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Defense on adversarial examples

How to defend against adversarial attacks?
@ Pre-processing

@ Adversarial Training

© Defensive distillation

@ Statistical test + Adversarial Training

Two categories:
@ Model-specific
@ Model-agnostic
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Adversarial Examples Detection
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* Do adversarial example exhibit statistical diferences with the legitimate
data?
* Two sample hypothesis testing
© Daav ~ P, Dtrain ~ Q
o Ho : 7) = Q
oH,:P#Q

@ Grosse, Kathrin, Praveen Manoharan, Nicolas Papernot, Michael Backes, and Patrick
McDaniel.
On the (Statistical) Detection of Adversarial Examples
ArXiv:1702.06280, 2017
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Representation of Images
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Fig. 1. An image as a collection of pixels
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Representation of Images
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Fig. 2. More number of pixels gives sharper iamges.
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Representation

of Images
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Image as a matrix
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Representation of Images

x[0] € REFXW
x[1] € REXW
x[2] € REXW

x € RCXHXW

Mathematically, we can represent an image as a vector
CHW
X =(21,. ., Togw) ER .
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Representation of Images

Fig. 4. Image as a vector
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Representation of Images

Set of Images
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Fig. 5. A set of dog images
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Modeling Images

X X1 | Xo Xn
xV = "‘5‘ AR aly
= e @ 2@
What does it mean to learn the distribution of images?
p(x) =P[X1 =21, X0 = 22,..., Xn = Zn]
p(x[Y = dog) = P[X1 = 1,

, X =2an | Y = dog]

o



Hypothesis Testing @

@ Compute a test statistic 7'

fer

T(P, Q) = MMD(F, X1, X5) = sup (n Zf (z14) Zf(m)>

@ Compute the p-value
© If the p-value is smaller than a, reject the null.
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Detecting Adversarial Examples
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'@ Hypothesis testing can only detect a group of adversarial examples.
'@ Requires large batch of adversarial inputs
An idea is to augment the training data with adversarial example.

Train a classifier on the augmented dataset.

X Y Dtrain - Dtrain U Dadv

T c Suppose Y = {c1,¢c2,...,¢cK}
To cs x;: regular training examples
Z3 Ca x;: adversarial examples

Cout: Class label assigned to
adversarial examples

Tn CK
’

T Cout
’

T3 Cout
l

T Cout
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Pre-processing
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Recall that adversarial examples are created by adding noise.
@ Can we try removing noise?
o Let g(x) be a denoising algorithm.
o Let f(x) be a classifier.

o (fog)(z)

Image manifold: not all
matrices are natural images.

project the perturbed image x
to the manifold

@ Guo, Chuan, Mayank Rana, Moustapha Cisse, and Laurens van der Maaten.

Countering Adversarial Images Using Input Transformations
ArXiv:1711.00117 January 25, 2018. http://arxiv.org/abs/1711.00117
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Pre-processing
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Defense Goal

r78s
remove adversarial perturbation
maintain sufficent information in input images

not relying on the secrecy of defensive mechanism
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Setup
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u perturbed a u perturbed a

x € RY x € R4
L
)

fQ) # f(x") FoO) = f(x")
o 2 € R*: original image, =: adversarial image (perturbed)
o f: R? Y: a classifier

°g: R? — R%: a transformation algorithm

» Adversary's knowledge: black-box vs gray-box

Can we develop g such that f(g(x)) = f(g(z))?
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Black-box VS Gray-box

@ Black-box
Adversary does not have direct asscess to the model f().

@ White-box
Adversary has full knowledge on the model f.

model architecture, model parameter, defense strategy

© Gray-box
Somewhere between black-box and white-box
partial knowledge

transferring adversarial examples
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Image Transformations

Adversarial attacks change particular statistics of the input image.

® Image cropping-rescaling
o Bit-depth reduction: quantization to remove small variations

o JPEG compression and decompression: removes small perturbations

Jaewoo Lee

1785



Total Variation Minimization @

Main idea for defense
@ Select a subset of pixels that carry important information.
@ Reconstruct the image from the chosen pixels

Construct an image z such that
z is similar to input image x and

simple in terms of TV (z).

min [|(1 - X) © (z - x)[l, + ATV,(2)

Jaewoo Lee @



Total Variation Minimization: Random Variable X
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min|(1 — X) © (2 = %), + NTV(2)

* X (i,4,k) is a Bernoulli random variable.
e For each pixel at (4, j, k), flip a coin (p = P[Head]).

