
Submitted to VLDB Journal for review on May 27, 2002 . © by Authors until publication.

Modeling Quality of Service for
Workflows and Web Service Processes

Jorge Cardoso1, John Miller1, Amit Sheth1 and Jonathan Arnold2

1LSDIS Lab, Department of Computer Science

2Fungal Genome Resource laboratory, Department of Genetics
University of Georgia

Athens, GA 30602 – USA

Abstract
Workflow management systems (WfMSs) have been used to support
various types of business processes for more than a decade now. In
workflows for e-commerce and Web-services applications, suppliers and
customers define a binding agreement or contract between the two parties,
specifying Quality of Service (QoS) items such as products or services to
be delivered, deadlines, quality of products, and cost of services. The
management of QoS metrics directly impacts the success of organizations
participating in e-commerce. Therefore, when services or products are
created or managed using workflows, the underlying workflow system
must accept the specifications and be able to estimate, monitor, and
control the QoS rendered to customers. In this paper, we present a
predictive QoS model that makes it possible to compute the quality of
service for workflows automatically based on atomic task QoS attributes.
To this end, we present a model that specifies QoS and describe an
algorithm and a simulation system in order to compute, analyze and
monitor workflow QoS metrics.

1 Introduction

Organizations are constantly seeking new and innovative information systems to better
fulfill their missions and strategic goals. With the advent and evolution of global scale
economies, organizations need to be more competitive, efficient, flexible, and integrated
in the value chain at different levels, including the information system level. In the past
decade, Workflow Management Systems (WfMSs) have been distinguished due to their
significance and their impact on organizations. WfMSs allow organizations to streamline
and automate business processes and reengineer their structure; in addition, they increase
efficiency and reduce costs.

 2

Several researchers have identified workflows as the computing model that enables a
standard method of building Web-services applications and processes to connect and
exchange information over the Web (Chen, Dayal et al. 2000; Shegalov, Gillmann et al.
2001; Leymann 2001; Fensel and Bussler 2002). The new advances and developments in
e-services and Web-services set new requirements and challenges for workflow systems.

Our past research has involved the development of fully distributed enactment services
for workflow management. Our infrastructure, the METEOR system, and specifically its
OrbWork (Kochut, Sheth et al. 1999) and WebWork (Miller, Palaniswami et al. 1998)
enactment services have been used in prototyping and deploying applications to various
domains, such as bio-informatics (Hall, Miller et al. 2000), healthcare (Anyanwu, Sheth
et al. 1999), telecommunications (Luo 2000), the military (Kang, Froscher et al. 1999),
and university administration (CAPA 1997).

Our experience with real-world applications has made us aware that existing workflow
systems, both products and research prototypes, provide a set of indispensable
functionalities that manage and streamline business processes. Yet, organizations
operating in e-commerce and in global economies that include competitive and constantly
changing markets have a new set of requirements that have not been answered by current
workflow technologies. One important missing requirement is the management of
Quality of Service (QoS), or technical aspects of Service Level Agreements (SLAs).
Organizations operating in modern markets, such as e-commerce activities and
distributed Web-services interactions, require QoS management. Products and services
with well-defined specifications must be available to customers. Appropriate control of
quality leads to the creation of quality products and services; these, in turn, fulfill
customer expectations and achieve customer satisfaction.

While QoS has been a major concern in the areas of networking (Cruz 1995; Georgiadis,
Guerin et al. 1996), real-time applications (Clark, Shenker et al. 1992) and middleware
(Zinky, Bakken et al. 1997; Frlund and Koistinen 1998; Hiltunen, Schlichting et al.
2000), few research groups have concentrated their efforts on enhancing workflow
systems to support workflow Quality of Service management.

For organizations, being able to characterize workflows based on QoS has four distinct
advantages. First, it allows organizations to translate their vision into their business
processes more efficiently, since workflow can be designed according to QoS metrics.
For e-commerce processes it is important to know the QoS an application will exhibit
before making the service available to its customers. Second, it allows for the selection
and execution of workflows based on their QoS, to better fulfill customer expectations.
As workflow systems carry out more complex and mission-critical applications, QoS
analysis serves to ensure that each application meets user requirements. For e-commerce
processes, it is important to know the QoS an application will exhibit before making the
service available to customers. Third, it makes possible the monitoring of workflows
based on QoS. Workflows must be rigorously and constantly monitored throughout their
life cycles to assure compliance both with initial QoS requirements and targeted
objectives. QoS monitoring allows adaptation strategies to be triggered when undesired
metrics are identified or when threshold values are reached. Fourth, it allows for the
evaluation of alternative strategies when adaptation becomes necessary. The
unpredictable nature of the surrounding environment has an important impact on the

 3

strategies, methodologies, and structure of business processes. Thus, in order to complete
a workflow according to initial QoS requirements, it is necessary to expect to adapt,
replan, and reschedule a workflow in response to unexpected progress, delays, or
technical conditions. When adaptation is necessary, a set of potential alternatives is
generated, with the objective of changing a workflow as its QoS continues to meet initial
requirements. For each alternative, prior to actually carrying out the adaptation in a
running workflow, it is necessary to estimate its impact on the workflow QoS. For
example, when a workflow becomes unavailable due to the malfunction of its
components, it is indispensable to evaluate the adaptive strategies that can be applied to
correct the process. It is essential that the services rendered follow customer
specifications to meet their expectations and ensure satisfaction. Customer expectations
and satisfaction can be translated into the quality of service rendered. Organizations have
realized that quality of service management is an important factor in their operations.
Quality models, such as ISO9000 (ISO9000 2002), have been created to help
organizations and their individual performers meet customer needs.

Workflow QoS is composed of different dimensions that are used to characterize
workflow schema and instances. Innovative aspect of research reported in this paper is
that of developing a comprehensive QoS model specification and its computation,
covering various quality dimensions. Most of the research carried out in order to extend
workflow system capabilities to include project management features has mainly been
done for the time dimension (Kao and GarciaMolina 1993; Bussler 1998; Eder, Panagos
et al. 1999; Marjanovic and Orlowska 1999; Dadam, Reichert et al. 2000; Sadiq,
Marjanovic et al. 2000; Son, Kim et al. 2001); this is only one of the dimensions under
the workflow QoS umbrella. Even though some WfMSs currently offer time management
support, the technology available is rudimentary (Eder, Panagos et al. 1999). Research on
workflow reliability issues has also been conducted, but the work was mostly on system
implementation (Kamath, Alonso et al. 1996; Tang and Veijalainen 1999; Wheater and
Shrivastava 2000). The Crossflow project (Klingemann, Wäsch et al. 1999; Damen,
Derks et al. 2000; Grefen, Aberer et al. 2000) is the one that most closely relates to our
work. It considers both time and cost associated with workflow executions. In Crossflow,
the information about past workflow execution is collected in a log. From this
information, a continuous-time Markov chain (CTMC) is derived. Since Markov chains
do not directly support the concept of parallel executions introduced by the and-split/and-
join structure, the power set of the parallel activities of the tasks inside an and-split/and-
join structure needs to be constructed. While for small workflows the computation of a
power set is affordable, this may not be the case for large workflows with a parallel
nature, for which the power set can reach millions of states. Our approach uses a different
concept to compute quality of service dimensions, one which does not suffer from
exponential complexity.

This paper reports a comprehensive model for the specification of workflow QoS as well
as methods to analyze and monitor QoS. We start by investigating the relevant QoS
dimensions that are necessary to correctly characterize workflows. We not only target the
time dimension, but also investigate other dimensions required to develop a real and
usable workflow QoS model. Once the QoS and associated dimensions are selected, it is
necessary to develop algorithms and to select methods to compute QoS. In workflows,
quality metrics are associated with tasks, and tasks compose workflows. The computation

 4

of workflow QoS is done based on the QoS of the tasks that compose a workflow. We
present an algorithm and also show how a workflow system can be coupled with a
simulation system in order to predict QoS. Key feature of this model is that based on the
QoS of workflow components (tasks or web services), the QoS of workflows.
Furthermore, to test the validity of our QoS model, we have deployed a set of production
workflows in the area of genetics. By executing instances of this workflow based on on
real data, we generated and analyzed QoS data.

Throughout this paper, the term ‘task’ or ‘workflow task’ corresponds to a traditional
workflow task or a web-service. It will later become evident that in order for our model
to be applied to workflows, tasks or web-service only have to adhere to the QoS model.

This paper is structured as follows. Section 2 describes a workflow process that illustrates
a real world scenario, which will be used to exemplify QoS through the rest of the paper.
Based on our scenario, a set of new requirements is derived and the current limitations of
WfMSs technology are stated. In section 3, we introduce our workflow QoS model and
describe each of its dimensions. Section 4 describes how the quality of service of
workflow tasks is calculated. In Section 5, we present an algorithm to compute and
estimate workflow QoS, and we also describe how simulation techniques can be used for
QoS estimation. Section 6 presents an example of how to compute the QoS for the
workflow introduced in our initial scenario. Section 7 discusses the related work in the
QoS area; section 8 presents future work on workflow QoS. Finally, section 9 presents
our conclusions.

2 Scenario

The Fungal Genome Resource laboratory (FGR 2002) at the University of Georgia has
realized that to be competitive and efficient it must adopt a new and modern information
system infrastructure. Therefore, a first step was taken in that direction with the adoption
of a workflow management system (METEOR (Kochut, Sheth et al. 1999)) to support its
laboratory processes (Hall, Miller et al. 2000). Since the laboratory supplies several
genome services to its customers, the adoption of a WfMS has enabled the logic of
laboratory processes to be captured in a workflow schema. As a result, all the services
available to customers are stored and executed under the supervision of the workflow
system.

2.1 Workflow Structure

Before discussing this scenario in detail, we review the basis elements of the METEOR
workflow model.

A workflow is composed of tasks and transitions. Tasks are represented using a circle,
networks (sub-workflows) using rounded rectangles, and transitions are represented using
an arrow. Transitions express dependencies between tasks and are associated with an
enabling probability (p1, p2,.., pn). When a task has only one outgoing transition, the
enabling probability is 1. In such a case, the probability can be omitted from the graph. A
task with more than one outgoing transition can be classified as an and-split or xor-split.

 5

And-split tasks enable all their outgoing transitions after completing their execution. Xor-
split tasks enable only one outgoing transition after completing their execution. And-split
tasks are represented with a ‘*’ and xor-split tasks are represented with a ‘+’. A task with
more than one incoming transition can be classified as an and-join or xor-join. And-join
tasks start their execution when all their incoming transitions are enabled. Xor-join tasks
are executed as soon as one of the incoming transitions is enabled. As with and-split and
xor-split tasks, and-join tasks and xor-join tasks are represented with the symbol ‘*’ and
‘+’, respectively. When no symbol is present to indicate the input or output logic of a
task, then it is assumed to be an xor.

2.2 Workflow Description

Genomic projects involve highly specialized personnel and researchers, sophisticated
equipment, and specialized computations involving large amounts of data. The
characteristics of the human and technological resources involved, often geographically
distributed, require a sophisticated coordination infrastructure to manage not only
laboratory personnel and equipment, but also the flow of data generated.

One of the services supplied by the research laboratory is the DNA Sequencing
workflow. A simplified version of the DNA Sequencing workflow is depicted in Figure
1. The complete description of the workflow can be found in the Appendix.

Figure 1– DNA Sequencing workflow

The workflow is composed of eight main tasks: Setup, Prepare Sample, Prepare Clone
and Sequence, Assembly, Get Sequences, Sequence Processing, and Process Report. Each
individual task carries out a particular function; if necessary, the workflow can be spread
across multiple research centers.

The Setup task is responsible for initializing internal variables of the workflow process.

The second task, Prepare Sample, consists of isolating DNA from a biological sample.
The samples can be prepared using a variety of protocols. These protocols need to be
followed rigorously in order to obtain DNA that is not degraded in any form. A correctly
prepared sample will originate a better DNA sequencing, since the quality of the DNA
template is one of the most critical factors in DNA sequencing.

