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What is privacy?

Fig. 1. Image source:https://cups.cs.cmu.edu/privacyillustrated/
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What is privacy?

Universal declaration of human rights

“
”

Article 12. No one shall be subjected to arbitrary interference with his
privacy, family, home or correspondence, nor to attacks upon his honor
and reputation. Everyone has the right to the protection of the law against
such interference or attacks.

GDPR

“ ”
Personal data are any information which are related to an identified or
identifiable natural person.
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What is privacy?

Expert Determination
• §164.514(b)(1)
• Apply statistical or scientific prin-

ciples
• Very small risk that anticipated re-

cipient could identify individual.

Safe Harbor
• §164.514(b)(2)
• Removal of 18 types of identifiers
• No actual knowledge residual in-

formation can identify individual

Jaewoo Lee 3/78



Why privacy?

• Massive collection and storage of human activity data
• Personal information is everywhere!
• Any data analysis task that deals with data collected from individuals

potentially has privacy issue.
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Why privacy?

Practical needs
• Consulting companies needs private tools to analyze their customers’ data.
• Apple’s iOS 10 uses differential privacy to analyze usage data.
• Google chrome web browser also uses differential privacy to collect data

from users.
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Privacy-preserving Machine Learning (PPML)

Training an ML model on sensitive data

• Machine learning model Mθ

• Trained on D = {x1, . . . , xn}
• D often contains sensitive info.
• D can be proprietary.

Privacy protection = Nobody sees my data?
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What is PPML?

What people think PPML is ...

1 Securing network communication
• Ensuring no one can hack into

our ML system
• Protect ML systems against

network attacks

2 Encrypting databases
• Dataset is shared using

encryption.
• Allowing full access to people

having keys
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ML Pipeline

Training Data Training
Algorithm

M

PredictionsML Model fθ

• Training data D = {d1, . . . , dn}
▶ Each di corresponds to an individual.
▶ Training a model on a dataset D results in M(D) = θ, where θ ∈ Θ.
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What could go wrong?

Training Data Training
Algorithm

M

PredictionsML Model fθ

Membership Inference
Reconstruction attack

Attribute Inference

?

• The released model leak information about D.
▶ For example, given fθ, adversaries can infer P

[ ∣∣∣ θ
]

or

P
[
income( ) < $50K

∣∣∣ θ
]
.
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Extracting Sensitive Training Data

• Neural networks can reveal your
data.
▶ Assume black-box access to

the GPT-2 model fθ

▶ Generate a large set of
samples x = (x1, . . . , xn)

▶ Evaluate the likelihood

Fig. 3. Carlini et al. 2021

P = exp

(
− 1

n

n∑
i=1

log fθ(xi | x1, . . . , xi−1)

)
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Privacy by Design: Federated Learning

• Your data stays local !
• Clients only exchange the gradients ∇L.
• But recall that

∇L(θ; x) =
(

∂L
∂θ1

, . . . ,
∂L
∂θd

) ∣∣∣
x

Zhu, Ligeng and Liu, Zhijian and Han, Song
Deep Leakage from Gradients
NeurIPS 2019
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Privacy in FL

The server computes

∇Wt = 1
N

N∑
j=1

∇Wt,j ,

Wt+1 = Wt − η∇Wt .

• η > 0: step size
• ∇Wt,j : gradient received from

client j at time t

Fig. 4. Federated learning with a central parameter
server

Given gradient ∇Wt,k received from client k, is it possible to steal
client k’s training data (Xt,k, yt,k)?
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Reconstructing data from gradients

Fig. 5. Reconstructed images from MNIST, CIFAR-100, SVHN, and LFW

Deep Leakage from Gradients
Zhu, Ligeng, Zhijian Liu, and Song Han
In Advances in Neural Information Processing Systems, 2019.
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Reconstructing data form gradients

Fig. 6. Reconstructed text data from gradients
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ML Output

ML output leaks some information about the individuals in the training data
• SVM: an output can be a subset of training data points.
• Linear regression: an output might be sensitive to an individual’s data.
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ML models memorize training examples!

