2022 PPML Summer School

Part 3: Privacy-Preserving Machine Learning

Jaewoo Lee jaewoo.lee@uga.edu

July 13, 2022

Department of Computer Science

Data Privacy

1 Data Privacy

Introduction

- Privacy Breach Case Study
- k-anonymity

2 Differential Privacy

- Definition
- Properties

3 Deep Learning with Differential PrivacyOpacus

What is privacy?

"

,,

Universal declaration of human rights

Article 12. No one shall be subjected to arbitrary <u>interference</u> with his privacy, family, home or correspondence, nor to attacks upon his honor and reputation. Everyone has the right to the protection of the law against such interference or attacks.

GDPR

Personal data are any information which are related to an *identified* or *identifiable* natural person.

EXPERT DETERMINATION

- §164.514(b)(1)
- Apply statistical or scientific principles
- Very small risk that anticipated recipient could *identify* individual.

SAFE HARBOR

- §164.514(b)(2)
- Removal of 18 types of identifiers
- No actual knowledge residual information can *identify* individual

Why privacy?

- Massive collection and storage of human activity data
- Personal information is everywhere!
- Any data analysis task that deals with data collected from individuals potentially has privacy issue.

Why privacy?

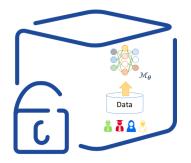
Practical needs

- Consulting companies needs private tools to analyze their customers' data.
- Apple's iOS 10 uses *differential privacy* to analyze usage data.
- Google chrome web browser also uses *differential privacy* to collect data from users.

Privacy-preserving Machine Learning (PPML)

Training an ML model on sensitive data

- Machine learning model \mathcal{M}_{θ}
- Trained on $D = {\mathbf{x}_1, \dots, \mathbf{x}_n}$
- D often contains *sensitive* info.
- *D* can be *proprietary*.



Privacy protection = Nobody sees my data?

What is PPML?

What people think PPML is ...

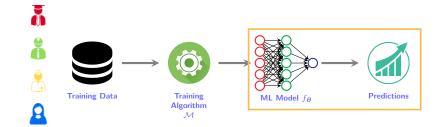
- Securing network communication
 - Ensuring no one can hack into our ML system
 - Protect ML systems against network attacks
- encrypting databases
 - Dataset is shared using encryption.
 - Allowing full access to people having keys

ML Pipeline

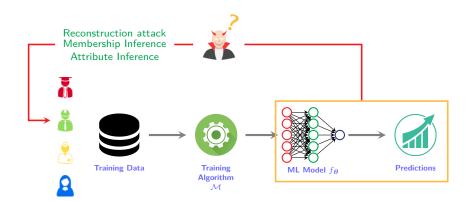
• Training data
$$D = \{d_1, \ldots, d_n\}$$

- Each d_i corresponds to an *individual*.
- Fraining a model on a dataset D results in $\mathcal{M}(D) = \theta$, where $\theta \in \Theta$.

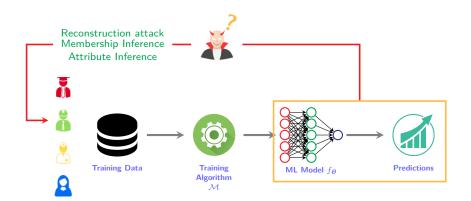
What could go wrong?



What could go wrong?



What could go wrong?



The released model leak information about D.
 For example, given f_θ, adversaries can infer P β or

$$\mathbb{P}\left[\mathsf{income}(\left.\begin{array}{c}\bullet\\\bullet\end{array}\right] < \$50\mathsf{K} \quad \left|\begin{array}{c}\theta\\\theta\end{array}\right]$$

Extracting Sensitive Training Data

- Neural networks can reveal your data.
 - Assume black-box access to the GPT-2 model f_θ
 - Generate a large set of samples $\mathbf{x} = (x_1, \dots, x_n)$
 - Evaluate the likelihood

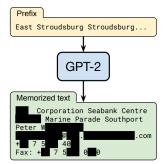


Fig. 3. Carlini et al. 2021

$$\mathcal{P} = \exp\left(-\frac{1}{n}\sum_{i=1}^{n}\log f_{\theta}(x_i \mid x_1, \dots, x_{i-1})\right)$$

Privacy by Design: Federated Learning

- Your data stays local!
- Clients only exchange the *gradients* $\nabla \mathcal{L}$.
- But recall that

$$\nabla \mathcal{L}(\boldsymbol{\theta}; \mathbf{x}) = \left(\frac{\partial \mathcal{L}}{\partial \theta_1}, \dots, \frac{\partial \mathcal{L}}{\partial \theta_d}\right) \Big|_{\mathbf{x}}$$

Zhu, Ligeng and Liu, Zhijian and Han, Song Deep Leakage from Gradients NeurIPS 2019

Privacy in FL

The server computes

$$\overline{\nabla W_t} = \frac{1}{N} \sum_{j=1}^N \nabla W_{t,j} ,$$
$$W_{t+1} = W_t - n \overline{\nabla W_t} .$$

- $\eta > 0$: step size
- $\nabla W_{t,j}$: gradient received from client j at time t

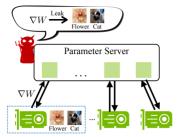


Fig. 4. Federated learning with a central parameter server

Given gradient $\nabla W_{t,k}$ received from client k, is it possible to steal client k's training data $(\mathbf{X}_{t,k}, \mathbf{y}_{t,k})$?

Reconstructing data from gradients

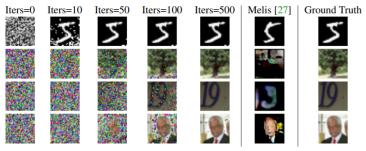


Fig. 5. Reconstructed images from MNIST, CIFAR-100, SVHN, and LFW

Deep Leakage from Gradients

Zhu, Ligeng, Zhijian Liu, and Song Han

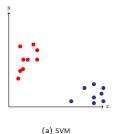
In Advances in Neural Information Processing Systems, 2019.

