CSCI 4560/6560 Evolutionary Computation

Assignment Number 4: Due 10/15/2020

1. [20 points][MID]: Short answers please!

 (a) Why is edge recombination usually better than order crossover for the traveling salesperson problem?

 (b) Why is a \((\mu, \lambda)\) evolution strategy usually better than a \((\mu + \lambda)\) evolution strategy for optimization in a dynamically changing fitness landscape?

 (c) Identify one point of similarity and two points of difference between Evolution Strategies and modern Evolutionary Programming when used for continuous functional optimization.

2. [20 points][MID]: Short answers please!

 (a) Define selection pressure and mention two ways to measure it.

 (b) Mention one way to reduce selection pressure in modern Evolutionary Programming when used for continuous functional optimization.

 (c) Identify two points of difference between Genetic Algorithms and classical Evolutionary Programming using finite state machines.

3. [20 points][MID]:

 (a) What is the difference between a \((\mu + \lambda)\) evolution strategy and a \((\mu, \lambda)\) evolution strategy? Give one advantage for using each of these two methods over the other.

 (b) Which of the following strategies has the highest selection pressure for survival to the next generation:

 i. a \((10,10)\) evolution strategy
 ii. a \((5+10)\) evolution strategy
 iii. a \((5,10)\) evolution strategy

 Briefly justify your answer.

 (c) For 6560 Students only What is wrong with a \((\mu, \mu)\) evolution strategy? Very briefly propose a way to fix it.