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Abstract 
Workflow management systems (WfMSs) have been used to support 
various types of business processes for more than a decade now. In 
workflows for e-commerce and Web-services applications, suppliers and 
customers define a binding agreement or contract between the two parties, 
specifying Quality of Service (QoS) items such as products or services to 
be delivered, deadlines, quality of products, and cost of services. The 
management of QoS metrics directly impacts the success of organizations 
participating in e-commerce. Therefore, when services or products are 
created or managed using workflows, the underlying workflow system 
must accept the specifications and be able to estimate, monitor, and 
control the QoS rendered to customers. In this paper, we present a 
predictive QoS model that makes it possible to compute the quality of 
service for workflows automatically based on atomic task QoS attributes. 
To this end, we present a model that specifies QoS and describe an 
algorithm and a simulation system in order to compute, analyze and 
monitor workflow QoS metrics. 

1 Introduction 

Organizations are constantly seeking new and innovative information systems to better 
fulfill their missions and strategic goals. With the advent and evolution of global scale 
economies, organizations need to be more competitive, efficient, flexible, and integrated 
in the value chain at different levels, including the information system level. In the past 
decade, Workflow Management Systems (WfMSs) have been distinguished due to their 
significance and their impact on organizations. WfMSs allow organizations to streamline 
and automate business processes and reengineer their structure; in addition, they increase 
efficiency and reduce costs.  
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Several researchers have identified workflows as the computing model that enables a 
standard method of building Web-services applications and processes to connect and 
exchange information over the Web (Chen, Dayal et al. 2000; Shegalov, Gillmann et al. 
2001; Leymann 2001; Fensel and Bussler 2002). The new advances and developments in 
e-services and Web-services set new requirements and challenges for workflow systems.  

Our past research has involved the development of fully distributed enactment services 
for workflow management. Our infrastructure, the METEOR system, and specifically its 
OrbWork (Kochut, Sheth et al. 1999) and WebWork (Miller, Palaniswami et al. 1998) 
enactment services have been used in prototyping and deploying applications to various 
domains, such as bio-informatics (Hall, Miller et al. 2000), healthcare (Anyanwu, Sheth 
et al. 1999), telecommunications (Luo 2000), the military (Kang, Froscher et al. 1999), 
and university administration (CAPA 1997). 

Our experience with real-world applications has made us aware that existing workflow 
systems, both products and research prototypes, provide a set of indispensable 
functionalities that manage and streamline business processes. Yet, organizations 
operating in e-commerce and in global economies that include competitive and constantly 
changing markets have a new set of requirements that have not been answered by current 
workflow technologies. One important missing requirement is the management of 
Quality of Service (QoS), or technical aspects of Service Level Agreements (SLAs). 
Organizations operating in modern markets, such as e-commerce activities and 
distributed Web-services interactions, require QoS management. Products and services 
with well-defined specifications must be available to customers. Appropriate control of 
quality leads to the creation of quality products and services; these, in turn, fulfill 
customer expectations and achieve customer satisfaction. 

While QoS has been a major concern in the areas of networking (Cruz 1995; Georgiadis, 
Guerin et al. 1996), real-time applications (Clark, Shenker et al. 1992) and middleware 
(Zinky, Bakken et al. 1997; Frlund and Koistinen 1998; Hiltunen, Schlichting et al. 
2000), few research groups have concentrated their efforts on enhancing workflow 
systems to support workflow Quality of Service management. 

For organizations, being able to characterize workflows based on QoS has four distinct 
advantages. First, it allows organizations to translate their vision into their business 
processes more efficiently, since workflow can be designed according to QoS metrics. 
For e-commerce processes it is important to know the QoS an application will exhibit 
before making the service available to its customers. Second, it allows for the selection 
and execution of workflows based on their QoS, to better fulfill customer expectations. 
As workflow systems carry out more complex and mission-critical applications, QoS 
analysis serves to ensure that each application meets user requirements. For e-commerce 
processes, it is important to know the QoS an application will exhibit before making the 
service available to customers. Third, it makes possible the monitoring of workflows 
based on QoS. Workflows must be rigorously and constantly monitored throughout their 
life cycles to assure compliance both with initial QoS requirements and targeted 
objectives. QoS monitoring allows adaptation strategies to be triggered when undesired 
metrics are identified or when threshold values are reached. Fourth, it allows for the 
evaluation of alternative strategies when adaptation becomes necessary. The 
unpredictable nature of the surrounding environment has an important impact on the 
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strategies, methodologies, and structure of business processes. Thus, in order to complete 
a workflow according to initial QoS requirements, it is necessary to expect to adapt, 
replan, and reschedule a workflow in response to unexpected progress, delays, or 
technical conditions. When adaptation is necessary, a set of potential alternatives is 
generated, with the objective of changing a workflow as its QoS continues to meet initial 
requirements. For each alternative, prior to actually carrying out the adaptation in a 
running workflow, it is necessary to estimate its impact on the workflow QoS. For 
example, when a workflow becomes unavailable due to the malfunction of its 
components, it is indispensable to evaluate the adaptive strategies that can be applied to 
correct the process. It is essential that the services rendered follow customer 
specifications to meet their expectations and ensure satisfaction. Customer expectations 
and satisfaction can be translated into the quality of service rendered. Organizations have 
realized that quality of service management is an important factor in their operations. 
Quality models, such as ISO9000 (ISO9000 2002), have been created to help 
organizations and their individual performers meet customer needs.  

Workflow QoS is composed of different dimensions that are used to characterize 
workflow schema and instances. Innovative aspect of research reported in this paper is 
that of developing a comprehensive QoS model specification and its computation, 
covering various quality dimensions. Most of the research carried out in order to extend 
workflow system capabilities to include project management features has mainly been 
done for the time dimension (Kao and GarciaMolina 1993; Bussler 1998; Eder, Panagos 
et al. 1999; Marjanovic and Orlowska 1999; Dadam, Reichert et al. 2000; Sadiq, 
Marjanovic et al. 2000; Son, Kim et al. 2001); this is only one of the dimensions under 
the workflow QoS umbrella. Even though some WfMSs currently offer time management 
support, the technology available is rudimentary (Eder, Panagos et al. 1999). Research on 
workflow reliability issues has also been conducted, but the work was mostly on system 
implementation (Kamath, Alonso et al. 1996; Tang and Veijalainen 1999; Wheater and 
Shrivastava 2000). The Crossflow project (Klingemann, Wäsch et al. 1999; Damen, 
Derks et al. 2000; Grefen, Aberer et al. 2000) is the one that most closely relates to our 
work. It considers both time and cost associated with workflow executions. In Crossflow, 
the information about past workflow execution is collected in a log. From this 
information, a continuous-time Markov chain (CTMC) is derived. Since Markov chains 
do not directly support the concept of parallel executions introduced by the and-split/and-
join structure, the power set of the parallel activities of the tasks inside an and-split/and-
join structure needs to be constructed. While for small workflows the computation of a 
power set is affordable, this may not be the case for large workflows with a parallel 
nature, for which the power set can reach millions of states. Our approach uses a different 
concept to compute quality of service dimensions, one which does not suffer from 
exponential complexity. 

This paper reports a comprehensive model for the specification of workflow QoS as well 
as methods to analyze and monitor QoS. We start by investigating the relevant QoS 
dimensions that are necessary to correctly characterize workflows. We not only target the 
time dimension, but also investigate other dimensions required to develop a real and 
usable workflow QoS model. Once the QoS and associated dimensions are selected, it is 
necessary to develop algorithms and to select methods to compute QoS. In workflows, 
quality metrics are associated with tasks, and tasks compose workflows. The computation 
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of workflow QoS is done based on the QoS of the tasks that compose a workflow. We 
present an algorithm and also show how a workflow system can be coupled with a 
simulation system in order to predict QoS. Key feature of this model is that based on the 
QoS of workflow components (tasks or web services), the QoS of workflows.  
Furthermore, to test the validity of our QoS model, we have deployed a set of production 
workflows in the area of genetics.  By executing instances of this workflow based on  on 
real data, we generated and analyzed QoS data. 

Throughout this paper, the term ‘task’ or ‘workflow task’ corresponds to a traditional 
workflow task or a web-service. It will later become evident that in order for our model 
to be applied to workflows, tasks or web-service only have to adhere to the QoS model. 

This paper is structured as follows. Section 2 describes a workflow process that illustrates 
a real world scenario, which will be used to exemplify QoS through the rest of the paper. 
Based on our scenario, a set of new requirements is derived and the current limitations of 
WfMSs technology are stated. In section 3, we introduce our workflow QoS model and 
describe each of its dimensions. Section 4 describes how the quality of service of 
workflow tasks is calculated. In Section 5, we present an algorithm to compute and 
estimate workflow QoS, and we also describe how simulation techniques can be used for 
QoS estimation. Section 6 presents an example of how to compute the QoS for the 
workflow introduced in our initial scenario. Section 7 discusses the related work in the 
QoS area; section 8 presents future work on workflow QoS. Finally, section 9 presents 
our conclusions. 

2 Scenario  

The Fungal Genome Resource laboratory (FGR 2002) at the University of Georgia has 
realized that to be competitive and efficient it must adopt a new and modern information 
system infrastructure. Therefore, a first step was taken in that direction with the adoption 
of a workflow management system (METEOR (Kochut, Sheth et al. 1999)) to support its 
laboratory processes (Hall, Miller et al. 2000). Since the laboratory supplies several 
genome services to its customers, the adoption of a WfMS has enabled the logic of 
laboratory processes to be captured in a workflow schema. As a result, all the services 
available to customers are stored and executed under the supervision of the workflow 
system. 

2.1 Workflow Structure 

Before discussing this scenario in detail, we review the basis elements of the METEOR 
workflow model. 