Reconstructing data form gradients

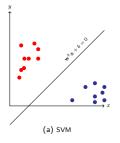
	Example 1	Example 2	Example 3
Initial Sen-	tilting fill given **less word	toni **enting asbestos cut-	[MASK] **ry toppled
tence	**itude fine **nton over-	ler km nail **oof **dation	**wled major relief dive
	heard living vegas **vac	**ori righteous **xie lucan	displaced **lice [CLS] us
	**vation *f forte **dis ce-	**hot **ery at **tle ordered	apps _ **face **bet
	rambycidae ellison **don yards marne **kali	pa **eit smashing proto	
Iters $= 10$	tilting fill given **less full	toni **enting asbestos cutter	[MASK] **ry toppled iden-
	solicitor other ligue shrill	km nail undefeated **dation	tified major relief gin dive
	living vegas rider treatment	hole righteous **xie lucan	displaced **lice doll us
	carry played sculptures life-	**hot **ery at **tle ordered	apps _ **face space
	long ellison net yards marne **kali	pa **eit smashing proto	
Iters $= 20$	registration, volunteer ap-	we welcome proposals for	one **ry toppled hold major
	plications , at student travel	tutor **ials on either core	ritual ' dive annual confer-
	application open the ; week	machine denver softly or	ence days 1924 apps novel-
	of played ; child care will be	topics of emerging impor-	ist dude space
	glare.	tance for machine learning	
T: 20			
Iters $= 30$	registration, volunteer ap-	we welcome proposals for tutor **ials on either core	we invite submissions for
	plications, and student		the thirty - third annual con- ference on neural informa-
	travel application open the first week of september.	machine learning topics or topics of emerging impor-	tion processing systems .
	child care will be available.	tance for machine learning	tion processing systems .
	child care will be available .	tance for machine rearring	
Original	Registration, volunteer	We welcome proposals for	We invite submissions for
Text	applications, and student	tutorials on either core ma-	the Thirty-Third Annual
	travel application open the	chine learning topics or top-	Conference on Neural Infor-
	first week of September.	ics of emerging importance	mation Processing Systems.
	Child care will be available.	for machine learning.	

Fig. 6. Reconstructed text data from gradients

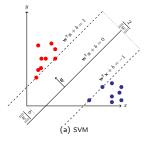
- SVM: an output can be a subset of training data points.
- Linear regression: an output might be sensitive to an individual's data.



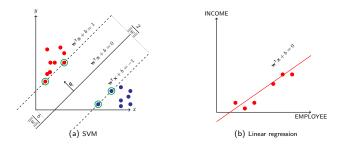
- SVM: an output can be a subset of training data points.
- Linear regression: an output might be sensitive to an individual's data.



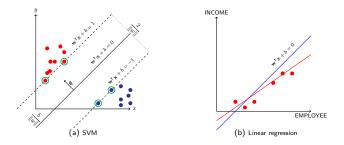
- SVM: an output can be a subset of training data points.
- Linear regression: an output might be sensitive to an individual's data.



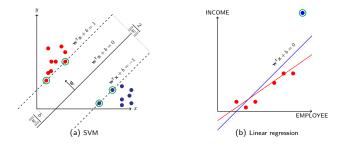
- SVM: an output can be a subset of training data points.
- Linear regression: an output might be sensitive to an individual's data.



- SVM: an output can be a subset of training data points.
- Linear regression: an output might be sensitive to an individual's data.



- SVM: an output can be a subset of training data points.
- Linear regression: an output might be sensitive to an individual's data.



ML models memorize training examples!

Unintended Memorization in Neural Networks

Nicholas Carlini, Google Brain; Chang Liu, University of California, Berkeley; Úlfar Erlingsson, Google Brain: Jernei Kos, National University of Singapore: Dawn Song, University of California, Berkeley

https://www.usenix.org/conference/usenixsecurity19/presentation/carlini

This paper is included in the Proceedings of the 28th USENIX Security Symposium. August 14-16, 2019 • Santa Clara, CA, USA

What Neural Networks Memorize and Why: Discovering the Long Tail via Influence Estimation

Vitaly Feldman * † Apple

Chivuan Zhang* Google Research, Brain Team

Abstract

Deep learning algorithms are well-known to have a propensity for fitting the training data very well and often fit even outliers and mislabeled data points. Such fitting requires memorization of training data labels, a phenomenon that has attracted significant research interest but has not been given a compelling explanation so far. A recent work of Feldman [Fel19] proposes a theoretical explanation for this phenomenon based on a combination of two insights, First, natural image and data distributions are (informally) known to be long-tailed, that is have a significant fraction of rare and atypical examples. Second, in a simple theoretical model such memorization is necessary for achieving close-to-optimal generalization error when the data distribution is long-tailed. However, no direct empirical evidence for this explanation or even an approach for obtaining such evidence were given.

In this work we design experiments to test the key ideas in this theory. The experiments require estimation of the influence of each training example on the accuracy at each test example as well as memorization values of training examples. Estimating these quantities directly is computationally prohibitive but we show that closely-related subsompled influence and memorization values can be estimated much more efficiently. Our experiments demonstrate the significant benefits of memorization for generalization on several standard benchmarks. They also provide quantitative and visually compelling evidence for the theory put forth in [Fel19].

- Unintended memorization
 - Label memorization is necessary for accurate models.
 - Memorization of *irrelevant* training examples is necessary.

1 Data Privacy

- Introduction
- Privacy Breach Case Study
- k-anonymity

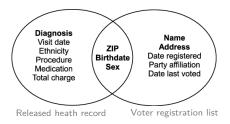
2 Differential Privacy

- Definition
- Properties

3 Deep Learning with Differential Privacy Opacus

Privacy Breach (1)

- Massachusetts Group Insurance Commission
 - collected medical records of government employees
 - considered to be safe since it does not include any identifiers
 - MA voter registration list (available at \$20)
 - ▶ Governor William Weld's record was identified by Sweeney.
 - How?
 - 54,000 resident in Cambridge, MA
 - 6 people share the same birth date with the Governor
 - only 3 of them are men.
 - only he lived in his zipcode



Privacy Breach (2)

• Netflix challege (matrix completion)

▶ [Narayanan & Shmatikov '08] linked users to IMDB postings.

