
Big Data Simulation using ScalaTion

John A. Miller

Department of Computer Science

University of Georgia

March 2, 2014

1 Introduction to Simulation

ScalaTion supports multi-paradigm modeling that can be used for simulation, optimization and analytics.

The focus of this document is simulation modeling. Viewed as black-box, a simple model maps an input

vector x and a scalar time t to an output/response vector y.

y = f(x, t)

A simulation model adds to these the notion of state, represented by a vector-valued function s(t). Knowledge

about a system or process is used to define state as well as how state can change over time. Theoretically,

this should make such models more accurate, more robust, and have more explanatory power. Ultimately,

we may still be interested in how inputs affect outputs, but to increase the realism of the model with the

hope of improving its accuracy, much attention must be directed in the modeling effort to state and state

transitions. This is true to a degree with most simulation modeling paradigms or world views.

The most recent version of the Discrete-event Modeling Ontology (DeMO) lists five simulation modeling

paradigms or world-views for simulation (see the bullet items below). These paradigms are briefly discussed

below and explained in detail in [?].

• State-Oriented Models. State-oriented models, including Generalized Semi-Markov Processes (GSMPs),

can be defined using three functions,

– an activation function {e} = a(s(t)),

– a clock function t′ = c(s(t), e) and

– a state-transition function s(t′) = d(s(t), e).

In simulation, advancing to the current state s(t) causes a set of events {e} to be activated according to

the activation function a. Events occur instantaneously and may affect both the clock and transition

functions. The clock function c determines how time advances from t to t′ and the state-transition

function determines the next state s(t′). In this paper we tie in the input and output vectors. The

input vector x is used to initialize a state at some start time t0 and the response vector y can be a

function of the state sampled at multiple times during the execution of the simulation model.

• Event-Oriented Models. State-oriented models may become unwieldy when the state-space becomes

very large. One option is to focus on state changes that occur by processing events in time order. An

event may indicate what other events it causes as well as how it may change state. Essentially, the

activation and state transition functions are divided into several simpler functions, one for each event

e:

1



– {e} = ae(s(t)) and

– s(t′) = de(s(t)).

Time advance is simplified to just setting the time t′ to the time of the most imminent event on a

future event list.

• Process-Oriented Models. One of the motivations for process-oriented models is that event-oriented

models provide a fragmented view of the system or phenomena. As combinations of low-level events

determine behavior, it may be difficult to see the big picture or have an intuitive feel for the behavior.

Process-oriented or process-interaction models aggregate events by putting them together to form a

process. An example of a process is a customer in a store. As the simulated customer (as an active

entity) carries out behavior it will conditionally execute multiple events over time. A simulation

then consists of many simultaneously active entities and may be implemented using co-routines (or

threads/actors as a more heavyweight alternative). One co-routine for each active entity. The overall

state of a simulation is then a combination of the states of each active entity and the global shared

state, which may include a variety of resources types.

• Activity-Oriented Models. There are many types of activity-oriented models including Petri-Nets

and Activity-Cycle Diagrams. The main characteristics of such models is a focus on the notion of

activity. An activity (e.g, customer checkout) corresponds to a distinct action that occurs over time

and includes a start event and an end event. Activities may be started because time advances to its

start time or a triggering condition becomes true. Activities typically involve one or more entities.

State information is stored in activities, entities and the global shared state.

• System Dynamics Models. System dynamics models were recently added to DeMO, since hybrid

models that combine continuous and discrete aspects are becoming more popular. In this section,

modeling the flight of a golf ball is considered. Let the response vector y = [y0 y1] where y0 indicates

the horizontal distance traveled, while y1 indicates the vertical height of the ball. Future positions y

depends on the current position and time t. Using Newton’s Second Law of Motion, y can be estimated

by solving a system of Ordinary Differential Equations (ODEs) such as

ẏ = f(y, t), y(0) = y0.

The Newtons2nd object uses the Dormand-Prince ODE solver to solve this problem. More accurate

models for estimating how far a golf ball will carry when struck by a driver can be developed based

on inputs/factors such as club head speed, spin rate, smash factor, launch angle, dimple patterns, ball

compression characteristics, etc. There have been numerous studies of this problem, including [?].