The task Prepare Clones and Sequence clones specific regions of the genome from DNA
isolated in the previous step. This step can be fully automated by computer control (using,
for example, a robotic system). This task also executes the sequencing, which uses DNA

t3

t6t5

t4t2

Prepare
Sample

Prepare Clones
and

Sequence

Get SequencesTest Quality

Assembly

p1

t7

Sequence
Processing

p2

+

t1

Setup

t8

Proces
Report

+

 6

sequencing machines to read each biochemical “letter” (A, G, C or T) of a cloned DNA
fragment. The output is composed of short decoded segments (a sequence such as
AGGCATTCCAG…). The use of automated sequencers has revolutionized the field of
bioinformatics by enabling scientists to catalogue sequence information hundreds of
times faster than was possible with pre-existing scanning techniques. This new approach
allows for automatic recognition, without major human intervention.

The Assembly task analyzes the DNA segments generated in the sequencing task. This
step includes the assembly of larger contiguous blocks of sequences of DNA from small
overlapping fragments. This is complicated by the fact that similar sequences occur many
times in many places of the genome.

The Test Quality task screens for the Escherichia coli (E. coli) contaminant in DNA
contigs. The clones grown in bacterial hosts are likely to be contaminated. A quick and
effective way to screen for the E. coli contaminant is to compare a given DNA sequence
to the E. coli genome. For E. coli, this task is made easier by the availability of its full
genome.

Get Sequences is a simple task that downloads the sequences created in the assembly
step, using the FTP protocol.

The Sequence Processing task analyzes the DNA segments generated in the assembly
step. The goal of this task is to find DNA sequences in order to identify macromolecules
with related structures and functions. The new DNA sequence is compared to a
repository of known sequences (e.g., Swiss-Prot or GenBank), using one of a number of
computational biology applications for comparison.

After obtaining the desired data from the Sequence Processing task, the results are stored,
e-mailed, and a report is created. The Process Report task stores the data generated in the
previous task in a database and creates a final report. It is responsible for electronically
mailing the sequencing results to the persons involved in this process, such as researchers
and lab technicians.

2.3 Workflow Application Requirements

In its normal operation, the Fungal Genome Resource laboratory executes the DNA
Sequencing workflow in a regular manner. Workflow instances are started in order to
render the sequencing services. In this scenario, and with current workflow technology,
the execution of the workflow instances is carried out without any quality of service
management on important parameters such as delivery deadlines, fidelity, quality,
reliability, and cost of service. The laboratory wishes to be able to state a detailed list of
requirements for the service to be rendered to its customers. Its requirements include the
following:

 The final report has to be delivered in 31 weeks or less, as specified by the
customer (e.g., NIH).

 The profit margin has to be 10%. For example, if a customer pays $1,100 for a
sequencing, then the execution of the DNA Sequencing workflow must have a
cost for the laboratory that is less than $1,000.

 7

 The error rate of the task Prepare Clones and Sequence has to be at most ε, and
the data quality of the task Sequence Processing has to be at least α.

 In some situations, the client may require an urgent execution of DNA
sequencing. Therefore, the workflow has to exhibit high levels of reliability, since
workflow failures would delay the sequencing process.

The requirements for the genetic workflow application presented underline four non-
functional requirements: time, cost, fidelity, and reliability. While the specification of
such quality requirements is important, current WfMSs do not include the functions to
delineate their specification or management.

2.4 Current WfMSs Limitations

The lack of a mechanism to specify workflow QoS is a current limitation of WfMSs.
However, this is not the only missing element; once a workflow QoS model is defined,
three additional components need to be developed: estimation algorithms and methods,
monitoring tools, and mechanisms to control the quality of service. Only the development
of integrated solutions composed of those four modules (specification, estimation,
monitoring, and control) can result in a sophisticated quality management framework.
The objectives and functionalities of each module include the following:

 A quality of service model must be developed to allow for the specification of
workflow Quality of Service (QoS) metrics. This model allows suppliers to specify
the duration, quality, cost, fidelity, etc., of the services and products to be delivered.
Specifications can be set at design-time, when designers build workflow applications,
or they can be adjusted at run-time.

 Algorithms and methods must be developed to estimate the quality of service of a
workflow both before instances are started and during instance execution. The
estimation of QoS before instantiation allows suppliers to ensure that the workflow
processes to be executed will indeed exhibit the quality of service requested by
customers. The analysis of workflow QoS during instance execution allows workflow
systems to constantly compute QoS metrics and register any deviations from the
initial requirements.

 Tools must be available to monitor the quality of service of running workflow
instances. Workflow users and managers need to receive information about the QoS
status and possible deviations from the desired metrics that might occur. In our
scenario, let us assume that for some unknown reason the matching factor of the
DNA Sequencing data drops below a threshold expressed by the customer. The
matching factor reflects the degree of similarity between the query sequence
("probe") and the compared ("subject") sequence stored in a sequence database. The
use of workflow QoS monitoring tools can automatically detect this variation in
fidelity and automatically notify interested users.

 Mechanisms must be available which control the quality of service of workflow
instances. Control is necessary when instances do not behave according to initial
requirements. Let us consider the following example: workflow instances are running
correctly and the quality of service specifications are being followed when a task

 8

fails. The task Prepare Clone and Sequence stops its processing because one of the
associated machines has a mechanical problem. As a consequence, workflow QoS
specifications of time are no longer satisfied, and the WfMS raises a warning, an
alert, or an exception. The faulty task needs to be replaced by an equivalent task to
restore the soundness of the system. This replacement can be accomplished by
applying dynamic changes to the workflow instances, either manually or
automatically (Cardoso, Luo et al. 2001).

While these four areas of research are important and indispensable for adequate quality of
service management, in this paper we focus on the specification, estimation, and
monitoring of workflow QoS.

3 Workflow Quality of Service

As stated earlier, the quality of service is an important issue for workflow systems. The
international quality standard ISO 8402 (part of the ISO 9000 (ISO9000 2002)) describes
quality as ”the totality of features and characteristics of a product or service that bear on
its ability to satisfy stated or implied needs.” This definition implies a relation between
the characteristics of products or services rendered and the initial requirements or implied
needs. In our opinion, this definition of quality, which includes an important relationship
between requirements and characteristics, is relevant and applicable to the domain of
WfMSs. For us, workflow QoS represents the quantitative and qualitative characteristics
of a workflow application necessary to achieve a set of initial requirements. Workflow
QoS addresses the non-functional issues of workflows rather than workflow process
operations. Quantitative characteristics can be evaluated in terms of concrete measures
such as workflow execution time, cost, etc. Kobielus (1997) suggests that dimensions
such as time, cost, and quality should constitute the criteria that workflow systems should
include and might benefit from. Qualitative characteristics specify the expected services
offered by the system, such as security and fault-tolerance mechanisms. QoS should be
seen as an integral aspect of workflows; therefore, it should be integrated with workflow
specifications. The first step is to define a workflow QoS model.

3.1 Workflow QoS Model

Quality of service can be characterized according to various dimensions. We have
investigated related work to decide which dimensions would be relevant to compose our
QoS model. Our research targeted two distinct areas: operations management for
organizations and quality of service for software systems. The study of those two areas is
important, since workflow systems are widely used to model organizational business
processes, and workflow systems are themselves software systems.

On the organizational side, Stalk and Hout (1990) and Rommel et al. (1995) investigated
the features with which successful companies assert themselves in competitive world
markets. Their results indicated that success is related to the capability to compete with
other organizations, and it is based upon three essential pillars: time, cost, and quality.
These three dimensions have been a major concern for organizations. Garvin (1988)
associates eight dimensions with quality, including performance and reliability. Software

 9

systems’ quality of service has also been extensively studied. Major contributions can be
found in the areas of networking (Cruz 1995; Georgiadis, Guerin et al. 1996), real-time
applications (Clark, Shenker et al. 1992) and middleware (Zinky, Bakken et al. 1997;
Hiltunen, Schlichting et al. 2000). For middleware systems, Frlund and Koistinen (1998)
present a set of practical dimensions for distributed object systems’ reliability and
performance, which include TTR (time to repair), TTF (time to failure), availability,
failure masking, and server failure. For data networks, the QoS generally focus on
domain-specific dimensions such as bandwidth, latency, jitter, and loss (Nahrstedt and
Smith 1996).

Our past work on deploying workflow applications has made us aware of the need for
workflow process QoS management. Additionally, we have realized that workflow
processes have a particular set of requirements which are domain dependent and that
need to be accounted for when creating a QoS model. Based on previous studies and our
experience in the workflow domain, we have constructed a QoS model composed of the
following dimensions: time, cost, reliability, and fidelity. According to Weikum (1999),
information services QoS can be divided into three categories: system centric, process
centric, and information centric. Our model specifies quality dimensions that include the
system and process categories. QoS specifications are set for task definitions. Based on
this information, QoS metrics are computed for workflows (see section 5).

Other researchers have also identified the need for a QoS process model. A good example
is the DAML-S specification (Ankolekar, Burstein et al. 2001; DAML-S 2001), which
semantically describes business processes (as in the composition of Web services). The
use of semantic information facilitates process interoperability between trading partners
involved in e-commerce activities. This specification includes constructs which specify
quality of service parameters, such as quality guarantees, quality rating, and degree of
quality. While DAML-S has identified the importance of Web services and business
processes specifications, the QoS model adopted should be significantly improved in
order to supply a more functional solution for its users. One current limitation of DAML-
S’ QoS model is that it does not provide a detailed set of classes and properties to
represent quality of service metrics. The QoS model needs to be extended to allow for a
precise characterization of each dimension. The addition of semantic concepts, such as
minimum, average, maximum, and the distribution function associated with a dimension,
will allow the implementation of algorithms for the automatic computation of QoS
metrics for processes based on atomic tasks and sub-processes’ QoS metrics.

3.2 Task Time

Time is a common and universal measure of performance. For workflow systems, it can
be defined as the total time needed by an instance to transform a set of inputs into
outputs. The philosophy behind a time-based strategy usually demands that businesses
deliver the most value as rapidly as possible. Shorter workflow execution time allows for
a faster production of new products, thus providing a competitive advantage, since the
products are more rapidly introduced into the market. Additionally, reducing the time
taken to execute a set of tasks in a workflow process makes it possible for an organization
to be more responsive to customers’ needs. Therefore, it is important to enhance WfMS
to include time-based process execution.

 10

The first measure of time is task response time (T). Task response time corresponds to the
time an instance takes to be processed by a task. The task response time can be broken
down into two major components: delay time and process time. Delay time (DT) refers to
the non-value-added time needed in order for an instance to be processed by a task. This
includes, for example, the instance queuing delay and the setup time of the task. While,
those two metrics are part of the task operation, they do not add any value to it. Process
time (PT) is the time a workflow instance takes at a task while being processed; in other
words, it corresponds to the time a task needs to process an instance. Therefore, task
response time for a task t can be computed as follows:

T(t) = DT(t) + PT(t)

The delay time can be further broken down into queuing delay and setup delay. Queuing
delay is the time instances spend waiting in a tasklist, before the instance is selected for
processing. Setup delay is the time an instance spends waiting for the task to be set up.
Setup activities may correspond to the warming process carried out by a machine before
executing any operation, or to the execution of self-checking procedures. Another time
metric that may be considered to integrate with the delay time is the synchronization
delay, which corresponds to the time a workflow instance waits for mates in an and-join
task (synchronization). In our QoS model, this metric is not part of the task response
time. This is because the algorithm we use to estimate workflow QoS can derive this
metric directly from the workflow structure and from the task response time. This will
become more clear when we describe workflow QoS computation.

3.3 Task Cost

Task cost represents the cost associated with the execution of workflow tasks. Cost is an
important factor, since organizations need to operate according to their financial plan. It
is fundamental for organizations that wish to reduce their expenditures on internal
processes and wish to control product and service cost. During workflow design, both
prior to workflow instantiation and during workflow execution, it is necessary to estimate
the cost of the execution in order to guarantee that financial plans are followed. The cost
of executing a single task includes the cost of using equipment, the cost of human
involvement, and any supplies and commodities needed to complete the task. The
following cost functions are used to compute the cost associated with the execution of a
task.