• Unintended memorization
▶ Label memorization is necessary for accurate models.
▶ Memorization of irrelevant training examples is necessary.
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Privacy Breach (1)

• Massachusetts Group Insurance Commission
▶ collected medical records of government employees
▶ considered to be safe since it does not include any identifiers
▶ MA voter registration list (available at $20)
▶ Governor William Weld’s record was identified by Sweeney.
▶ How?

• 54,000 resident in Cambridge, MA
• 6 people share the same birth date with the Governor
• only 3 of them are men.
• only he lived in his zipcode

Voter registration listReleased heath record
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Privacy Breach (2)

• Netflix challege (matrix completion)
▶ [Narayanan & Shmatikov ’08] linked users to IMDB postings.

Name Movie 1 Movie 2 · · · Movie 18,000
User1 5 · · ·
User2 3 · · ·

... 1
. . . 9

User 48,000 · · · 7

Robust De-anonymization of Large Sparse Datasets, A. Narayanan, V. Shmatikov, 2008
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Anonymization isn’t enough!

Fig. 8. Netflix Prize
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Privacy Breach (3)

• AOL incident
▶ AOL dataset: pseudo-user id, search keywords, clicked url, ranking
▶ Removed all the identifiers
▶ The New York Times identified users and interviewed one of them.
▶ Why and how?

AnonID Query QueryTime ItemRank ClickURL

217 lottery 2006-03-01 11:58:51 1 http://www.calottery.com
217 lottery 2006-03-27 14:10:38 1 http://www.calottery.com
1268 gall stones 2006-05-11 02:12:51
1268 gallstones 2006-05-11 02:13:02 1 http://www.niddk.nih.gov
1268 ozark horse blankets 2006-03-01 17:39:28 8 http://www.blanketsnmore.com
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Semantics of data
Search keyword

• numb fingers
• 60 single men
• dog that urinates on everything
• landscapers in Lilburn, Ga
• Several people names with last name Arnold
• homes sold in shadow lake subdivision gwinnett county georgia
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Data Release

Consider releasing the following table.

Name Age Gender Zip Code Nationality Condition

Ann 28 F 13053 Russian Heart disease
Bruce 29 M 13068 Chinese Heart disease
Cary 21 F 13068 Japanese Viral infection
Dick 23 M 13053 American Viral infection

Eshwar 50 M 14853 Indian Cancer
Fox 55 M 14750 Japanese Flu
Gary 47 M 14562 Chinese Heart disease
Helen 49 F 14821 Korean Flu
Igor 31 M 13222 American Cancer
Jean 37 F 13227 American Cancer
Ken 36 M 13228 American Cancer

Lewis 35 M 13221 American Cancer

Question: What could go wrong?
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Removing identifiers

• We can remove the name attribute from the data.
• Is it now safe to release?

Name Age Gender Zip Code Nationality Condition

Ann 28 F 13053 Russian Heart disease
Bruce 29 M 13068 Chinese Heart disease
Cary 21 F 13068 Japanese Viral infection
Dick 23 M 13053 American Viral infection

Eshwar 50 M 14853 Indian Cancer
Fox 55 M 14750 Japanese Flu
Gary 47 M 14562 Chinese Heart disease
Helen 49 F 14821 Korean Flu
Igor 31 M 13222 American Cancer
Jean 37 F 13227 American Cancer
Ken 36 M 13228 American Cancer

Lewis 35 M 13221 American Cancer
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Removing identifiers

• Individuals are still identifiable.
• How can we hide people’s identities?

Name Age Gender Zip Code Nationality Condition

Ann 28 F 13053 Russian Heart disease
Bruce 29 M 13068 Chinese Heart disease
Cary 21 F 13068 Japanese Viral infection
Dick 23 M 13053 American Viral infection

Eshwar 50 M 14853 Indian Cancer
Fox 55 M 14750 Japanese Flu
Gary 47 M 14562 Chinese Heart disease
Helen 49 F 14821 Korean Flu
Igor 31 M 13222 American Cancer
Jean 37 F 13227 American Cancer
Ken 36 M 13228 American Cancer

Lewis 35 M 13221 American Cancer
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k-anonymity

• Main idea: hide into the group of k people
▶ make it difficult to link insensitive and sensitive attributes
▶ equivalence class: a set of people who share the same combination of

insensitive attributes
▶ But how?