In addition to these main modeling paradigms, ScalaTion support a simpler approach called Tableau

Oriented Models.

2

http://www.cs.uga.edu/~jam/scalation_1.1//src/main/scala/apps/dynamics/Newtons2nd.scala


2 Tableau Oriented

In tableau oriented simulation models, each simulation entity’s event times are recorded in a row of a

matrix/tableau. For example in a Bank simulation, each row would store information about a particular

customer, e.g., when they arrived, how long they waited, their service time duration, etc. If 10 customers

are simulated, the matrix will have 10 rows. Average waiting and service times can be easily calculated by

summing columns and dividing by the number of customers. This approach is similar to, but not as flexible

as Spreadsheet simulation. The complete code for this example may be found in Bank.

object Bank extends App

{

val stream = 1 // random number stream (0 to 99)

val lambda = 6.0 // customer arrival rate (per hour)

val mu = 7.5 // customer service rate (per hour)

val maxCusts = 10 // stopping rule: simulate maxCusts

val iArrivalRV = Exponential (HOUR/lambda, stream) // inter-arrival time random variate

val serviceRV = Exponential (HOUR/mu, stream) // service time random variate

val label = Array ("ID-0", "IArrival-1", "Arrival-2", "Start-3", "Service-4",

"End-5", "Wait-6", "Total-7")

val mm1 = new Model ("M/M/1 Queue", maxCusts, Array (iArrivalRV, serviceRV), label)

mm1.simulate ()

mm1.report

} // Bank

2.1 Tableau.scala

The Model class support tableau oriented simulation models in which each simulation entity’s events are

recorded in tabular form (in a matrix). This is analogous to Spreadsheet simulation (http://www.informs-

sim.org/wsc06papers/002.pdf).

Class Methods:

@param name the name of simulation model

@param m the number entities to process before stopping

@param rv the random variate generators to use

@param label the column labels for the matrix

class Model (name: String, m: Int, rv: Array [Variate], label: Array [String])

def simulate ()

def report

3

http://www.cs.uga.edu/~jam/scalation_1.1//src/main/scala/apps/tableau/Bank.scala


3 Event Oriented

ScalaTion supports two types of event oriented simulation modeling paradigms: Event Scheduling and its

extension, called Event Graphs. For both paradigms, the state of the system only changes at discrete event

times with the changes specified via event logic. A scheduler within the model will execute the events in time

order. A time-ordered priority queue is used to hold the future events and is often referred to as a Future

Event List (FEL). Event Graphs capture the event logic related to triggering other events in causal links. In

this way, Event Graph models are more declarative (less procedural) than Event Scheduling models. They

also facilitate a graphical representation and animation.

3.1 Event Scheduling

A simple, yet practical way to develop a simulation engine to support discrete-event simulation is to imple-

ment event-scheduling. This involves creating the following three classes: Event, Entity and Model. An

Event is defined as an instantaneous occurrence that can trigger other events and/or change the state of the

simulation. An Entity, such as a customer in a bank, flows through the simulation. The Model serves as a

container/controller for the whole simulation and carries out scheduling of event in time order.

For example, to create a simple bank simulation model, one could use the three classes defined in the

event-scheduling engine to create subclasses of Event, called Arrival and Departure, and one subclass of

Model, called BankModel. The complete code for this example may be found in Bank.

The event logic is coded in the occur method which in general triggers future events and updates the

current state. It indicates what happens when the event occurs. For the Arrival class, the occur method

will schedule the next arrival event (up to the limit), check to see if the teller is busy. If so, it will place

itself in the wait queue, otherwise it schedule its own departure to correspond to its service completion time.

Finally, it adjusts the state by incrementing both the number of arrivals (nArr) and the number in the

system (nIn).