Task cost (C) is the cost incurred when a task t is executed; it can be broken down into
two major components: enactment cost and realization cost.

C(t) = EC(t) + RC(t)

The enactment cost (EC) is the cost associated with the management of the workflow
system and with workflow instances monitoring. The realization cost (RC) is the cost
associated with the runtime execution of the task. It can be broken down into: direct
labor cost, machine cost, direct material cost, and setup cost. Direct labor cost is the cost
associated with the person carrying out the execution of a workflow human task (Kochut,

 11

Sheth et al. 1999), or the cost associated with the execution of an automatic task with
partial human involvement. Machine cost is the cost associated with the execution of an
automatic task. This can correspond to the cost of running a particular piece of software
or the cost of operating a machine. Direct material cost is the cost of the materials,
resources, and inventory used during the execution of a workflow task. Setup cost is the
cost to set up any resource used prior to the execution of a workflow task.

3.4 Task Reliability

In an early work on workflow modeling, Krishnakumar and Sheth (1995) represented the
execution behavior of each task, using task structures. Each workflow task structure has
an initial state, an execution state, and two distinct terminating states. One of the states
indicates that a task has failed (for non-transactional tasks) or was aborted (for
transactional and open 2PC tasks), while the other state indicates that a task is done or
committed (Figure 2). The model used to represent each task indicates that only one
starting point exists when performing a task, but two different states can be reached upon
its execution. Based on this task model structure, we introduce the reliability dimension.
This QoS dimension provides information concerning the relationship between the
number of times the state done/committed is reached and the number of times the
failed/aborted state is reached after the execution of a task.

Figure 2 - Two task structures (Krishnakumar and Sheth 1995)

Task Reliability (R) corresponds to the likelihood that the components will perform for its
users on demand; it is a function of the failure rate. To describe task reliability we follow
a discrete-time modeling approach. We have selected this solution since workflow task
behavior is most of the time characterized in respect to the number of executions.
Discrete-time models are adequate for systems that respond to occasional demands, such
as database systems (i.e, discrete-time domain). This dimension follows from one of the
popular discrete-time stable reliability models proposed in (Nelson 1973), where failure
rate is given as the ratio of successful executions/scheduled executions.

R(t) = 1 – failure rate

Table 1 – Task reliability

 12

For each task, the WfMS keeps track of the number of times the task has been scheduled
for execution and how many times the task has been successfully executed. R(t) is a
stable model, since when software failure occurs no fault removal is performed.

Alternatively, continuous-time reliability models can be used when the failures of the
malfunctioning equipment or software can be expressed in terms of times between
failures, or in terms of the number of failures that occurred in a given time interval. Such
reliability models are more suitable when workflows include tasks that control equipment
or machines that have failure specifications determined by the manufacturer. Goel (1985)
classified reliability models into four kinds: input domain-based models, times-between-
failures models, failure-count models, and fault seeding models. Ireson, Jr et al. (1996)
presents several software reliability models which can be used to model this QoS
dimension. The ideal situation would be to associate with each workflow task a reliability
model representing its working behavior. While this is possible, we believe that the
common workflow system users do not have enough knowledge and expertise to apply
such models.

3.5 Task Fidelity

We view fidelity as a function of effective design; it refers to an intrinsic property(ies) or
characteristic(s) of a good produced or service rendered. Fidelity reflects how well a
product is being produced and how well a service is being rendered. Fidelity is often
difficult to define and measure because it is subject to judgments and perceptions.
Nevertheless, the fidelity of workflows should be predicted whenever feasible and
carefully controlled when needed (Kolarik 1995; Franceschini 2002).

Workflow tasks have a fidelity (F) vector dimension composed of a set of fidelity
attributes (F(t).ar), that reflect and quantify task operations. Each fidelity attribute refers
to a property or characteristic of the product being created, transformed, or analyzed.
Fidelity attributes are used by the workflow system to compute how well workflows,
instances, and tasks are meeting user specifications. For example, the Test Quality task
checks the fidelity of the attribute F(t).aE. coli matching. This attribute reflects the probability
that the sample being sequenced is contaminated. Each task is associated with a fidelity
function F(t), which represents the local normalized fidelity:

F(t) = |f1(F(t).ai)| wi1 + | f2(F(t).aj)| wi2 + | f3(F(t).ak)| wi3 + … + | fn(F(t).al)| win

The formula weights the fidelity attributes, which can be transformed to more appropriate
values using a function fn, and are normalized to the scale [0..1]. The sum of the weights
wik is equal to 1. In view of the fact humans often feel awkward in handling and
interpreting such quantitative values (Tversky and Kahneman 1974), we allow the
designer with the help of a domain expert to map the value resulting from applying the
fidelity function to a qualitative scale (Miles and Huberman 1994). This qualitative
indicator is used to detect areas of a workflow with anomalies and undesired behavior.
An example of a mapping scale for quantitative and qualitative values is shown in Table
2. The workflow designer is responsible for the creation of the mapping table. The table
is created by first selecting a set of qualitative terms that characterize the fidelity. The use

 13

of qualitative terms may facilitate the human understanding of the fidelity concept
exhibited by workflows in some cases.

Qualitative
Fidelity

Quantitative
Fidelity

Unacceptable [0.00.. 0.20]

Poor [0.21.. 0.40]

Satisfactory [0.41.. 0.60]

Good [0.61.. 0.80]

Perfect [0.81.. 1.00]
Table 2 – Example of a fidelity-mapping table

Depending on the task type, a task uses different strategies to set fidelity attributes. Three
scenarios can be drawn: automatic tasks controlling hardware, automatic tasks controlling
software, and human tasks. For an automated task controlling a hardware device, the
fidelity attribute can be set after reading the output status line of the device. For example,
the task Sequencing controls DNA sequencing, which is carried out automatically by a
sequencer. When the sequencing finishes, the machine generates several output files to
describe how the process was executed. These values can be passed on to the task, which
automatically updates its fidelity attributes. For automated tasks controlling a software
application, the same procedure can be applied. For example, the task Sequence
Processing executes various algorithms on the sequences received. One of the algorithms
used is BLAST (Altschul, Gish et al. 1990). This algorithm searches DNA sequences in a
database to identify macromolecules with related structures and functions. Once the
search is concluded, the algorithm returns a value indicating the confidence of the
matching. For this task, the returned value from the execution of the algorithm will be
used to describe the fidelity of the task’s execution. For human tasks, the procedure has
to be manual. Therefore, it is the responsibility of the user to manually input information
relative to the fidelity of the task executed. In the case of the task Prepare Sample, the lab
technician sets the fidelity attribute quality of clones manually, after a visual
identification. For quality assurance reasons the attributes should be set or checked by a
person other than the one who that carried out the task execution. If evaluating the
fidelity of a task cannot be accurately done by a human, an option is to place – when
possible – an automatic task after the human task to automatically check the fidelity.

The fidelity information can be used to effectively monitor workflow executions.
Typically, during the lifetime of an instance, qualitative information describing task
fidelity is displayed on graphical monitors as the tasks are executed. Managers can easily
identify tasks which exhibit unsatisfactory fidelity metrics.

 14

3.6 QoS Model Discussion

One of the most popular workflow classifications distinguishes between ad hoc
workflows, administrative workflows, and production workflows. This classification was
first mentioned by (McCready 1992). The main differences between these types include
structure, repetitiveness, predictability, complexity, and degree of automation.

We recognize that the QoS model presented here is better suited for production
workflows (McCready 1992) since they are more structured, predictable, and repetitive.
Production workflows involve complex and highly-structured processes, whose execution
requires a high number of transaction accessing different information systems. These
characteristics allow the construction of adequate QoS models for workflow tasks. In the
case of ad hoc workflows, the information, the behavior, and the timing of tasks are
largely unstructured, which makes the procedure of constructing a good QoS model more
difficult and complex.

4 Creation of QoS Estimates

In order to facilitate the analysis of workflow QoS, it is necessary to initialize task QoS
metrics and also initialize stochastic information which indicates the probability of
transitions being fired at runtime. Once tasks and transitions have their estimates set,
algorithms and mechanisms, such as simulation, can be applied to compute overall
workflow QoS.

4.1 QoS Estimates for Tasks

Having previously defined the QoS dimensions for tasks, we now target the estimation of
QoS metrics of tasks. The specification of QoS metrics for tasks is made at design time
and re-computed at runtime, when tasks are executed. During the graphical construction
of a workflow process, the designer sets QoS estimates for each task. The estimates
characterize the quality of service that the tasks will exhibit at runtime.

Setting initial QoS metrics for some workflow tasks may be relatively simple. For
example, setting the QoS for a task controlling a DNA sequencer can be done based on
the time, cost, and reliability specifications given by the manufacturer of the DNA
sequencer. In other cases, setting initial QoS metrics may prove to be difficult. This is the
case for tasks that heavily depend on user input and system environment. For such tasks,
it is convenient to study the workflow task based on real operations. The estimates are
based on data collected while testing the task. The idea is to test the task based on
specific inputs. This can be achieved by the elaboration of an operational profile (Musa
1993). In an operational profile, the input space is partitioned into domains, and each
input is associated with a probability of being selected during operational use. The
probability is employed in the input domain to guide input generation. The density
function built from the probabilities is called the operational profile of the task. At
runtime, tasks have a probability associated with each input. Musa (1999) described a
detailed procedure for developing a practical operational profile for testing purposes.

 15

The task runtime behavior specification is composed of two classes of information (Table
3): basic and distributional. The basic class associates with each task’s QoS dimension
the minimum value, average value, and maximum value the dimension can take. For
example, the cost dimension corresponds to the minimum, average, and maximum cost
associated with the execution of a task. The second class, the distributional class,
corresponds to the specification of a constant or of a distribution function (such as
Exponential, Lognormal, Normal, Rayleigh, Time-Independent, Weibull, and Uniform)
which statistically describes task behavior at runtime. For example, Table 3 and Table 4
show the QoS dimensions for an automatic task (the SP FASTA task) and for a manual
task (the Prepare Sample task; see section 2.2 for tasks descriptions).

 Basic class Distributional class

 Min value Avg value Max value Dist. Function

Time 0.291 0.674 0.895 Normal(0.674, 0.143)

Cost 0 0 0 0.0

Reliability - 100% - 1.0

Fidelity.ai 0.63 0.81 0.92 Trapezoidal(0.7,1,1,4)

Table 3 – Task QoS for an automatic task

 Basic class Distributional class

 Min value Avg value Max value Dist. Function

Time 192 196 199 Normal(196, 1)

Cost 576 576 576 576.0

Reliability - 100% - 1.0

Fidelity.ai - - - -

Table 4 – Task QoS for a manual task

The values specified in the basic class are typically employed by mathematical methods
in order to compute workflow QoS metrics, while the distributional class information is
used by simulation systems to compute workflow QoS. To devise values for the two
classes, the designer typically applies the functions presented in the previous section to
derive the task’s QoS metrics. We recognize that the specification of time, cost, fidelity,
and reliability is a complex operation, which when not carried out properly can lead to
the specification of incorrect values. Additionally, the initial specification may not
remain valid over time. To overcome this difficulty, a task’s QoS values can be
periodically re-computed for the basic class, based on previous executions. The
distributional class may also need to have its distribution re-computed. At runtime, the

 16

workflow system keeps track of actual values for the QoS dimensions monitored. QoS
runtime metrics are saved and used to re-compute the QoS values for the basic class
which were specified at design time. The workflow system re-computes the QoS values
for each dimension; this allows the system to make more accurate estimations based on
recent instance executions.

The re-computation of QoS task metrics is based on data coming from designer
specifications and from the workflow system log. Four scenarios can occur: a) For a
specific task t and a particular dimension Dim, the average is calculated based only on
information introduced by the designer (designer average); b) the average of a task t
dimension is calculated based on all its executions independently of the workflow that
executed it (multi-workflow average); c) the average of the dimension Dim is calculated
based on all the times task t was executed in any instance from workflow w (workflow
average); and d) the average of the dimension of all the times task t was executed in
instance i of workflow w (instance average). Scenario d) can only occur when loops exist
in a workflow.