Name	Movie 1	Movie 2		Movie 18,000
User1	5			
User2		3		
:		1	·	9
User 48,000				7

Robust De-anonymization of Large Sparse Datasets, A. Narayanan, V. Shmatikov, 2008

Anonymization isn't enough!

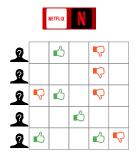


Fig. 8. Netflix Prize

Privacy Breach (3)

- AOL incident
 - AOL dataset: pseudo-user id, search keywords, clicked url, ranking
 - Removed all the identifiers
 - > The New York Times identified users and interviewed one of them.
 - Why and how?

AnonID	Query	QueryTime	ItemRank	ClickURL
217	lottery	2006-03-01 11:58:51	1	http://www.calottery.com
217	lottery	2006-03-27 14:10:38	1	http://www.calottery.com
1268	gall stones	2006-05-11 02:12:51		
1268	gallstones	2006-05-11 02:13:02	1	http://www.niddk.nih.gov
1268	ozark horse blankets	2006-03-01 17:39:28	8	http://www.blanketsnmore.com

Semantics of data

Search keyword

- numb fingers
- 60 single men
- dog that urinates on everything
- landscapers in Lilburn, Ga
- · Several people names with last name Arnold

No. 4417749 conducted hundreds of searches over a three-month period on

homes sold in shadow lake subdivision gwinnett county georgia

A Face Is Exposed for AOL Searcher No. 4417749

By MCHAEL BARBARO and TOM ZELLER & Published: August 9, 2006

Buried in a list of 20 million Web search queries collected by AOL and recently released on the Internet is user No. 4417749. The number was assigned by the company to protect the searcher's anonymity, but it was not much of a shield.

Erik S. Lesser for The New York Times Thelma Arnold's identity was betrayed by AOL records of her Web searches, like ones for her dog, Dudley, who clearly has a problem.

topics ranging from "numb fingers" to "60 single men" to "dog that urinates on everything."

And search by search, click by click, the identity of AOL user No. 4417749 became easier to discorn. There are queries for "landscapers in Lilburn, Ga," several people with the last name Arnold and "homes sold in shadow lake subdivision gwinnett county georgia."

It did not take much investigating to follow that data trail to Thelma Arnold, a 62-year-old widow who lives in Lilburn, Ga., frequently researches her friends' medial ailments and loves her three dogs. "Those are my searches," she said, after a reporter read part of the list to her.

.

1 Data Privacy

- Introduction
- Privacy Breach Case Study
- k-anonymity

2 Differential Privacy

- Definition
- Properties

3 Deep Learning with Differential PrivacyOpacus

Data Release

Consider	releasing	the	following	table.
----------	-----------	-----	-----------	--------

Name	Age	Gender	Zip Code	Nationality	Condition
Ann	28	F	13053	Russian	Heart disease
Bruce	29	М	13068	Chinese	Heart disease
Cary	21	F	13068	Japanese	Viral infection
Dick	23	М	13053	American	Viral infection
Eshwar	50	М	14853	Indian	Cancer
Fox	55	М	14750	Japanese	Flu
Gary	47	М	14562	Chinese	Heart disease
Helen	49	F	14821	Korean	Flu
lgor	31	М	13222	American	Cancer
Jean	37	F	13227	American	Cancer
Ken	36	М	13228	American	Cancer
Lewis	35	М	13221	American	Cancer

Question: What could go wrong?

Removing identifiers

- We can *remove* the name attribute from the data.
- Is it now safe to release?

Name	Age	Gender	Zip Code	Nationality	Condition
Ann	28	F	13053	Russian	Heart disease
	29	М	13068	Chinese	Heart disease
	21	F	13068	Japanese	Viral infection
	23	М	13053	American	Viral infection
	50	М	14853	Indian	Cancer
	55	М	14750	Japanese	Flu
	47	М	14562	Chinese	Heart disease
	49	F	14821	Korean	Flu
	31	М	13222	American	Cancer
	37	F	13227	American	Cancer
	36	М	13228	American	Cancer
	35	М	13221	American	Cancer

Removing identifiers

- Individuals are still *identifiable*.
- How can we hide people's identities?

Name	Age	Gender	Zip Code	Nationality	Condition
Ann	28	F	13053	Russian	Heart disease
	29	М	13068	Chinese	Heart disease
	21	F	13068	Japanese	Viral infection
	23	М	13053	American	Viral infection
	50	М	14853	Indian	Cancer
	55	М	14750	Japanese	Flu
	47	М	14562	Chinese	Heart disease
	49	F	14821	Korean	Flu
	31	М	13222	American	Cancer
	37	F	13227	American	Cancer
	36	М	13228	American	Cancer
	35	М	13221	American	Cancer

k-anonymity

- Main idea: hide into the group of k people
 - make it difficult to link insensitive and sensitive attributes
 - equivalence class: a set of people who share the same combination of insensitive attributes
 - But how?
- Example

Name	Age	Gender	Zip Code	Nationality	Condition
Ann	28	F	13053	Russian	Heart disease
Bruce	29	М	13068	Chinese	Heart disease
Cary	21	F	13068	Japanese	Viral infection
Dick	23	М	13053	American	Viral infection
Eshwar	50	М	14853	Indian	Cancer
Fox	55	М	14750	Japanese	Flu
Gary	47	М	14562	Chinese	Heart disease
Helen	49	F	14821	Korean	Flu
lgor	31	М	13222	American	Cancer
Jean	37	F	13227	American	Cancer
Ken	36	М	13228	American	Cancer
Lewis	35	М	13221	American	Cancer

Data Coarsening

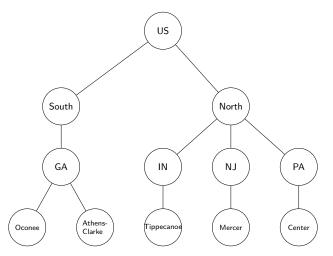
- Coarsen (or suppress) the values into a more general ones
 - ▶ Suppression: 13228 → 1322* → 132**
 - ▶ Range: 21 → [20 25] → [20 30]
 - Capping: 50 if age > 50

• How about non-numerical values?