@param customer the entity that arrives, in this case a bank customer

case class Arrival (customer: Entity) extends Event (customer, this) // entity, model

{

def occur ()

{

if (nArr < nArrivals-1) {

val iArrivalT = iArrivalRV.gen

val next2Arrive = Entity (clock + iArrivalT, serviceRV.gen) // next customer

schedule (iArrivalT, Arrival (next2Arrive))

} // if

if (nIn > 0) { // teller is busy

waitQueue.enqueue (customer)

} else {

t_q_stat.tally (0.0)

t_s_stat.tally (schedule (customer.serviceT, Departure (customer)))

} // if

nArr += 1 // update the current state

nIn += 1

} // occur

} // Arrival class

4

http://www.cs.uga.edu/~jam/scalation_1.1//src/main/scala/apps/event/Bank.scala


For the Departure class, the occur method will check to see if there is another customer waiting in the

queue and if so, schedule that customer’s departure. It will then signal its own departure by updating the

state; in this case decrementing nIn and incrementing nOut.

@param customer the entity that departs, in this case a bank customer

case class Departure (customer: Entity) extends Event (customer, this) // entity, model

{

def occur ()

{

t_y_stat.tally (clock - customer.arrivalT)

if (nIn > 1) {

val next4Service = waitQueue.dequeue () // first customer in queue

t_q_stat.tally (clock - next4Service.arrivalT)

t_s_stat.tally (schedule (next4Service.serviceT, Departure (next4Service)))

} // if

nIn -= 1 // update the current state

nOut += 1

} // occur

} // Departure class

In order to collect statistical information, the occur methods of both event classes call the tally method

from the Statistics class to obtain statistics on the time in queue t q stat, the time in service t s stat

and the time in system t y stat.

The three classes used for creating simulation models following the Event Scheduling paradigm are

discussed in the next three subsections.

3.1.1 Event.scala

The Event class provides facilities for defining simulation events. A subclass (e.g., Arrival) of Event must

provide event-logic in the implementation of its occur method. The Event class also provides methods

for comparing act times for events and converting an event to its string representation. Note: unique

identification and the event/activation time (actTime) are mixed in via the PQItem trait.

Class Methods:

@param entity the entity involved in this event

@param director the controller/scheduler that this event is a part of

@param proto the prototype (serves as node in animation) for this event

abstract class Event (val entity: Entity, director: Model, val proto: Event = null)

extends PQItem with Ordered [Event]

def compare (ev: Event): Int = ev.actTime compare actTime

def occur ()

override def toString = entity.toString + "\t" + me

3.1.2 Entity.scala

An instance of the Entity class represents a single simulation entity for event oriented simulation. For each

instance, it maintains information about that entity’s arrival time and next service time.

5



Class Methods:

@param arrivalT the time at which the entity arrived

@param serviceT the amount of time required for the entity’s next service

case class Entity (val arrivalT: Double, var serviceT: Double)

override def toString = "Entity-" + eid

3.1.3 Model.scala

The Model class schedules events and implements the time advance mechanism for event oriented simulation

models. It provides methods to schedule and cancel events. Scheduled events are place in the Future Event

List (FEL) in time order. The simulate method will cause the main simulation loop to execute, which will

remove the most imminent event from the FEL and invoke its occur method. The simulation will continue

until a stopping rule evaluates to true. Methods to getStatistics and report statistical results are also

provided.

Class Methods:

@param name the name of the model

@param animation whether to animate the model (only for Event Graphs)

class Model (name: String, animation: Boolean = false)

extends ModelT with Identity

def schedule (timeDelay: Double, event: Event): Double =

def cancel (event: Event)

def simulate (startTime: Double = 0.0): ListBuffer [Statistic] =

def report (eventType: String, links: Array [CausalLink] = Array ())

def report (vars: Array [Tuple2 [String, Double]])

def reports (stats: Array [Tuple2 [String, Statistic]])

def getStatistics: ListBuffer [Statistic] =

def animate (who: Identity, what: Value, color: Color, shape: Shape, at: Array [Double])

def animate (who: Identity, what: Value, color: Color,

shape: Shape, from: Event, to: Event, at: Array [Double] = Array ())

The animate methods are used with Event Graphs (see the next section).

6



3.2 Event Graphs

Event Graphs operate in a fashion similar to Event Scheduling. Originally proposed as a graphical conceptual

modeling technique (Schruben, 1983) for designing event oriented simulation models, modern programming

languages now permit more direct support for this style of simulation modeling.