The averages described in Table 5 are computed at runtime and made available to the
workflow system. While Table 5 shows only how to compute average metrics, similar
formulae can be used to compute minimum and maximum values.

Designer AverageDim(t) Average specified by the designer in the basic
class for dimension Dim

Multi-Workflow AverageDim (t) Average of the dimension Dim for task t
executed in the context of any workflow

Workflow AverageDim(t, w) Average of the dimension Dim for task t
executed in the context of any instance of
workflow w

Instance AverageDim(t, w, i) Average of the dimension Dim for task t
executed in the context of instance i of
workflow w

Table 5 – Designer, multi-workflow, workflow and instance average

The task QoS for a particular dimension can be determined at different levels; it is
computed following the equations described in Table 6.

 17

a) QoSDim(t) Designer AverageDim(t)

b) QoSDim(t) wi1* Designer AverageDim(t) + wi2* Multi-Workflow
AverageDim(t)

c) QoSDim(t, w) wi1* Designer AverageDim(t) + wi2* Multi-Workflow
AverageDim(t) + wi3*Workflow AverageDim(t, w)

d) QoSDim(t, w, i) wi1* Designer AverageDim(t) + wi2* Multi-Workflow
AverageDim(t) + wi3* Workflow AverageDim(t, w) + wi4*
Instance Workflow AverageDim(t,w, i)

 Table 6 – QoS dimensions computed at runtime

The workflow system uses the formulae from Table 6 to predict the QoS of tasks. The
weights wij are set manually. They reflect the degree of correlation between the workflow
under analysis and other workflows for which a set of common tasks is shared. Since the
values entered by the designer may contain extraneous data and therefore be imprecise, a
Bayesian approach (Bernardo and Smith 1994) might be considered to make use of prior
knowledge in order to improve the accuracy of the weights wij.

Let us assume that we have an instance i of workflow w running and that we desire to
predict the QoS of task t ∈w. The following rules are used to choose which formula to
apply when predicting QoS. If task t has never been executed before, then formula a) is
chosen to predict task QoS, since there is no other data available. If task t has been
executed previously, but in the context of workflow wn, and w != wn, then formula b) is
chosen. In this case we can assume that the execution of t in workflow wn will give a
good indication of its behavior in workflow w. If task t has been previously executed in
the context of workflow w, but not from instance i, then formula c) is chosen. Finally, if
task t has been previously executed in the context of workflow w, and instance i, meaning
that a loop has been executed, then formula d) is used.

4.2 Probabilities Estimates for Transitions

In the same way we seed tasks’ QoS, we also need to seed workflow transitions. Initially,
the designer sets the transition probabilities at design time. At runtime, the transitions’
probabilities are re-computed. The method used to re-compute the transitions’
probabilities follows the same lines of the method used to re-compute tasks’ QoS. When
a workflow has never been executed, the values for the transitions are obviously taken
from initial designer specifications. When instances of a workflow w have already been
executed, then the data used to re-compute the probabilities come from initial designer
specifications for workflow w, from other executed instances of workflow w, and if
available, from the instance of workflow w for which we wish to predict the QoS. This
corresponds to the use of functions similar to the ones previously defined for tasks’ QoS
(see Table 6).

 18

5 QoS Computation

Once QoS estimates for tasks and for transitions are determined, we can compute overall
workflow QoS. We describe two modeling techniques that can be used to compute QoS
metrics for a given workflow process: mathematical modeling and simulation modeling.
The selection of the method is based on a tradeoff between time and the accuracy of
results. The mathematical method is computationally faster, but it yields results which
may not be as accurate as the results obtained by simulation. (Note that our mathematical
models could be extended to queuing network models (Lazowska, Zhorjan et al. 1984),
but this requires making some simplifying assumptions).

5.1 Mathematical Modeling

The stochastic workflow reduction method consists of applying a set of reduction rules to
a workflow until only one atomic task (Kochut, Sheth et al. 1999) exists. Each time a
reduction rule is applied, the workflow structure changes. After several iterations only
one task will remain. When this state is reached, the remaining task contains the QoS
metrics corresponding to the workflow under analysis.

The set of reduction rules that can be applied to a given workflow corresponds to the set
of inverse operations that can be used to construct a workflow. We have decided to only
allow the construction of workflows which are based on a set of predefined construction
systems; this protects users from designing invalid workflows. Invalid workflows contain
design errors, such as non-termination, deadlocks, and split of instances (Aalst 1999).
While in this paper we do not prove that a workflow graph can be reduced by using the
proposed set of reduction systems, this can be accomplished, proving that all the
reduction systems form a “finite Church-Rosser” transformation. Work on graph
reduction can be found in Allen (1970) and Knuth (1971).

To compute QoS metrics, we have developed the SWR(w) algorithm (Cardoso 2002),
which uses a set of six distinct reduction rules: (1) sequential, (2) parallel, (3) conditional,
(4) fault-tolerant, (5) loop, and (6) network.

Additional reduction rules can be developed. We have decided to present the reduction
concept with only six reduction rules, for two reasons. The first reason is because a vast
majority of workflow systems support the implementation of the reduction rules
presented. Based on a study on fifteen major workflow systems and the workflow
patterns that they support (Aalst, Barros et al. 2002), fifteen of the workflow systems
studied supported the reduction rules (1)(2)(3), ten supported the reduction rule (5), and
eight supported the reduction rules (4). The study does not discuss network patterns. The
network pattern is intended to provide a structural and hierarchical division of a given
workflow design into levels, in order to facilitate its understanding by the grouping of
related tasks into functional units. The second reason is that the reduction rules are
simple, making it easy to understand the idea behind the workflow reduction process.

 19

5.1.1 Reduction Systems

Reduction of a Sequential System. Figure 3 illustrates how two sequential workflow
tasks ti and tj can be reduced to a single task tij. In this reduction, the incoming transitions
of ti and outgoing transition of tasks tj are transferred to task tij.

Figure 3 - Sequential system reduction

In a sequential system, pj = 1. This reduction can only be applied if the following two
conditions are satisfied: a) ti is not a xor/and split and b) tj is not a xor/and join. These
conditions prevent this reduction from being applied to parallel, conditional, and loop
systems. To compute the QoS of the reduction, the following formulae are applied:

T(tij) = T(ti) + T(tj)

C(tij)= C(ti) + C(tj)

R(tij) = R(ti) * R(tj)

F(tij).ar = f(F(ti), F(tj))

Reduction of a Parallel System. Figure 4 illustrates how a system of parallel tasks t1, t2,
…, tn, an and split task ta, and an and join task tb can be reduced to a sequence of three
tasks ta, t1n, and tb. In this reduction, the incoming transitions of ta and the outgoing
transition of tasks tb remain the same. The only outgoing transitions from task ta and the
only incoming transitions from task tb are the ones shown in the figure below. The
probabilities of pa1, pa2,…, p1n and p1b, p2b,…, pnb are equal to 1.

tij

pj

(a) (b)

ti tj

 20

Figure 4 - Parallel system reduction

The QoS of tasks ta and tb remain unchanged, and p1n = pb = 1. To compute the QoS of
the reduction the following formulae are applied:

T(t1n) = MaxI∈{1..n} {T(ti)}

C(t1n) = ∑
≤≤ ni .1

C(ti)

R(t1n) = ∏
≤≤ ni .1

R(ti)

F(t1n).ar = f(F(t1), F(t2), …, F(tn))

Reduction of a Conditional System. Figure 5 illustrates how a system of conditional
tasks t1, t2, …, tn, a xor split (task ta), and a xor join (task tb) can be reduced to a sequence
of three tasks ta, t1n, and tb. Task ta and task tb do not have any other outgoing transitions
and incoming transitions, respectively, other than the ones shown in the figure. In this
reduction the incoming transitions of ta and outgoing transition of tasks tb remain the

same, and ∑
=

=
n

i
aip

1
1.

Figure 5 - Conditional system reduction

tbta
*

(a) (b)

* tbta t1n

pa1
p1b

pnb

p2b

pan

pa2 p1n pb

t1

t2

tn

tbta
+

(a) (b)

+
tbta t1n

pa1
p1b

pnb

p2b

pan

pa2 p1n pb

t1

t2

tn

Formatted: Po

Formatted: Po

Formatted: Po

 21

The QoS of tasks ta and tb remain unchanged, and p1n = pb = 1. To compute the QoS of
the reduction the following formulae are applied:

T(t1n) = ∑
≤≤ ni .1

 pai * T(ti)

C(t1n) = ∑
≤≤ ni .1

 pai * C(ti)

R(t1n) = ∑
≤≤ ni .1

pai * R(ti)

F(t1n).ar = f(pa1, F(t1), pa2, F(t2), …, pan, F(tn))

Reduction of a Loop System. Loop systems can be characterized by simple and dual
loop systems. Figure 6 illustrates how a simple loop system can be reduced. A simple

loop system in task ti can be reduced to a task tli. In this reduction, pi +∑
=

=
n

i
oip

1
1.

Once the reduction is applied, the probabilities of the outgoing transitions of task tli are

changed to plk =
i

ok

p-1
p

, and ∑
=

=
n

k
lkp

1

1.

Figure 6 – Simple loop system reduction

To compute the QoS of the reduction the following formulae are applied:

T(tli) =
ip-1
)(T it

C(tli) =
ip-1
)(C it

R(tli) =
)(Rp-1

)(R*)p-(1
i

i

i

i

t
t

F(tli).ar = f(pi, F(ti))

(a) (b)

tli
+ +

pi

po1 pl1ti… …

pon

… …

pln

+ +

 22

Figure 7 illustrates how a dual loop system can be reduced. A dual loop system composed

of two tasks ti and tj can be reduced to a single task tij. In this reduction, pi +∑
=

=
n

i
oip

1
1.

Once the reduction is applied, the probabilities of the outgoing transitions of task tij are

changed to plk =
i

ok

p-1
p

 and ∑
=

=
n

k
lkp

1

1.

Figure 7 – Dual loop system reduction

To compute the QoS of the reduction the following formulae are applied:

T(tij) =
)p-(1

)(T)p-(1)(T)(T

j

j jji ttt −+

C(tij) =
)p-(1

)(C)p-(1)(C)(C

j

j jji ttt −+

R(tij) =
)(R)(Rp-1

)(R*)p-(1

j

j

ji

i

tt
t

F(tij).ar = f(F(ti), pj, F(tj))

Reduction of a Fault-Tolerant System. Figure 8 illustrates how a fault-tolerant system
with tasks t1, t2, …, tn, an and split (task ta), and a xor join (task tb) can be reduced to a
sequence of three tasks ta, t1n, and tb. The execution of a fault-tolerant system starts with
the execution of task ta and ends with the completion of task tb. Task tb will be executed
only if k tasks from the set {t1, t2, …, tn} are executed successfully. In this reduction, the
incoming transitions of ta and the outgoing transition of tasks tb remain the same, and

1,1},..1{ ==∈∀ ibai ppni .

(a) (b)

tij
+ +

pj

pl1

tj

ti …
pln

+ +

…… …

pon

po1

Formatted: Po

 23

Figure 8 – Fault-Tolerant system reduction

The QoS of tasks ta and tb remain unchanged, and pa1n = p1nb = 1. To compute the QoS of
the reduction the following formulae are applied:

T(t1n) =)})(T),...,(T({ 1 nk
ttMin

C(t1n) = ∑
≤≤ ni .1

C(tI)

R(t1n) = ∑
=

1

01i

…∑ ∑
= =

−+−−+−−
1

0
111

1

))(R)12()1((*...*))(R)12()1((*)(
ni

nnn

n

j
j tiitiikif

F(t1n).ar = f(pa1, F(t1), pa2, F(t2), …, pan, F(tn), k)

The function)(sMin
k

selects the k minimum value from set s, and function)(xf is defined

as followed:





≥
<

=
0,1
0,0

)(
x
x

xf

The formula R(t1n) is utilized to compute reliability and corresponds to the sum of all the
probabilistic states for which more than k tasks execute successfully. The summation
over i1, …, in corresponds to the generation of a binary sequence for which 0 represents
the failing of a task, and 1 represents its success. For example, in a fault-tolerant system
with three parallel tasks (n=3), the values of the indexes i1=1, i2=0, and i3=1 represent the
probabilistic state for which tasks t1 and t3 succeed and task t2 fails. The term

)(
1
∑
=

−
n

j
j kif is used to indicate if a probabilistic state should be considered in the

reliability computation. A probabilistic state is considered only if the number of tasks

succeeding is greater or equal to k, i.e. ∑
=

≥
n

j
j ki

1
(or equivalently∑

=

≥−
n

j
j ki

1
0). In our

tbta
*

(a) (b)

+ tbta t1n

pa1
p1b

pnb

p2b

pan

pa2 pa1n p1nb

t1

t2

tn

K

 24

previous example, since i1=1, i2=0, i3=1 and ∑
=

=
n

j
ji

1
2 , the probabilistic state (i1=1, i2=0,

i3=1) will be only considered if 2≤k .