Name	Age	Gender	Zip Code	Nationality	Condition
Ann	28	F	13053	Russian	Heart disease
Bruce	29	М	13068	Chinese	Heart disease
Cary	21	F	13068	Japanese	Viral infection
Dick	23	М	13053	American	Viral infection
Eshwar	50	М	14853	Indian	Cancer
Fox	55	М	14750	Japanese	Flu
Gary	47	М	14562	Chinese	Heart disease
Helen	49	F	14821	Korean	Flu
lgor	31	М	13222	American	Cancer
Jean	37	F	13227	American	Cancer
Ken	36	М	13228	American	Cancer
Lewis	35	М	13221	American	Cancer

Data Coarsening

• Coarsen (or suppress) the values into a more *general* ones



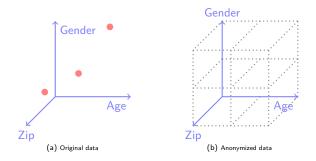
Anonymizing the data

4-anonymous table

	Age	Gender	Zip Code	Nationality	Condition
(Ann)	20-29	Any	130**	Any	Heart disease
(Bruce)	20-29	Any	130**	Any	Heart disease
(Cary)	20-29	Any	130**	Any	Viral infection
(Dick)	20-29	Any	130**	Any	Viral Infection
(Eshwar)	40-59	Any	14***	Asian	Cancer
(Fox)	40-59	Any	14***	Asian	Flu
(Gary)	40-59	Any	14***	Asian	Heart disease
(Helen)	40-59	Any	14***	Asian	Flu
(Igor)	30-39	Any	1322*	American	Cancer
(Jean)	30-39	Any	1322*	American	Cancer
(Ken)	30-39	Any	1322*	American	Cancer
(Lewis)	30-39	Any	1322*	American	Cancer

- how to anonymize
 - suppress: delete the value
 - generalize: replace the value with more general info.

Geometric Interpretation



- Release interval instead of a coordinate value
 - ▶ Age 29 \rightarrow [20, 30]
 - Figure 30601 ightarrow 30***
- Linkage attacks become harder

Attacks on *k*-anonymity

• Homogeneity attack:

	Age	Gender	Zip Code	Nationality	Condition
(Ann)	20-29	Any	130**	Any	Heart disease
(Bruce)	20-29	Any	130**	Any	Heart disease
(Cary)	20-29	Any	130**	Any	Viral infection
(Dick)	20-29	Any	130**	Any	Viral Infection
(Eshwar)	40-59	Any	14***	Asian	Cancer
(Fox)	40-59	Any	14***	Asian	Flu
(Gary)	40-59	Any	14***	Asian	Heart disease
(Helen)	40-59	Any	14***	Asian	Flu
(Igor)	30-39	Any	1322*	American	Cancer
(Jean)	30-39	Any	1322*	American	Cancer
(Ken)	30-39	Any	1322*	American	Cancer
(Lewis)	30-39	Any	1322*	American	Cancer

Attacks on *k*-anonymity

- Background (knowledge) attack
 - Suppose the adversary knows that Cary is a Japanese. Heart disease occurs at a reduced rate in Japanese patients.

	Age	Gender	Zip Code	Nationality	Condition
(Ann)	20-29	Any	130**	Any	Heart disease
(Bruce)	20-29	Any	130**	Any	Heart disease
(Cary)	20-29	Any	130**	Any	Viral infection
(Dick)	20-29	Any	130**	Any	Viral Infection
(Eshwar)	40-59	Any	14***	Asian	Cancer
(Fox)	40-59	Any	14***	Asian	Flu
(Gary)	40-59	Any	14***	Asian	Heart disease
(Helen)	40-59	Any	14***	Asian	Flu
(Igor)	30-39	Any	1322*	American	Cancer
(Jean)	30-39	Any	1322*	American	Cancer
(Ken)	30-39	Any	1322*	American	Cancer
(Lewis)	30-39	Any	1322*	American	Cancer

Attacks on *k*-anonymity

- Homogeneity attack
- Background (knowledge) attack

	Age	Gender	Zip Code	Nationality	Condition
(Ann)	20-29	Any	130**	Any	Heart disease
(Bruce)	20-29	Any	130**	Any	Heart disease
(Cary)	20-29	Any	130**	Any	Viral infection
(Dick)	20-29	Any	130**	Any	Viral Infection
(Eshwar)	40-59	Any	14***	Asian	Cancer
(Fox)	40-59	Any	14***	Asian	Flu
(Gary)	40-59	Any	14***	Asian	Heart disease
(Helen)	40-59	Any	14***	Asian	Flu
(Igor)	30-39	Any	1322*	American	Cancer
(Jean)	30-39	Any	1322*	American	Cancer
(Ken)	30-39	Any	1322*	American	Cancer
(Lewis)	30-39	Any	1322*	American	Cancer

 ℓ -diversity

- Every equivalence class needs to have at least ℓ "well represented" sensitive values.

Zipcode	Age	Salary	Disease
306**	2*	20K	Gastric Ulcer
306**	2*	30K	Gastritis
306**	2*	40K	Stomach Cancer
3162*	\geq 40	50K	Gastritis
3162*	\geq 40	100K	Flu
3162*	\geq 40	70K	Bronchitis
300**	3*	60K	Bronchitis
300**	3*	80K	Pneumonia
300**	3*	90K	Stomach Cancer

Table 1. A 3-diverse table

ℓ -diversity

Zipcode	Age	Salary	Disease
306**	2*	20K	Gastric Ulcer
306**	2*	30K	Gastritis
306**	2*	40K	Stomach Cancer
3162*	\geq 40	50K	Gastritis
3162*	\geq 40	100K	Flu
3162*	\geq 40	70K	Bronchitis
300**	3*	60K	Bronchitis
300**	3*	80K	Pneumonia
300**	3*	90K	Stomach Cancer

Table 2. A 3-diverse table

- Limitation
 - Similarity attack

Suppose you know that Bob lives in 30602 and is 27 years old. What can you say about the disease he has?