In ScalaTion, the simulation engine for Event Graphs consists of the following four classes: Entity,

Model, EventNode and CausalLink. The first two are shared with Event Scheduling. An Entity, such as

a customer in a bank, flows through the simulation. The Model serves as a container/controller for the

whole simulation. The last two are specify to Event Graphs. An EventNode (subclass of Event), defined

as an instantaneous occurrence that can trigger other events and/or change the state of the simulation,

is represented as a node in the event graph. A CausalLink emanating from an event/node is represented

as an outgoing directed edge in the event graph. It represents causality between events. One event can

conditionally trigger another event to occur some time in the future.

For example, to create a simple bank simulation, one could use the four classes provided by the Event

Graph simulation engine to create subclasses of EventNode, called Arrival and Departure, and one subclass

of Model, called BankModel. The complete code for this example may be found in Bank2. In more complex

situations, one would typically define a subclass of Entity to represent the customers in the bank.

class BankModel (name: String, nArrivals: Int, arrivalRV: Variate, serviceRV: Variate)

extends Model (name)

The Scala code below was made more declarative than typical code for event-scheduling to better mirror

event graph specifications, where the causal links specify the conditions and time delays. For instance,

() => nArr < nArrivals

is a closure returning Boolean that will be executed when arrival events are handled. In this case, it

represents a stopping rule; when the number of arrivals exceeds a threshold, the arrival event will no longer

schedule the next arrival. The serviceRV is a random variate to be used for computing service times.

In the BankModel class, one first defines the state variables: nArr, nIn and nOut. For animation of the

event graph, a prototype for each type of event is created and displayed as a node. The edges connecting these

prototypes represent the casual links. The aLinks array holds two causal links emanating from Arrival, the

first a self link representing triggered arrivals and the second representing an arrival finding an idle server,

so it can schedule its own departure. The dLinks array holds one causal link emanating from Departure, a

self link representing the departing customer causing the next customer in the waiting queue to enter service

(i.e., have its departure scheduled).

//:: define the state variables for the simulation

var nArr = 0.0 // number of customers that have arrived

var nIn = 0.0 // number of customers in the bank

var nOut = 0.0 // number of customers that have finished and left the bank

//:: define the nodes in the event graph (event prototypes)

val protoArrival = Arrival (null) // prototype for all Arrival events

val protoDeparture = Departure (null) // prototype for all Departure events

//:: define the edges in the event graph (causal links between events)

7

http://www.cs.uga.edu/~jam/scalation_1.1//src/main/scala/apps/event/Bank2.scala


val aLinks = Array (CausalLink ("link2A", this, () => nArr < nArrivals, protoArrival,

() => Arrival (null), arrivalRV),

CausalLink ("link2D", this, () => nIn == 0, protoDeparture,

() => Departure (null), serviceRV))

val dLinks = Array (CausalLink ("link2D", this, () => nIn > 1, protoDeparture,

() => Departure (null), serviceRV))

protoArrival.displayLinks (aLinks)

protoDeparture.displayLinks (dLinks)

An animation of the Event Graph consisting of two EventNodes Arrival and Departure and three

CausalLinks is depicted in Figure 1.

Figure 1: Event Graph Animation of a Bank.

The main thing to write within each subclass of EventNode is the occur method. To handle arrival

events, the occur method of the Arrival class first calls the super.occur method from the superclass to

trigger other events using the causal links and then updates the state by incrementing both the number of

arrivals (nArr) and the number in the system (nIn).

@param customer the entity that arrives, in this case a customer

case class Arrival (customer: Entity)

extends EventNode (customer, this, protoArrival, Array (150.0, 200.0, 50.0, 50.0), aLinks)

{

override def occur ()

{

super.occur () // handle casual links

nArr += 1 // update the current state

nIn += 1

} // occur

} // Arrival class

To handle departure events, the occur method Departure class first calls the occur method of the

superclass to trigger other events using the causal links and then updates the state by decrementing the

number in the system (nIn) and incrementing the number of departures (nOut).