Reduction of a Network System. A network task represents a sub-workflow (Figure 9).
It can be viewed as a black box encapsulating an unknown workflow realization with a
certain QoS. A network task ns, having only one task ti, can be replaced by an atomic task
tj. This reduction can be applied only when the QoS of task ti is known. In this
replacement, the QoS of the atomic task tj is set to the workflow QoS of the task ti, i.e,
X(tj) = X(ti), X ∈ {T, C, R, F}.

Figure 9 - Network system reduction

The input and output transitions of the network task ns are transferred to the atomic task
tj.

5.1.2 Time, Cost, Reliability, and Fidelity Computations

Time and Cost. The operations used to compute the time and cost dimensions are fairly
intuitive.

Reliability. For the reliability dimension we have used concepts from system and
software reliability theory (Hoyland and Rausand 1994; Ireson, Jr. et al. 1996; Musa
1999). The reliability functions used when applying workflow reduction systems assume
that tasks behave independently. While this assumption is widely employed when
modeling hardware systems, it is considered by some to be inappropriate for software
systems since they tend to violate the independence supposition of the individual
software systems.

Mason and Woit (1998) show that an application’s structure has an influence on the
dependability derived from the reliability of its components. Their work presents a theory
based on a set of rules which when applied to the construction of an application can result
in systems which do not violate the underlying assumptions of the typical reliability
models, i.e, system independence. In order to understand the dependence of software
components it is necessary to understand the difference between the terms “uses” and
“invokes” (Parnas 1974; Parnas 2001). The utilization of “use” methodology creates a
dependency between modules or procedures. This is because if a module A calls a
module B, then the state of A depends on the results of B. Using the “invokes”
methodology this problem does not arise, since when module A calls module B, module
A does not wait or depend on B’s execution results. Based on this observation, Mason
and Woit (1998) state that to reduce the dependence of modules in a system or

(a) (b)

ti

tj

ns

 25

application a, “uses” methodology should not be present to interconnect the components;
instead, a “invokes” methodology should be present. Additionally, the module’s
implementation details cannot affect the correctness of other modules in the system (state
independence).

The architecture of workflow systems directly follows the two points that allow for a
reduction of task dependencies. Workflow systems such as OrbWork (Kochut, Sheth et
al. 1999) use a message-passing architecture and thus exhibit “invokes” characteristics.
Additionally, tasks are independent from the implementation point of view, and therefore
they are state independent. Due to the architecture of typical WfMSs, workflow
applications have a reduced dependency factor among tasks; we make the assumption
that the dependencies can be ignored in most of cases. Nevertheless, if tasks exhibit
strong dependencies due to the data transferred, a profiling approach may need to be
considered. Hamlet et al. (2001) proposed the use of operational profiles that are passed
between connected components to more effectively compute the reliability of the global
system.

Fidelity. While time, cost, and reliability are common and universal measurements,
fidelity is a function of effective design which refers to an intrinsic property(ies) or
characteristic(s) of a good produced by a task realization.

Since fidelity fully depends on the intrinsic properties and characteristics of the goods
produced, it is not a universal measurement. This means that for each reduction rule
presented previously, it is not possible to specify a general and universal formula to
compute fidelity. Thus, for each reduction system (except for network systems) and for
each fidelity attribute, a specific formula needs to be specified. For example, the Swiss
watchmaker TAG Heuer conducts a series of sixty tests to their watches during the
manufacturing process. Specific tasks carry out the tests, which are placed at strategic
locations in the process. Each testing task can have a fidelity attribute associated with it
that represents the number of tests that have been passed when the task was executed. In
this case, the following fidelity function can be specified for the sequential reduction rule:

F(tij).anumber of tests passed = f(F(ti), F(tj)) and

f(vx, vy)= vx.anumber of tests passed + vy.anumber of tests passed

In this example, the function f is additive and simply adds the number of tests passed by
each task. In other cases, the function f can be multiplicative, and therefore can be similar
to the functions employed to compute metrics for the reliability dimension.

It is the responsibility of the designer to set for each fidelity attribute involved in a
workflow the fidelity functions (f) to be used when computing workflow QoS. The
designer can select a function from available sets of fidelity functions specifically
constructed to match particular domain requirements. Alternatively, if the functions
needed cannot be found due to their specificity, the designer can manually define new
functions to meet his/her requirements.

 26

5.2 Simulation Modeling

In order to follow organizational strategies and meet organizational goals, workflow
systems need to be able to analyze workflows according to their QoS. While
mathematical methods can be effectively used (see previous section), another alternative
is to utilize simulation analysis (Miller, Cardoso et al. 2002). Simulation can play an
important role in tuning the quality of service metrics of workflows by exploring “what-
if" questions. When the need to adapt or to change a workflow is detected, deciding what
changes to carry out can be very difficult. Before a change is actually made, its possible
effects can be explored with simulation. To facilitate rapid feedback, the workflow
system and the simulation system need to interoperate. In particular, workflow
specification documents need to be translated into simulation model specification
documents so that the new model can be executed/animated on-the-fly.

In our project, these capabilities involve a loosely-coupled integration between the
METEOR WfMS and the JSIM simulation system (Nair, Miller et al. 1996; Miller, Nair
et al. 1997; Miller, Seila et al. 2000). Workflow is concerned with scheduling and
transformations that take place in tasks, while simulation is mainly concerned with
system performance. For modeling purposes, a workflow can be abstractly represented by
using directed graphs (e.g., one for control flow and one for data flow, or one for both).
Since both models are represented as directed graphs, interoperation is facilitated. In
order to carry out a simulation, the appropriate workflow model is retrieved from the
repository and translated into a JSIM simulation model specification. The simulation
model is displayed graphically and then executed/animated. Statistical results which
indicate workflows QoS are collected and displayed.

In order to simulate METEOR workflows, we are enhancing the JSIM Web-Based
Simulation System. In JSIM, simulation entities flow through a digraph consisting of the
following types of nodes.

Source Produces entities with random times

Server Provides service to entities

Facility Inherits from server, adds a waiting queue

Signal Alters number of service units in a server(s)

Sink Sink consumes entities and records statistics
Table 7 – Nodes in JSIM

These nodes are connected together with transports, which move entities from one node
to the next. These edges provide a smooth motion of entities when a simulation model is
animated. These edges are labeled with branching probabilities.

The mapping of a workflow digraph to a simulation digraph is straightforward. A
METEOR start, stop task will be mapped to a JSIM Source and Sink node, respectively.
A METEOR human task will be mapped to a JSIM Facility, with the number of service
units equal to the number of human participants carrying out the task and feeding of the

 27

same worklist. A METEOR transactional/non-transactional task will be mapped to a
JSIM Facility, with the number of service units equal to the number of processors
available to execute the task. These default mappings can be customized (e.g., a non-
transactional task that does not allow requests to be queued should be mapped to a JSIM
Server). Each edge in the METEOR digraph will be mapped to a corresponding edge in
the JSIM digraph. In METEOR, edges are labeled with the data type of objects flowing
along the edge. In the case of xor nodes, they are also labeled with Boolean expressions.
(The first one that evaluates to true will be the edge selected.) In the current version of
JSIM, data flow must be handled by custom coding. A Boolean expression is mapped to
the probability that the condition will evaluate to true and that none of the preceding
conditions will evaluate to true. For more details on mapping workflow specifications
into simulation models specifications, see Chandvasekavan et al. (2002).

5.3 Workflow QoS Metrics of Interest

In this section, we list the workflow QoS metrics which are of interest to compute (Table
8 and Table 9). The computation can be done at either design time or runtime. At design
time, QoS computations help the designer to compose workflows that will exhibit QoS
metrics which accord with initial requirements. At runtime, the computation of QoS
allows the manager and administrator to identify workflow instances that have ceased to
meet initial QoS requirements. This situation may occur when tasks fail, break down, or
when necessary services are unavailable. The metrics presented can be automatically
computed using the SWR algorithm.

 28

Workflow Time
The workflow monitor records the total time workflow instances spend within a process.
When a workflow process is executed, instances enter the process, then proceed through
various tasks, and finally exit the workflow process. For example, in our scenario, the
DNA Sequencing had a time constraint; it had to be completed in less than 31 weeks. The
WfMS needs to constantly monitor and estimate the time remaining for instance
termination. In Table 8, we show four important measurements for workflow time-based
execution: workflow response time, workflow delay time, minimum workflow response
time, and workflow response time efficiency.

Workflow QoS metrics (Time)

Workflow Response Time (T) T(w) = T(SWR(w))

The workflow response time is the total amount of time that a workflow instance spends
within a workflow process before it finishes. The response time in a workflow is equal to
the sum of the response times at the individual tasks, less any time that two or more tasks
are superimposed on one another. Two or more tasks superimpose their response time
when they are executed in parallel.

Workflow Delay Time (DT) DT(w) = DT(SWR(w))

The workflow delay time, sometimes called “waiting time,” is the total amount of time that
a workflow instance spends in a workflow, while not being processed by a task. The
average delay time in a workflow is equal to the sum of the delay times at the individual
tasks, less any time that two or more tasks are superimposed.

Minimum Workflow Response Time (min T) min T(w) = min T(SWR(w))

The minimum workflow response time, sometimes called the “service time” of a
workflow, is the time required for a workflow instance to be processed, not accounting for
any task delay time. Thus, it includes only the task response time, ignoring completely the
impact of the task delay time. The minimum workflow response time is equal to the sum of
the process time at the individual tasks, less any time that two or more tasks superimpose.

Workflow Response Time Efficiency (E)
E(w) =

)T(
)T(min

w
w

The workflow response time efficiency is the ratio of the minimum workflow response
time and the workflow response time. It is instructive to compare these two measures,
since instance efficiency measurement provides an indication of the time an instance is
delayed during its execution and also indicates the degree a workflow process can be
improved by reducing its response time.

Table 8 – Workflow QoS metrics for the time dimension

 29

Workflow Cost, Reliability, and Fidelity

Workflow QoS metrics (Cost, Reliability, and Fidelity)

Workflow Cost (C) C(w) = C(SWR(w))

Workflow cost (C) analysis measures the cost incurred during the execution of a workflow.
When a workflow process is executed, various tasks, with their associated costs, are also
executed. Cost-based workflows need to have their associated cost calculated so that
managers can make sure that operations are within initial budgets.

Workflow Reliability (R) R(w) = R(SWR(w))

Workflow reliability (R) corresponds to the likelihood that a workflow will perform for its
users on demand.

Workflow Fidelity (F) F(w).attribute = F(attribute, SWR(w))

Workflow fidelity (F) is a function of effective design; it refers to the intrinsic properties or
characteristics of a good produced or a service rendered.

Table 9 – Workflow QoS metrics for the cost, reliability, and fidelity dimension

6 Workflow QoS Computation Example

The Fungal Genome Resource (FGR) laboratory is in the process of reengineering their
workflows. The laboratory technicians, domain experts, and managers have agreed that
an alteration to the Prepare and Sequence and Sequence Processing workflows would
potentially be beneficial when sequencing DNA.