1 if head,

[
(5.3, K) {0 if tail.
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Total Variation Minimization: Lo-distance
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min|(1 — X) © (2 = %), + NTV(2)

¢ ||z — x|| needs to be small!

e

A llz — Il
—

Bt 2 it '_:’.";
Reconstructed (perturbed)
imagez image x
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Total Variation Minimization: TV distance

min [|(1 - X) © (z - x)[|, + ATV(z)

The last term chooses one with smaller Total Variation.

Total variation of z is defined by

V@)= Y Y el k] —2li - 1,5k

k=1 =2 row-wise similarity
| M-
over channels
N
+ E I”Z[:?Ja k] - Z[:,] - 17 k]||2|
Jj=2 column-wise similarity

ozis N X N x K image.
o Measures the amount of fine-scale variation
o Encourages the remove of small (adversarial) perturbations
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Total Variation Minimization: Result

min|(1 — X) © (2 = %), + NTV(2)

Difference Adversarial Original
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Image Transformation: Training
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Training: (a)

Testing:

o Let your classifier know the input is transformed.
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Adversarial Training @

Main idea

. /
Adversarial examples are x’ =x +h, |

hj| <.
Given a classifier f, for adversarial examples x', f(x) # f(x').
My model f behaves differently from my expectation!

o Is there a way we can tell f that you're doing it wrong?

o Recall the main idea of supervised learning.

o The ground truth label in the data: {(z;,y:)}ie1
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Self-Driving Car Example
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* NN f needs to learn actions.
Recorded

H;;Z?g:gle Adjust for shift Desired steering command © f X = y ’
(E, and rotation Y = {left, right}
)
" .
* Input: images from sensors
Random shift
Cent =
[_. and otaton o A human can annotate the

images (ground truth).

Right camera

e Training data (X;,Y;)
e The human labeled data is
insufficient.

Fig. 6. NVIDIA's DAVE-2 System
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Self-driving Car @

Input Model Prediction

* Fix the wrong behavior by correcting it.

o Suppose f(z) =left, when the correct action for x is right.
o Insert (x, right) into the training set.

® Retrain f
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Adversarial Training
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Augmentation

3 1
Training E
&

set
0

Misclassified!

o Correcting wrong decisions by augmenting the data
® But do we really need to retrain?

o training is time-consuming

o re-training might be expensive
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Adversarial Training: Setup

Adversarial example aware training
o How to model the adversary?
o Consider a set of allowed perturbations (attacks) S C R? on my data.

0 ES

Supervised learning

Iggél E(z,y)y~p[l(f; (z,9))]

o D: population distribution

o (z,y) ~ D: (random) data drawn from the population distribution
o l(f,(x,y)): loss of f on the data (x,y)

o E[0(f, (z,y))]: expected loss on random example
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Adversarial Training

Jaewoo Lee

min Ee,y)~p [f(?gg £(fo(x+0),y)

allowed perturbations ||d]|c < €

minimizing the worst case loss

Robust optimization

This type of loss is called an adversarial loss.
Inner maximization: attack

Outer minimization: defense
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Adversarial Training: Result
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Standard training  Adversarial training ~ Natural training ~ Adversarial training
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Adversarial Training

We maximize over S.
o need to generate many 6 € S
o how to generate §7
o how large S should be?

Scalaiblity
o Costly retraining

Jaewoo Lee
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Photo Forensics

Detecting the manipulated images

Manipulated photo Detected manipulations Suggested “undo” Original photo

—— o —

Fig. 7. Image source: Wang et al. 2019

* Has the image manipulated?

@ Wang, Sheng-Yu, Oliver Wang, Andrew Owens, Richard Zhang, and Alexei A. Efros.

Detecting Photoshopped Faces by Scripting Photoshop
ICCV 2019
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Real or Fake? @

Manipulated?

