
Special Topic:
Deep Learning



Hello!
We are Zach Jones
and Sohan Nipunage

You can find us at:

zdj21157@uga.edu
smn57958@uga.edu
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1.
What is 
Deep Learning?
More than just a buzzword!
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Neural Networks

Single-layer (shallow) Neural Network
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Deep Neural Networks

Deep (but not that deep) Neural Network
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Deep Neural Networks

Deeper Neural Network
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2.
Why 
Deep Learning?
Is there a point to all of this?
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History of Learning Systems

◎ In the olden days: Expert Systems
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Knowledge 
from Experts

Hand-Crafted 
Program The Answer

Problem:
This takes a 
lot of time 
and effort



History of Learning Systems

◎ Next Step: Classical Machine Learning
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Input Data
Hand-

Designed 
Features

The AnswerMapping from 
Features

Problem:
This takes a 
lot of time 
and effort



History of Learning Systems

◎ Next Step: Representation Learning
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Input Data Feature 
Learning

The AnswerMapping from 
Features

Problem:
This is hard to do 
for some domains



History of Learning Systems

◎ The Present: Deep Learning
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Input Data Simple 
Features

The Answer
Mapping from 

High-Level 
Features

More 
Complex 
Features



Why Deep Learning

◎ More sophisticated models
○ learn very complex non-linear functions

◎ Layers as a mechanism for abstraction

◎ Automatic feature extraction

◎ Works well in practice
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Why Deep Learning

◎ Loads of data

◎ Very flexible model
○ can represent complex functions

◎ Powerful feature extraction
○ Defeat the curse of dimensionality
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Multiple 
Levels of 

Abstraction
Capturing high-level 

abstractions allows us to 
achieve amazing results in 

difficult domains
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No Free Lunch
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Anything you can 
do, I can do better! 
I can do anything 
better than you!

Yes, including 
overfitting...



3.
Common Problems
Vanishing Gradients, Parameter 
Explosion, Overfitting, Long 
Training Time, and other disasters!
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Problem: Vanishing Gradients

◎ Towards either end of the sigmoid function, Y values 
tend to respond very less to changes in X

◎ Gradient in that region is going to be too small.
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Problem: Vanishing Gradients

◎ Backpropagation
○ o=sig(WX+b)

○ ∂o/∂W=o(1-o)  X

◎ Chains of sigmoid derivatives
○ Eating the gradient
○ Narrow range
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Solution: Rectified Linear Units

◎ Rectifier:
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Solution: Rectified Linear Units

◎ Rectified Linear Units (ramp)
○ f(x)=max⁡(0,x)
○ Derivative: All in or all out  (unit step)

◉ f′(x)=1 if x>0 else 0
○ First proposed as activation by Hahnloser et al (2000)
○ Popularized by Hinton in his RBM (2010).

◎ Dead ReLUs
○ LeakyReLU: f(x)=max⁡(x,0.01x)
○ PReLU: f(x)=max⁡(x,ax)
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Solution: Rectified Linear Units
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Solution: Rectified Linear Units

◎ All You Need Is A Good Init (2015):
○ Initialize from N(0,1) or U[-1,1]
○ Orthonormalize the weights (Singular Value 

Decomposition-SVD)
○ Unit singular values in all directions
○ Keep scaling down until unit variance
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Problem: Parameter Explosion
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Solution: Shared Weights

◎ Each filter hi is replicated across the entire visual field. 

◎ These replicated units share the same 
parameterization (weight vector and bias) and form a 
feature map.
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Solution: Regularization, Dropout, and Normalization

◎ Regularization : 

○ Make some minima more appealing than others

○ Smooth the search space (less jagged)
○ Norm-based
○ L1 (sparse weights)
○ L2 (weight decay)
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Solution: Regularization, Dropout, and Normalization

◎ Dropout: 
○ Randomly deactivating units in feature maps
○ Forces all parts to be responsible for the output
○ Practically becomes an Ensemble of networks
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Solution: Regularization, Dropout, and Normalization

◎ Batch Normalization: 
○ Learns to adjust the mean and variance of the data
○ Helps combat overfitting by removing 

circumstantial data statistics
○ Helps keeping the gradients strong
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Problem: Long Training Time

◎ Long training time may take upto days for 
computing.
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Solution: Modern GPUs and TPUs

◎ GPUs allowed for much faster training time (days to 
hours).

◎ The NVIDIA CUDA® Deep Neural Network library 
(cuDNN) is a GPU-accelerated library of primitives for 
deep neural networks. 

◎ cuDNN provides highly tuned implementations for 
standard routines such as forward and backward 
convolution, pooling, normalization, and activation 
layers. 

◎ cuDNN is part of the NVIDIA Deep Learning SDK.
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https://developer.nvidia.com/deep-learning


Solution: Modern GPUs and TPUs

◎ A tensor processing unit (TPU) is an AI accelerator 
application-specific integrated circuit (ASIC) 
developed by Google specifically for neural network 
machine learning.

◎ The chip has been specifically designed for Google's 
TensorFlow framework
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4.
Popular Use Cases
Let’s see what all the cool kids are 
doing...
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Convolutional Neural 
Networks
Image and Video Processing
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Image Processing

◎ Computer vision
○ Explosive spatial domain
○ 256 x 256 RGB image → 

256 x 256 x 3 = 196,000 inputs!