A workflow is composed of tasks and transitions. Tasks are represented using a circle, 
networks (sub-workflows) using rounded rectangles, and transitions are represented using 
an arrow. Transitions express dependencies between tasks and are associated with an 
enabling probability (p1, p2,.., pn). When a task has only one outgoing transition, the 
enabling probability is 1. In such a case, the probability can be omitted from the graph. A 
task with more than one outgoing transition can be classified as an and-split or xor-split. 
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And-split tasks enable all their outgoing transitions after completing their execution. Xor-
split tasks enable only one outgoing transition after completing their execution. And-split 
tasks are represented with a ‘*’ and xor-split tasks are represented with a ‘+’. A task with 
more than one incoming transition can be classified as an and-join or xor-join. And-join 
tasks start their execution when all their incoming transitions are enabled. Xor-join tasks 
are executed as soon as one of the incoming transitions is enabled. As with and-split and 
xor-split tasks, and-join tasks and xor-join tasks are represented with the symbol ‘*’ and 
‘+’, respectively. When no symbol is present to indicate the input or output logic of a 
task, then it is assumed to be an xor. 

2.2 Workflow Description  

Genomic projects involve highly specialized personnel and researchers, sophisticated 
equipment, and specialized computations involving large amounts of data. The 
characteristics of the human and technological resources involved, often geographically 
distributed, require a sophisticated coordination infrastructure to manage not only 
laboratory personnel and equipment, but also the flow of data generated.  

One of the services supplied by the research laboratory is the DNA Sequencing 
workflow. A simplified version of the DNA Sequencing workflow is depicted in Figure 
1. The complete description of the workflow can be found in the Appendix.  

 

Figure 1– DNA Sequencing workflow 

The workflow is composed of eight main tasks: Setup, Prepare Sample, Prepare Clone 
and Sequence, Assembly, Get Sequences, Sequence Processing, and Process Report. Each 
individual task carries out a particular function; if necessary, the workflow can be spread 
across multiple research centers. 

The Setup task is responsible for initializing internal variables of the workflow process.  

The second task, Prepare Sample, consists of isolating DNA from a biological sample. 
The samples can be prepared using a variety of protocols. These protocols need to be 
followed rigorously in order to obtain DNA that is not degraded in any form. A correctly 
prepared sample will originate a better DNA sequencing, since the quality of the DNA 
template is one of the most critical factors in DNA sequencing. 

The task Prepare Clones and Sequence clones specific regions of the genome from DNA 
isolated in the previous step. This step can be fully automated by computer control (using, 
for example, a robotic system). This task also executes the sequencing, which uses DNA 
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sequencing machines to read each biochemical “letter” (A, G, C or T) of a cloned DNA 
fragment. The output is composed of short decoded segments (a sequence such as 
AGGCATTCCAG…). The use of automated sequencers has revolutionized the field of 
bioinformatics by enabling scientists to catalogue sequence information hundreds of 
times faster than was possible with pre-existing scanning techniques. This new approach 
allows for automatic recognition, without major human intervention. 

The Assembly task analyzes the DNA segments generated in the sequencing task. This 
step includes the assembly of larger contiguous blocks of sequences of DNA from small 
overlapping fragments. This is complicated by the fact that similar sequences occur many 
times in many places of the genome. 

The Test Quality task screens for the Escherichia coli (E. coli) contaminant in DNA 
contigs. The clones grown in bacterial hosts are likely to be contaminated. A quick and 
effective way to screen for the E. coli contaminant is to compare a given DNA sequence 
to the E. coli genome. For E. coli, this task is made easier by the availability of its full 
genome. 

Get Sequences is a simple task that downloads the sequences created in the assembly 
step, using the FTP protocol. 

The Sequence Processing task analyzes the DNA segments generated in the assembly 
step. The goal of this task is to find DNA sequences in order to identify macromolecules 
with related structures and functions. The new DNA sequence is compared to a 
repository of known sequences (e.g., Swiss-Prot or GenBank), using one of a number of 
computational biology applications for comparison. 

After obtaining the desired data from the Sequence Processing task, the results are stored, 
e-mailed, and a report is created. The Process Report task stores the data generated in the 
previous task in a database and creates a final report. It is responsible for electronically 
mailing the sequencing results to the persons involved in this process, such as researchers 
and lab technicians. 

2.3 Workflow Application Requirements 

In its normal operation, the Fungal Genome Resource laboratory executes the DNA 
Sequencing workflow in a regular manner. Workflow instances are started in order to 
render the sequencing services. In this scenario, and with current workflow technology, 
the execution of the workflow instances is carried out without any quality of service 
management on important parameters such as delivery deadlines, fidelity, quality, 
reliability, and cost of service. The laboratory wishes to be able to state a detailed list of 
requirements for the service to be rendered to its customers. Its requirements include the 
following: 

 The final report has to be delivered in 31 weeks or less, as specified by the 
customer (e.g., NIH). 

 The profit margin has to be 10%. For example, if a customer pays $1,100 for a 
sequencing, then the execution of the DNA Sequencing workflow must have a 
cost for the laboratory that is less than $1,000.  
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 The error rate of the task Prepare Clones and Sequence has to be at most ε, and 
the data quality of the task Sequence Processing has to be at least α. 

 In some situations, the client may require an urgent execution of DNA 
sequencing. Therefore, the workflow has to exhibit high levels of reliability, since 
workflow failures would delay the sequencing process. 

The requirements for the genetic workflow application presented underline four non-
functional requirements: time, cost, fidelity, and reliability. While the specification of 
such quality requirements is important, current WfMSs do not include the functions to 
delineate their specification or management.  

2.4 Current WfMSs Limitations 

The lack of a mechanism to specify workflow QoS is a current limitation of WfMSs. 
However, this is not the only missing element; once a workflow QoS model is defined, 
three additional components need to be developed: estimation algorithms and methods, 
monitoring tools, and mechanisms to control the quality of service. Only the development 
of integrated solutions composed of those four modules (specification, estimation, 
monitoring, and control) can result in a sophisticated quality management framework. 
The objectives and functionalities of each module include the following: 

 A quality of service model must be developed to allow for the specification of 
workflow Quality of Service (QoS) metrics. This model allows suppliers to specify 
the duration, quality, cost, fidelity, etc., of the services and products to be delivered. 
Specifications can be set at design-time, when designers build workflow applications, 
or they can be adjusted at run-time. 

 Algorithms and methods must be developed to estimate the quality of service of a 
workflow both before instances are started and during instance execution. The 
estimation of QoS before instantiation allows suppliers to ensure that the workflow 
processes to be executed will indeed exhibit the quality of service requested by 
customers. The analysis of workflow QoS during instance execution allows workflow 
systems to constantly compute QoS metrics and register any deviations from the 
initial requirements. 

 Tools must be available to monitor the quality of service of running workflow 
instances. Workflow users and managers need to receive information about the QoS 
status and possible deviations from the desired metrics that might occur. In our 
scenario, let us assume that for some unknown reason the matching factor of the 
DNA Sequencing data drops below a threshold expressed by the customer. The 
matching factor reflects the degree of similarity between the query sequence 
("probe") and the compared ("subject") sequence stored in a sequence database. The 
use of workflow QoS monitoring tools can automatically detect this variation in 
fidelity and automatically notify interested users.  

 Mechanisms must be available which control the quality of service of workflow 
instances. Control is necessary when instances do not behave according to initial 
requirements. Let us consider the following example: workflow instances are running 
correctly and the quality of service specifications are being followed when a task 
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fails. The task Prepare Clone and Sequence stops its processing because one of the 
associated machines has a mechanical problem. As a consequence, workflow QoS 
specifications of time are no longer satisfied, and the WfMS raises a warning, an 
alert, or an exception. The faulty task needs to be replaced by an equivalent task to 
restore the soundness of the system. This replacement can be accomplished by 
applying dynamic changes to the workflow instances, either manually or 
automatically (Cardoso, Luo et al. 2001). 

While these four areas of research are important and indispensable for adequate quality of 
service management, in this paper we focus on the specification, estimation, and 
monitoring of workflow QoS.  

3 Workflow Quality of Service  

As stated earlier, the quality of service is an important issue for workflow systems. The 
international quality standard ISO 8402 (part of the ISO 9000 (ISO9000 2002)) describes 
quality as ”the totality of features and characteristics of a product or service that bear on 
its ability to satisfy stated or implied needs.” This definition implies a relation between 
the characteristics of products or services rendered and the initial requirements or implied 
needs. In our opinion, this definition of quality, which includes an important relationship 
between requirements and characteristics, is relevant and applicable to the domain of 
WfMSs. For us, workflow QoS represents the quantitative and qualitative characteristics 
of a workflow application necessary to achieve a set of initial requirements. Workflow 
QoS addresses the non-functional issues of workflows rather than workflow process 
operations. Quantitative characteristics can be evaluated in terms of concrete measures 
such as workflow execution time, cost, etc. Kobielus (1997) suggests that dimensions 
such as time, cost, and quality should constitute the criteria that workflow systems should 
include and might benefit from. Qualitative characteristics specify the expected services 
offered by the system, such as security and fault-tolerance mechanisms. QoS should be 
seen as an integral aspect of workflows; therefore, it should be integrated with workflow 
specifications. The first step is to define a workflow QoS model. 

3.1 Workflow QoS Model 

Quality of service can be characterized according to various dimensions. We have 
investigated related work to decide which dimensions would be relevant to compose our 
QoS model. Our research targeted two distinct areas: operations management for 
organizations and quality of service for software systems. The study of those two areas is 
important, since workflow systems are widely used to model organizational business 
processes, and workflow systems are themselves software systems. 

On the organizational side, Stalk and Hout (1990) and Rommel et al. (1995) investigated 
the features with which successful companies assert themselves in competitive world 
markets. Their results indicated that success is related to the capability to compete with 
other organizations, and it is based upon three essential pillars: time, cost, and quality. 
These three dimensions have been a major concern for organizations. Garvin (1988) 
associates eight dimensions with quality, including performance and reliability. Software 
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systems’ quality of service has also been extensively studied. Major contributions can be 
found in the areas of networking (Cruz 1995; Georgiadis, Guerin et al. 1996), real-time 
applications (Clark, Shenker et al. 1992) and middleware (Zinky, Bakken et al. 1997; 
Hiltunen, Schlichting et al. 2000). For middleware systems, Frlund and Koistinen (1998) 
present a set of practical dimensions for distributed object systems’ reliability and 
performance, which include TTR (time to repair), TTF (time to failure), availability, 
failure masking, and server failure. For data networks, the QoS generally focus on 
domain-specific dimensions such as bandwidth, latency, jitter, and loss (Nahrstedt and 
Smith 1996). 

