
WDCloud: An End to End System for Large-Scale
Watershed Delineation on Cloud

In Kee Kim∗, Jacob Steele∗, Anthony M. Castronova†, Jonathan L. Goodall∗, and Marty Humphrey∗
∗University of Virginia, Charlottesville, VA, 22903, {ik2sb, jss2zb, goodall}@virginia.edu, humphrey@cs.virginia.edu

†Utah State University, Logan, UT, 84322, tony.castronova@usu.edu

Abstract—Watershed delineation is a process to compute the
drainage area for a point on the land surface, which is a
critical step in hydrologic and water resources analysis. How-
ever, existing watershed delineation tools are still insufficient to
support hydrologists and watershed researchers due to the lack
of essential capabilities such as fully leveraging scalable and
high performance computing infrastructure (public cloud), and
providing predictable performance for the delineation tasks. To
solve these problems, this paper reports on WDCloud, which is
a system for large-scale watershed delineation on public cloud.
For the design and implementation of WDCloud, we employ three
main approaches: 1) an automated catchment search mechanism
for a public data set, 2) three performance improvement strategies
(Data-reuse, parallel-union, and MapReduce), and 3) local linear
regression-based execution time estimator for watershed delin-
eation. Moreover, WDCloud extensively utilizes several compute
and storage capabilities from Amazon Web Services in order to
maximize the performance, scalability, and elasticity of watershed
delineation system. Our evaluations on WDCloud focus on two
main aspects of WDCloud; the performance improvement for
watershed delineation via three strategies and the estimation
accuracy for watershed delineation time by local linear regression.
The evaluation results show that WDCloud can achieve 18x–
111x of speed-ups for delineating any scale of watersheds in
the contiguous United States as compared to commodity laptop
environments, and accurately predict execution time for watershed
delineation with 85.6% of prediction accuracy, which is 23%–43%
higher than other state-of-the-art approaches.

I. INTRODUCTION

Analysis of regional-scale watershed systems is critical to
understand the impact of floods, droughts, and water pollu-
tion. Watershed modelers use hydrographic data in simulation
models to better understand potential impacts of these events
and testing mitigation strategies [19, 22]. The starting point of
many hydrologic analyses is defining a watershed boundary for
the area of interest, which is called watershed delineation [10].
Watershed delineation plays an important role in hydrologic
analysis because it defines the scope of the modeling domain,
thereby impacting all further analysis and modeling steps
[11]. There are national-scale data available for performing
watershed delineation, but few convenient tools are able to
leverage these data for simple and quick watershed delineation
for any point in the contiguous United States.

With advancements in computing technology, scientific re-
search has become increasingly reliant on computational tools
to quickly analyze large amounts of data and provide useful in-
formation to researchers. Unfortunately, the design of scientific
applications does not necessarily utilize these advances. For ex-

ample, on commodity desktop hardware, watershed delineation
can take several hours for large watersheds. Current approaches
also rely heavily on GIS desktop software, which can have a
steep learning curve for those unfamiliar with the software and
tedious data preparation steps to arrive at the desired watershed
boundary dataset [17, 24]. This high cost and low reward situ-
ation is an unnecessary burden on hydrologists and watershed
researchers constrained to modeling smaller watersheds that can
be easily accommodated by available software options.

Fig. 1. Mississippi Watershed. This is the largest watershed in the United
States, and is composed of 1,100,000+ catchments, which are distributed over
10 distinct regions in NHD+. (Courtesy of United State Geological Survey [5]).

Many approaches have been proposed for addressing the
challenge of watershed delineation at a national-scale [3, 7,
10]. Castronova and Goodall [10] proposed an approach that
leveraged pre-computed data from the National Hydrography
Dataset Plus (NHD+) program [5, 6]. An advantage of this ap-
proach is that it did not require additional data pre-computation
steps, which are common for many large watershed delineation
algorithms. However, the approach did not scale well to large
watersheds (e.g., the Mississippi watershed in Figure 1) and
resulted in long execution time for delineating such a large
watershed. Long execution time of large watershed delineation
in the approach is related to the size of underlying data.
For example, the Mississippi watershed consists of 1,100,000+
NHD+ catchments, which is more than 50% of all catchments
in United States (U.S. has approximately 2 million NHD+
catchments). The algorithm requires merging of these individual
catchments into a single watershed polygon, and execution
time of such a large-scale watershed delineation is simply
dominated by time to perform this geometric union operation
of catchments.

1

Estimated computation time to delineate the entire Missis-
sippi watershed is approximately 10+ hours on commodity
laptop hardware using the Castronova and Goodall algorithm.
This does not lend itself to an interactive system where the
majority of watersheds can be delineated and returned while
the user waits. While achieving this goal for the most extreme
cases such as the Mississippi watershed is very challenging
without significant data pre-processing, delineation time of 10
minutes or less is desirable for an online watershed delineation
tool. Therefore, the scientists need a new software architecture
on HPC infrastructure for the watershed delineation process,
which can dramatically reduce the execution time of watershed
delineation. In terms of building a HPC (High Performance
Computing) infrastructure for watershed delineation, a local
HPC cluster is often technically and financially infeasible for
hydrologists. Thus, leveraging the public clouds (e.g. Amazon
Web Services [1] and Microsoft Azure [2]) as the HPC infras-
tructure is more desirable due to the elasticity, scalability and
cost efficiency of public cloud [15, 21].