• Example

Name Age Gender Zip Code Nationality Condition

Ann 28 F 13053 Russian Heart disease
Bruce 29 M 13068 Chinese Heart disease
Cary 21 F 13068 Japanese Viral infection
Dick 23 M 13053 American Viral infection

Eshwar 50 M 14853 Indian Cancer
Fox 55 M 14750 Japanese Flu
Gary 47 M 14562 Chinese Heart disease
Helen 49 F 14821 Korean Flu
Igor 31 M 13222 American Cancer
Jean 37 F 13227 American Cancer
Ken 36 M 13228 American Cancer

Lewis 35 M 13221 American Cancer
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Data Coarsening

• Coarsen (or suppress) the values into a more general ones
▶ Suppression: 13228  1322*  132**
▶ Range: 21  [20 - 25]  [20 - 30]
▶ Capping: 50 if age > 50

• How about non-numerical values?

Name Age Gender Zip Code Nationality Condition

Ann 28 F 13053 Russian Heart disease
Bruce 29 M 13068 Chinese Heart disease
Cary 21 F 13068 Japanese Viral infection
Dick 23 M 13053 American Viral infection

Eshwar 50 M 14853 Indian Cancer
Fox 55 M 14750 Japanese Flu
Gary 47 M 14562 Chinese Heart disease
Helen 49 F 14821 Korean Flu
Igor 31 M 13222 American Cancer
Jean 37 F 13227 American Cancer
Ken 36 M 13228 American Cancer

Lewis 35 M 13221 American Cancer
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Data Coarsening

• Coarsen (or suppress) the values into a more general ones

Oconee Athens-
Clarke Tippecanoe Mercer Center

GA IN NJ PA

NorthSouth

US
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Anonymizing the data

• 4-anonymous table

Age Gender Zip Code Nationality Condition

(Ann) 20-29 Any 130** Any Heart disease
(Bruce) 20-29 Any 130** Any Heart disease
(Cary) 20-29 Any 130** Any Viral infection
(Dick) 20-29 Any 130** Any Viral Infection

(Eshwar) 40-59 Any 14*** Asian Cancer
(Fox) 40-59 Any 14*** Asian Flu
(Gary) 40-59 Any 14*** Asian Heart disease
(Helen) 40-59 Any 14*** Asian Flu
(Igor) 30-39 Any 1322* American Cancer
(Jean) 30-39 Any 1322* American Cancer
(Ken) 30-39 Any 1322* American Cancer

(Lewis) 30-39 Any 1322* American Cancer

• how to anonymize
▶ suppress: delete the value
▶ generalize: replace the value with more general info.
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Geometric Interpretation

Age

Gender

Zip
(a) Original data

Age

Gender

Zip
(b) Anonymized data

• Release interval instead of a coordinate value
▶ Age 29 → [20, 30]
▶ Zipcode 30601 → 30***

• Linkage attacks become harder
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Attacks on k-anonymity

• Homogeneity attack:
Age Gender Zip Code Nationality Condition

(Ann) 20-29 Any 130** Any Heart disease
(Bruce) 20-29 Any 130** Any Heart disease
(Cary) 20-29 Any 130** Any Viral infection
(Dick) 20-29 Any 130** Any Viral Infection

(Eshwar) 40-59 Any 14*** Asian Cancer
(Fox) 40-59 Any 14*** Asian Flu
(Gary) 40-59 Any 14*** Asian Heart disease
(Helen) 40-59 Any 14*** Asian Flu
(Igor) 30-39 Any 1322* American Cancer
(Jean) 30-39 Any 1322* American Cancer
(Ken) 30-39 Any 1322* American Cancer

(Lewis) 30-39 Any 1322* American Cancer
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Attacks on k-anonymity

• Background (knowledge) attack
▶ Suppose the adversary knows that Cary is a Japanese. Heart disease

occurs at a reduced rate in Japanese patients.