◎ Traditional Image processing:
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What if we could 
learn the filters 
automatically?
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Enter: Convolutional 
Neural Nets



Convolution Operation
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Convolutional Layers
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◎ Layer parameters consist of a set of learnable filters
◎ Key idea: neurons only look at small region of input
◎ Convolutional layer maps from 3D input to 3D output
◎ Output size determined by hyperparameters:

○ receptive field: n x m x l region of previous layer
○ depth = number of filters to apply to a region
○ stride = by how many pixels do we slide the 

receptive field



LeNet (1998)
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AlexNet (2012)
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AlexNet Classifications
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Top-5 Error 
Rate:
15.3%



 Google “Inception” Network (2015)
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Top-5 Error 
Rate:
6.67%



U-Net (2015)
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More Applications

43

◎ Text Classification [5]
○ Words are also spatially correlated!

◎ Music Recommendation [6]



Deep Reinforcement 
Learning
Decision Making in complex, 
unsearchable domains
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Reinforcement Learning
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Reinforcement Learning
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◎ If we know the reward function, then it is 
easy!

◎ What if we don’t?

◎ Idea: Learn the reward function using a 
deep neural network
○ Capable of inferring complicated reward structure



DQN (2015)
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Deep Q-Learning for Arcade Games



AlphaGo Zero
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◎ Policy Network
○ Where should I search?

◎ Value Network
○ What is the value of each state?

◎ Trained through self-play
○ Beat reigning Go champions after four days of 

training



Recurrent Neural 
Networks
Making sense of sequential data
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Recurrent Neural Networks

◎ For visual datasets: features are spatially 
correlated

◎ What if features are correlated over time?
○ Text Classification
○ Speech Recognition
○ Handwriting Recognition

◎ Solution: Recurrent Neural Networks
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Recurrent Neural Networks
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Recurrent Neural Networks have back-connections



Recurrent Neural Networks
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Recurrent Neural Network unrolled over time



“
Basic Recurrent Neural Nets work 

well for  short term dependencies
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Image source: 
http://colah.github.io/posts/2015-08-Understanding-LSTMs/



“
Basic Recurrent Neural Nets break 

down when data has  
long term dependencies
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Image source: 
http://colah.github.io/posts/2015-08-Understanding-LSTMs/



Long Short-Term Memory (LSTM)
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◎ Solution: Long short-term memory cells

Image source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/



Unsupervised Learning
Dimensionality Reduction, 
Generative Models, and Clustering
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Unsupervised- Dimensionality reduction
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◎ Autoencoders
○ Impose constraints on the code (eg, sparse)



Unsupervised- Dimensionality reduction
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◎ Denoising Autoencoders



Unsupervised- Generative models
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◎ Generative Adversarial Networks (2014)



Unsupervised- Generative models
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◎ Unsupervised Representation Learning with Deep 
Convolutional Generative Adversarial Networks, 2015



Unsupervised- Generative models
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◎ Variational Auto Encoders (2014)
○ Concerned more about the distributions



Unsupervised- Clustering
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◎ Spectral clustering:
○ Formulate pairwise similarity between datapoints (kernel 

matrix)
○ Eigendecompose the kernel matrix
○ Retain only the largest k-eigenvectors (Laplacian eigenmaps)
○ Apply k-means

◎ Eckart-Young-Mirsky theorem:

○ First k-eigenvectors of a matrix M reconstruct the optimal 
low-rank (k) version of M

◎ Autoencoders are all about reconstruction



Unsupervised- Clustering
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5.
Current Research
This could be you!
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Adversarial Attacks

◎ CNN classifiers are easy to “trick”
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Dense Nets

◎ Deep Neural Nets have tons of parameters

◎ Can we reduce the parameters without 
hurting accuracy?
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Distributed Learning

◎ Learning involves updating weights

◎ Can we avoid the expensive gradient 
broadcast every iteration?
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Memory-Augmented Neural Nets

◎ Meta-learning
○ Can we learn to learn?

◎ Make use of long-term external memory

◎ One-shot Learning
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Memory-Augmented Neural Nets

 MANN structure
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Thanks!
Any questions?

You can find us at:
zdj21157@uga.edu
smn57958@uga.edu
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Credits

Papers referenced (in order of appearance):
1. LeNet (Yann LeCun)
2. AlexNet (Krishevsky et. al.) 
3. Inception (Szegedy et. al.)
4. U-Net (Ronneberger et. al.)
5. CNNs for Sentence Classification (Yoon Kim)
6. Deep Content-Based Music Recommendation (van den 

Oord et. al.)
7. Playing Atari Games with DQN (Mnih et. al.)
8. AlphaGo Zero (Silver et. al.)
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http://yann.lecun.com/exdb/lenet/
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://www.cs.unc.edu/~wliu/papers/GoogLeNet.pdf
https://arxiv.org/abs/1505.04597
http://www.aclweb.org/anthology/D14-1181
http://papers.nips.cc/paper/5004-deep-content-based-music-recommendation.pdf
https://arxiv.org/pdf/1312.5602v1.pdf
https://www.nature.com/articles/nature24270


Credits

Materials used:
◎ Presentation template by SlidesCarnival
◎ Bahaa’s Original Deep Learning Presentation
◎ Yoshua Bengio’s Lecture on Deep Learning
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http://www.slidescarnival.com/
https://drive.google.com/file/d/1O-NyhLupaNLJkmgypFkRL1SFCJAGXdy-/view?usp=sharing
http://videolectures.net/deeplearning2015_bengio_theoretical_motivations/