8



@param customer the entity that departs, in this case a customer

case class Departure (customer: Entity)

extends EventNode (customer, this, protoDeparture, Array (450.0, 200.0, 50.0, 50.0), dLinks)

{

override def occur ()

{

super.occur () // handle casual links

nIn -= 1 // update the current state

nOut += 1

} // occur

} // Departure class

Two of the three classes used for creating simulation models following the Event Scheduling paradigm

can be used for Event Graphs, namely Entity and Model. Event must be replaced with its subclass called

EventNode. These form the nodes in the Event Graphs. An edge in the Event Graph is an instance of the

CausalLink class. These two new classes (EventNode and CausalLink) are described in the subsections

below.

3.2.1 EventNode.scala

The ‘Event‘ class provides facilities for defining simulation events. Subclasses of Event provide event-logic

in their implementation of the occur method. Note: unique identification and the event/activation time

(actTime) are mixed in via the PQItem trait.

Class Methods:

@param proto the prototype (serves as node in animation) for this event

@param entity the entity involved in this event

@param links the causal links used to trigger other immediate/future events

@param director the controller/scheduler that this event is a part of

@param at the location of this event

abstract class EventNode (val proto: Event, entity: Entity, links: Array [CausalLink],

director: Model, at: Array [Double] = Array ())

extends PQItem with Ordered [Event]

def compare (ev: Event): Int = ev.actTime.compare (actTime)

def occur ()

def display ()

def displayLinks (outLinks: Array [CausalLink])

3.2.2 CausalLink.scala

The ‘CausalLink‘ class provides casual links between events. After an event has updated the state, it checks

its causal links to schedule/cancel other events.

Class Methods:

@param _name the name of the causal link

9



@param condition the condition under which it is followed

@param makeEvent function to create an event

@param delay the time delay in scheduling the event

@param cancel whether to schedule (default) or cancel the event

case class CausalLink (_name: String, director: Model, condition: () => Boolean, causedEvent: Event,

makeEvent: () => Event, delay: Variate, cancel: Boolean = false)

extends Identity

def display (from: Event, to: Event)

def tally (duration: Double) { _durationStat.tally (duration) }

def accumulate (value: Double, time: Double) { _persistentStat.accumulate (value, time) }

def durationStat = _durationStat

def persistentStat = _persistentStat

10



4 Process Interaction

Many discrete-event simulation models are written using the process-interaction world view, because the

code tends to be concise and intuitively easy to understand. Take for example the process-interaction model

of a bank (BankModel a subclass of Model) shown below. Following this world view, one simply constructs

the simulation components and then provides a script for entities (SimActors) to follow while in the system.

In this case, the act method for the customer class provides the script (what entities should do), i.e., enter

the bank, if the tellers are busy wait in the queue, then receive service and finally leave the bank.

The development of a simulation engine for process-interaction models is complicated by the fact that

concurrent (or at least quasi-concurrent) programming is required. Various language features/capabilities

from lightweight to middleweight include continuations, coroutines, actors and threads. Heavyweight concur-

rency via OS processes is infeasible, since simulations may require a very large number of concurrent entities.

The main requirement is for a concurrent entity to be able to suspend its execution and be resumed where

it left off (its state being maintained on a stack). Since preemption is not necessary, lightweight concurrency

constructs are ideal. Presently, ScalaTion uses Scala Actors for concurrency. Future implementations will

include use of continuations and Akka Actors.

ScalaTion includes several types of model components: Gate, Junction, Resource, Route, Sink,

Source, Transport and WaitQueue. A model may be viewed as a directed graph with several types of

nodes:

• Gate: a gate is used to control the flow of entities, they cannot pass when it is shut.

• Junction: a junction is used to connect two transports.

• Resource: a resource provides services to entities (typically resulting in some delay).

• Sink: a sink consumes entities.

• Source: a source produces entities.

• WaitQueue: a wait-queue provides a place for entities to wait, e.g., waiting for a resource to become

available or a gate to open.

These nodes are linked together with directed edges (from, to) that model the flow entities from node to

node. A Source node must have no incoming edges, while a Sink node must have no outgoing edges.

• Route: a route bundles multiple transports together (e.g., a two-lane, one-way street).

• Transport: a transport is used to move entities from one component node to the next.

The model graph includes coordinates for the component nodes to facilitate animation of the model.

Coordinates for the component edges are calculated based on the coordinates of its from and to nodes.