Hard to achieve

Composition Attack

Gender	Age	Zip	Condition	Gender	Age	Zip	Cond
М	[20-30]	306**	Cancer	м	[20-35]	30***	Car
М	[20-30]	306**	Flu	M	[20-35]	30***	Heart
М	[20-30]	306**	Viral Infection	M	[20-35]	30***	Mal
М	[20-30]	306**	Viral Infection	M	[20-35]	30***	Heart
F	[40-50]	306**	Cancer	M	[20-35]	30***	Tuber
F	[40-50]	306**	Heart disease	М	[20-35]	30***	Heart
F	[40-50]	306**	Heart disease	F	[20-35]	30***	F
F	[40-50]	306**	Flu	F	[20-35]	30***	F
м	[60-]	306**	Cancer	F	[20-35]	30***	F
M	[60-]	306**	Cancer	F	[20-35]	30***	Tuber
M	[60-]	306**	Cancer	F	[20-35]	30***	Viral in
M	[60-]	306**	Flu	F	[20-35]	30***	Car
		St. Mar	y		· · · · · ·	hens Regi	

- Two released datasets satisfying k-anonymity
- Suppose an attacker knows Bob is a Ph.D. student living in Athens.
- Can you guess Bob's medical condition?

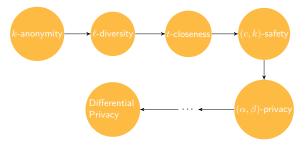
Other Privacy definitions

There exists many other variants

- *t*-closeness: distribution of sensitive attribute
- (α, β) -privacy: prior and posterior probability
- (c, k)-safety, $\max_{t \in s} \mathbb{P}(t \text{ has } s \mid K, D) < c$
- Adversarial model
 - need to make assumptions about adversary's background knowledge
 - how to mathematically specify the adversary's knowledge?

Neverending Battle

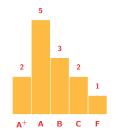
- Syntactic privacy: define how data should look to be private
- Semantic privacy: define what is private



Informal Preview on Differential Privacy

• Is releasing aggregate query result safe?

Name	Grade			
Alice	В			
Bob	A^+			
Charlie	F			
Sam	А			
Zach	С			
Table 3. Student grades				



- The instructor wants to release the grades distribution.
- Suppose the adversary knows the grades of all students but Alice.
- need to hide an individual contribution to the outcome of computation

Differential Privacy

1 Data Privacy

- Introduction
- Privacy Breach Case Study
- k-anonymity

2 Differential PrivacyDefinition

Properties

Deep Learning with Differential Privacy
 Opacus

Terminology (1)

- database $D = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\} \in \mathcal{X}^n$, a set of individuals
- curator: (trusted) data collector
- query $q:\mathcal{X}^n \to \mathbb{R}^d$: a function that maps D to a vector in \mathbb{R}^d
- privacy mechanism (or algorithm): $\mathcal{M}(D,q,b) = r$

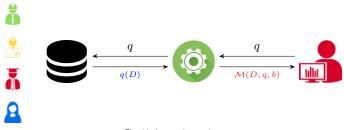


Fig. 11. Interactive setting

Neighboring Datasets

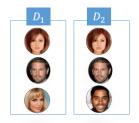


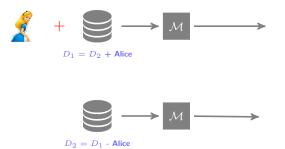
Fig. 13. Bounded DP

Fig. 12. Unbounded DP

• $|D_1| = |D_2| + 1$ • $D_2 \subset D_1$ (proper subset) • $D_1 = (D_2\{t\}) \cup \{s\}$ (replacement) • $s, t \in \operatorname{dom}(\mathcal{D})$

Intuition of differential privacy

Suppose we have two databases D_1 and D_2 .



- The mechanism \mathcal{M} chooses i (i is secret).
- It computes and releases $r = \mathcal{M}(D_i)$.
- An adversary observes r.

Intuition of Differential Privacy



- Given $r = \mathcal{M}(D)$, can an adversary tell whether i = 1 or i = 2?
 - Knowing i = 1 reveals the presence of Alice in D.
 - ▶ We want to hide the presence/absence of Alice in D.

Intuition of Differential Privacy

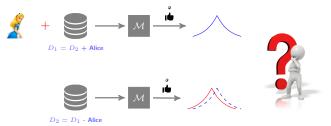


Fig. 14. \mathcal{M} is differentially private.

- How can an adversary distinguish D_1 from D_2 ?
 - \triangleright r tells you something about D.
 - $\blacktriangleright q(D_1) \neq q(D_2)$
 - ▶ what happens if *M* is deterministic?, i.e.,

$$\mathbb{P}(\mathcal{M}(D_1) = r) \neq 1$$
 and $\mathbb{P}(\mathcal{M}(D_2) = r) = 0$

- Make D_1 and D_2 indistinguishable
 - \blacktriangleright Hide the contribution of an individual to q(D)

Randomized VS Deterministic

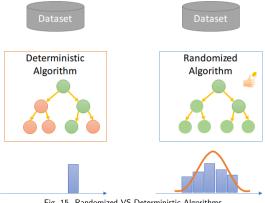


Fig. 15. Randomized VS Deterministic Algorithms

Review: Expectation

Let X be a discrete (continuous) random variable with probability mass (density) function $f_X(x)$.

$$\begin{split} \mathbb{E}[X] &= \sum_{x \in \Omega} x f_X(X) \qquad \text{(discrete)} \\ \mathbb{E}[X] &= \int_{-\infty}^{\infty} x f_X(x) \, \mathrm{d}x \quad \text{(continuous)} \end{split}$$

Linearity of expectation

Let X and Y be random variables (not necessarily independent) and $a,b\in\mathbb{R}$ are constants. Then we have

 $\mathbb{E}[aX + bY] = a \mathbb{E}[X] + b \mathbb{E}[Y]$

Review: Variance

For a random variable X, its variance is given by

$$Var(X) = \mathbb{E}[(X - \mu)^2]$$

= $\mathbb{E}[X^2 - 2\mu X + \mu^2]$
= $\mathbb{E}[X^2] - 2\mu \mathbb{E}[X] + \mu^2$
= $\mathbb{E}[X]^2 - \mu^2 = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$,

where $\mu = \mathbb{E}[X]$.