Age Gender Zip Code Nationality Condition

(Ann) 20-29 Any 130** Any Heart disease
(Bruce) 20-29 Any 130** Any Heart disease
(Cary) 20-29 Any 130** Any Viral infection
(Dick) 20-29 Any 130** Any Viral Infection

(Eshwar) 40-59 Any 14*** Asian Cancer
(Fox) 40-59 Any 14*** Asian Flu
(Gary) 40-59 Any 14*** Asian Heart disease
(Helen) 40-59 Any 14*** Asian Flu
(Igor) 30-39 Any 1322* American Cancer
(Jean) 30-39 Any 1322* American Cancer
(Ken) 30-39 Any 1322* American Cancer

(Lewis) 30-39 Any 1322* American Cancer
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ℓ-diversity

• Every equivalence class needs to have at least ℓ “well represented” sensitive
values.

Zipcode Age Salary Disease

306** 2* 20K Gastric Ulcer
306** 2* 30K Gastritis
306** 2* 40K Stomach Cancer
3162* ≥40 50K Gastritis
3162* ≥40 100K Flu
3162* ≥40 70K Bronchitis
300** 3* 60K Bronchitis
300** 3* 80K Pneumonia
300** 3* 90K Stomach Cancer

Table 1. A 3-diverse table
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ℓ-diversity

Zipcode Age Salary Disease

306** 2* 20K Gastric Ulcer
306** 2* 30K Gastritis
306** 2* 40K Stomach Cancer
3162* ≥40 50K Gastritis
3162* ≥40 100K Flu
3162* ≥40 70K Bronchitis
300** 3* 60K Bronchitis
300** 3* 80K Pneumonia
300** 3* 90K Stomach Cancer

Table 2. A 3-diverse table

• Limitation
▶ Similarity attack

Suppose you know that Bob lives in 30602 and is 27 years old. What
can you say about the disease he has?

▶ Hard to achieve
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Composition Attack

Gender Age Zip Condition

M [20-30] 306** Cancer
M [20-30] 306** Flu
M [20-30] 306** Viral Infection
M [20-30] 306** Viral Infection

F [40-50] 306** Cancer
F [40-50] 306** Heart disease
F [40-50] 306** Heart disease
F [40-50] 306** Flu

M [60-] 306** Cancer
M [60-] 306** Cancer
M [60-] 306** Cancer
M [60-] 306** Flu

(a) St. Mary

Gender Age Zip Condition

M [20-35] 30*** Cancer
M [20-35] 30*** Heart disease
M [20-35] 30*** Malaria
M [20-35] 30*** Heart disease
M [20-35] 30*** Tuberculosis
M [20-35] 30*** Heart disease

F [20-35] 30*** Flu
F [20-35] 30*** Flu
F [20-35] 30*** Flu
F [20-35] 30*** Tuberculosis
F [20-35] 30*** Viral infection
F [20-35] 30*** Cancer

(b) Athens Regional

• Two released datasets satisfying k-anonymity
• Suppose an attacker knows Bob is a Ph.D. student living in Athens.
• Can you guess Bob’s medical condition?
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Other Privacy definitions

There exists many other variants
• t-closeness: distribution of sensitive attribute
• (α, β)-privacy: prior and posterior probability
• (c, k)-safety, max

t,s
P(t has s | K, D) < c

• Adversarial model
▶ need to make assumptions about adversary’s background knowledge
▶ how to mathematically specify the adversary’s knowledge?
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Neverending Battle

• Syntactic privacy: define how data should look to be private
• Semantic privacy: define what is private

k-anonymity ℓ-diversity t-closeness (c, k)-safety

(α, β)-privacy· · ·Differential
Privacy
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Informal Preview on Differential Privacy

• Is releasing aggregate query result safe?