Our past work on deploying workflow applications has made us aware of the need for 
workflow process QoS management. Additionally, we have realized that workflow 
processes have a particular set of requirements which are domain dependent and that 
need to be accounted for when creating a QoS model. Based on previous studies and our 
experience in the workflow domain, we have constructed a QoS model composed of the 
following dimensions: time, cost, reliability, and fidelity. According to Weikum (1999), 
information services QoS can be divided into three categories: system centric, process 
centric, and information centric. Our model specifies quality dimensions that include the 
system and process categories. QoS specifications are set for task definitions. Based on 
this information, QoS metrics are computed for workflows (see section 5). 

Other researchers have also identified the need for a QoS process model. A good example 
is the DAML-S specification (Ankolekar, Burstein et al. 2001; DAML-S 2001), which 
semantically describes business processes (as in the composition of Web services). The 
use of semantic information facilitates process interoperability between trading partners 
involved in e-commerce activities. This specification includes constructs which specify 
quality of service parameters, such as quality guarantees, quality rating, and degree of 
quality. While DAML-S has identified the importance of Web services and business 
processes specifications, the QoS model adopted should be significantly improved in 
order to supply a more functional solution for its users. One current limitation of DAML-
S’ QoS model is that it does not provide a detailed set of classes and properties to 
represent quality of service metrics. The QoS model needs to be extended to allow for a 
precise characterization of each dimension. The addition of semantic concepts, such as 
minimum, average, maximum, and the distribution function associated with a dimension, 
will allow the implementation of algorithms for the automatic computation of QoS 
metrics for processes based on atomic tasks and sub-processes’ QoS metrics. 

3.2 Task Time 

Time is a common and universal measure of performance. For workflow systems, it can 
be defined as the total time needed by an instance to transform a set of inputs into 
outputs. The philosophy behind a time-based strategy usually demands that businesses 
deliver the most value as rapidly as possible. Shorter workflow execution time allows for 
a faster production of new products, thus providing a competitive advantage, since the 
products are more rapidly introduced into the market. Additionally, reducing the time 
taken to execute a set of tasks in a workflow process makes it possible for an organization 
to be more responsive to customers’ needs. Therefore, it is important to enhance WfMS 
to include time-based process execution.  



 

 10

The first measure of time is task response time (T). Task response time corresponds to the 
time an instance takes to be processed by a task. The task response time can be broken 
down into two major components: delay time and process time. Delay time (DT) refers to 
the non-value-added time needed in order for an instance to be processed by a task. This 
includes, for example, the instance queuing delay and the setup time of the task. While, 
those two metrics are part of the task operation, they do not add any value to it. Process 
time (PT) is the time a workflow instance takes at a task while being processed; in other 
words, it corresponds to the time a task needs to process an instance. Therefore, task 
response time for a task t can be computed as follows: 

T(t)  =  DT(t) + PT(t) 

The delay time can be further broken down into queuing delay and setup delay. Queuing 
delay is the time instances spend waiting in a tasklist, before the instance is selected for 
processing. Setup delay is the time an instance spends waiting for the task to be set up. 
Setup activities may correspond to the warming process carried out by a machine before 
executing any operation, or to the execution of self-checking procedures. Another time 
metric that may be considered to integrate with the delay time is the synchronization 
delay, which corresponds to the time a workflow instance waits for mates in an and-join 
task (synchronization). In our QoS model, this metric is not part of the task response 
time. This is because the algorithm we use to estimate workflow QoS can derive this 
metric directly from the workflow structure and from the task response time. This will 
become more clear when we describe workflow QoS computation. 

3.3 Task Cost  

Task cost represents the cost associated with the execution of workflow tasks. Cost is an 
important factor, since organizations need to operate according to their financial plan. It 
is fundamental for organizations that wish to reduce their expenditures on internal 
processes and wish to control product and service cost. During workflow design, both 
prior to workflow instantiation and during workflow execution, it is necessary to estimate 
the cost of the execution in order to guarantee that financial plans are followed. The cost 
of executing a single task includes the cost of using equipment, the cost of human 
involvement, and any supplies and commodities needed to complete the task. The 
following cost functions are used to compute the cost associated with the execution of a 
task.  

Task cost (C) is the cost incurred when a task t is executed; it can be broken down into 
two major components: enactment cost and realization cost.  

C(t) = EC(t) + RC(t) 

The enactment cost (EC) is the cost associated with the management of the workflow 
system and with workflow instances monitoring. The realization cost (RC) is the cost 
associated with the runtime execution of the task. It can be broken down into: direct 
labor cost, machine cost, direct material cost, and setup cost. Direct labor cost is the cost 
associated with the person carrying out the execution of a workflow human task (Kochut, 
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Sheth et al. 1999), or the cost associated with the execution of an automatic task with 
partial human involvement. Machine cost is the cost associated with the execution of an 
automatic task. This can correspond to the cost of running a particular piece of software 
or the cost of operating a machine. Direct material cost is the cost of the materials, 
resources, and inventory used during the execution of a workflow task. Setup cost is the 
cost to set up any resource used prior to the execution of a workflow task. 

3.4 Task Reliability 

In an early work on workflow modeling, Krishnakumar and Sheth (1995) represented the 
execution behavior of each task, using task structures. Each workflow task structure has 
an initial state, an execution state, and two distinct terminating states. One of the states 
indicates that a task has failed (for non-transactional tasks) or was aborted (for 
transactional and open 2PC tasks), while the other state indicates that a task is done or 
committed (Figure 2). The model used to represent each task indicates that only one 
starting point exists when performing a task, but two different states can be reached upon 
its execution. Based on this task model structure, we introduce the reliability dimension. 
This QoS dimension provides information concerning the relationship between the 
number of times the state done/committed is reached and the number of times the 
failed/aborted state is reached after the execution of a task. 

Figure 2 - Two task structures (Krishnakumar and Sheth 1995) 

Task Reliability (R) corresponds to the likelihood that the components will perform for its 
users on demand; it is a function of the failure rate. To describe task reliability we follow 
a discrete-time modeling approach. We have selected this solution since workflow task 
behavior is most of the time characterized in respect to the number of executions. 
Discrete-time models are adequate for systems that respond to occasional demands, such 
as database systems (i.e, discrete-time domain). This dimension follows from one of the 
popular discrete-time stable reliability models proposed in (Nelson 1973), where failure 
rate is given as the ratio of successful executions/scheduled executions. 

 

R(t) = 1 – failure rate 

Table 1 – Task reliability  
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For each task, the WfMS keeps track of the number of times the task has been scheduled 
for execution and how many times the task has been successfully executed. R(t) is a 
stable model, since when software failure occurs no fault removal is performed. 

Alternatively, continuous-time reliability models can be used when the failures of the 
malfunctioning equipment or software can be expressed in terms of times between 
failures, or in terms of the number of failures that occurred in a given time interval. Such 
reliability models are more suitable when workflows include tasks that control equipment 
or machines that have failure specifications determined by the manufacturer. Goel (1985) 
classified reliability models into four kinds: input domain-based models, times-between-
failures models, failure-count models, and fault seeding models. Ireson, Jr et al. (1996) 
presents several software reliability models which can be used to model this QoS 
dimension. The ideal situation would be to associate with each workflow task a reliability 
model representing its working behavior. While this is possible, we believe that the 
common workflow system users do not have enough knowledge and expertise to apply 
such models. 

3.5 Task Fidelity 

We view fidelity as a function of effective design; it refers to an intrinsic property(ies) or 
characteristic(s) of a good produced or service rendered. Fidelity reflects how well a 
product is being produced and how well a service is being rendered. Fidelity is often 
difficult to define and measure because it is subject to judgments and perceptions. 
Nevertheless, the fidelity of workflows should be predicted whenever feasible and 
carefully controlled when needed (Kolarik 1995; Franceschini 2002). 

Workflow tasks have a fidelity (F) vector dimension composed of a set of fidelity 
attributes (F(t).ar), that reflect and quantify task operations. Each fidelity attribute refers 
to a property or characteristic of the product being created, transformed, or analyzed. 
Fidelity attributes are used by the workflow system to compute how well workflows, 
instances, and tasks are meeting user specifications. For example, the Test Quality task 
checks the fidelity of the attribute F(t).aE. coli matching. This attribute reflects the probability 
that the sample being sequenced is contaminated. Each task is associated with a fidelity 
function F(t), which represents the local normalized fidelity: 

F(t) = |f1(F(t).ai)| wi1 + | f2(F(t).aj)| wi2 + | f3(F(t).ak)| wi3 + … + | fn(F(t).al)| win 

The formula weights the fidelity attributes, which can be transformed to more appropriate 
values using a function fn, and are normalized to the scale [0..1]. The sum of the weights 
wik is equal to 1. In view of the fact humans often feel awkward in handling and 
interpreting such quantitative values (Tversky and Kahneman 1974), we allow the 
designer with the help of a domain expert to map the value resulting from applying the 
fidelity function to a qualitative scale (Miles and Huberman 1994). This qualitative 
indicator is used to detect areas of a workflow with anomalies and undesired behavior. 
An example of a mapping scale for quantitative and qualitative values is shown in Table 
2. The workflow designer is responsible for the creation of the mapping table. The table 
is created by first selecting a set of qualitative terms that characterize the fidelity. The use 
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of qualitative terms may facilitate the human understanding of the fidelity concept 
exhibited by workflows in some cases. 

