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Human Vision

• Optical illusions for human vision
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Fooling NN

• Machine learning algorithms can be fooled by perturbed images.

Fig. 1. An adversarial example f(x) ̸= f(x + h)

• Perturbation is not human recognizable.

Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy.
Explaining and Harnessing Adversarial Examples.
ICLR 2015
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Fooling NN

Szegedy, Christian, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian
Goodfellow, and Rob Fergus.
Intriguing Properties of Neural Networks.
ICLR 2014
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Fooling NN in a real-world

• Adversarial Patch
• Watch this video.

Fig. 2. Banana or toaster?

Brown, Tom B., Dandelion Mané, Aurko Roy, Martín Abadi, and Justin Gilmer.
Adversarial Patch
May 16, 2018, http://arxiv.org/abs/1712.09665.
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https://www.youtube.com/watch?v=i1sp4X57TL4


Fooling NN in a real-world

• Classifying turtles
• Watch this video

Fig. 3. 3D-printed turtles
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https://youtu.be/YXy6oX1iNoA


Fooling Face Recognition Systems

Fig. 4. Impersonation attack

Sharif, Mahmood, Sruti Bhagavatula, Lujo Bauer, and Michael K. Reiter.
Accessorize to a crime: Real and stealthy attacks on state-of-the-art face recognition
In Proceedings of the 2016 acm sigsac conference on computer and communications security,
2016
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Adversarial Attack: definition

Let x0 ∈ Rd be a data point and y0 denote its class label. Suppose we have a
classifier f : X → Y.

Fig. 5. An adversarial example f(x) ̸= f(x + h)

• Adversarial example: perturbation of x0 such that
◦ (closenss): ∥x− x0∥ < ϵ for a small constant ϵ

◦ (mis-classification): y = f(x) ̸= f(x0) = y0

○ A common mis-belief: AE’s are unique to deep learning
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Setup

Suppose we have an example x0 from class y0.

û targeted: f(x′) = ytarget

ç untargeted: f(x′) ̸= y0
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Adversarial Attack

How to generate adversarial examples?
• Recall we have picked an example x0 (with label y0).
• Adversary’s algorithm x = A(x0)

◦ Additive x = x0 + h
◦ Multiplicative x = x0 ⊙ h
◦ Non-linear general mapping A(·)

• We will focus on the additive form.
◦ domain
◦ interpretation

Fig. 6. An adversarial example f(x) ̸= f(x + h)
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Formulation

• f : X → Y: a classifier, ytarget: target class
• Given (x0, y0), we aim to generate x such that

A(x0) = x0 + h = x , f(x) = ytarget .
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Multiclass Classification

• We have a classifier f .

◦ f outputs probabilities p = (p1, p2, . . . , pK).

pk = P[Y = k | X = x]

◦ We want f(x) = ytarget. That is,

A(x0) = x0+h = x , ytarget = arg max
i

pi(Equivalently, pytarget = max
i

pi.)
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Multiclas Classification
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Optimization Formulation

• x0: original image (with label y0)
• A(x0) = x0 + h = x: perturbed image
• x is misclassified to ytarget, meaning

◦ pytarget ≥ p1

◦ pytarget ≥ p2

◦
...

◦ pytarget ≥ pK

The minimum perturbation attack finds a perturbed data x by solvign

minimize
h

∥h∥

subject to max
j

pj(x)− pytarget ≤ 0 .

Minimum Perturbation Attack
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Alternative Formulation

In the minimum norm attack, we
• find the smallest perturbation h = x− x0

• while maintaining pytarget is the largest.
• minimal perturbation → difference unrecognizable

Alternatively, we can
• allow any perturbations with magnitude smaller than τ

• while maximizing the confidence in misclassification.

The constrained perturbation attack finds a perturbed data x by solving

minimize
x

max
j ̸=t

pj(x)− pt(x)

subject to ∥x− x0∥ ≤ τ .

Constrained Perturbation Attack
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Which Optimization to use?