Name Grade
Alice B
Bob A+

Charlie F
· · · · · ·
Sam A
Zach C

Table 3. Student grades

2

5

3

2

1

A+ A B C F

• The instructor wants to release the grades distribution.
• Suppose the adversary knows the grades of all students but Alice.
• need to hide an individual contribution to the outcome of computation
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Terminology (1)

• database D = {x1, x2, . . . , xn} ∈ X n, a set of individuals
• curator: (trusted) data collector
• query q : X n → Rd: a function that maps D to a vector in Rd

• privacy mechanism (or algorithm): M(D, q, b) = r

q(D)

q

M(D, q, b)

q

Fig. 11. Interactive setting
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Neighboring Datasets

Fig. 12. Unbounded DP

Fig. 13. Bounded DP

• |D1| = |D2| + 1
• D2 ⊂ D1 (proper subset)

• D1 = (D2{t}) ∪ {s} (replacement)
• s, t ∈ dom(D)
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Intuition of differential privacy

Suppose we have two databases D1 and D2.

D1 = D2 + Alice

D2 = D1 - Alice

+ M

M

• The mechanism M chooses i (i is secret).
• It computes and releases r = M(Di).
• An adversary observes r.
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Intuition of Differential Privacy

D1 = D2 + Alice

D2 = D1 - Alice

+ M

M

• Given r = M(D), can an adversary tell whether i = 1 or i = 2?
▶ Knowing i = 1 reveals the presence of Alice in D.
▶ We want to hide the presence/absence of Alice in D.
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Intuition of Differential Privacy

D1 = D2 + Alice

D2 = D1 - Alice

+ M

M

Fig. 14. M is differentially private.

• How can an adversary distinguish D1 from D2?
▶ r tells you something about D.
▶ q(D1) ̸= q(D2)
▶ what happens if M is deterministic?, i.e.,

P(M(D1) = r) ̸= 1 and P(M(D2) = r) = 0

• Make D1 and D2 indistinguishable
▶ Hide the contribution of an individual to q(D)

Jaewoo Lee 43/78



Randomized VS Deterministic

Fig. 15. Randomized VS Deterministic Algorithms
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Review: Expectation

Let X be a discrete (continuous) random variable with probability mass
(density) function fX(x).

E[X] =
∑
x∈Ω

xfX(X) (discrete)

E[X] =
∫ ∞

−∞
xfX(x) dx (continuous)

Linearity of expectation

Let X and Y be random variables (not necessarily independent) and a, b ∈
R are constants. Then we have

E[aX + bY ] = aE[X] + bE[Y ]

Jaewoo Lee 45/78



Review: Variance

For a random variable X, its variance is given by

Var(X) = E
[
(X − µ)2]

= E
[
X2 − 2µX + µ2]

= E
[
X2]− 2µE[X] + µ2

= E[X]2 − µ2 = E
[
X2]− (E[X])2 ,

where µ = E[X].

• Variance measures dispersion around the mean.
• Variance is not a linear operator.

Var(aX + b) = a2 Var(X)
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Definition

 Differential Privacy

A randomized algorithm M is differentially private if for all S ⊆ range(M)
and for all pairs of neighboring databases D1 and D2

P[M(D1) ∈ S]
P[M(D2) ∈ S] ≤ exp(ϵ) ,

where ϵ > 0 and the probability is taken over the coin flip of M.

Two central concepts
• Neighboring datasets
• Sensitivity

Neighboring databases

We say two databases D1 and D2 are neighboring if they differ in at most
one tuple. I.e., |(D1 − D2) ∪ (D2 − D1)| = 1.
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Example 1: deterministic

Suppose we have a universe U = {Alice
90

, Bob
80

, Charlie
80

, David
30

}.

• D1 = {Alice, Bob, Charlie}
• D2 = {Alice, Bob, Charlie, David}
• The school released a statistic M(D) = 1

n

∑n

i=1 xi.
• Adversary already has all the records of individuals in D1.
• His task is to guess whether David is in the database D.
• The adversary wins if he guesses correctly.
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Example 1: deterministic

What happens if the school release the true statistic M(D) = 70?

• Adversary observes the released statistic M(D) = 70.
• Adversary’s knowledge

▶ Adversary already knows M(D1) = 83.3.
▶ Adversary knows the universe U = {Alice

90

, Bob
80

, Charlie
80

, David}.