Small colored tokens move along edges and jump through nodes as the entities they represent flow through

the system.

The BankModel may be developed as follows: The BankModel first defines the component nodes entry,

tellerQ, teller, and door. Then two edge components, toTellerQ and toDoor, are defined. These six

components are added to the BankModel using the addComponent method. Note, the endpoint nodes for

an edge must be added before the edge itself. Finally, a inner case class called Customer is defined where

the act method specifies the script for bank customers to follow. The act method specifies the behavior of

concurrent entities (Scala Actors) and is analogous to the run method for Java/Scala Threads.

11



class BankModel (name: String, nArrivals: Int, iArrivalRV: Variate,

nUnits: Int, serviceRV: Variate, moveRV: Variate)

extends Model (name)

{

val entry = Source ("entry", this, Customer, 0, nArrivals, iArrivalRV, (100, 290))

val tellerQ = WaitQueue ("tellerQ", (330, 290))

val teller = Resource ("teller", tellerQ, nUnits, serviceRV, (350, 285))

val door = Sink ("door", (600, 290))

val toTellerQ = new Transport ("toTellerQ", entry, tellerQ, moveRV)

val toDoor = new Transport ("toDoor", teller, door, moveRV)

addComponent (entry, tellerQ, teller, door, toTellerQ, toDoor)

case class Customer () extends SimActor ("c", this)

{

def act ()

{

toTellerQ.move ()

if (teller.busy) tellerQ.waitIn () else tellerQ.noWait ()

teller.utilize ()

teller.release ()

toDoor.move ()

door.leave ()

} // act

} // Customer

} // BankModel class

Note, that the bank model for event-scheduling did not include time delays and events for moving token along

transports. In BankModel2, the impact of transports is reduced by (1) using the transport’s jump method

rather than its move method and (2) reducing the time through the transport by an order of magnitude. The

jump method has the tokens jumping directly to the middle of the transport, while the move method simulates

smooth motion using many small hops. Both BankModel and BankModel2 are in the apps.process package

as well as CallCenterModel, ERoomModel, IntersectionModel, LoopModel MachineModel and RoadModel.

4.1 Component.scala

The Component trait provides basic common feature for simulation components. A component may function

either as a node or edge. Entities/sim-actors interact with component nodes and move/jump along compo-

nent edges. All components maintain sample/duration statistics (e.g., time in waiting queue) and all except

Gate, Source and Sink maintain time-persistent statistics (e,g., number in waiting queue).

Class Methods:

trait Component extends Identity

def initComponent (label: String, loc: Array [Double])

def initStats (label: String)

def director = _director

def setDirector (dir: Model)

12



def display ()

def tally (duration: Double) { _durationStat.tally (duration) }

def accumulate (value: Double, time: Double) { _persistentStat.accumulate (value, time) }

def durationStat = _durationStat

def persistentStat = _persistentStat

4.2 Signifiable.scala

The Signifiable trait defines standard messages sent between actors implementing process interaction

simulations.

Class Methods:

trait Signifiable

4.3 SimActor.scala

The SimActor abstract class represents entities that are active in the model. The act abstract method,

which specifies entity behavior, must be defined for each subclass. Each SimActor extends Scala’s Actor

class and may be roughly thought of as running in its own thread. The script for entities/sim-actors to follow

is specified in the act method of the subclass as was done for the Customer case class in the BankModel.

Class Methods:

@param name the name of the entity/SimActor

@param director the director controlling the model

abstract class SimActor (name: String, director: Model)

extends Actor with Signifiable with PQItem with Ordered [SimActor] with Locatable

def subtype: Int = _subtype

def setSubtype (subtype: Int) { _subtype = subtype }

def trajectory: Double = traj

def setTrajectory (t: Double) { traj = t }

def compare (actor2: SimActor): Int = actor2.actTime compare actTime

def act ()

def yetToAct = _yetToAct

def nowActing () { _yetToAct = false }

def time = director.clock

def schedule (delay: Double)

def yieldToDirector (quit: Boolean = false)

4.4 Source.scala

The Source class is used to periodically inject entities (SimActors) into a running simulation model (and a

token into the animation). It may act as an arrival generator. A Source is both a simulation Component

and a special SimActor, and therefore can run concurrently.