 

 

Qualitative 
Fidelity 

Quantitative 
Fidelity 

Unacceptable [0.00.. 0.20] 

Poor [0.21.. 0.40] 

Satisfactory [0.41.. 0.60] 

Good [0.61.. 0.80] 

Perfect [0.81.. 1.00] 
Table 2 – Example of a fidelity-mapping table 

Depending on the task type, a task uses different strategies to set fidelity attributes. Three 
scenarios can be drawn: automatic tasks controlling hardware, automatic tasks controlling 
software, and human tasks. For an automated task controlling a hardware device, the 
fidelity attribute can be set after reading the output status line of the device. For example, 
the task Sequencing controls DNA sequencing, which is carried out automatically by a 
sequencer. When the sequencing finishes, the machine generates several output files to 
describe how the process was executed. These values can be passed on to the task, which 
automatically updates its fidelity attributes. For automated tasks controlling a software 
application, the same procedure can be applied. For example, the task Sequence 
Processing executes various algorithms on the sequences received. One of the algorithms 
used is BLAST (Altschul, Gish et al. 1990). This algorithm searches DNA sequences in a 
database to identify macromolecules with related structures and functions. Once the 
search is concluded, the algorithm returns a value indicating the confidence of the 
matching. For this task, the returned value from the execution of the algorithm will be 
used to describe the fidelity of the task’s execution. For human tasks, the procedure has 
to be manual. Therefore, it is the responsibility of the user to manually input information 
relative to the fidelity of the task executed. In the case of the task Prepare Sample, the lab 
technician sets the fidelity attribute quality of clones manually, after a visual 
identification. For quality assurance reasons the attributes should be set or checked by a 
person other than the one who that carried out the task execution. If evaluating the 
fidelity of a task cannot be accurately done by a human, an option is to place – when 
possible – an automatic task after the human task to automatically check the fidelity. 

The fidelity information can be used to effectively monitor workflow executions. 
Typically, during the lifetime of an instance, qualitative information describing task 
fidelity is displayed on graphical monitors as the tasks are executed. Managers can easily 
identify tasks which exhibit unsatisfactory fidelity metrics. 
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3.6 QoS Model Discussion 

One of the most popular workflow classifications distinguishes between ad hoc 
workflows, administrative workflows, and production workflows. This classification was 
first mentioned by (McCready 1992). The main differences between these types include 
structure, repetitiveness, predictability, complexity, and degree of automation.  

We recognize that the QoS model presented here is better suited for production 
workflows (McCready 1992) since they are more structured, predictable, and repetitive. 
Production workflows involve complex and highly-structured processes, whose execution 
requires a high number of transaction accessing different information systems. These 
characteristics allow the construction of adequate QoS models for workflow tasks. In the 
case of ad hoc workflows, the information, the behavior, and the timing of tasks are 
largely unstructured, which makes the procedure of constructing a good QoS model more 
difficult and complex. 

4 Creation of QoS Estimates 

In order to facilitate the analysis of workflow QoS, it is necessary to initialize task QoS 
metrics and also initialize stochastic information which indicates the probability of 
transitions being fired at runtime. Once tasks and transitions have their estimates set, 
algorithms and mechanisms, such as simulation, can be applied to compute overall 
workflow QoS. 

4.1 QoS Estimates for Tasks 

Having previously defined the QoS dimensions for tasks, we now target the estimation of 
QoS metrics of tasks. The specification of QoS metrics for tasks is made at design time 
and re-computed at runtime, when tasks are executed. During the graphical construction 
of a workflow process, the designer sets QoS estimates for each task. The estimates 
characterize the quality of service that the tasks will exhibit at runtime.  

Setting initial QoS metrics for some workflow tasks may be relatively simple. For 
example, setting the QoS for a task controlling a DNA sequencer can be done based on 
the time, cost, and reliability specifications given by the manufacturer of the DNA 
sequencer. In other cases, setting initial QoS metrics may prove to be difficult. This is the 
case for tasks that heavily depend on user input and system environment. For such tasks, 
it is convenient to study the workflow task based on real operations. The estimates are 
based on data collected while testing the task. The idea is to test the task based on 
specific inputs. This can be achieved by the elaboration of an operational profile (Musa 
1993). In an operational profile, the input space is partitioned into domains, and each 
input is associated with a probability of being selected during operational use. The 
probability is employed in the input domain to guide input generation. The density 
function built from the probabilities is called the operational profile of the task. At 
runtime, tasks have a probability associated with each input. Musa (1999) described a 
detailed procedure for developing a practical operational profile for testing purposes.  



 

 15

The task runtime behavior specification is composed of two classes of information (Table 
3): basic and distributional. The basic class associates with each task’s QoS dimension 
the minimum value, average value, and maximum value the dimension can take. For 
example, the cost dimension corresponds to the minimum, average, and maximum cost 
associated with the execution of a task. The second class, the distributional class, 
corresponds to the specification of a constant or of a distribution function (such as 
Exponential, Lognormal, Normal, Rayleigh, Time-Independent, Weibull, and Uniform) 
which statistically describes task behavior at runtime. For example, Table 3 and Table 4 
show the QoS dimensions for an automatic task (the SP FASTA task) and for a manual 
task (the Prepare Sample task; see section 2.2 for tasks descriptions). 

 

 Basic class  Distributional class 

 Min value Avg value Max value  Dist. Function 

Time 0.291 0.674 0.895 Normal(0.674, 0.143) 

Cost 0 0 0 0.0 

Reliability - 100% - 1.0 

Fidelity.ai 0.63 0.81 0.92 Trapezoidal(0.7,1,1,4) 

Table 3 – Task QoS for an automatic task 

 

 Basic class  Distributional class 

 Min value Avg value Max value  Dist. Function 

Time 192 196 199 Normal(196, 1) 

Cost 576 576 576 576.0 

Reliability - 100% - 1.0 

Fidelity.ai - - - - 

Table 4 – Task QoS for a manual task 

The values specified in the basic class are typically employed by mathematical methods 
in order to compute workflow QoS metrics, while the distributional class information is 
used by simulation systems to compute workflow QoS. To devise values for the two 
classes, the designer typically applies the functions presented in the previous section to 
derive the task’s QoS metrics. We recognize that the specification of time, cost, fidelity, 
and reliability is a complex operation, which when not carried out properly can lead to 
the specification of incorrect values. Additionally, the initial specification may not 
remain valid over time. To overcome this difficulty, a task’s QoS values can be 
periodically re-computed for the basic class, based on previous executions. The 
distributional class may also need to have its distribution re-computed. At runtime, the 
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workflow system keeps track of actual values for the QoS dimensions monitored. QoS 
runtime metrics are saved and used to re-compute the QoS values for the basic class 
which were specified at design time. The workflow system re-computes the QoS values 
for each dimension; this allows the system to make more accurate estimations based on 
recent instance executions. 

The re-computation of QoS task metrics is based on data coming from designer 
specifications and from the workflow system log. Four scenarios can occur: a) For a 
specific task t and a particular dimension Dim, the average is calculated based only on 
information introduced by the designer (designer average); b) the average of a task t 
dimension is calculated based on all its executions independently of the workflow that 
executed it (multi-workflow average); c) the average of the dimension Dim is calculated 
based on all the times task t was executed in any instance from workflow w (workflow 
average); and d) the average of the dimension of all the times task t was executed in 
instance i of workflow w (instance average). Scenario d) can only occur when loops exist 
in a workflow. 

The averages described in Table 5 are computed at runtime and made available to the 
workflow system. While Table 5 shows only how to compute average metrics, similar 
formulae can be used to compute minimum and maximum values. 

 

Designer AverageDim(t)  Average specified by the designer in the basic 
class for dimension Dim 

Multi-Workflow AverageDim (t)  Average of the dimension Dim for task t 
executed in the context of any workflow 

Workflow AverageDim(t, w)  Average of the dimension Dim for task t 
executed in the context of any instance of 
workflow w 

Instance AverageDim(t, w, i)  Average of the dimension Dim for task t 
executed in the context of instance i of 
workflow w 

Table 5 – Designer, multi-workflow, workflow and instance average 

The task QoS for a particular dimension can be determined at different levels; it is 
computed following the equations described in Table 6. 
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a) QoSDim(t) Designer AverageDim(t) 

b) QoSDim(t) wi1* Designer AverageDim(t) + wi2* Multi-Workflow 
AverageDim(t) 

c) QoSDim(t, w) wi1* Designer AverageDim(t) + wi2* Multi-Workflow 
AverageDim(t) + wi3*Workflow AverageDim(t, w) 

d) QoSDim(t, w, i) wi1* Designer AverageDim(t) + wi2* Multi-Workflow 
AverageDim(t) + wi3* Workflow AverageDim(t, w) + wi4* 
Instance Workflow AverageDim(t,w, i) 

 Table 6 – QoS dimensions computed at runtime 

The workflow system uses the formulae from Table 6 to predict the QoS of tasks. The 
weights wij are set manually. They reflect the degree of correlation between the workflow 
under analysis and other workflows for which a set of common tasks is shared. Since the 
values entered by the designer may contain extraneous data and therefore be imprecise, a 
Bayesian approach (Bernardo and Smith 1994) might be considered to make use of prior 
knowledge in order to improve the accuracy of the weights wij.  

Let us assume that we have an instance i of workflow w running and that we desire to 
predict the QoS of task t ∈w. The following rules are used to choose which formula to 
apply when predicting QoS. If task t has never been executed before, then formula a) is 
chosen to predict task QoS, since there is no other data available. If task t has been 
executed previously, but in the context of workflow wn, and w != wn, then formula b) is 
chosen. In this case we can assume that the execution of t in workflow wn will give a 
good indication of its behavior in workflow w. If task t has been previously executed in 
the context of workflow w, but not from instance i, then formula c) is chosen. Finally, if 
task t has been previously executed in the context of workflow w, and instance i, meaning 
that a loop has been executed, then formula d) is used. 

4.2 Probabilities Estimates for Transitions  

In the same way we seed tasks’ QoS, we also need to seed workflow transitions. Initially, 
the designer sets the transition probabilities at design time. At runtime, the transitions’ 
probabilities are re-computed. The method used to re-compute the transitions’ 
probabilities follows the same lines of the method used to re-compute tasks’ QoS. When 
a workflow has never been executed, the values for the transitions are obviously taken 
from initial designer specifications. When instances of a workflow w have already been 
executed, then the data used to re-compute the probabilities come from initial designer 
specifications for workflow w, from other executed instances of workflow w, and if 
available, from the instance of workflow w for which we wish to predict the QoS. This 
corresponds to the use of functions similar to the ones previously defined for tasks’ QoS 
(see Table 6). 
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5 QoS Computation 

Once QoS estimates for tasks and for transitions are determined, we can compute overall 
workflow QoS. We describe two modeling techniques that can be used to compute QoS 
metrics for a given workflow process: mathematical modeling and simulation modeling. 
The selection of the method is based on a tradeoff between time and the accuracy of 
results. The mathematical method is computationally faster, but it yields results which 
may not be as accurate as the results obtained by simulation. (Note that our mathematical 
models could be extended to queuing network models (Lazowska, Zhorjan et al. 1984), 
but this requires making some simplifying assumptions). 