• David’s score is revealed!
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Example 2: randomized

• Recall the school database example
▶ U = {Alice

90

, Bob
80

, Charlie
80

, David
30

, Eve
90

}

• D = {Alice, Bob, Charlie, ?}.
▶ D1 = {Alice, Bob, Charlie, David} =⇒ M(D) = 70.
▶ D2 = {Alice, Bob, Charlie, Eve} =⇒ M(D) = 85.

• Adversary observes y = M(D), where
▶ P[M(D1) = v] ≤ eϵ P[M(D2) = v].
▶ M(D) = avg(D)

true statistic

+ Y
noise

▶ Noise distribution

x

y
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Example 2: randomized

What is adversary’s posterior on D1 and D2 given M(D)?

y70 85

• Noisy answer y = M(D)

P[Guess=David | y] =?
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Example 2: randomized

What is adversary’s posterior on D1 and D2 given M(D)?

y70 85

• Noisy answer y = M(D)

P[Guess=David | y] = P[y | D2]P[D2]
P[y | D1]P[D1] + P[y | D2]P[D2]
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Example 2: posterior

• When the noisy answer=71,

70 85y
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Example 2: posterior

• When the noisy answer=84,

70 85y
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Sensitivity

Why do data analysis results reveal the identities of individuals?

y

x

w
⊺ x +

b
=

0

Fig. 16. Linear regression
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How to achieve differential privacy?

Sensitivity
• the largest contribution that can be made by one individual
• dependent on the function q of interest and the universe U
• independent of data

The (global) sensitivity of a function q : X n → Rd is defined by

∆q = max
D,D′∈U

∥q(D) − q(D′)∥1 ,

where D and D′ are neighboring datasets in the universe.
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Examples

Setup
• U = {1, 2, 3, . . . , 100}
• D = {xi}n

i=1 ∈ Un, xi ∈ U
• Sensitivity ∆q for aggregate queries

Practice

▶ q(D) =
n∑

i=1

xi

▶ q(D) = 1
n

n∑
i=1

xi

▶ q(D) = max
i

xi

▶ q(D) = median(x1, x2, . . . , xn)
▶ q(D) = count(xi = p)
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Laplace mechanism: definition

 Laplace Mechanism

Given a query function q : X n → R, the Laplace mechanism is defined as:

M(D) = q(D) + Y,

where Y ∼ Lap
(

∆q

ϵ

)
.

• Laplace mechanism satisfies ϵ-differential privacy.
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Laplace mechanism: noise distribution

Fig. 17. Laplace distribution
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Laplace mechanism: noise distribution

The Laplace mechanism draws random noise Y ∼ Lap (λ).

M(D) = q(D) + Y

Laplace distribution

• Probability density function f(x) = 1
2λ

exp
(

−|x − µ|
λ

)
• mean E[Y ] = µ

• variance = E
[
(Y − µ)2] = 2λ2

• Sliding property e− δ
λ ≤ f(x + δ)

f(x) ≤ e
δ
λ

• for any t > 0, P[|Y | > t] = exp
(

− t

λ

)
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Example

Name Grade
Alice B
Bob A+

Charlie F
· · · · · ·
Sam A
Zach C

Table 4. Student grades

2

5

3

2

1

A+ A B C F

• sensitivity?
• scale parameter of noise distribution?
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Removing noise?

• Consider the Laplace mechanism.

r = M(D) = q(D)
true answer

+ Y
noise

, Y ∼ Lap
(

∆q

ϵ

)
• Given the (noisy) response r, can we reconstruct q(D)?

Fig. 18. Is it possible to remove noise added by the privacy mechanism?
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Post-processing

• Let M : X n → R be an ϵ-DP algorithm.
• M(D) is the private output.
• Suppose we have a deterministic function f : R → R′.
• If we apply f on the private output, is it still private?

Post-processing Invariance

Let M be an ϵ-DP function and f be an arbitrary deterministic function
on the output domain of M. The composite function f ◦ g : X n → R′ is
ϵ-differentially private.