Class Methods:

13



@param name the name of the source

@param director the director controlling the model

@param makeEntity the function to make entities of a specified type

@param subtype indicator of the subtype of the entities to me made

@param units the number of entities to make

@param iArrivalTime the inter-arrival time distribution

@param at the location of the source (x, y, w, h)

class Source (name: String, director: Model, makeEntity: () => SimActor, subtype: Int, units: Int,

iArrivalTime: Variate, at: Array [Double])

extends SimActor (name, director) with Component

def this (name: String, director: Model, makeEntity: () => SimActor, units: Int,

def display ()

def act ()

4.5 Sink.scala

The Sink class is used to terminate entities (SimActors) when they are finished. This class will remove the

token from the animation and collect important statistics about the entity.

Class Methods:

@param name the name of the sink

@param at the location of the sink (x, y, w, h)

class Sink (name: String, at: Array [Double])

extends Component

def this (name: String, director: Model, makeEntity: () => SimActor, subtype: Int, units: Int,

iArrivalTime: Variate, xy: Tuple2 [Double, Double])

def display ()

def leave ()

4.6 Transport.scala

The Transport class provides a pathway between two other component nodes. The Components in a Model

conceptually form a graph in which the edges are Transport objects and the nodes are other Component

objects. An edge may be either a Transport or Route.

Class Methods:

@param name the name of the transport

@param from the first/starting component

@param to the second/ending component

@param motion the speed/trip-time to move down the transport

@param isSpeed whether speed or trip-time is used for motion

@param bend the bend or curvature of the transport (0 => line)

@param shift1 the x-y shift for the transport’s first endpoint (from-side)

@param shift2 the x-y shift for the transport’s second endpoint (to-side)

class Transport (name: String, val from: Component, val to: Component,

14



motion: Variate, isSpeed: Boolean = false,

bend: Double = 0.0, shift1: R2 = R2 (0.0, 0.0), shift2: R2 = R2 (0.0, 0.0))

extends Component

def display ()

override def at: Array [Double] =

def jump ()

def move ()

4.7 Resource.scala

The Resource class provides services to entities (SimActors). The service provided by a resource typically

delays the entity by an amount of time corresponding to its service time. The Resource may or may not

have an associated waiting queue.

Class Methods:

@param name the name of the resource

@param line the line/queue where entities wait

@param units the number of service units (e.g., bank tellers)

@param serviceTime the service time distribution

@param at the location of the resource (x, y, w, h)

class Resource (name: String, line: WaitQueue, private var units: Int, serviceTime: Variate,

at: Array [Double])

extends Component

def this (name: String, line: WaitQueue, units: Int, serviceTime: Variate,

xy: Tuple2 [Double, Double])

def changeUnits (dUnits: Int)

def display ()

def busy = inUse == units

def utilize ()

def utilize (duration: Double)

def release ()

4.8 WaitQueue.scala

The WaitQueue class is a wrapper for Scala’s Queue class, which supports FCSC Queues. It adds monitoring

capabilities and optional capacity restrictions. If the queue is full, entities (SimActors) attempting to enter

the queue are barred. At the model level, such entities may be (1) held in place, (2) take an alternate route,

or (3) be lost (e.g., dropped call/packet). An entity on a WaitQueue is suspended for an indefinite wait. The

actions of some other concurrent entity will cause the suspended entity to be resumed (e.g., when a bank

customer finishes service and releases a teller).

Class Methods:

@param name the name of the wait-queue

@param at the location of the wait-queue (x, y, w, h)

@param cap the capacity of the queue (defaults to unbounded)

15



class WaitQueue (name: String, at: Array [Double], cap: Int = Int.MaxValue)

extends Queue [SimActor] with Component

def this (name: String, xy: Tuple2 [Double, Double], cap: Int)

def isFull: Boolean = length >= cap

def barred: Int = _barred

def display ()

def waitIn ()

def noWait ()

4.9 Junction.scala

The Junction class provides a connector between two transports/routes. Since Lines and QCurves have

limitation (e.g., hard to make a loop back), a junction may be needed.