5.1 Mathematical Modeling 

The stochastic workflow reduction method consists of applying a set of reduction rules to 
a workflow until only one atomic task (Kochut, Sheth et al. 1999) exists. Each time a 
reduction rule is applied, the workflow structure changes. After several iterations only 
one task will remain. When this state is reached, the remaining task contains the QoS 
metrics corresponding to the workflow under analysis. 

The set of reduction rules that can be applied to a given workflow corresponds to the set 
of inverse operations that can be used to construct a workflow. We have decided to only 
allow the construction of workflows which are based on a set of predefined construction 
systems; this protects users from designing invalid workflows. Invalid workflows contain 
design errors, such as non-termination, deadlocks, and split of instances (Aalst 1999). 
While in this paper we do not prove that a workflow graph can be reduced by using the 
proposed set of reduction systems, this can be accomplished, proving that all the 
reduction systems form a “finite Church-Rosser” transformation. Work on graph 
reduction can be found in Allen (1970) and Knuth (1971).  

To compute QoS metrics, we have developed the SWR(w) algorithm (Cardoso 2002), 
which uses a set of six distinct reduction rules: (1) sequential, (2) parallel, (3) conditional, 
(4) fault-tolerant, (5) loop, and (6) network.  

Additional reduction rules can be developed. We have decided to present the reduction 
concept with only six reduction rules, for two reasons. The first reason is because a vast 
majority of workflow systems support the implementation of the reduction rules 
presented. Based on a study on fifteen major workflow systems and the workflow 
patterns that they support (Aalst, Barros et al. 2002), fifteen of the workflow systems 
studied supported the reduction rules (1)(2)(3), ten supported the reduction rule (5), and 
eight supported the reduction rules (4). The study does not discuss network patterns. The 
network pattern is intended to provide a structural and hierarchical division of a given 
workflow design into levels, in order to facilitate its understanding by the grouping of 
related tasks into functional units. The second reason is that the reduction rules are 
simple, making it easy to understand the idea behind the workflow reduction process.  
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5.1.1 Reduction Systems 

Reduction of a Sequential System. Figure 3 illustrates how two sequential workflow 
tasks ti and tj can be reduced to a single task tij. In this reduction, the incoming transitions 
of ti and outgoing transition of tasks tj are transferred to task tij. 

 

Figure 3 - Sequential system reduction 

In a sequential system, pj = 1. This reduction can only be applied if the following two 
conditions are satisfied: a) ti is not a xor/and split and b) tj is not a xor/and join. These 
conditions prevent this reduction from being applied to parallel, conditional, and loop 
systems. To compute the QoS of the reduction, the following formulae are applied: 

 

T(tij) = T(ti) + T(tj) 

C(tij)= C(ti) + C(tj) 

R(tij) = R(ti) * R(tj) 

F(tij).ar = f(F(ti), F(tj)) 

 

Reduction of a Parallel System. Figure 4 illustrates how a system of parallel tasks t1, t2, 
…, tn, an and split task ta, and an and join task tb can be reduced to a sequence of three 
tasks ta, t1n, and tb. In this reduction, the incoming transitions of ta and the outgoing 
transition of tasks tb remain the same. The only outgoing transitions from task ta and the 
only incoming transitions from task tb are the ones shown in the figure below. The 
probabilities of pa1, pa2,…, p1n and p1b, p2b,…,  pnb are equal to 1. 
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Figure 4 - Parallel system reduction 

 
The QoS of tasks ta and tb remain unchanged, and p1n = pb = 1. To compute the QoS of 
the reduction the following formulae are applied: 
 
 

T(t1n) = MaxI∈{1..n} {T(ti)}  

C(t1n) = ∑
≤≤ ni .1

C(ti) 

R(t1n) = ∏
≤≤ ni .1

R(ti) 

F(t1n).ar = f(F(t1), F(t2), …, F(tn)) 

 
Reduction of a Conditional System. Figure 5 illustrates how a system of conditional 
tasks t1, t2, …, tn, a xor split (task ta), and a xor join (task tb) can be reduced to a sequence 
of three tasks ta, t1n, and tb. Task ta and task tb do not have any other outgoing transitions 
and incoming transitions, respectively, other than the ones shown in the figure. In this 
reduction the incoming transitions of ta and outgoing transition of tasks tb remain the 

same, and ∑
=

=
n

i
aip

1
1. 

 

Figure 5 - Conditional system reduction 
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The QoS of tasks ta and tb remain unchanged, and p1n = pb = 1. To compute the QoS of 
the reduction the following formulae are applied: 

 

T(t1n) = ∑
≤≤ ni .1

 pai * T(ti)  

C(t1n) = ∑
≤≤ ni .1

 pai * C(ti) 

R(t1n) = ∑
≤≤ ni .1

pai * R(ti) 

F(t1n).ar = f(pa1, F(t1), pa2, F(t2), …, pan, F(tn)) 

 

Reduction of a Loop System. Loop systems can be characterized by simple and dual 
loop systems. Figure 6 illustrates how a simple loop system can be reduced. A simple 

loop system in task ti can be reduced to a task tli. In this reduction, pi +∑
=

=
n

i
oip

1
1.  

Once the reduction is applied, the probabilities of the outgoing transitions of task tli are 

changed to plk = 
i

ok

p-1 
p

, and ∑
=

=
n

k
lkp

1

1. 

 

Figure 6 – Simple loop system reduction 

To compute the QoS of the reduction the following formulae are applied: 
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F(tli).ar = f(pi, F(ti)) 
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Figure 7 illustrates how a dual loop system can be reduced. A dual loop system composed 

of two tasks ti and tj can be reduced to a single task tij. In this reduction, pi +∑
=

=
n

i
oip

1
1. 

Once the reduction is applied, the probabilities of the outgoing transitions of task tij are 

changed to plk = 
i

ok

p-1 
p

 and ∑
=

=
n

k
lkp

1

1.  

 

Figure 7 – Dual loop system reduction 

To compute the QoS of the reduction the following formulae are applied: 
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F(tij).ar = f(F(ti), pj, F(tj)) 

 

Reduction of a Fault-Tolerant System. Figure 8 illustrates how a fault-tolerant system 
with tasks t1, t2, …, tn, an and split (task ta), and a xor join (task tb) can be reduced to a 
sequence of three tasks ta, t1n, and tb. The execution of a fault-tolerant system starts with 
the execution of task ta and ends with the completion of task tb. Task tb will be executed 
only if k tasks from the set {t1, t2, …, tn} are executed successfully. In this reduction, the 
incoming transitions of ta and the outgoing transition of tasks tb remain the same, and 
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Figure 8 – Fault-Tolerant system reduction 

The QoS of tasks ta and tb remain unchanged, and pa1n = p1nb = 1. To compute the QoS of 
the reduction the following formulae are applied: 
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The formula R(t1n) is utilized to compute reliability and corresponds to the sum of all the 
probabilistic states for which more than k tasks execute successfully. The summation 
over i1, …, in corresponds to the generation of a binary sequence for which 0 represents 
the failing of a task, and 1 represents its success. For example, in a fault-tolerant system 
with three parallel tasks (n=3), the values of the indexes i1=1, i2=0, and i3=1 represent the 
probabilistic state for which tasks t1 and t3 succeed and task t2 fails. The term 
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previous example, since i1=1, i2=0, i3=1 and ∑
=

=
n

j
ji

1
2 , the probabilistic state (i1=1, i2=0, 

i3=1) will be only considered if 2≤k . 

Reduction of a Network System. A network task represents a sub-workflow (Figure 9). 
It can be viewed as a black box encapsulating an unknown workflow realization with a 
certain QoS. A network task ns, having only one task ti, can be replaced by an atomic task 
tj. This reduction can be applied only when the QoS of task ti is known. In this 
replacement, the QoS of the atomic task tj is set to the workflow QoS of the task ti, i.e, 
X(tj) = X(ti), X ∈ {T, C, R, F}. 

 

Figure 9 - Network system reduction 

The input and output transitions of the network task ns are transferred to the atomic task 
tj. 

5.1.2 Time, Cost, Reliability, and Fidelity Computations 

Time and Cost. The operations used to compute the time and cost dimensions are fairly 
intuitive.  

Reliability. For the reliability dimension we have used concepts from system and 
software reliability theory (Hoyland and Rausand 1994; Ireson, Jr. et al. 1996; Musa 
1999). The reliability functions used when applying workflow reduction systems assume 
that tasks behave independently. While this assumption is widely employed when 
modeling hardware systems, it is considered by some to be inappropriate for software 
systems since they tend to violate the independence supposition of the individual 
software systems.  

Mason and Woit (1998) show that an application’s structure has an influence on the 
dependability derived from the reliability of its components. Their work presents a theory 
based on a set of rules which when applied to the construction of an application can result 
in systems which do not violate the underlying assumptions of the typical reliability 
models, i.e, system independence. In order to understand the dependence of software 
components it is necessary to understand the difference between the terms “uses” and 
“invokes” (Parnas 1974; Parnas 2001). The utilization of “use” methodology creates a 
dependency between modules or procedures. This is because if a module A calls a 
module B, then the state of A depends on the results of B. Using the “invokes” 
methodology this problem does not arise, since when module A calls module B, module 
A does not wait or depend on B’s execution results. Based on this observation, Mason 
and Woit (1998) state that to reduce the dependence of modules in a system or 
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application a, “uses” methodology should not be present to interconnect the components; 
instead, a “invokes” methodology should be present. Additionally, the module’s 
implementation details cannot affect the correctness of other modules in the system (state 
independence). 