- Variance measures dispersion around the mean.
- Variance is not a linear operator.

$$\operatorname{Var}(aX+b) = a^2 \operatorname{Var}(X)$$

Definition

Differential Privacy

A randomized algorithm \mathcal{M} is differentially private if for all $\mathcal{S} \subseteq \operatorname{range}(\mathcal{M})$ and for all pairs of neighboring databases D_1 and D_2

$$\frac{\mathbb{P}[\mathcal{M}(D_1) \in \mathcal{S}]}{\mathbb{P}[\mathcal{M}(D_2) \in \mathcal{S}]} \le \exp(\epsilon),$$

where $\epsilon > 0$ and the probability is taken over the coin flip of \mathcal{M} .

Two central concepts

- Neighboring datasets
- Sensitivity

Neighboring databases

We say two databases D_1 and D_2 are *neighboring* if they differ in at most one tuple. I.e., $|(D_1 - D_2) \cup (D_2 - D_1)| = 1$.

Example 1: deterministic

Suppose we have a universe $\mathcal{U} = \{ \underbrace{\text{Alice}}_{90}, \underbrace{\text{Bob}}_{80}, \underbrace{\text{Charlie}}_{80}, \underbrace{\text{David}}_{30} \}.$

- $D_1 = \{ Alice, Bob, Charlie \}$
- $D_2 = \{ Alice, Bob, Charlie, David \}$
- The school released a statistic $\mathcal{M}(D) = \frac{1}{n} \sum_{i=1}^{n} x_i$.
- Adversary already has all the records of individuals in D_1 .
- His task is to guess whether David is in the database D.
- The adversary wins if he guesses correctly.

Example 1: deterministic

What happens if the school release the true statistic $\mathcal{M}(D) = 70$?

- Adversary observes the released statistic $\mathcal{M}(D) = 70$.
- Adversary's knowledge
 - Adversary already knows $\mathcal{M}(D_1) = 83.3$.
 - Adversary knows the universe $\mathcal{U} = \{ Alice, Bob, Charlie, David \}$.

90

80

• David's score is revealed!

Example 2: randomized

• Recall the school database example

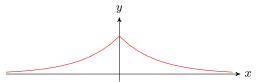
 $\blacktriangleright \mathcal{U} = \{ \underbrace{\mathsf{Alice}}_{90}, \underbrace{\mathsf{Bob}}_{80}, \underbrace{\mathsf{Charlie}}_{80}, \underbrace{\mathsf{David}}_{30}, \underbrace{\mathsf{Eve}}_{90} \}$

- $D = \{ Alice, Bob, Charlie, ? \}.$
 - ▶ $D_1 = \{ \text{Alice, Bob, Charlie, David} \} \Longrightarrow \mathcal{M}(D) = 70.$
 - ▶ $D_2 = \{ Alice, Bob, Charlie, Eve \} \Longrightarrow \mathcal{M}(D) = 85.$
- Adversary observes $y = \mathcal{M}(D)$, where

$$\blacktriangleright \mathbb{P}[\mathcal{M}(D_1) = v] \le e^{\epsilon} \mathbb{P}[\mathcal{M}(D_2) = v].$$

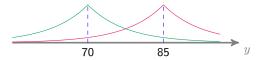
$$\mathcal{N}(D) = \operatorname{avg}(D) + I$$

true statistic



Example 2: randomized

What is adversary's posterior on D_1 and D_2 given $\mathcal{M}(D)$?

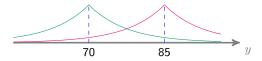


• Noisy answer
$$y = \mathcal{M}(D)$$

 $\mathbb{P}[\mathsf{Guess}{=}\mathsf{David} \mid y] = ?$

Example 2: randomized

What is adversary's posterior on D_1 and D_2 given $\mathcal{M}(D)$?

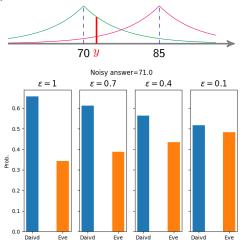


• Noisy answer
$$y = \mathcal{M}(D)$$

$$\mathbb{P}[\mathsf{Guess}=\mathsf{David} \mid y] = \frac{\mathbb{P}[y \mid D_2] \mathbb{P}[D_2]}{\mathbb{P}[y \mid D_1] \mathbb{P}[D_1] + \mathbb{P}[y \mid D_2] \mathbb{P}[D_2]}$$

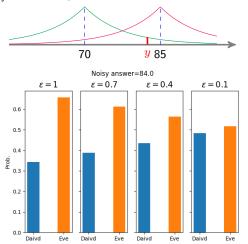
Example 2: posterior

• When the noisy answer=71,



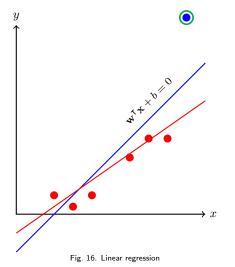
Example 2: posterior

• When the noisy answer=84,



Sensitivity

Why do data analysis results reveal the identities of individuals?



How to achieve differential privacy?

Sensitivity

- the largest contribution that can be made by one individual
- \bullet dependent on the function q of interest and the universe ${\cal U}$
- independent of data

The (global) sensitivity of a function $q: \mathcal{X}^n \to \mathbb{R}^d$ is defined by

$$\Delta_q = \max_{D, D' \in \mathcal{U}} \|q(D) - q(D')\|_1,$$

where D and D' are neighboring datasets in the universe.