Class Methods:

@param name the name of the junction

@param director the director controlling the model

@param jTime the jump-time through the junction

@param at the location of the junction (x, y, w, h)

class Junction (name: String, director: Model, jTime: Variate, at: Array [Double])

extends Component

def this (name: String, director: Model, jTime: Variate, xy: Tuple2 [Double, Double])

def display ()

def move ()

4.10 Gate.scala

The Gate class models the operation of gates that can open and shut. When a gate is open, entities can flow

through and when shut, they cannot. When shut, the entities may wait in a queue or go elsewhere. A gate

can model a traffic light (green =⇒ open, red =⇒ shut).

Class Methods:

@param name the name of the gate

@param director the model/container for this gate

@pram line the queue holding entities waiting for this gate to open

@param units number of units/phases of operation

@param onTime distribution of time that gate will be open

@param offTime distribution of time that gate will be closed

@param at the location of the Gate (x, y, w, h)

@param shut0 Boolean indicating if the gate is opened or closed

@param cap the maximum number of entities that will be released when the gate is opened

class Gate (name: String, director: Model, line: WaitQueue, units: Int, onTime: Variate, offTime: Variate,

at: Array [Double], shut0: Boolean, cap: Int = 10)

extends SimActor (name, director) with Component

16



def this (name: String, director: Model, line: WaitQueue, units: Int, onTime: Variate, offTime: Variate,

xy: Tuple2 [Double, Double], shut0: Boolean, cap: Int)

def shut: Boolean = _shut

def display ()

def release ()

def act ()

def gateColor: Color = if (_shut) red else green

def flip () { _shut = ! _shut }

def duration: Double = if (_shut) offTime.gen else onTime.gen

4.11 Route.scala

The Route class provides a multi-lane pathway between two other node components. The Components in

a Model conceptually form a graph in which the edges are Transports/Routes and the nodes are other

components. A route is a composite component that bundles several transports.

Class Methods:

@param name the name of the route

@param k the number of lanes/transports in the route

@param from the starting component

@param to the ending component

@param motion the speed/trip-time to move down the transports in the route

@param isSpeed whether speed or trip-time is used for motion

@param angle angle in radians of direction (0 => east, Pi/2 => north, Pi => west, 3Pi/2 => south)

@param bend the bend or curvature of the route (0 => line)

class Route (name: String, k: Int, from: Component, to: Component,

motion: Variate, isSpeed: Boolean = false,

angle: Double = 0.0, bend: Double = 0.0)

extends Component

override def at: Array [Double] = lane(0).at

def display ()

4.12 Model.scala

The Model class maintains a list of components making up the model and controls the flow of entities

(SimActors) through the model, following the process-interaction world-view. It maintains a time-ordered

priority queue to activate/re-activate each of the entities. Each entity (SimActor) is implemented as a Scala

Actor and may be roughly thought of as running in its own thread.

Class Methods:

@param name the name of the model

@param animating whether to animate the model

class Model (name: String, animating: Boolean = true)

extends Actor with Signifiable with Modelable with Component

def addComponent (_parts: Component*) { for (p <- _parts) parts += p }

17



def addComponents (_parts: List [Component]*) { for (p <- _parts; q <- p) parts += q }

def theActor = _theActor

def simulate (startTime: Double = 0.0)

def reschedule (actor: SimActor) { agenda += actor }

def act ()

def report

def reportf { new StatTable (name + " statistics", getStatistics) }

def getStatistics: ListBuffer [Statistic] =

def display ()

def animate (who: Identifiable, what: Value, color: Color, shape: Shape, at: Array [Double])

def animate (who: Identifiable, what: Value, color: Color, shape: Shape,

from: Component, to: Component, at: Array [Double] = Array ())

18


	Introduction to Simulation
	Tableau Oriented
	Tableau.scala

	Event Oriented
	Event Scheduling
	Event.scala
	Entity.scala
	Model.scala

	Event Graphs
	EventNode.scala
	CausalLink.scala


	Process Interaction
	Component.scala
	Signifiable.scala
	SimActor.scala
	Source.scala
	Sink.scala
	Transport.scala
	Resource.scala
	WaitQueue.scala
	Junction.scala
	Gate.scala
	Route.scala
	Model.scala