The architecture of workflow systems directly follows the two points that allow for a 
reduction of task dependencies. Workflow systems such as OrbWork (Kochut, Sheth et 
al. 1999) use a message-passing architecture and thus exhibit “invokes” characteristics. 
Additionally, tasks are independent from the implementation point of view, and therefore 
they are state independent. Due to the architecture of typical WfMSs, workflow 
applications have a reduced dependency factor among tasks; we make the assumption 
that the dependencies can be ignored in most of cases. Nevertheless, if tasks exhibit 
strong dependencies due to the data transferred, a profiling approach may need to be 
considered. Hamlet et al. (2001) proposed the use of operational profiles that are passed 
between connected components to more effectively compute the reliability of the global 
system. 

Fidelity. While time, cost, and reliability are common and universal measurements, 
fidelity is a function of effective design which refers to an intrinsic property(ies) or 
characteristic(s) of a good produced by a task realization.  

Since fidelity fully depends on the intrinsic properties and characteristics of the goods 
produced, it is not a universal measurement. This means that for each reduction rule 
presented previously, it is not possible to specify a general and universal formula to 
compute fidelity. Thus, for each reduction system (except for network systems) and for 
each fidelity attribute, a specific formula needs to be specified. For example, the Swiss 
watchmaker TAG Heuer conducts a series of sixty tests to their watches during the 
manufacturing process. Specific tasks carry out the tests, which are placed at strategic 
locations in the process. Each testing task can have a fidelity attribute associated with it 
that represents the number of tests that have been passed when the task was executed. In 
this case, the following fidelity function can be specified for the sequential reduction rule:  
 

F(tij).anumber of tests passed = f(F(ti), F(tj)) and 

f(vx, vy)= vx.anumber of tests passed + vy.anumber of tests passed 

 

In this example, the function f is additive and simply adds the number of tests passed by 
each task. In other cases, the function f can be multiplicative, and therefore can be similar 
to the functions employed to compute metrics for the reliability dimension. 

It is the responsibility of the designer to set for each fidelity attribute involved in a 
workflow the fidelity functions (f) to be used when computing workflow QoS. The 
designer can select a function from available sets of fidelity functions specifically 
constructed to match particular domain requirements. Alternatively, if the functions 
needed cannot be found due to their specificity, the designer can manually define new 
functions to meet his/her requirements. 
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5.2 Simulation Modeling 

In order to follow organizational strategies and meet organizational goals, workflow 
systems need to be able to analyze workflows according to their QoS. While 
mathematical methods can be effectively used (see previous section), another alternative 
is to utilize simulation analysis (Miller, Cardoso et al. 2002). Simulation can play an 
important role in tuning the quality of service metrics of workflows by exploring “what-
if" questions. When the need to adapt or to change a workflow is detected, deciding what 
changes to carry out can be very difficult. Before a change is actually made, its possible 
effects can be explored with simulation. To facilitate rapid feedback, the workflow 
system and the simulation system need to interoperate. In particular, workflow 
specification documents need to be translated into simulation model specification 
documents so that the new model can be executed/animated on-the-fly. 

In our project, these capabilities involve a loosely-coupled integration between the 
METEOR WfMS and the JSIM simulation system (Nair, Miller et al. 1996; Miller, Nair 
et al. 1997; Miller, Seila et al. 2000). Workflow is concerned with scheduling and 
transformations that take place in tasks, while simulation is mainly concerned with 
system performance. For modeling purposes, a workflow can be abstractly represented by 
using directed graphs (e.g., one for control flow and one for data flow, or one for both). 
Since both models are represented as directed graphs, interoperation is facilitated. In 
order to carry out a simulation, the appropriate workflow model is retrieved from the 
repository and translated into a JSIM simulation model specification. The simulation 
model is displayed graphically and then executed/animated. Statistical results which 
indicate workflows QoS are collected and displayed.  

In order to simulate METEOR workflows, we are enhancing the JSIM Web-Based 
Simulation System. In JSIM, simulation entities flow through a digraph consisting of the 
following types of nodes.  

 

Source Produces entities with random times 

Server Provides service to entities 

Facility Inherits from server, adds a waiting queue 

Signal Alters number of service units in a server(s) 

Sink  Sink consumes entities and records statistics 
Table 7 – Nodes in JSIM  

These nodes are connected together with transports, which move entities from one node 
to the next. These edges provide a smooth motion of entities when a simulation model is 
animated. These edges are labeled with branching probabilities.  

The mapping of a workflow digraph to a simulation digraph is straightforward. A 
METEOR start, stop task will be mapped to a JSIM Source and Sink node, respectively. 
A METEOR human task will be mapped to a JSIM Facility, with the number of service 
units equal to the number of human participants carrying out the task and feeding of the 
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same worklist. A METEOR transactional/non-transactional task will be mapped to a 
JSIM Facility, with the number of service units equal to the number of processors 
available to execute the task. These default mappings can be customized (e.g., a non-
transactional task that does not allow requests to be queued should be mapped to a JSIM 
Server). Each edge in the METEOR digraph will be mapped to a corresponding edge in 
the JSIM digraph. In METEOR, edges are labeled with the data type of objects flowing 
along the edge. In the case of xor nodes, they are also labeled with Boolean expressions. 
(The first one that evaluates to true will be the edge selected.) In the current version of 
JSIM, data flow must be handled by custom coding. A Boolean expression is mapped to 
the probability that the condition will evaluate to true and that none of the preceding 
conditions will evaluate to true. For more details on mapping workflow specifications 
into simulation models specifications, see Chandvasekavan et al. (2002). 

5.3 Workflow QoS Metrics of Interest 

In this section, we list the workflow QoS metrics which are of interest to compute (Table 
8 and Table 9). The computation can be done at either design time or runtime. At design 
time, QoS computations help the designer to compose workflows that will exhibit QoS 
metrics which accord with initial requirements. At runtime, the computation of QoS 
allows the manager and administrator to identify workflow instances that have ceased to 
meet initial QoS requirements. This situation may occur when tasks fail, break down, or 
when necessary services are unavailable. The metrics presented can be automatically 
computed using the SWR algorithm. 
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Workflow Time 
The workflow monitor records the total time workflow instances spend within a process. 
When a workflow process is executed, instances enter the process, then proceed through 
various tasks, and finally exit the workflow process. For example, in our scenario, the 
DNA Sequencing had a time constraint; it had to be completed in less than 31 weeks. The 
WfMS needs to constantly monitor and estimate the time remaining for instance 
termination. In Table 8, we show four important measurements for workflow time-based 
execution: workflow response time, workflow delay time, minimum workflow response 
time, and workflow response time efficiency.  

 

Workflow QoS metrics (Time) 

Workflow Response Time (T) T(w) = T(SWR(w)) 

The workflow response time is the total amount of time that a workflow instance spends 
within a workflow process before it finishes. The response time in a workflow is equal to 
the sum of the response times at the individual tasks, less any time that two or more tasks 
are superimposed on one another. Two or more tasks superimpose their response time 
when they are executed in parallel. 

Workflow Delay Time (DT) DT(w) = DT(SWR(w)) 

The workflow delay time, sometimes called “waiting time,” is the total amount of time that 
a workflow instance spends in a workflow, while not being processed by a task. The 
average delay time in a workflow is equal to the sum of the delay times at the individual 
tasks, less any time that two or more tasks are superimposed. 

Minimum Workflow Response Time (min T) min T(w) = min T(SWR(w)) 

The minimum workflow response time, sometimes called the “service time” of a 
workflow, is the time required for a workflow instance to be processed, not accounting for 
any task delay time. Thus, it includes only the task response time, ignoring completely the 
impact of the task delay time. The minimum workflow response time is equal to the sum of 
the process time at the individual tasks, less any time that two or more tasks superimpose. 

Workflow Response Time Efficiency (E) 
E(w) = 

)T(
)T(min 

w
w

 

The workflow response time efficiency is the ratio of the minimum workflow response 
time and the workflow response time. It is instructive to compare these two measures, 
since instance efficiency measurement provides an indication of the time an instance is 
delayed during its execution and also indicates the degree a workflow process can be 
improved by reducing its response time.  

Table 8 – Workflow QoS metrics for the time dimension 
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Workflow Cost, Reliability, and Fidelity  
 

Workflow QoS metrics (Cost, Reliability, and Fidelity) 

Workflow Cost (C) C(w) =  C(SWR(w)) 

Workflow cost (C) analysis measures the cost incurred during the execution of a workflow. 
When a workflow process is executed, various tasks, with their associated costs, are also 
executed. Cost-based workflows need to have their associated cost calculated so that 
managers can make sure that operations are within initial budgets. 

Workflow Reliability (R) R(w) =  R(SWR(w)) 

Workflow reliability (R) corresponds to the likelihood that a workflow will perform for its 
users on demand. 

Workflow Fidelity (F) F(w).attribute =  F(attribute, SWR(w)) 

Workflow fidelity (F) is a function of effective design; it refers to the intrinsic properties or 
characteristics of a good produced or a service rendered. 

Table 9 – Workflow QoS metrics for the cost, reliability, and fidelity dimension 

6 Workflow QoS Computation Example 

The Fungal Genome Resource (FGR) laboratory is in the process of reengineering their 
workflows. The laboratory technicians, domain experts, and managers have agreed that 
an alteration to the Prepare and Sequence and Sequence Processing workflows would 
potentially be beneficial when sequencing DNA. 

 

 
Figure 10 – Prepare and Sequence Workflow 
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Figure 11 – Sequence Processing Workflow 

To improve the efficiency of the processes being managed by the workflow system, the 
bioinformatics researchers decided to merge the two processes. The researchers noticed 
that the quality of the DNA sequencing obtained was in some cases useless due to E. coli 
contamination. Additionally, it was felt that it would be advantageous to use other 
algorithms in the sequence processing phase. Therefore, to improve the quality of the 
process, the Test Quality task and the SP FASTA task were added. 

Clones grown in bacterial hosts are likely to become contaminated. A quick and effective 
way to screen for the Escherichia coli (E. coli) contaminants is to compare the clones 
against the E. coli genome. For E. coli, this task is made easier with the availability of its 
full genome.  