Examples

Setup

- $\mathcal{U} = \{1, 2, 3, \dots, 100\}$
- $D = \{x_i\}_{i=1}^n \in \mathcal{U}^n$, $x_i \in \mathcal{U}$
- Sensitivity Δ_q for aggregate queries

Practice $q(D) = \sum_{i=1}^{n} x_{i}$ $q(D) = \frac{1}{n} \sum_{i=1}^{n} x_{i}$ $q(D) = \max_{i} x_{i}$ $q(D) = \operatorname{median}(x_{1}, x_{2}, \dots, x_{n})$ $q(D) = \operatorname{count}(x_{i} = p)$

🞓 Laplace Mechanism

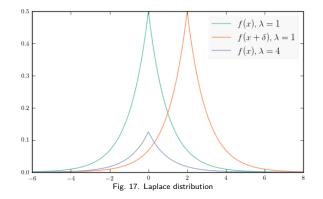
Given a query function $q: \mathcal{X}^n \to \mathbb{R}$, the Laplace mechanism is defined as:

$$\mathcal{M}(D) = q(D) + Y,$$

where
$$Y \sim \mathsf{Lap}\left(\frac{\Delta_q}{\epsilon}\right)$$
.

• Laplace mechanism satisfies ϵ -differential privacy.

Laplace mechanism: noise distribution



Laplace mechanism: noise distribution

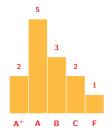
The Laplace mechanism draws random noise $Y \sim Lap(\lambda)$.

$$\mathcal{M}(D) = q(D) + Y$$

• Probability density function $f(x) = \frac{1}{2\lambda} \exp\left(-\frac{|x-\mu|}{\lambda}\right)$ • mean $\mathbb{E}[Y] = \mu$ • variance $= \mathbb{E}\left[(Y-\mu)^2\right] = 2\lambda^2$ • Sliding property $e^{-\frac{\delta}{\lambda}} \leq \frac{f(x+\delta)}{f(x)} \leq e^{\frac{\delta}{\lambda}}$ • for any t > 0, $\mathbb{P}[|Y| > t] = \exp\left(-\frac{t}{\lambda}\right)$

Example

Name	Grade		
Alice	В		
Bob	A^+		
Charlie	F		
Sam	А		
Zach	С		
Table 4. Student grades			



- sensitivity?
- scale parameter of noise distribution?

1 Data Privacy

- Introduction
- Privacy Breach Case Study
- k-anonymity

2 Differential Privacy

- Definition
- Properties

3 Deep Learning with Differential Privacy
Opacus

Removing noise?

• Consider the Laplace mechanism.

$$r = \mathcal{M}(D) = \underbrace{q(D)}_{\text{true answer}} + \underbrace{Y}_{\text{noise}}, \quad Y \sim \mathsf{Lap}\left(\frac{\Delta_q}{\epsilon}\right)$$

• Given the (noisy) response r, can we reconstruct q(D)?

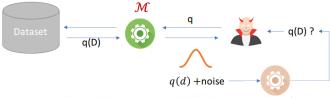


Fig. 18. Is it possible to remove noise added by the privacy mechanism?

Post-processing

- Let $\mathcal{M}: \mathcal{X}^n \to R$ be an ϵ -DP algorithm.
- $\mathcal{M}(D)$ is the *private* output.
- Suppose we have a deterministic function $f: R \rightarrow R'$.
- If we apply f on the private output, is it still private?

Post-processing Invariance

Let \mathcal{M} be an ϵ -DP function and f be an arbitrary deterministic function on the output domain of \mathcal{M} . The composite function $f \circ g : \mathcal{X}^n \to R'$ is ϵ -differentially private.

• It means that you cannot make $\mathcal{M}(D)$ more or less private.

Group Privacy

Let $\mathcal{M}: \mathcal{X}^n \to \mathbb{R}$ be an ϵ -differentially private algorithm. Then, \mathcal{M} is $k\epsilon$ -differentially private for groups of size k. That is, for all x, y such that $||x - y||_1 \le k$ and for all $S \subseteq \operatorname{range}(\mathcal{M})$,

 $\mathbb{P}[\mathcal{M}(x) \in S] \le \exp(k\epsilon) \mathbb{P}[\mathcal{M}(y) \in S].$

x_1	x_1	x_1
x_2	x_2	x_2
x_3	x'_3	x_3
:	:	:
x_i	x_i	x'_i
:	:	:
x_n	x_n	x_n
D_1	D_2	D_3

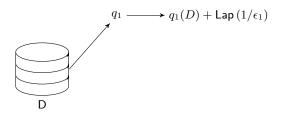
Composition (1)

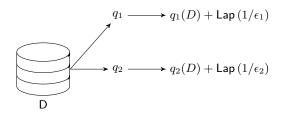
Sequential composition

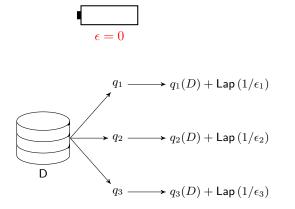
- Suppose we have two algorithms \mathcal{M}_1 and \mathcal{M}_2 .
- \mathcal{M}_1 is ϵ_1 -DP and \mathcal{M}_2 is ϵ_2 -DP.
- The algorithm \mathcal{M} that sequentially calls \mathcal{M}_1 and \mathcal{M}_2 is $(\epsilon_1 + \epsilon_2)$ -differentially private.

Proof.

$$\frac{\mathbb{P}[\mathcal{M}(D) = (r_1, r_2)]}{\mathbb{P}[\mathcal{M}(D') = (r_1, r_2)]} = \frac{\mathbb{P}[(\mathcal{M}_1(D) = r_1, \mathcal{M}_2(D) = r_2)]}{\mathbb{P}[(\mathcal{M}_1(D') = r_1, \mathcal{M}_2(D') = r_2)]}$$
$$= \frac{\mathbb{P}[\mathcal{M}_1(D) = r_1]}{\mathbb{P}[\mathcal{M}_1(D') = r_1]} \frac{\mathbb{P}[\mathcal{M}_2(D) = r_2]}{\mathbb{P}[\mathcal{M}_2(D') = r_2]}$$
$$\leq \exp(\epsilon_1) \cdot \exp(\epsilon_2) = \exp(\epsilon_1 + \epsilon_2)$$

