Special Topic: Deep Learning

Hello! We are Zach Jones

and Sohan Nipunage

You can find us at: zdj21157@uga.edu smn57958@uga.edu

Outline

- I. What is Deep Learning?
- II. Why Deep Learning?
- III. Common Problems
- IV. Popular Use Cases
 - A. Convolutional Nets
 - B. Recurrent Nets
 - C. Deep RL
 - D. Unsupervised
- V. Current Research
 - Q & A

What is **Deep Learning?**

More than just a buzzword!

Neural Networks

Deep Neural Networks

Deep (but not that deep) Neural Network

Deep Neural Networks

Z. Why Deep Learning?

Is there a point to all of this?

In the olden days: Expert Systems

O Next Step: Classical Machine Learning

10

O Next Step: Representation Learning

O The Present: Deep Learning

Why Deep Learning

- More sophisticated models
 learn very complex non-linear functions
- Layers as a mechanism for abstraction
- O Automatic feature extraction
- O Works well in practice

Why Deep Learning

- Loads of data
- Very flexible model
 can represent complex functions
- Overful feature extraction
 - Defeat the curse of dimensionality

Multiple Levels of Abstraction

Capturing high-level abstractions allows us to achieve amazing results in difficult domains

Common Problems

Vanishing Gradients, Parameter Explosion, Overfitting, Long Training Time, and other disasters!

Problem: Vanishing Gradients

- Towards either end of the sigmoid function, Y values tend to respond very less to changes in X
- Gradient in that region is going to be too small.

Problem: Vanishing Gradients

Backpropagation

- o=sig(WX+b)
- ∂o/∂W=o(1-o) X

Chains of sigmoid derivatives

- Eating the gradient
- Narrow range

O Rectifier:

- Rectified Linear Units (ramp)
 - f(x)=max(0,x)
 - Derivative: All in or all out (unit step)
 - f'(x)=1 if x>0 else 0
 - First proposed as activation by Hahnloser et al (2
 - Popularized by Hinton in his RBM (2010).

Dead ReLUs

- LeakyReLU: f(x)=max(x,0.01x)
- PReLU: f(x)=max(x,ax)

 $f(u) = \max(0, u)$

-1

21

Unit variance weights Var[W] = 1Glorot et al (2010):

- Var[W] = nin * Var[wi] (since iid)
- $Var[w_i] = \frac{1}{n_{in}}$ • Eg, sample from $U[-\frac{1}{\sqrt{n_{in}}}, +\frac{1}{\sqrt{n_{in}}}]$ or $N[0, \frac{1}{n_{in}}]$

He et al (2015):

•
$$Var[w_i] = \frac{2}{n_{in} + nou_t}$$

- All You Need Is A Good Init (2015):
 - Initialize from N(0,1) or U[-1,1]
 - Orthonormalize the weights (Singular Value Decomposition-SVD)
 - Unit singular values in all directions
 - Keep scaling down until unit variance

Problem: Parameter Explosion

Solution: Shared Weights

- \bigcirc Each filter h_i is replicated across the entire visual field.
- These replicated units share the same parameterization (weight vector and bias) and form a feature map.

Solution: Regularization, Dropout, and Normalization

Regularization :

- Make some minima more appealing than others
- Smooth the search space (less jagged)
- Norm-based
- L1 (sparse weights)
- L2 (weight decay)

Solution: Regularization, Dropout, and Normalization

O Dropout:

- Randomly deactivating units in feature maps
- Forces all parts to be responsible for the output
- Practically becomes an Ensemble of networks

(a) Standard Neural Net

(b) After applying dropout.

Solution: Regularization, Dropout, and Normalization

Batch Normalization:

- Learns to adjust the mean and variance of the data
- Helps combat overfitting by removing circumstantial data statistics
- Helps keeping the gradients strong

Input: Values of x over a mini-batch:
$$\mathcal{B} = \{x_{1...m}\}$$
;
Parameters to be learned: γ, β
Output: $\{y_i = BN_{\gamma,\beta}(x_i)\}$
 $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i$ // mini-batch mean
 $\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$ // mini-batch variance
 $\hat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$ // normalize
 $y_i \leftarrow \gamma \hat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)$ // scale and shift

Problem: Long Training Time

Long training time may take upto days for computing.

Solution: Modern GPUs and TPUs

- GPUs allowed for much faster training time (days to hours).
- The NVIDIA CUDA[®] Deep Neural Network library (cuDNN) is a GPU-accelerated library of primitives for deep neural networks.
- CuDNN provides highly tuned implementations for standard routines such as forward and backward convolution, pooling, normalization, and activation layers.

cuDNN is part of the NVIDIA Deep Learning SDK.

Solution: Modern GPUs and TPUs

- A tensor processing unit (TPU) is an AI accelerator application-specific integrated circuit (ASIC) developed by Google specifically for neural network machine learning.
- The chip has been specifically designed for Google's TensorFlow framework

Popular Use Cases

Let's see what all the cool kids are doing...