The task SP FASTA has of the same objective of the task SP BLAST (a task of the 
sequence processing sub-workflow). Both tasks compare new DNA sequences to a 
repository of known sequences (e.g., Swiss-Prot or GenBank.) The objective is to find 
sequences with homologous relationships to assign potential biological functions and 
classifying sequences into functional families. All sequence comparison methods, 
however, suffer from certain limitations. Consequently, it is advantageous to try more 
than one comparison algorithm during the sequence processing phase. For this reason, it 
was decided to employ the BLAST (Altschul, Gish et al. 1990) and FASTA (Pearson and 
Lipman 1988) programs to compare sequences. 

The following actions were taken to reengineer the existing workflows: 

a) Merge the Prepare and Sequence workflow from Figure 10 and the Sequence 
Processing workflow from Figure 11, 

b) Add the task Test Quality to test the existence of E. coli in sequences, and 

c) Execute the search for sequences in genome databases using an additional search 
algorithm (FASTA). 

At this point, the alterations to introduce into the processes have been identified. From 
the functional perspective, the lab personnel, domain experts, and workflow designer all 
agreed that the new workflow will accomplish the intended objective. The new re-
engineered workflow is named DNA Sequencing. It is illustrated in Figure 12. 
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Figure 12 – DNA Sequencing Workflow 

6.1 Setting QoS Metrics 

While the workflow design meets the functional objectives, non-functional requirements 
also need to be met. Prior to the execution of the new workflow, an analysis is necessary 
to guarantee that the changes to be introduced will actually produce a workflow that 
meets desired QoS requirements, i.e., that the workflow time, cost, reliability, and fidelity 
remain within acceptable thresholds. To accomplish this, it is necessary to analyze the 
QoS metrics and use the SWR algorithm (Cardoso 2002; Cardoso 2002) to compute 
workflow quality of service metrics. 

The first step is to gather QoS estimates for the tasks involved in the Prepare and 
Sequence and Sequence Processing workflows. These workflows have been executed 
several times in the past, and the workflow system has recorded their QoS metrics. The 
designer QoS estimates have been set using the following methods. (We have omitted the 
designer QoS specification for the distributional class since this experiment does not 
involve the use of a simulation system to compute and predict QoS metrics.) For human 
tasks, the laboratory technicians and researchers have provided estimates for the QoS 
dimensions. For automated tasks, we have used training sets. For example, for the SP 
BLAST task we have constructed a training set of sequences of different lengths. The 
sequences have been processed with BLAST, and their QoS has been recorded. For the 
time dimension, we have used linear regression to predict future metrics (the BLAST 
algorithm has a linear running time (Altschul, Gish et al. 1990).) Equation 1 was used to 
estimate the BLAST running time to process a sequence: 
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where x is the independent data (input size) and y is the dependent data (running time). 
The estimated function is defined as: 

 

                                               0071.0,37.87    with , ==+= babxay  (2) 

 

The only task with a fidelity function is the SP BLAST task. The fidelity attribute HITS 
indicates the percentage of sequences processed with an E value lower than e-15. The E 
value is an indication of the probability that the match between a query sequence and a 
sequence stored in a database occurred by chance. For close matches, this number is 
typically very small. 

F(tBSP BLAST).HITS = percentage of sequences with E < e-15 

For the new tasks introduced (Test Quality and SP FASTA), no QoS runtime information 
is available. The only QoS information that can be used to compute the workflow QoS is 
the one the designer specified at design time. The initial QoS estimates are shown in 
Table 10.  

 

Tasks T(t) C(t) R(t) F(t)
Quality Test 0.01 $0.0 100% n/a
SP FASTA 9.59 $0.0 100% 0.65

Designer Specifications

 
Table 10 – Test Quality and FASTA initial QoS estimates 

Since the SP FASTA task is an automated task, we have used a training set of sequences 
to derive and set designer QoS estimates. For the time dimension, we have used the linear 
regression from Equation 1 and defined the function represented in Equation 3 to 
estimate its duration (FASTA has a linear running time (Pearson and Lipman 1988).) 

 

                                                    11.4,9.1061    with , ==+= babxay  (3) 

 

As for the SP BLAST task, the following fidelity function has been utilized to characterize 
the quality of the results obtained by the task SP FASTA:  

F(tSP FASTA).HITS = percentage of sequences with E < 0.01 
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Generally, a value of 0.01 or below is statistically very significant, and a value between 
0.01 and 0.05 is the borderline. 

To make the workflow QoS computation possible for the fidelity dimension, formulae 
have been defined for the reduction systems. As an example, for parallel systems and for 
the HITS fidelity attribute, the following function has been defined: 

F(t1n).HITS = f(F(t1), F(t2), …, F(tn)) = 
HITS attributefidelity   with the tasksof #

).F(
.1

HITS∑
≤≤ ni

ii tw
  

Using the above formula in the DNA Sequencing workflow will result in the application 
of the following function: 

F(tSP BLAST FASTA).HITS = (w1 * F(tSP BLAST).HITS + w2 * F(tSP FASTA).HITS)/2 

This function represents only a possible computation for the HITS fidelity attribute. It is 
shown here with the solely objective of illustrating how fidelity attributes are computed. 
Additional studies of the FASTA and BLAST applications would give more information 
on the processing of sequences that could be used to a more precise definition of this 
function. 

6.2 Computing QoS Metrics 

The domain experts believe that there is a strong agreement between the tasks QoS 
exhibited during the execution of the Prepare and Sequence and the Sequence Processing 
workflows, and the expected QoS of the tasks to be scheduled by the DNA Sequencing 
workflow. This belief is based on the fact that the tasks executed in the two initial 
workflows will be executed without any change by the newly constructed workflow. The 
following functions (see also Table 5) have been utilized to re-compute QoS metrics 
based on designer and runtime information: 

 

b) QoSDim(t) 0.2*Designer AverageDim(t) + 0.8*Multi-Workflow 
AverageDim(t) 

c) QoSDim(t, w) 0.2*Designer AverageDim(t) + 0.2*Multi-Workflow 
AverageDim(t) + 0.6*Workflow AverageDim(t, w) 

Table 11 – Re-computation of the QoS dimensions for the DNA Sequencing workflow 

To represent the QoS agreement among tasks from different workflows, the domain 
experts have decided to set the weights according to the following beliefs. For formula b), 
the domain experts believe that the recorded QoS of tasks previously executed will give 
good estimates for the execution of tasks scheduled by the new workflow. Thus, the 
experts set the weights wi1 and wi2 of formula b) to 0.2 and 0.8, respectively. The domain 
experts also believe that as soon as tasks are scheduled by the new workflow, the QoS 
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estimates should rely on the latest QoS data recorded from the DNA Sequencing 
workflow. Also, they consider that when QoS data is available from the DNA Sequencing 
workflow, the importance given to the designer estimates should have the same influence 
as the QoS estimates recorded for the execution of tasks scheduled by other workflows 
than the DNA Sequencing. Therefore, for formula c), the experts set the weights wi1, wi2, 
and wi3 to 0.2, 0.2, and 0.6, respectively. In our experiments, we only predict workflow 
QoS metrics before the execution of workflow, not during workflow execution; thus, we 
did not to set the weights for formula d) from Table 6. 

Since the new workflow has a loop that did not exist in any of the previously executed 
workflows, it is necessary to estimate the probability of the transition (Test Quality, 
Prepare Sample) to be enabled at runtime. Based on prior knowledge of sequencing 
experiments, the researchers calculate that approximately 10% of the DNA sequence will 
contain E. coli bacteria and that thus there is a 10% probability of the loop back transition 
being enabled. 

6.3 Results 

We have run a set of ten experiments. Each experiment involved the execution of the 
SWR algorithm to predict QoS metrics of the DNA Sequencing workflow and the actual 
execution of the workflow. The results are shown for the four QoS dimensions in Figure 
13. The diamonds indicate the QoS estimates given by the SWR algorithm and the 
squares indicate the runtime metrics. 

 

Figure 13 – Experiment results 

For the time analysis, the most relevant information that can be interpreted from the chart 
is the observation that the instances 3 and 4 have registered actual running times that are 
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considerably different from the values estimated. This is due to the topology of the 
workflow. During the process, it is expected that some DNA sequences will contain E. 
coli contamination. When this happens, re-work is needed, and the first part of the 
workflow, involving the tasks Prepare Sample, Prepare Clone and Sequence, and 
Assembly, has to be re-executed. The first part of the workflow takes approximately 99% 
of the overall workflow execution time. Thus, when E. coli contamination is present in a 
sequence, the time needed to execute the workflow almost doubles. Since it is impossible 
to know if a DNA sequence will contain E. coli or not, the SWR algorithm gives an 
estimate for instance 3 which is significantly different from the registered values. When 
instance 4 is executed, the QoS metrics from the previous instance are considered for the 
QoS estimation. As a result, it can be seen in the chart that the SWR estimation converges 
to the mean of the recent time metrics recorded. If more instances detect the presence of 
E. coli contamination, the results of the SWR algorithm for the time dimension will 
gradually converge to the 550 hours level. When instances number 5 through 10 are 
executed, they do not detect the presence of contamination in the sequences processed. 
As a result, the SWR estimates are more accurate, and the estimates start to slowly 
converge at lower time values.  

The costs associated with each task have been provided from technical datasheets 
describing the DNA Sequencing process. For the cost analysis, the results observed are 
strongly linked to the results obtained from the time analysis. Again, instances 3 and 4 
have recorded actual costs that are considerably different from the values estimated. This 
is due to the existence of E. coli contamination in the sequences processed. When 
contamination is detected, the re-work necessary to carry out the sequencing double the 
cost of the instance. This is because the cost of an instance is totally determined by the 
tasks Prepare Sample, Prepare Clone and Sequence, and Assembly, which are involved 
in any necessary re-work. All the other tasks, which are mainly automated software tasks, 
are considered to have a zero cost. As with the time analysis, the convergence of the 
SWR algorithm towards recent registered metrics can be seen. One particularity of the 
DNA Sequencing workflow is the discrete linearity of its cost. When no re-work is 
necessary because no contamination is detected, the cost of the instance is c. If 
contamination is found, then re-work is needed, and the cost of the instance is 2c. If 
contamination is found n times during the sequencing process, the cost of the instance 
will be nc. This property for the cost dimension can be observed from the chart, where 
instances with no re-work always have the same cost ($1,152), and instances that need re-
working one time have a cost of $2,304. 