Figure 10 – Prepare and Sequence Workflow

 30

Figure 11 – Sequence Processing Workflow

To improve the efficiency of the processes being managed by the workflow system, the
bioinformatics researchers decided to merge the two processes. The researchers noticed
that the quality of the DNA sequencing obtained was in some cases useless due to E. coli
contamination. Additionally, it was felt that it would be advantageous to use other
algorithms in the sequence processing phase. Therefore, to improve the quality of the
process, the Test Quality task and the SP FASTA task were added.

Clones grown in bacterial hosts are likely to become contaminated. A quick and effective
way to screen for the Escherichia coli (E. coli) contaminants is to compare the clones
against the E. coli genome. For E. coli, this task is made easier with the availability of its
full genome.

The task SP FASTA has of the same objective of the task SP BLAST (a task of the
sequence processing sub-workflow). Both tasks compare new DNA sequences to a
repository of known sequences (e.g., Swiss-Prot or GenBank.) The objective is to find
sequences with homologous relationships to assign potential biological functions and
classifying sequences into functional families. All sequence comparison methods,
however, suffer from certain limitations. Consequently, it is advantageous to try more
than one comparison algorithm during the sequence processing phase. For this reason, it
was decided to employ the BLAST (Altschul, Gish et al. 1990) and FASTA (Pearson and
Lipman 1988) programs to compare sequences.

The following actions were taken to reengineer the existing workflows:

a) Merge the Prepare and Sequence workflow from Figure 10 and the Sequence
Processing workflow from Figure 11,

b) Add the task Test Quality to test the existence of E. coli in sequences, and

c) Execute the search for sequences in genome databases using an additional search
algorithm (FASTA).

At this point, the alterations to introduce into the processes have been identified. From
the functional perspective, the lab personnel, domain experts, and workflow designer all
agreed that the new workflow will accomplish the intended objective. The new re-
engineered workflow is named DNA Sequencing. It is illustrated in Figure 12.

 31

Figure 12 – DNA Sequencing Workflow

6.1 Setting QoS Metrics

While the workflow design meets the functional objectives, non-functional requirements
also need to be met. Prior to the execution of the new workflow, an analysis is necessary
to guarantee that the changes to be introduced will actually produce a workflow that
meets desired QoS requirements, i.e., that the workflow time, cost, reliability, and fidelity
remain within acceptable thresholds. To accomplish this, it is necessary to analyze the
QoS metrics and use the SWR algorithm (Cardoso 2002; Cardoso 2002) to compute
workflow quality of service metrics.

The first step is to gather QoS estimates for the tasks involved in the Prepare and
Sequence and Sequence Processing workflows. These workflows have been executed
several times in the past, and the workflow system has recorded their QoS metrics. The
designer QoS estimates have been set using the following methods. (We have omitted the
designer QoS specification for the distributional class since this experiment does not
involve the use of a simulation system to compute and predict QoS metrics.) For human
tasks, the laboratory technicians and researchers have provided estimates for the QoS
dimensions. For automated tasks, we have used training sets. For example, for the SP
BLAST task we have constructed a training set of sequences of different lengths. The
sequences have been processed with BLAST, and their QoS has been recorded. For the
time dimension, we have used linear regression to predict future metrics (the BLAST
algorithm has a linear running time (Altschul, Gish et al. 1990).) Equation 1 was used to
estimate the BLAST running time to process a sequence:

 32

 22)(
))((

 and ,
∑∑

∑ ∑∑
−

−
=−=+=

xxn
yxxyn

bXbYabxay (1)

where x is the independent data (input size) and y is the dependent data (running time).
The estimated function is defined as:

 0071.0,37.87 with , ==+= babxay (2)

The only task with a fidelity function is the SP BLAST task. The fidelity attribute HITS
indicates the percentage of sequences processed with an E value lower than e-15. The E
value is an indication of the probability that the match between a query sequence and a
sequence stored in a database occurred by chance. For close matches, this number is
typically very small.

F(tBSP BLAST).HITS = percentage of sequences with E < e-15

For the new tasks introduced (Test Quality and SP FASTA), no QoS runtime information
is available. The only QoS information that can be used to compute the workflow QoS is
the one the designer specified at design time. The initial QoS estimates are shown in
Table 10.

Tasks T(t) C(t) R(t) F(t)
Quality Test 0.01 $0.0 100% n/a
SP FASTA 9.59 $0.0 100% 0.65

Designer Specifications

Table 10 – Test Quality and FASTA initial QoS estimates

Since the SP FASTA task is an automated task, we have used a training set of sequences
to derive and set designer QoS estimates. For the time dimension, we have used the linear
regression from Equation 1 and defined the function represented in Equation 3 to
estimate its duration (FASTA has a linear running time (Pearson and Lipman 1988).)

 11.4,9.1061 with , ==+= babxay (3)

As for the SP BLAST task, the following fidelity function has been utilized to characterize
the quality of the results obtained by the task SP FASTA:

F(tSP FASTA).HITS = percentage of sequences with E < 0.01

 33

Generally, a value of 0.01 or below is statistically very significant, and a value between
0.01 and 0.05 is the borderline.

To make the workflow QoS computation possible for the fidelity dimension, formulae
have been defined for the reduction systems. As an example, for parallel systems and for
the HITS fidelity attribute, the following function has been defined:

F(t1n).HITS = f(F(t1), F(t2), …, F(tn)) =
HITS attributefidelity with the tasksof #

).F(
.1

HITS∑
≤≤ ni

ii tw

Using the above formula in the DNA Sequencing workflow will result in the application
of the following function:

F(tSP BLAST FASTA).HITS = (w1 * F(tSP BLAST).HITS + w2 * F(tSP FASTA).HITS)/2

This function represents only a possible computation for the HITS fidelity attribute. It is
shown here with the solely objective of illustrating how fidelity attributes are computed.
Additional studies of the FASTA and BLAST applications would give more information
on the processing of sequences that could be used to a more precise definition of this
function.

6.2 Computing QoS Metrics

The domain experts believe that there is a strong agreement between the tasks QoS
exhibited during the execution of the Prepare and Sequence and the Sequence Processing
workflows, and the expected QoS of the tasks to be scheduled by the DNA Sequencing
workflow. This belief is based on the fact that the tasks executed in the two initial
workflows will be executed without any change by the newly constructed workflow. The
following functions (see also Table 5) have been utilized to re-compute QoS metrics
based on designer and runtime information:

b) QoSDim(t) 0.2*Designer AverageDim(t) + 0.8*Multi-Workflow
AverageDim(t)

c) QoSDim(t, w) 0.2*Designer AverageDim(t) + 0.2*Multi-Workflow
AverageDim(t) + 0.6*Workflow AverageDim(t, w)

Table 11 – Re-computation of the QoS dimensions for the DNA Sequencing workflow

To represent the QoS agreement among tasks from different workflows, the domain
experts have decided to set the weights according to the following beliefs. For formula b),
the domain experts believe that the recorded QoS of tasks previously executed will give
good estimates for the execution of tasks scheduled by the new workflow. Thus, the
experts set the weights wi1 and wi2 of formula b) to 0.2 and 0.8, respectively. The domain
experts also believe that as soon as tasks are scheduled by the new workflow, the QoS

 34

estimates should rely on the latest QoS data recorded from the DNA Sequencing
workflow. Also, they consider that when QoS data is available from the DNA Sequencing
workflow, the importance given to the designer estimates should have the same influence
as the QoS estimates recorded for the execution of tasks scheduled by other workflows
than the DNA Sequencing. Therefore, for formula c), the experts set the weights wi1, wi2,
and wi3 to 0.2, 0.2, and 0.6, respectively. In our experiments, we only predict workflow
QoS metrics before the execution of workflow, not during workflow execution; thus, we
did not to set the weights for formula d) from Table 6.

Since the new workflow has a loop that did not exist in any of the previously executed
workflows, it is necessary to estimate the probability of the transition (Test Quality,
Prepare Sample) to be enabled at runtime. Based on prior knowledge of sequencing
experiments, the researchers calculate that approximately 10% of the DNA sequence will
contain E. coli bacteria and that thus there is a 10% probability of the loop back transition
being enabled.

6.3 Results

We have run a set of ten experiments. Each experiment involved the execution of the
SWR algorithm to predict QoS metrics of the DNA Sequencing workflow and the actual
execution of the workflow. The results are shown for the four QoS dimensions in Figure
13. The diamonds indicate the QoS estimates given by the SWR algorithm and the
squares indicate the runtime metrics.

Figure 13 – Experiment results

For the time analysis, the most relevant information that can be interpreted from the chart
is the observation that the instances 3 and 4 have registered actual running times that are

Cost Ana lysis

$1,000

$1,500

$2,000

$2,500

1 2 3 4 5 6 7 8 9 10

Ins tance #

C
o

st

Re liability Ana lysis

99.2%

99.4%

99.6%

99.8%

100.0%

1 2 3 4 5 6 7 8 9 10

Ins tance #

R
el

ia
bi

lit
y

Fide lity Ana lysis

0.45

0.50

0.55

0.60

0.65

1 2 3 4 5 6 7 8 9 10

Ins tance #

Fi
d

el
ity

Tim e Ana lysis

250.0

350.0

450.0

550.0

650.0

1 2 3 4 5 6 7 8 9 10

Ins tance #

T
im

e
 (h

ou
rs

)

 35

considerably different from the values estimated. This is due to the topology of the
workflow. During the process, it is expected that some DNA sequences will contain E.
coli contamination. When this happens, re-work is needed, and the first part of the
workflow, involving the tasks Prepare Sample, Prepare Clone and Sequence, and
Assembly, has to be re-executed. The first part of the workflow takes approximately 99%
of the overall workflow execution time. Thus, when E. coli contamination is present in a
sequence, the time needed to execute the workflow almost doubles. Since it is impossible
to know if a DNA sequence will contain E. coli or not, the SWR algorithm gives an
estimate for instance 3 which is significantly different from the registered values. When
instance 4 is executed, the QoS metrics from the previous instance are considered for the
QoS estimation. As a result, it can be seen in the chart that the SWR estimation converges
to the mean of the recent time metrics recorded. If more instances detect the presence of
E. coli contamination, the results of the SWR algorithm for the time dimension will
gradually converge to the 550 hours level. When instances number 5 through 10 are
executed, they do not detect the presence of contamination in the sequences processed.
As a result, the SWR estimates are more accurate, and the estimates start to slowly
converge at lower time values.

The costs associated with each task have been provided from technical datasheets
describing the DNA Sequencing process. For the cost analysis, the results observed are
strongly linked to the results obtained from the time analysis. Again, instances 3 and 4
have recorded actual costs that are considerably different from the values estimated. This
is due to the existence of E. coli contamination in the sequences processed. When
contamination is detected, the re-work necessary to carry out the sequencing double the
cost of the instance. This is because the cost of an instance is totally determined by the
tasks Prepare Sample, Prepare Clone and Sequence, and Assembly, which are involved
in any necessary re-work. All the other tasks, which are mainly automated software tasks,
are considered to have a zero cost. As with the time analysis, the convergence of the
SWR algorithm towards recent registered metrics can be seen. One particularity of the
DNA Sequencing workflow is the discrete linearity of its cost. When no re-work is
necessary because no contamination is detected, the cost of the instance is c. If
contamination is found, then re-work is needed, and the cost of the instance is 2c. If
contamination is found n times during the sequencing process, the cost of the instance
will be nc. This property for the cost dimension can be observed from the chart, where
instances with no re-work always have the same cost ($1,152), and instances that need re-
working one time have a cost of $2,304.

The fidelity analysis shows the creation of very good estimates. It can be seen that the
SWR algorithm constantly changes its convergence as a response to recently recorded
QoS metrics. The runtime fidelity metrics are within a small range, as predicted from the
estimates.

The reliability analysis is relatively easy to interpret. For the first instance executed, the
SWR algorithm has used information specified by the designer and derived from task
executions from the Prepare and Sequence and Sequence Processing workflows. The
information suggests that the reliability of the new workflow design will be 99.4%. But
during our experiments, the ten instances executed never failed. Thus, a 100% reliability
value has been registered for each workflow instance. During the instance executions, the

 36

reliability estimates given by the SWR algorithm slowly converge to 100%. Nevertheless,
it is expected that as the workflow system executes more instances, the reliability of the
DNA Sequencing workflow will decrease.