Two optimization may looks different, but they are the same.
• For every solution of the minimum perturbation attack,
• we can obtain the same solution by appropriately choosing τ .

Jaewoo Lee 15/37



Fast Gradient Sign Method

• A method to generate adversarial examples

Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy.
Explaining and Harnessing Adversarial Examples.
ICLR 2015
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Linear Classifiers: setup

Consider a linear classifier f(x) = w⊺x = ⟨w, x⟩.
• x ∈ Rd: input feature vector x = (x1, x2, . . . , xd)⊺

• w ∈ Rd: a set of weights assigned to xi’s

[
w1 w2 · · · wd

]


x1

x2
...

xd


= w1x1 + w2x2 + · · ·wdxd

=
d∑

i=1

wixi
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Linear Classifiers

Consider an additive perturbation x̃ = x + η.
• x: an image,
• η ∈ Rd: perturbation (small, ∥η∥∞ < ϵ)

• Output f(x) = w⊺x
• w⊺x̃ = w⊺(x + η)

= w⊺x
orginal

+ w⊺η

extra

• The extra term can increase the
activation!
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Linear Behavior

• w⊺x̃ = w⊺x
orginal

+ w⊺η

extra

, ∥η∥∞ < ϵ

• Suppose we set η = sign(w). (what will happen?)

sign(x) =


1 if x > 0,
0 if x = 0,
−1 if x < 0.

• Let’s take an example.
◦ w = (0.1,−0.2, 0.9,−0.01)⊺

◦ sign(w) = (1,−1, 1,−1)⊺

◦ ⟨w, sign(w)⟩ = 0.1 + 0.2 + 0.9 + 0.01

• To bound the magnitude of perturbation, we set η = ϵ sign(w) (verify this).
◦ jointly introduce a large increase in activation
◦ but each dimensional value is small (ϵ)
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Deep Neural Network

Let J(θ, x, y) be the cost/error function of NN.

• Approximate J with a linear function (but how?)
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Talyor Expansion

f(x + h) = f(x) + f ′(x)h + 1
2!f

′′(x)h2 + · · ·

f(x) = f(x0) +∇f(x)⊺(x− x0) + 1
2! (x− x0)⊺∇2f(x)(x− x0) + · · ·
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Deep Neural Network

Linear approximation of cost function:

J(θ, x̃, y) ≈ J(θ, x, y) +∇J(θ, x, y)⊺(x̃− x)

Linearized Objective

• J(θ, x̃, y): the error of model with parameter θ

• Misclassification ⇔ Large error

maximize
x̃

∇J(θ, x, y)
w

⊺(x̃− x) + J(θ, x, y)

subject to ∥x̃− x∥∞ ≤ ϵ

• Recall η = x̃− x
• We set η = ϵ sign(∇J(θ, x, y))
• x̃ = x + ϵ sign(∇J(θ, x, y))
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FGSM Attack

x = x + ϵ · sign(∇xJ(θ; x, y))

1 def fgsm_attack(image, epsilon, data_grad):
2 # Collect the element-wise sign of the data gradient
3 sign_data_grad = data_grad.sign()
4 # Create the perturbed image by adjusting each pixel of the input image
5 perturbed_image = image + epsilon*sign_data_grad
6 # Adding clipping to maintain [0,1] range
7 perturbed_image = torch.clamp(perturbed_image, 0, 1)
8 # Return the perturbed image
9 return perturbed_image

10
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Result

Fig. 7. Left: Original, Right: adversarial examples, Error rate on the origianl data is 1.6% but on the adversarial is
99%.
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DeepFool

Fig. 8. Whale VS Turtle, x + h is classified as “turtle”.

Moosavi-Dezfooli, S.-M., Fawzi, A., Frossard, P.,
DeepFool: A Simple and Accurate Method to Fool Deep Neural Networks
IEEE Conference on Computer Vision and Pattern Recognition, 2016
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Minimal Perturabation

Formulation
∆(x; f) = min

h
∥h∥2

s.t. f(x + h) ̸= f(x)
• Suppose a binary classifier f(x) = sign(wx + b).
• Define F = {x : f(x) = 0} (what is this set?)