The fidelity analysis shows the creation of very good estimates. It can be seen that the 
SWR algorithm constantly changes its convergence as a response to recently recorded 
QoS metrics. The runtime fidelity metrics are within a small range, as predicted from the 
estimates.  

The reliability analysis is relatively easy to interpret. For the first instance executed, the 
SWR algorithm has used information specified by the designer and derived from task 
executions from the Prepare and Sequence and Sequence Processing workflows. The 
information suggests that the reliability of the new workflow design will be 99.4%. But 
during our experiments, the ten instances executed never failed. Thus, a 100% reliability 
value has been registered for each workflow instance. During the instance executions, the 
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reliability estimates given by the SWR algorithm slowly converge to 100%. Nevertheless, 
it is expected that as the workflow system executes more instances, the reliability of the 
DNA Sequencing workflow will decrease. 

For all the QoS dimensions, the degree of convergence of the SWR algorithm is directly 
dependent on the weights that have been set for the re-computation of the QoS 
dimensions (see Table 11 for the weights used in the DNA Sequencing workflow). A 
higher weight associated with the multi-workflow function implies a faster convergence 
when the SWR algorithm is applied. The same principal applies to the instance workflow 
function.  

7 Related Work 

The work found in the literature on quality of service for WfMS is limited. The 
Crossflow project (Klingemann, Wäsch et al. 1999; Damen, Derks et al. 2000; Grefen, 
Aberer et al. 2000) has made the major contribution. In their approach, a continuous-time 
Markov chain (CTMC) is used to subsequently calculate the time and the cost associated 
with workflow executions. While the research on quality of service for WfMS is limited, 
the research on time management, which is under the umbrella of workflow QoS, has 
been more active and productive. Eder et al. (1999) and Pozewaunig et al. (1997) present 
an extension of CMP and PERT by annotating workflow graphs with time, in order to 
check the validity of time constraints at process build-time and instantiation-time, and to 
take pre-emptive actions at run-time. The major limitation of their approach is that only 
directed acyclic graphs (DAG) can be modeled. This is a significant limitation since 
many of workflows have cyclic graphs. Cycles are, in general, used to represent re-work 
actions or repetitive activities within a workflow. Our approach deals with acyclic 
workflows as well as with cyclic workflows. Our experience on modeling real-world 
applications has shown that a significant number of workflows have cyclic graphs. 
Dadam et al. (Reichert and Dadam 1998; 2000) also recognize that time is an important 
aspect of workflow execution. With each workflow task, minimal and maximal durations 
may be specified. The system supports the specification and monitoring of deadlines. The 
monitoring system notifies users when deadlines are going to be missed. It also checks if 
minimal and maximal time distances between tasks are followed according to initial 
specifications. Marjanovic and Orlowska (1999) describe a workflow model enriched 
with modeling constructs and algorithms for checking the consistency of workflow 
temporal constraints. Their work mainly focuses on how to manage workflow changes, 
while accounting for temporal constraints. Son et al. (2001) present a solution for the 
deadline allocation problem based on queuing networks. Their work also uses graph 
reduction techniques, but these are applied to queuing theory. Studies on workflow 
reliability can also be found in the literature. The research is mainly concentrated on 
system implementation issues. In (Kamath, Alonso et al. 1996) the authors propose an 
architecture to enhance workflow systems’ reliability via replication. Different reliability 
levels for different categories of process instances are used. Tang and Veijalainen (1999) 
propose the use of a fragmentation technique to provide higher reliability, without using a 
replication-based solution. Wheater and Shrivastava (1998) describe a workflow system 
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that relies on a middleware infrastructure to provide a fault-tolerant execution 
environment, enhancing system and applications reliability. 

Although the work on quality of service for workflows is lacking, a significant amount of 
research has been done in the areas of networking (Cruz 1995; Georgiadis, Guerin et al. 
1996), real-time applications (Clark, Shenker et al. 1992) and middleware (Zinky, 
Bakken et al. 1997; Frlund and Koistinen 1998; Hiltunen, Schlichting et al. 2000).  

Recently, in the area of Web services, researchers have also manifested an interest in 
QoS. The DAML-S (Ankolekar, Burstein et al. 2001; DAML-S 2001) specification 
allows the semantic description of business processes. The specification includes 
constructs which specify quality of service parameters, such as quality guarantees, quality 
rating, and degree of quality. One current limitation of DAML-S’ QoS model is that 
every process needs to have QoS metrics specified by the user. 

8 Future Work 

The workflow QoS model presented in this paper can be extended in two additional 
dimensions, which are useful for workflow systems with stronger requirements. The first 
dimension is maintainability. Maintainability corresponds to the mean time necessary to 
repair workflow failures; it is the average time spent to maintain workflows in a condition 
where they can perform their intended function. Maintenance actions mainly involve the 
correction of failures during workflow execution. Workflow systems record the period of 
time necessary for a faulty task to be repaired. The time spent to repair a workflow 
component depends on the type of error that has occurred. Reparative actions can be as 
simple as restarting a workflow scheduler that has crashed (Kochut, Sheth et al. 1999), or 
they can be more complex, involving the installation of an ORB infrastructure in a new 
machine to transfer workflow schedulers, for example. To increase maintainability, 
advanced mechanisms have been developed to allow workflow systems to automatically 
recover from errors. Luo et al. (2000) describe the architecture and implementation of an 
exception-handling mechanism. The system detects and propagates exceptions, which 
occur during instances execution to an exception-handling module. The system, based on 
case-based reasoning theory, derives exception handlers to repair damaged workflows 
(Luo, Sheth et al. 1998). The system has the ability to adapt itself over time. The 
knowledge acquired in past experiences is used in the resolution of new problems. 

The second dimension that can be included is the trust dimension. The use of workflow 
systems to coordinate and manage Web-services compels the development of techniques 
to appraise the global security level of workflows specifications. Workflow systems and 
applications face several security problems, and dedicated mechanisms are needed to 
increase the level of security. Major problems include the distributed nature of WfMSs, 
the use of non-secure networks (i.e, the Internet), the use of Web servers to access 
workflow systems data, and the potential multi-organizational span of workflows. 
Systems security level is assessed through the existence of security mechanisms (such as 
authentication, access control, labels, audits, system integrity, security policy, etc.) and 
through the use of development techniques (such as formal specifications, formal proofs, 
tests, etc.). The importance of developing secure workflow systems has been recognized, 
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and prototypes combining workflow and security technology have already been 
developed. We have extended workflow technology with the implementation of two 
security modules. The first one (Miller, Fan et al. 1999) and (Fan 1999) describes a 
workflow security architecture which targets the five security services (authentication, 
access control, data confidentiality, data integrity, and non-repudiation) recommended by 
the International Standards Organization for network-based information systems. The 
second one (Kang, Froscher et al. 1999) describes a multilevel secure (MLS) workflow 
system to enable distributed users and workflow applications to cooperate across 
classification levels. MLS workflow systems allow users to program multilevel mission 
logic, to securely coordinate distributed tasks, and to monitor the progress of the 
workflow across classification levels. 

The functions used to compute the QoS dimensions at runtime (Table 6) have their terms 
weighted. The user is responsible for setting the weights (wi1, wi2, wi3, and wi4). These 
weights remain constant as the workflow system registers new workflow executions. 
Additional research would be useful to analyze the effect of substituting the constant 
weights with variable weights. The idea would be to allow the workflow system to 
automatically change the weights based on the number of workflow executions. As more 
instances are registered for a workflow w, the weights specified for the Designer and 
Multi-Workflow functions can be decreased and the weight associated with the 
Workflow function increased. This corresponds with the belief that over time the QoS 
metrics of the instances of the workflow w will give more accurate and fresh data to be 
used with the SWR algorithm. The use of Bayesian estimates (Bernardo and Smith 1994) 
are one of the solutions that can be investigated to enable the automatic adjustments of 
the weights.  

9 Conclusions 
Evaluation on how business is conducted, such as with e-commerce, brings a new set of 
challenges and requirements that need to be explored and answered. Many E-commerce 
applications are composed of Web-services forming workflows, which in turns represent 
an abstraction of cross-organizational business processes. The use of workflows and 
workflow systems to conduct and coordinate businesses in a heterogeneous and 
distributed environment has an immediate operational requirement: the management of 
workflow QoS. The composition of Web-services, and therefore workflows, cannot be 
undertaken while ignoring the importance of QoS measurements. Trading agreements 
between suppliers and customers include the specification of QoS items such as products 
or services to be delivered, deadlines, quality of products, and cost of service. The correct 
management of such QoS specifications directly impacts the success of organizations 
participating in e-commerce and also directly impacts the success and evolution of e-
commerce itself. 

In this paper, as a starting point, we show the importance of QoS management for 
workflows and WfMSs. We then presented a comprehensive QoS model. This model 
allows for the description of workflow components from a QoS perspective; it includes 
four dimensions: time, cost, reliability, and fidelity. The use of QoS increases the added 
value of workflow systems to organizations, since non-functional aspects of workflows 
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can be described. The model is predictive. Based on the QoS of workflow components 
(tasks or web services), the QoS of workflows (networks) can be automatically 
computed. This feature is important, especially for large processes that in some cases 
may contain hundreds of tasks. We present a mathematical model that formally describes 
the formulae to compute QoS metrics among workflow tasks. Based on these formulae, 
we have developed an algorithm (SWR algorithm) to automatically compute the overall 
QoS of a workflow. The algorithm applies a set of reduction rules to a workflow, until 
only one task remains which represents the QoS for the entire workflow. We also 
describe how a simulation system can be used with a workflow system to carry out 
efficient workflow QoS simulations.  

To test the validity of our QoS model and of our mathematical model we have deployed a 
set of production workflows in the area of genetics at the Fungal Genome Resource 
laboratory. We executed workflow instances based on real data and the generated QoS 
data have been collected and analyzed. The analysis of the data corroborates our initial 
hypothesis that our QoS model and mathematical model give a suitable framework to 
predict and analyze the QoS of production workflows.  
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