Dilated ResNet

Binary Classification

o Create a supervised dataset {(z,y)}
e Original image (z,0)
* Manipulate z, (x,1)
e Train f: X — {0,1}
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How is it manipulated?
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Dilated ResNet

Manipulated Suggested
Image Prediction “Undo”

Warping Field Prediction

o Which pixel is modified?
o Can we recover the original image before the modification?

e Train f to predict per-pixel warping
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Knowledge Distillation

A model compression technique

Can we compress the knowledge of large complex model into a small and
simple model?

o A large and complex model: teacher
o A small and simple model: student

2 I

Pretrained
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Knowledge Distillation

Pretrained teacher
network

.

=

Lo
@LA—-T oo
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bul  Labra sheep
dog dor  dog

$

“ True
Label

» Student network

joy

o cross-entropy loss with correct labels

bull Labra sheep
dog dor dog

m
1
‘Cc':ﬁ E cross-entropy(f (%), & )
i=1 true label

® cross-entropy loss with teacher’s prediction

m
1
Liteacher = E Z cross—entropy(f(xi), g(xl))

1=1

Jaewoo Lee @



Knowledge Distillation
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Pretrained teacher
network

bull Labra sheep
dog dor  dog

L
o * =

» Student network

' " T bul Labra  sheep
dog dor  dog

® Total loss
Etotal = Ecl + )\Eteacher

¢ Problem: what if P[bulldog] ~ 1 and P[others] = 07
o Not much different from y = (1,0,0,0, 0)

Jaewoo Lee @



Knowledge Distillation

Solution
o match the smoothed version of probability
o Temperature

p; = softmaxr(z) =

Jaewoo Lee



Softmax with Temperature

N OO WN

r78s
numpy np
matplotlib.pyplot

np.array([0.2, 7,
np . arange (len(z))

Temperatures = [1, 5,

fig, ax - plt.subplots(l, len(Temperatures)+1l, figsize-(7, 1

r i, T enumerate (Temperatures) :
p - np.exp(z/T) /np.sum(np.exp(z/T))

ax[i+1] bar(x, p)

ax[i+1] set_title('T={}' format(T), size-15)
ax[i+1] set_ylabel(r'$p_i$', size=12)
tight_layout (pad=0.1)

show ()

Logits T=1 T=5 T=10 T=20
10 0.2
0.1
5 & 0.5 g 02 g 01 g
0 0.0 -+ T 0.0 0.0 0.0
5 0 5 0 5 0 5 0 5
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Distillation as a Defense

Can we use the idea of knowledge distillation to defend the NN?

Adversarial examples created by the adversary

o X' =X + hwith f(X") # f(X)
o direction sensitivity estimation
o perturbation selection

arg min | h||
h

st. f(z+h) # f(z)

Neural Network Neural Network
Architecture Architecture
l : l ’
Direction P 2.4 . X*=X+4X]
‘Sensitivity — | — .
Estimation b Selection Check for. yes
FX+8X)=1
Legitimate input o ial Sample
classified as “1" misclassified as “4”
by a DNN by a DNN
F(X)=1 X-X+5X F(X*)=4

Jaewoo Lee
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Distillation for Defense @

o First, train a network F' with a softmax layer.

M components N components

I Hidden Layers | astHidden —Softmax

Input Vector Layer Layer
X Z(X) F(X)
O Neuron = Weighted Link (weight is a parameter () of )
exp(zi/T)

F(X)= forj=1,...,K

> exp(z/T)’
o T is the temperature parmaeter, T' > 1.
o At high temperature, F(X) = 1/K as T — o

* Use F(X) as soft labels for the second (smaller) network
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Distillation for Defense
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$%  Probability Vector Predictions F%(X) l
o
A

i
= '
o5 Probability Vector Predictions F(X) i
oo
A

i DNN F trained at temperature T | DNN F*(X) trained at temperature T |

e mm e m e m e mg

A A A A
Class
H Knowledge e 3
ﬁ Training Data X | |.§ Training Labels Y | .Training Data X | E’Trammg Labels F(X)
o | oz
____________ Inittl Motwork ___________! ____________DigtifedNetwork ________!

F': source network
F?. distilled network

Unlike the original distillation, ' and F* have the same architecture.
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Impact of temperature
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® At a higher temperature, adversarial gradient becomes smaller.

» Small gradient = difficult to craft the example
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