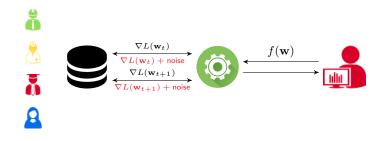






Deep Learning with Differential Privacy

Gradient Perturbation



• Perturb the gradients

$$\widetilde{\nabla L}(\mathbf{w}_t) = \nabla L(\mathbf{w}_t) + \mathcal{N}\left(0, \sigma_t^2 \mathbf{I}_d\right)$$
(noisy gradient)
$$\mathbf{w}_{t+1} = \mathbf{w}_t - \eta_t \widetilde{\nabla L}(\mathbf{w}_t)$$
(GD update)
step size

• Need to carefully control η_t and σ_t

Differentially Private Deep Learning

DP-SGD Framework: gradient clipping + noise injection

• Per-example Gradient

$$\nabla L(\mathbf{w}_t; B) = \sum_{i=1}^4 \nabla \ell(\mathbf{w}_t, d_i) + \text{noise}$$

DP-SGD

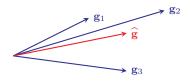
• Need to bound the *influence* of each individual on the gradient, meaning that, for some C>0,

$$\begin{aligned} \|\nabla \ell(\mathbf{w}_t, \bigoplus^{*})\|_2 &\leq C \\ \|\nabla \ell(\mathbf{w}_t, \bigwedge^{*})\|_2, &\leq C \\ \|\nabla \ell(\mathbf{w}_t, \bigoplus^{*})\|_2, &\leq C \\ \|\nabla \ell(\mathbf{w}_t, \bigoplus^{*})\|_2, &\leq C \end{aligned}$$

- ► *C* is called *clipping threshold*.
- The sensitivity of $\nabla \ell(\mathbf{w}_t) = C$.

SGD VS DP-SGD

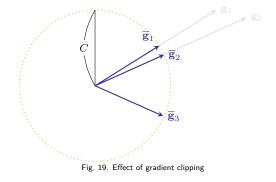
Non-private



- Per-example gradient: $\mathbf{g}_i = \nabla L(\mathbf{w}^t, d_i)$ for i = 1, 2, 3
- Aggregated gradient: $\widehat{\mathbf{g}} = \frac{1}{3}(\mathbf{g}_1 + \mathbf{g}_2 + \mathbf{g}_3)$

SGD VS DP-SGD

Private



SGD VS DP-SGD

Private

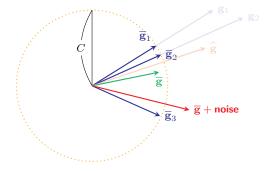


Fig. 20. Effect of gradient clipping + Noise

- Private gradient: $\widetilde{\mathbf{g}} = \overline{\mathbf{g}} + \mathsf{noise}$
 - bias due to clipping
 - variance due to noise addition

1 Data Privacy

- Introduction
- Privacy Breach Case Study
- k-anonymity

2 Differential Privacy

- Definition
- Properties

3 Deep Learning with Differential Privacy • Opacus

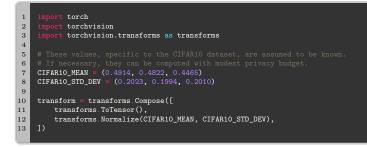
What is OPACUS?

- A PyTorch library for differentially private training of NNs
- Support fast *per-example* gradient computation
- https://opacus.ai/

Training your NN under DP

For details, please refer to this page.

Preparing datasets



Preparing datasets


```
from torchvision.datasets import CIFAR10
 1
 \mathbf{2}
     DATA_ROOT = '../cifar10'
 3
 4
     train_dataset = CIFAR10(
 \mathbf{5}
         root=DATA_ROOT, train=True, download=True, transform=transform)
 6
 7
 8
     train loader = torch.utils.data.DataLoader(
 9
         train_dataset,
10
         batch size=BATCH SIZE.
11
12
13
     test_dataset = CIFAR10(
14
         root=DATA_ROOT, train=False, download=True, transform=transform)
15
16
     test_loader = torch.utils.data.DataLoader(
17
         test dataset.
18
         batch_size=BATCH_SIZE,
         shuffle=False,
19
20
     )
```


Validating Models

- Verify whether the model is compatible with DP training
 - BatchNorm cannot be used.
 - Replace it with GroupNorm.

Preparing for training


```
from opacus import PrivacyEngine
 1
 \mathbf{2}
    privacy_engine = PrivacyEngine()
 3
 4
    model, optimizer, train_loader = privacy_engine_make private with epsilon(
 \mathbf{5}
         module=model,
 6
         optimizer=optimizer,
 7
 8
         data_loader=train_loader,
 9
         epochs=EPOCHS,
         target_epsilon=EPSILON,
10
11
         target_delta=DELTA,
12
         max_grad_norm=MAX_GRAD_NORM,
13
14
15
    print(f"Using sigma={optimizer.noise_multiplier} and C={MAX_GRAD_NORM}")
16
```


Private Training


```
def train(model, train_loader, optimizer, epoch, device):
 2
         criterion = nn.CrossEntropyLoss()
 3
         losses, top1_acc = [], []
 4
 5
         with BatchMemoryManager(
             data_loader=train_loader,
 6
             max physical batch size=MAX PHYSICAL BATCH SIZE,
 7
 8
             optimizer=optimizer
         ) as memory_safe_data_loader:
10
11
             for i, (images, target) in enumerate(memory_safe_data_loader):
                 optimizer.zero_grad()
12
                 images = images.to(device)
13
                 target = target.to(device)
14
15
                 output = model(images)  # compute output
16
17
                 loss = criterion(output, target)
18
19
                 preds = np.argmax(output.detach(),cpu(),numpv(), axis=1)
                 labels = target.detach().cpu().numpy()
20
21
22
                       accuracy(preds, labels) # measure accuracy and record loss
                 acc =
                 losses.append(loss.item())
23
24
                 top1_acc.append(acc)
25
                 loss.backward()
26
27
                 optimizer.step()
28
29
                 epsilon = privacy_engine.get_epsilon(DELTA)
```