• It means that you cannot make M(D) more or less private.
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Group Privacy

Let M : X n → R be an ϵ-differentially private algorithm. Then, M is
kϵ-differentially private for groups of size k. That is, for all x, y such that
∥x − y∥1 ≤ k and for all S ⊆ range(M),

P[M(x) ∈ S] ≤ exp(kϵ)P[M(y) ∈ S] .

x1
x2
x3
...

xi

...
xn

D1

x1
x2

x′
3
...

xi

...
xn

D2

x1
x2
x3
...

x′
i

...
xn

D3
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Composition (1)

Sequential composition
• Suppose we have two algorithms M1 and M2.
• M1 is ϵ1-DP and M2 is ϵ2-DP.
• The algorithm M that sequentially calls M1 and M2 is

(ϵ1 + ϵ2)-differentially private.

Proof.

P[M(D) = (r1, r2)]
P[M(D′) = (r1, r2)] = P[(M1(D) = r1, M2(D) = r2)]

P[(M1(D′) = r1, M2(D′) = r2)]

= P[M1(D) = r1]
P[M1(D′) = r1]

P[M2(D) = r2]
P[M2(D′) = r2]

≤ exp(ϵ1) · exp(ϵ2) = exp(ϵ1 + ϵ2)
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Privacy Budget

• We normally answer multiple queries.

ϵ

D

q1 q1(D) + Lap (1/ϵ1)

q2 q2(D) + Lap (1/ϵ2)

q3 q3(D) + Lap (1/ϵ3)
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Privacy Budget

• We normally answer multiple queries.

ϵ − ϵ1

D

q1 q1(D) + Lap (1/ϵ1)

q2 q2(D) + Lap (1/ϵ2)

q3 q3(D) + Lap (1/ϵ3)
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Privacy Budget

• We normally answer multiple queries.

ϵ − ϵ1 − ϵ2

D

q1 q1(D) + Lap (1/ϵ1)

q2 q2(D) + Lap (1/ϵ2)

q3 q3(D) + Lap (1/ϵ3)
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Privacy Budget

• We normally answer multiple queries.

ϵ = 0

D

q1 q1(D) + Lap (1/ϵ1)

q2 q2(D) + Lap (1/ϵ2)

q3 q3(D) + Lap (1/ϵ3)
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Deep Learning with Differential
Privacy



Gradient Perturbation

∇L(wt+1)

∇L(wt+1) + noise

∇L(wt)

∇L(wt) + noise
f(w)

• Perturb the gradients

∇̃L(wt) = ∇L(wt) + N
(
0, σ2

t Id

)
(noisy gradient)

wt+1 = wt − ηt

step sizẽ

∇L(wt) (GD update)

• Need to carefully control ηt and σt
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Differentially Private Deep Learning

DP-SGD Framework: gradient clipping + noise injection

Let B =
{

, , ,
}

be a mini-batch.

• Per-example Gradient

∇ℓ(wt, )

∇ℓ(wt, )

∇ℓ(wt, )

+ ∇ℓ(wt, )

∇L(wt; B) =
4∑

i=1

∇ℓ(wt, di) + noise
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DP-SGD

• Need to bound the influence of each individual on the gradient, meaning
that, for some C > 0,

∥∇ℓ(wt, )∥2 ≤ C

∥∇ℓ(wt, )∥2, ≤ C

∥∇ℓ(wt, )∥2, ≤ C

∥∇ℓ(wt, )∥2, ≤ C .

▶ C is called clipping threshold.
▶ The sensitivity of ∇ℓ(wt) = C.
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SGD VS DP-SGD

Non-private

g1
g2

g3

ĝ

• Per-example gradient: gi = ∇L(wt, di) for i = 1, 2, 3

• Aggregated gradient: ĝ = 1
3(g1 + g2 + g3)
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SGD VS DP-SGD

Private

C

g1 g2

g3

g1

g2

ĝ

g

g + noise

Fig. 19. Effect of gradient clipping

Fig. 20. Effect of gradient clipping + Noise

• Private gradient: g̃ = g + noise
▶ bias due to clipping
▶ variance due to noise addition
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SGD VS DP-SGD

Private

C

g1 g2

g3

g1

g2
ĝ

g

g + noise

Fig. 19. Effect of gradient clipping

Fig. 20. Effect of gradient clipping + Noise

• Private gradient: g̃ = g + noise
▶ bias due to clipping
▶ variance due to noise addition
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What is OPACUS?

