectors

[yt, yt−1, yt−2, . . . , y1] and [yt−1, yt−2, yt−3 . . . , y0] are likely be highly correlated. As the time gap

between the two vectors increases, the correlation is likely to decrease. At some point, distantly

past values will have less relevance and need not be included in the model.

The kth lag auto-covariance (auto-correlation), γk (ρk) is the covariance (correlation) of time-

series yt and times-series yt−k.

γk = C [yt, yt−k] Auto− Covariance

ρk = corr(yt, yt−k) Auto− Correlation

62

10.1.3 Auto-Regressive (AR) Models

63

64

Chapter 11

Clustering

This chapter focuses on techniques for clustering or grouping data instances/vectors according to

the similarity or distance from each other.

11.1 Lesson Plan

65

66

Chapter 12

Dimensionality Reduction

This chapter focuses on techniques for reducing the number variables in a model by tranforming

the space in which the vectors reside. Due to multi-collinearity of vectors in an apparently high-

dimensional space, transformation may allow a much lower dimensional model to be effectively

used.

12.1 Lesson Plan

67

68

Chapter 13

Functional Data Analysis

This chapter focuses on the data that are assumed to be produced by an underlying continuous

system or process. Basis functions are used to create smooth continuous functions that match the

given data points.

13.1 Lesson Plan

69

70

Chapter 14

Simulation Models

This chapter focuses on building models that capture more details about the system or process

under study. The models should capture internal structure sufficient to allow the model to mimic

the behavior of the actual system or process under study. Due to the more intricate modeling,

simulation models are more appropriate for anwering ”what-if” question and generally support

greater extrapolation than other types of model.

14.1 Lesson Plan

71

72

Chapter 15

Optimization Used in Data Science

This chapter provides a brief introduction to optimization techniques used for fitting model param-

eters to a dataset.

15.1 Lesson Plan

73

	Introduction to Data Science
	Lesson Plan

	Mathematical Preliminaries
	PineGreenLesson Plan: Probability
	Joint Probability
	Log-Probability

	Data Management and Preprocessing
	Lesson Plan

	Prediction
	Lesson Plan

	Classification
	PineGreenLession Plan: Classification
	Null Model
	PineGreenLession Plan: Naïve Bayes
	Factoring the Probability
	Laplace Smoothing
	Entropy

	PineGreenLession Plan: Decision Tree ID3
	Example Problem

	Classification: Continuous Variables
	PineGreenLesson Plan: Simple Logistic Regression
	PineGreenLesson Plan: Maximum Likelihood Estimation
	Final Exam: Two Day Exam
	Term Project

	Generalized Linear Models
	Lesson Plan

	Generalized Additive Models
	Lesson Plan

	Non-Linear Models and Neural Networks
	Lession Plan: Perceptron
	PineGreenLession Plan: Multi-Output Prediction
	Model Equation
	Forward Selection

	PineGreenLesson Plan: Three-Layer Neural Network
	Model Equation
	Training/Optimization
	Example Error Calculation Problem

	PineGreenLesson Plan: Deep Neural Network
	Model Equation
	Training/Optimization

	PineGreenLesson Plan: Extreme Learning Machines
	Model Equation

	Time-Series/Temporal Models
	PineGreenLesson Plan: Time-Series Models
	Model Equation
	Auto-Correlation Function
	Auto-Regressive (AR) Models

	Clustering
	Lesson Plan

	Dimensionality Reduction
	Lesson Plan

	Functional Data Analysis
	Lesson Plan

	Simulation Models
	Lesson Plan

	Optimization Used in Data Science
	Lesson Plan