We have a closed form solution.
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Setup

• How about non-linear general binary classfier f : Rn → R ?
• Iteratively approximate f with a linear function. (How?)

 Talyer expansion

f(x + h) = f(x) + f ′(x)h + 1
2!f

′′(x)h2 + · · ·

f(x) = f(x0) +∇f(x)⊺(x− x0) + 1
2! (x− x0)⊺∇2f(x)(x− x0) + · · ·
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DeepFool

At iteration i, we have
• xi: a data point
• F = {x : f(x) = 0}, f is non-linear
• Approximate f(x) at xi (Taylor approximation of order 1)

f(x) ≈ f(xi) +∇f(xi)⊺(x− xi)
= ∇f(xi)

w

⊺x−∇f(xi)⊺xi + f(xi)
b

= 0

• Now we can use a closed form solution:

h = − f(xi)
∥∇f(xi)∥2

2
∇f(xi) .
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DeepFool Algorithm

Algorithm 1: DeepFool for binary classifiers
Input: Image x, classfier f
Output: Perturbation h

1 Initialize x0 ← x, i← 0
2 while sign(f(xi)) = sign(f(x0)) do

3 hi ← −
f(xi)

∥∇f(xi)∥2
2
∇f(xi)

4 xi+1 ← xi + hi

5 i← i + 1
6 end
7 return ĥ =

∑
i

hi
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Robustness

Recall
∆(x; f) = min

h
∥h∥2

s.t. f(x + h) ̸= f(x)
• Measure of robustness

ρadv(f) = Ex

[
∆(x; f)
∥x∥2

]
◦ Relative magnitude of perturbation to fool the classifier

• Adversarial training
◦ generate adversarial examples x1

adv, x2
adv, x3

adv, . . .

◦ include them into the training dataset
◦ fine-tune f (re-train)
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Fine-tuning Networks on Adversarial Examples
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Adversarial Attack

• So far we looked at white-box attacks
• Adversarial attack methods

◦ (gradient-based attacks) gradient ∇xL(θ, x, y)
◦ (score-based attacks) confidence score f(x) = P[Y = k | X = x]
◦ (transfer-based attacks) needs a substitute model
◦ (decision-based attacks) relying only on the final model decision
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Boundary Attack

Fig. 9. Random walk along the decision boundary

• Can we find x̃ such that
◦ ∥x− x̃∥ is small (closeness/minimal perturbation) and
◦ f(x) ̸= f(x̃) (misclassification) ?
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BA: initialization

• x: original example (unperturbed)
• x̃: perturbed (adversarial) example
• We will iteratively generate a sequence of examples:

◦ x̃0, x̃1, . . . , x̃k

◦ The initial point x0 needs be adversarial.

• Initialization
◦ untargeted: each pixel in x̃0 is sampled from Uniform (0, 255)
◦ targeted: need x̃0 s.t. f(x̃0) = ytarget
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BA: proposal distribution

We generate x0, x1, . . . , xk by perturbing the current example.

xk[i] = xk−1[i]
original pixel

+ ηk[i]
noise

, for i = 1, . . . , d ,

where
• ηk[i] ∼ P (noise sampled from distribution P),
• xk[i] ∈ [0, 255] (needs to be a valid image),
• the magnitude of perturbation ∥ηk∥2 = δ · d(x, x̃k), and
• the perturbation reduces the distance

d(x, x̃k−1)− d(x, x̃k−1 + ηk) = ϵ · d(x, x̃k−1) .
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BA: practical implementation

1 x̃k−1[i] + ηk[i], where ηk[i] ∼ N (0, 1)
2 Project on the sphere centered at x
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Hyperparameters

• δ > 0
• ϵ > 0
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