For all the QoS dimensions, the degree of convergence of the SWR algorithm is directly
dependent on the weights that have been set for the re-computation of the QoS
dimensions (see Table 11 for the weights used in the DNA Sequencing workflow). A
higher weight associated with the multi-workflow function implies a faster convergence
when the SWR algorithm is applied. The same principal applies to the instance workflow
function.

7 Related Work

The work found in the literature on quality of service for WfMS is limited. The
Crossflow project (Klingemann, Wäsch et al. 1999; Damen, Derks et al. 2000; Grefen,
Aberer et al. 2000) has made the major contribution. In their approach, a continuous-time
Markov chain (CTMC) is used to subsequently calculate the time and the cost associated
with workflow executions. While the research on quality of service for WfMS is limited,
the research on time management, which is under the umbrella of workflow QoS, has
been more active and productive. Eder et al. (1999) and Pozewaunig et al. (1997) present
an extension of CMP and PERT by annotating workflow graphs with time, in order to
check the validity of time constraints at process build-time and instantiation-time, and to
take pre-emptive actions at run-time. The major limitation of their approach is that only
directed acyclic graphs (DAG) can be modeled. This is a significant limitation since
many of workflows have cyclic graphs. Cycles are, in general, used to represent re-work
actions or repetitive activities within a workflow. Our approach deals with acyclic
workflows as well as with cyclic workflows. Our experience on modeling real-world
applications has shown that a significant number of workflows have cyclic graphs.
Dadam et al. (Reichert and Dadam 1998; 2000) also recognize that time is an important
aspect of workflow execution. With each workflow task, minimal and maximal durations
may be specified. The system supports the specification and monitoring of deadlines. The
monitoring system notifies users when deadlines are going to be missed. It also checks if
minimal and maximal time distances between tasks are followed according to initial
specifications. Marjanovic and Orlowska (1999) describe a workflow model enriched
with modeling constructs and algorithms for checking the consistency of workflow
temporal constraints. Their work mainly focuses on how to manage workflow changes,
while accounting for temporal constraints. Son et al. (2001) present a solution for the
deadline allocation problem based on queuing networks. Their work also uses graph
reduction techniques, but these are applied to queuing theory. Studies on workflow
reliability can also be found in the literature. The research is mainly concentrated on
system implementation issues. In (Kamath, Alonso et al. 1996) the authors propose an
architecture to enhance workflow systems’ reliability via replication. Different reliability
levels for different categories of process instances are used. Tang and Veijalainen (1999)
propose the use of a fragmentation technique to provide higher reliability, without using a
replication-based solution. Wheater and Shrivastava (1998) describe a workflow system

 37

that relies on a middleware infrastructure to provide a fault-tolerant execution
environment, enhancing system and applications reliability.

Although the work on quality of service for workflows is lacking, a significant amount of
research has been done in the areas of networking (Cruz 1995; Georgiadis, Guerin et al.
1996), real-time applications (Clark, Shenker et al. 1992) and middleware (Zinky,
Bakken et al. 1997; Frlund and Koistinen 1998; Hiltunen, Schlichting et al. 2000).

Recently, in the area of Web services, researchers have also manifested an interest in
QoS. The DAML-S (Ankolekar, Burstein et al. 2001; DAML-S 2001) specification
allows the semantic description of business processes. The specification includes
constructs which specify quality of service parameters, such as quality guarantees, quality
rating, and degree of quality. One current limitation of DAML-S’ QoS model is that
every process needs to have QoS metrics specified by the user.

8 Future Work

The workflow QoS model presented in this paper can be extended in two additional
dimensions, which are useful for workflow systems with stronger requirements. The first
dimension is maintainability. Maintainability corresponds to the mean time necessary to
repair workflow failures; it is the average time spent to maintain workflows in a condition
where they can perform their intended function. Maintenance actions mainly involve the
correction of failures during workflow execution. Workflow systems record the period of
time necessary for a faulty task to be repaired. The time spent to repair a workflow
component depends on the type of error that has occurred. Reparative actions can be as
simple as restarting a workflow scheduler that has crashed (Kochut, Sheth et al. 1999), or
they can be more complex, involving the installation of an ORB infrastructure in a new
machine to transfer workflow schedulers, for example. To increase maintainability,
advanced mechanisms have been developed to allow workflow systems to automatically
recover from errors. Luo et al. (2000) describe the architecture and implementation of an
exception-handling mechanism. The system detects and propagates exceptions, which
occur during instances execution to an exception-handling module. The system, based on
case-based reasoning theory, derives exception handlers to repair damaged workflows
(Luo, Sheth et al. 1998). The system has the ability to adapt itself over time. The
knowledge acquired in past experiences is used in the resolution of new problems.

The second dimension that can be included is the trust dimension. The use of workflow
systems to coordinate and manage Web-services compels the development of techniques
to appraise the global security level of workflows specifications. Workflow systems and
applications face several security problems, and dedicated mechanisms are needed to
increase the level of security. Major problems include the distributed nature of WfMSs,
the use of non-secure networks (i.e, the Internet), the use of Web servers to access
workflow systems data, and the potential multi-organizational span of workflows.
Systems security level is assessed through the existence of security mechanisms (such as
authentication, access control, labels, audits, system integrity, security policy, etc.) and
through the use of development techniques (such as formal specifications, formal proofs,
tests, etc.). The importance of developing secure workflow systems has been recognized,

 38

and prototypes combining workflow and security technology have already been
developed. We have extended workflow technology with the implementation of two
security modules. The first one (Miller, Fan et al. 1999) and (Fan 1999) describes a
workflow security architecture which targets the five security services (authentication,
access control, data confidentiality, data integrity, and non-repudiation) recommended by
the International Standards Organization for network-based information systems. The
second one (Kang, Froscher et al. 1999) describes a multilevel secure (MLS) workflow
system to enable distributed users and workflow applications to cooperate across
classification levels. MLS workflow systems allow users to program multilevel mission
logic, to securely coordinate distributed tasks, and to monitor the progress of the
workflow across classification levels.

The functions used to compute the QoS dimensions at runtime (Table 6) have their terms
weighted. The user is responsible for setting the weights (wi1, wi2, wi3, and wi4). These
weights remain constant as the workflow system registers new workflow executions.
Additional research would be useful to analyze the effect of substituting the constant
weights with variable weights. The idea would be to allow the workflow system to
automatically change the weights based on the number of workflow executions. As more
instances are registered for a workflow w, the weights specified for the Designer and
Multi-Workflow functions can be decreased and the weight associated with the
Workflow function increased. This corresponds with the belief that over time the QoS
metrics of the instances of the workflow w will give more accurate and fresh data to be
used with the SWR algorithm. The use of Bayesian estimates (Bernardo and Smith 1994)
are one of the solutions that can be investigated to enable the automatic adjustments of
the weights.

9 Conclusions
Evaluation on how business is conducted, such as with e-commerce, brings a new set of
challenges and requirements that need to be explored and answered. Many E-commerce
applications are composed of Web-services forming workflows, which in turns represent
an abstraction of cross-organizational business processes. The use of workflows and
workflow systems to conduct and coordinate businesses in a heterogeneous and
distributed environment has an immediate operational requirement: the management of
workflow QoS. The composition of Web-services, and therefore workflows, cannot be
undertaken while ignoring the importance of QoS measurements. Trading agreements
between suppliers and customers include the specification of QoS items such as products
or services to be delivered, deadlines, quality of products, and cost of service. The correct
management of such QoS specifications directly impacts the success of organizations
participating in e-commerce and also directly impacts the success and evolution of e-
commerce itself.

In this paper, as a starting point, we show the importance of QoS management for
workflows and WfMSs. We then presented a comprehensive QoS model. This model
allows for the description of workflow components from a QoS perspective; it includes
four dimensions: time, cost, reliability, and fidelity. The use of QoS increases the added
value of workflow systems to organizations, since non-functional aspects of workflows

 39

can be described. The model is predictive. Based on the QoS of workflow components
(tasks or web services), the QoS of workflows (networks) can be automatically
computed. This feature is important, especially for large processes that in some cases
may contain hundreds of tasks. We present a mathematical model that formally describes
the formulae to compute QoS metrics among workflow tasks. Based on these formulae,
we have developed an algorithm (SWR algorithm) to automatically compute the overall
QoS of a workflow. The algorithm applies a set of reduction rules to a workflow, until
only one task remains which represents the QoS for the entire workflow. We also
describe how a simulation system can be used with a workflow system to carry out
efficient workflow QoS simulations.

To test the validity of our QoS model and of our mathematical model we have deployed a
set of production workflows in the area of genetics at the Fungal Genome Resource
laboratory. We executed workflow instances based on real data and the generated QoS
data have been collected and analyzed. The analysis of the data corroborates our initial
hypothesis that our QoS model and mathematical model give a suitable framework to
predict and analyze the QoS of production workflows.

10 References

Aalst, W. M. P. v. d. (1999). Generic Workflow Models: How to Handle Dynamic
Change and Capture Management Information. Proceedings of the Fourth IFCIS
International Conference on Cooperative Information Systems (CoopIS'99),
Edinburgh, Scotland, IEEE Computer Society Press. pp. 115-126.

Aalst, W. M. P. v. d., A. P. Barros, A. H. M. t. Hofstede and B. Kiepuszeski (2002).
Workflow patterns homepage. http://tmitwww.tm.tue.nl/research/patterns.

Allen, F. E. (1970). "Control Flow Analysis." SIGPAN Notices 5(7): 1-19.

Altschul, S. F., W. Gish, W. Miller, E. W. Myers and D. J. Lipman (1990). "Basic local
alignment search tool." Journal of Molecular Biology 215: 403-410.

Ankolekar, A., M. Burstein, J. Hobbs, O. Lassila, D. Martin, S. McIlraith, S. Narayanan,
M. Paolucci, T. Payne, K. Sycara and H. Zeng (2001). DAML-S: Semantic
Markup for Web Services. Proceedings of the International Semantic Web
Working Symposium (SWWS).

Anyanwu, K., A. P. Sheth, J. A. Miller, K. J. Kochut and K. Bhukhanwala (1999).
"Healthcare Enterprise Process Development and Integration. Technical Report,"
LSDIS Lab, Department of Computer Science, University of Georgia, Athens,
GA.

Bernardo, J. M. and A. F. M. Smith (1994). Bayesian Theory, Wiley.

Bussler, C. (1998). Workflow Instance Scheduling with Project Management Tools. 9th
Workshop on Database and Expert Systems Applications DEXA'98, Vienna,
Austria, IEEE Computer Society Press. pp. 753-758.

 40

CAPA (1997). "Course Approval Process Automation (CAPA)," LSDIS Lab, Department
of Computer Science, University of Georgia, Athens, GA July 1, 1996 - June 30,
1997.

Cardoso, J. (2002). Stochastic Workflow Reduction Algorithm. LSDIS Lab, Department
of Computer Science, University of Georgia,
http://lsdis.cs.uga.edu/proj/meteor/QoS/SWR_Algorithm.htm.

Cardoso, J. (2002). Workflow Quality of Service and Semantic Workflow Composition.
Ph.D. Dissertation. Department of Computer Science, University of Georgia,
Athens, GA.

Cardoso, J., Z. Luo, J. Miller, A. Sheth and K. Kochut (2001). Survivability Architecture
for Workflow Management Systems. Proceedings of the 39th Annual ACM
Southeast Conference, Athens, GA. pp. 207-216.

Chandvasekavan, S., G. Silver, J. A. Miller, J. S. Cardoso and A. P. Sheth (2002).
Composite Web Service: Performance Evaluation and Simulation. Proceedings of
the 2002 Winter Simulation Conference, San Diego, California (in progress).

Chen, Q., U. Dayal, M. Hsu and M. L. Griss (2000). Dynamic-Agents, Workflow and
XML for E-Commerce Automation. EC-Web. pp. 314-323.

Clark, D., S. Shenker and L. Zhang (1992). Supporting Real-Time Applications in an
Integrated Services Packet Network: Architecture and Mechanism. Proceedings of
ACM SIGCOMM. pp. 14-26.