• A PyTorch library for differentially private training of NNs
• Support fast per-example gradient computation
• https://opacus.ai/
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Training your NN under DP

For details, please refer to this page.

1 import warnings
2 warnings.simplefilter("ignore")
3
4 MAX_GRAD_NORM = 1.2
5 EPSILON = 50.0
6 DELTA = 1e-5
7 EPOCHS = 20
8
9 LR = 1e-3
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Preparing datasets

1 import torch
2 import torchvision
3 import torchvision.transforms as transforms
4
5 # These values, specific to the CIFAR10 dataset, are assumed to be known.
6 # If necessary, they can be computed with modest privacy budget.
7 CIFAR10_MEAN = (0.4914, 0.4822, 0.4465)
8 CIFAR10_STD_DEV = (0.2023, 0.1994, 0.2010)
9

10 transform = transforms.Compose([
11 transforms.ToTensor(),
12 transforms.Normalize(CIFAR10_MEAN, CIFAR10_STD_DEV),
13 ])

Jaewoo Lee 74/78



Preparing datasets

1 from torchvision.datasets import CIFAR10
2
3 DATA_ROOT = '../cifar10'
4
5 train_dataset = CIFAR10(
6 root=DATA_ROOT, train=True, download=True, transform=transform)
7
8 train_loader = torch.utils.data.DataLoader(
9 train_dataset,

10 batch_size=BATCH_SIZE,
11 )
12
13 test_dataset = CIFAR10(
14 root=DATA_ROOT, train=False, download=True, transform=transform)
15
16 test_loader = torch.utils.data.DataLoader(
17 test_dataset,
18 batch_size=BATCH_SIZE,
19 shuffle=False,
20 )
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Validating Models

1 from torchvision import models
2 from opacus.validators import ModuleValidator
3
4 model = models.resnet18(num_classes=10) # loading a built-in model
5 errors = ModuleValidator.validate(model, strict=False)
6 errors[-5:] # print error messages

• Verify whether the model is compatible with DP training
▶ BatchNorm cannot be used.
▶ Replace it with GroupNorm.
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Preparing for training

1 from opacus import PrivacyEngine
2
3 privacy_engine = PrivacyEngine()
4
5 model, optimizer, train_loader = privacy_engine.make_private_with_epsilon(
6 module=model,
7 optimizer=optimizer,
8 data_loader=train_loader,
9 epochs=EPOCHS,

10 target_epsilon=EPSILON,
11 target_delta=DELTA,
12 max_grad_norm=MAX_GRAD_NORM,
13 )
14
15 print(f"Using sigma={optimizer.noise_multiplier} and C={MAX_GRAD_NORM}")
16
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Private Training

1 def train(model, train_loader, optimizer, epoch, device):
2 criterion = nn.CrossEntropyLoss()
3 losses, top1_acc = [], []
4
5 with BatchMemoryManager(
6 data_loader=train_loader,
7 max_physical_batch_size=MAX_PHYSICAL_BATCH_SIZE,
8 optimizer=optimizer
9 ) as memory_safe_data_loader:

10
11 for i, (images, target) in enumerate(memory_safe_data_loader):
12 optimizer.zero_grad()
13 images = images.to(device)
14 target = target.to(device)
15
16 output = model(images) # compute output
17 loss = criterion(output, target)
18
19 preds = np.argmax(output.detach().cpu().numpy(), axis=1)
20 labels = target.detach().cpu().numpy()
21
22 acc = accuracy(preds, labels) # measure accuracy and record loss
23 losses.append(loss.item())
24 top1_acc.append(acc)
25
26 loss.backward()
27 optimizer.step()
28
29 epsilon = privacy_engine.get_epsilon(DELTA)
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