1. [20 points][MID] The \textit{subset}_{21} problem is stated as follows. Given a set of \(N \) positive integers \(X = \{x_1, x_2, \ldots, x_n\} \). Find a subset \(P \) of the set \(X \) such that the sum of the elements of \(P \) is equal to 21. For example, if \(N=5 \) and the set \(X = \{12, 17, 3, 24, 6\} \), the set \(P = \{12, 3, 6\} \) is a valid solution for the \textit{subset}_{21} problem in this example.

Formulate the \textit{subset}_{21} problem as a Genetic or Evolutionary Algorithm optimization. You may use binary representation, OR any representation that you think is more appropriate. you should specify:

- A representation.
- A fitness function. Give 3 examples of individuals and their fitness values if you are solving the above example (i.e. \(X = \{12, 17, 3, 24, 6\} \)).
- A set of mutation and/or crossover and/or repair operators. Intelligent operators that are suitable for this particular domain will earn more credit.
- A termination criterion for the evolutionary optimization which insures that you terminate with a valid solution for the \textit{subset}_{21} problem if possible without running indefinitely.

2. [20 points][MID] The \textbf{graph k-coloring} problem is stated as follows: Given an undirected graph \(G = (V, E) \) with \(N \) vertices and \(M \) edges and an integer \(k \). Assign to each vertex \(v \) in \(V \) a color \(c(v) \) such that \(1 \leq c(v) \leq k \) and \(c(u) \neq c(v) \) for every edge \((u, v) \) in \(E \). In other words you want to color each vertex with one of the \(k \) colors you have and no two adjacent vertices can have the same color.

For example, the following graph can be 3-colored using the following color assignments: \(a=1,b=2,c=1,d=2,e=3,f=2,g=3 \)

\begin{center}
\begin{tikzpicture}[every node/.style={circle,draw}]
 \node (a) at (0,0) {a};
 \node (b) at (1,0) {b};
 \node (c) at (2,0) {c};
 \node (d) at (1,-1) {d};
 \node (e) at (2,-1) {e};
 \node (f) at (3,-1) {f};
 \node (g) at (2,1) {g};
 \draw (a) -- (b) -- (c); % a --- b --- c
 \draw (a) -- (d); % a \ / \ b
 \draw (b) -- (d); % \ / \ b
 \draw (c) -- (e); % c --- e
 \draw (c) -- (f); % c --- f
 \draw (d) -- (g); % d --- g
\end{tikzpicture}
\end{center}

Formulate the \textbf{graph k-coloring} problem as an evolutionary optimization. You may use a vector of integer representation, OR any representation that you think is more appropriate. you should specify:

- A representation.
3. [20 points][FIN]

The **minimum vertex cover** problem is stated as follows: Given an undirected graph \(G = (V, E) \) with \(N \) vertices and \(M \) edges. Find a minimal size subset of vertices \(X \) from \(V \) such that every edge \((u, v) \) in \(E \) is incident on at least one vertex in \(X \). In other words you want to find a minimal subset of vertices that together touch all the edges.

For example, the set of vertices \(X = \{a,c\} \) constitutes a minimum vertex cover for the following graph:

```
  a   ---b---c   ---g
  / \      |      |
  / \      |      |
  d   e   f
```

Formulate the **minimum vertex cover** problem as a Genetic Algorithm or another form of evolutionary optimization. You may use binary representation, OR any representation that you think is more appropriate. you should specify:

- A representation.
- A fitness function. Give 3 examples of individuals and their fitness values if you are solving the above example.
- A set of mutation and/or crossover and/or repair operators. Intelligent operators that are suitable for this particular domain will earn more credit.
- A termination criterion for the evolutionary optimization which insures that you terminate with a valid solution to the **minimum vertex cover** problem if possible without running indefinitely.