Cruz, R. L. (1995). "Quality of service guarantees in virtual circuit switched networks."
IEEE J. Select. Areas Commun. 13(6): 1048-1056.

Dadam, P., M. Reichert and K. Kuhn (2000). Clinical Workflows: the Killer Application
for Process Oriented Information Systems. 4th International Conference on
Business Information Systems (BIS 2000), Poznan, Poland. pp. 36-59.

Damen, Z., W. Derks, M. Duitshof and H. Ensing (2000). Business-to-business E-
Commerce in a Logistics Domain. The CAiSE*00 Workshop on Infrastructures
for Dynamic Business-to-Business Service Outsourcing, Stockholm.

DAML-S (2001). "Technical Overview - a white paper describing the key elements of
DAML-S."

Eder, J., E. Panagos, H. Pozewaunig and M. Rabinovich (1999). Time Management in
Workflow Systems. BIS'99 3rd International Conference on Business Information
Systems, Poznan, Poland, Springer Verlag. pp. 265-280.

Fan, M. (1999). Security for the METEOR Workflow Management System. M.Sc.
Thesis. Department of Computer Science, University of Georgia, Athens, GA.

Fensel, D. and C. Bussler (2002). The Web Service Modeling Framework. Vrije
Universiteit Amsterdam (VU) and Oracle Corporation,
http://www.cs.vu.nl/~dieter/ftp/paper/wsmf.pdf.

FGR (2002). Fungal Genome Resource laboratory, http://gene.genetics.uga.edu/.

 41

Franceschini, F. (2002). Advanced quality function deployment. Boca Raton, FL, St.
Lucie Press.

Frlund, S. and J. Koistinen (1998). "Quality-of-Service Specification in Distributed
Object Systems." Distributed Systems Engineering Journal 5(4).

Garvin, D. (1988). Managing Quality: The strategic and Competitive Edge. New York:,
Free Press.

Georgiadis, L., R. Guerin, V. Peris and K. Sivarajan (1996). "Efficient Network QoS
Provisioning Based on Per Node Traffic Shaping." IEEE ACM Transactions on
Networking 4(4): 482-501.

German Shegalov, Michael Gillmann and G. Weikum (2001). "XML-enabled workflow
management for e-services across heterogeneous platforms." The VLDB Joumal
10: 91-103.

Goel, A. L. (1985). "Software reliability models: assumptions, limitations, and
applicability." IEEE Transactions on Software Engineering 11(12): 1411-1423.

Grefen, P., K. Aberer, Y. Hoffner and H. Ludwig (2000). "CrossFlow: Cross-
Organizational Workflow Management in Dynamic Virtual Enterprises."
International Journal of Computer Systems Science & Engineering 15(5): 227-
290.

Hall, D., J. A. Miller, J. Arnold, K. J. Kochut, A. P. Sheth and M. J. Weise (2000).
"Using Workflow to Build an Information Management System for a
Geographically Distributed Genome Sequence Initiative," University of Georgia,
Department of Computer Science, LSDIS Lab, Athens, GA, Technical Report.

Hamlet, D., D. Mason and D. Woit (2001). Theory of Software Component Reliability.
23rd International Conference on Software Engineering ICSE'2001. pp. 361-370.

Hiltunen, M. A., R. D. Schlichting, C. A. Ugarte and G. T. Wong. (2000). Survivability
through Customization and Adaptability: The Cactus Approach. DARPA
Information Survivability Conference and Exposition (DISCEX 2000). pp. 294-
307.

Hoyland, A. and M. Rausand (1994). System Reliability Theory: Models and Statistical
Methods, Wiley, John & Sons, Incorporated.

Ireson, W. G., C. F. C. Jr. and R. Y. Moss (1996). Handbook of reliability engineering
and management. New York, McGraw Hill.

ISO9000 (2002). ISO9000. International Organization for Standardization,
http://www.iso.ch/iso/en/iso9000-14000/iso9000/iso9000index.html.

Kamath, M., G. Alonso, R. Guenthor and C. Mohan (1996). Providing High Availability
in Very Large Workflow Management Systems. Proceedings of the 5th
International Conference on Extending Database Technology, Avignon. pp. 427-
442.

Kang, M. H., J. N. Froscher, A. P. Sheth, K. J. Kochut and J. A. Miller (1999). A
Multilevel Secure Workflow Management System. Proceedings of the 11th

 42

Conference on Advanced Information Systems Engineering, Heidelberg,
Germany, Springer. pp. 271-285.

Kao, B. and H. GarciaMolina (1993). Deadline assignment in a distributed soft realtime
system. Proceedings of the 13th International Conference on Distributed
Computing Systems. pp. 428-437.

Klingemann, J., J. Wäsch and K. Aberer (1999). Deriving Service Models in Cross-
Organizational Workflows. Proceedings of RIDE - Information Technology for
Virtual Enterprises (RIDE-VE '99), Sydney, Australia. pp. 100-107.

Knuth, D. E. (1971). "An Empirical Study of FORTRAN Programs." Software Practices
and Experience 1(12): 105-134.

Kobielus, J. G. (1997). Workflow Strategies, IDG Books Worldwide.

Kochut, K. J., A. P. Sheth and J. A. Miller (1999). "ORBWork: A CORBA-Based Fully
Distributed, Scalable and Dynamic Workflow Enactment Service for METEOR,"
Large Scale Distributed Information Systems Lab, Department of Computer
Science, University of Georgia, Athens, GA.

Kolarik, W. J. (1995). Creating quality: concepts, systems, strategies, and tools. New
York, McGraw-Hill.

Krishnakumar, N. and A. Sheth (1995). "Managing Heterogeneous Multi-system Tasks to
Support Enterprise-wide Operations." Distributed and Parallel Databases Journal
3(2): 155-186.

Lazowska, E. D., J. Zhorjan, S. G. Graham and K. C. Sevcik (1984). Quantitative System
Performance: Computer System Analysis Using Queueing Network Models,
Prentice Hall.

Leymann, F. (2001). Web Services Flow Language (WSFL 1.0). IBM Software Group,
http://www-4.ibm.com/software/solutions/webservices/pdf/WSFL.pdf.

Luo, Z. (2000). Knowledge Sharing, Coordinated Exception Handling, and Intelligent
Problem Solving to Support Cross-Organizational Business Processes. Ph.D.
Dissertation. Department of Computer Science, University of Georgia, Athens,
GA.

Luo, Z., A. P. Sheth, J. A. Miller and K. J. Kochut (1998). Defeasible Workflow, its
Computation, and Exception Handling. Proceedings of 1998 Computer-Supported
Cooperative Work (CSCW 1998), Towards Adaptive Workflow Systems
Workshop, Seattle, WA.

Marjanovic, O. and M. Orlowska (1999). "On modeling and verification of temporal
constraints in production workflows." Knowledge and Information Systems 1(2):
157-192.

Mason, D. and D. Woit (1998). Software system reliability from component reliability.
Proceedings of 1998 Workshop on Software Reliability Engineering (SRE'98),
Ottawa, Ontario.

 43

McCready, S. (1992). There is more than one kind of workflow software.
Computerworld. November 2: 86-90.

Miles, M. B. and A. M. Huberman (1994). Qualitative data analysis: an expanded
sourcebook. Thousand Oaks, California, Sage Publications.

Miller, J. A., J. S. Cardoso and G. Silver (2002). Using Simulation to Facilitate Effective
Workflow Adaptation. Proceedings of the 35th Annual Simulation Symposium
(ANSS'02), San Diego, California. pp. 177-181.

Miller, J. A., M. Fan, S. Wu, I. B. Arpinar, A. P. Sheth and K. J. Kochut (1999).
"Security for the METEOR Workflow Management System," Department of
Computer Science, University of Georgia, Athens, GA, Technical Report, pp. 33.

Miller, J. A., R. Nair, Z. Zhang and H. Zhao (1997). JSIM: A Java-Based Simulation and
Animation Environment. Proceedings of the 30th Annual Simulation Symposium,
Atlanta, GA. pp. 786-793.

Miller, J. A., D. Palaniswami, A. P. Sheth, K. J. Kochut and H. Singh (1998).
"WebWork: METEOR2's Web-based Workflow Management System." Journal of
Intelligence Information Management Systems: Integrating Artificial Intelligence
and Database Technologies (JIIS) 10(2): 185-215.

Miller, J. A., A. F. Seila and X. Xiang (2000). "The JSIM Web-Based Simulation
Environment." Future Generation Computer Systems: Special Issue on Web-
Based Modeling and Simulation 17(2): 119-133.

Musa, J. D. (1993). "Operational Profiles in Software-Reliability Engineering." IEEE
Software 10(2): 14-32.

Musa, J. D. (1999). Software reliability engineering: more reliable software, faster
development and testing. New York, McGraw-Hill.

Nahrstedt, K. and J. M. Smith (1996). "Design, Implementation and Experiences of the
OMEGA End-point Architecture." IEEE JSAC 14(7): 1263-1279.

Nair, R., J. A. Miller and Z. Zhang (1996). A Java-Based Query Driven Simulation
Environment. Proceedings of the 1996 Winter Simulation Conference, Colorado,
CA. pp. 786-793.

Nelson, E. C. (1973). "A Statistical Basis for Software Reliability," TRW Software Series
March.

Parnas, D. L. (1974). On a 'Buzzword': Hierarchical Structure. Proceedings of the IFIP
Congress 1974, North Holland. pp. 336-339.

Parnas, D. L. (2001). Software fundamentals: collected papers by David L. Parnas.
Boston, Addison-Wesley.

Pearson, W. R. and D. J. Lipman (1988). Improved tools for biological sequence
comparison. Proceedings of the National Academy of Science of the USA. pp.
2444-2448.

 44

Pozewaunig, H., J. Eder and W. Liebhart (1997). ePERT: Extending PERT for workflow
management systems. First European Symposium in Advances in Databases and
Information Systems (ADBIS), St. Petersburg, Russia. pp. 217-224.

Reichert, M. and P. Dadam (1998). "ADEPTflex - Supporting Dynamic Changes of
Workflows Without Losing Control." Journal of Intelligent Information Systems -
Special Issue on Workflow Managament 10(2): 93-129.

Rommel, G. (1995). Simplicity wins: how Germany's mid-sized industrial companies
succeed. Boston, Mass, Harvard Business School Press.

Sadiq, S., O. Marjanovic and M. E. Orlowska (2000). "Managing Change and Time in
Dynamic Workflow Processes." The International Journal of Cooperative
Information Systems 9(1, 2): 93-116.

Shrivastava, S. K. and S. M. Wheater (1998). Architectural Support for Dynamic
Reconfiguration of Distributed Workflow Applications. IEEE Proceedings
Software Engineering. pp. 155-162.

Son, J. H., J. H. Kim and M. H. Kim (2001). "Deadline Allocation in a Time-Constrained
Workflow." International Journal of Cooperative Information Systems (IJCIS)
10(4): 509-530.

Stalk, G. and T. M. Hout (1990). Competing against time: how timebased competition is
reshaping global markets. New York, Free Press.

Tang, J. and J. Veijalainen (1999). "Using Fragmentation To Increase Reliability For
Workflow Systems." Society for Design and Process Science 3(2): 33-48.

Tversky, A. and D. Kahneman (1974). "Judgement under uncertainty: Heuristics and
biases." Science 185: 1124-1131.

Weikum, G. (1999). Towards Guaranteed Quality and Dependability of Information
Service. Proceedings of the Conference Datenbanksysteme in Buro, Technik und
Wissenschaft, Freiburg, Germany, Springer Verlag. pp. 379-409.

Wheater, S. M. and S. K. Shrivastava (2000). "Reliability Mechanisms in the OPENflow
Distributed Workflow System," Department of Computing Science, University of
Newcastle upon Tyne Technical Report 31, Esprit LTR Project No. 24962 - C3DS
First year Report, pp. 269-288.

Zinky, J., D. Bakken and R. Schantz (1997). "Architectural Support for Quality of
Service for CORBA Objects." Theory and Practice of Object Systems 3(1): 1-20.