Convolutional Neural Networks

Image and Video Processing

Image Processing

Computer vision Explosive spatial domain 256 x 256 RGB image → 256 x 256 x 3 = 196,000 inputs!

Traditional Image processing:

Blur

Median

Edge-Detect

High-Pass

Dilate

Erode

What if we could learn the filters automatically?

Enter: Convolutional Neural Nets

Convolution Operation

Ι

 \mathbf{K}

I * K
Convolutional Layers

- O Layer parameters consist of a set of learnable filters
- © Key idea: neurons only look at small region of input
- O Convolutional layer maps from 3D input to 3D output
- Output size determined by hyperparameters:
 - **receptive field**: *n* x *m* x *l* region of previous layer
 - **depth** = number of filters to apply to a region
 - stride = by how many pixels do we slide the receptive field

AlexNet (2012)

AlexNet Classifications

Top-5 Error Rate: 15.3%

Top-5 Error Rate: 6.67%

U-Net (2015)

More Applications

Text Classification [5] Words are also spatially correlated!

Music Recommendation [6]

Deep Reinforcement Learning

Decision Making in complex, unsearchable domains

Reinforcement Learning

- If we know the reward function, then it is easy!
- What if we don't?
- Idea: Learn the reward function using a deep neural network
 Capable of inferring complicated reward structure

DQN (2015)

Deep Q-Learning for Arcade Games

AlphaGo Zero

Policy Network
 Where should I search?

- Value Network
 - What is the value of each state?
- Trained through self-play
 Beat reigning Go champions after four days of training

Recurrent Neural Networks

Making sense of sequential data

Recurrent Neural Networks

 For visual datasets: features are spatially correlated

What if features are correlated over *time*?

- Text Classification
- Speech Recognition
- Handwriting Recognition

Solution: *Recurrent Neural Networks*

Recurrent Neural Networks

Recurrent Neural Networks have *back-connections*

Recurrent Neural Networks

Recurrent Neural Network unrolled over time

52

Basic Recurrent Neural Nets work well for **short term dependencies**

Basic Recurrent Neural Nets break down when data has **long term dependencies**

Long Short-Term Memory (LSTM)

Solution: Long short-term memory cells

Unsupervised Learning

Dimensionality Reduction, Generative Models, and Clustering Unsupervised- Dimensionality reduction

O Autoencoders

Impose constraints on the code (eg, sparse)

Unsupervised- Dimensionality reduction

Denoising Autoencoders

Unsupervised- Generative models

Generative Adversarial Networks (2014)

Generative adversarial networks (conceptual)

59

5

Unsupervised- Generative models

 Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks, 2015

Unsupervised- Generative models

Variational Auto Encoders (2014) Concerned more about the distributions

Unsupervised-Clustering

- Spectral clustering:
 - Formulate pairwise similarity between datapoints (kernel matrix)
 - Eigendecompose the kernel matrix
 - Retain only the largest k-eigenvectors (Laplacian eigenmaps)
 - Apply k-means
- Eckart-Young-Mirsky theorem:
 - First k-eigenvectors of a matrix M reconstruct the optimal low-rank (k) version of M
- Autoencoders are all about reconstruction

Unsupervised-Clustering

Current Research

This could be you!

5.

Adversarial Attacks

O CNN classifiers are easy to "trick"

 $+.007 \times$

x "panda" 57.7% confidence

 $sign(\nabla_x J(\theta, x, y))$

"nematode" 8.2% confidence

=

Dense Nets

Deep Neural Nets have tons of parameters

Can we reduce the parameters without hurting accuracy?

Distributed Learning

Learning involves updating weights

Can we avoid the expensive gradient broadcast every iteration?

Memory-Augmented Neural Nets

- Meta-learning
 Can we learn to learn?
- Make use of long-term external memory
- One-shot Learning

Memory-Augmented Neural Nets

MANN structure

Thanks!

Any questions?

You can find us at: zdj21157@uga.edu smn57958@uga.edu

Credits

Papers referenced (in order of appearance):

- 1. LeNet (Yann LeCun)
- 2. <u>AlexNet</u> (Krishevsky et. al.)
- 3. <u>Inception</u> (Szegedy et. al.)
- 4. <u>U-Net</u> (Ronneberger et. al.)
- 5. <u>CNNs for Sentence Classification</u> (Yoon Kim)
- 6. <u>Deep Content-Based Music Recommendation</u> (van den Oord et. al.)
- 7. <u>Playing Atari Games with DQN</u> (Mnih et. al.)
- 8. <u>AlphaGo Zero</u> (Silver et. al.)

Credits

Materials used:

- Presentation template by <u>SlidesCarnival</u>
- Bahaa's Original Deep Learning Presentation
- Yoshua Bengio's <u>Lecture on Deep Learning</u>