Moreover, another challenge of watershed delineation is
highly variable execution time of delineation tasks based on
input coordinates. When a scientist requests a particular coor-
dinate for delineation, the scientist may not know how long the
delineation task will take. This is often problematic when the
scientist expects an instantaneous response to a large watershed
request. Therefore, to improve the scientists experience, a
watershed delineation system should be able to estimate and
provide the execution time of watershed delineation with high
accuracy.

To solve the problems, we introduce WDCloud, an end-to-
end system for large-scale watershed delineation on cloud. WD-
Cloud employs following approaches; 1) an automated catch-
ments search mechanism using NHD+ (National Hydrograph
Dataset Plus)1, 2) various performance improvement strategies,
and 4) a local linear regression (LLR) based execution time es-
timation for watershed delineation. The automated catchments
search mechanism is designed to allow scientists to delineate
large-scale and multi-region watersheds. We also leverage three
strategies to reduce the duration of watershed delineation. We
employ a data-reuse strategy, MapReduce [14], and parallel-
union depending on the scale of watersheds. WDCloud employs
the data-reuse to delineate extremely large-scale and multi-
region watersheds (e.g. the Mississippi watershed). WDCloud
also uses MapReduce for large-scale watersheds, and leverages
the parallel-union for medium- and small-scale watersheds.
WDCloud automatically chooses a proper strategy based on the
size of the requested watershed. LLR [20] is used to accurately
estimate the execution time of watershed delineation requests
from the scientists. We implement WDCloud on Amazon Web
Services (AWS) with extensive use of various capabilities from
AWS such as diverse types of virtual machines (VM), auto-
scaling, and cost efficient S3 storage services in order to

1NHD+ [5, 6] is the most recent public hydrograph dataset provided by
United State Geological Survey (USGS). NHD+ contains essential information
for watershed and water resource research such as stream flows and directions.

A

B

C

D

Geometric

Union

Fig. 2. Example of geometric union for catchments.

improve the performance of the system.
Our evaluations focus on two main aspects of WDCloud; the

speed up of computation time for watershed delineation tasks
via three performance improvement strategies, and the accuracy
of delineation time estimation via LLR. In terms of the speed
up of watershed delineation tasks, WDCloud achieves 111x
speed up for the Mississippi watershed (the largest watershed
in U.S.) through the data-reuse strategy, up to 21x speed up for
large-scale watershed via MapReduce, and 18x speed up for
medium- and small-scale watershed by using the parallel-union
approach. Moreover, the LLR-based delineation time predictor
of WDCloud provides the reliable estimation of delineation
time with 85.6% of prediction accuracy. This result is 23%–
43% higher than other state-of-the-art estimation approaches
such as kNN [20] and mean-based estimation [25].

The contributions of this paper are:
• We introduce WDCloud that allows the hydrologists to

delineate any scale of watershed in U.S. with faster
execution time.

• We introduce three performance improvement strategies
(data-reuse, MapReduce, and parallel-union), which en-
able WDCloud to achieve 18x–111x speed up of watershed
delineation as compared to commodity laptop hardware.

• We use LLR-based execution time estimator that provides
predictable performance of watershed delineation requests.

The rest of this paper is organized as follows: Section II gives
background of this work. Section III highlights the design of
WDCloud and main approaches. Section IV is the evaluation
and discussion. Section V contains related work and Section VI
concludes this paper.

II. BACKGROUND

A. Watershed Delineation

The building blocks of watershed models are geographic
areas, called catchments. Each catchment is defined by its
boundary coordinates, and is analogous to nodes in a tree-
structured model that defines the hydrologic connectivity of
catchments along a river network. A watershed is a collection
of catchments that collectively define the area that drains to
some point on the land surface (the outlet of the watershed).
The computation that joins a set of catchments together, and
creates the set of boundary points for the watershed is called
the geometric union of the catchments (shown in Figure 2).
The result of watershed delineation is used in conjunction with
land use data and other types of geospatial data to create the
complete boundary of watershed for a given region.

The watershed delineation approach proposed by Castronova
and Goodall [10] is composed of several pipeline steps that

2

A point of

interest
Geometric Union for Catchments

(Section III-C)

Execution Time Estimator
(Section III-D)

Hydrologist
Watershed

Portal

Automated Catchment

Search

(Section III-B)

Watershed Delineation

Execution History

A collection of

Catchments

Samples for

Estimation

Delineation Strategy

Selector

Data-Reuse Parallel-Union MapReduce

A collection of

Catchments

VM Pool on AWS:

Managed by

Autoscaling
(Section III-E)

Request

Data-reuse

Operation

Assign

delineation

request to a

Single VM

Assign

delineation

request to

Hadoop Cluster

Hadoop

Cluster

NHD+DB

(SQL Server)

Hydrography Data

Execution Time

Estimation Result

S3 Storage Service on AWS

S3 Bucket for Data-Reuse

S3 Bucket for Storing Final Results
Watershed

Delineation

Results

Data

Request

Return

Result

Results Portal

Result

Check

Relevant Catchments

LLR Estimator

Fig. 3. Architecture of WDCloud on AWS.

manipulate and refine the NHD+ [6]. The highest computation
overhead is to process the geometric union operations of
catchments, which contribute to forming the target watershed.
The geometric union operation must examine the catchments
and merge intermediate boundaries of the catchments to build
the final boundary of the target watershed. This process is time
consuming due to the multiple passes required to examine and
determine each catchment’s effect on the boundary of the entire
set of catchments.

Watershed delineation can be performed by hydrologists or
other interested parties through a program such as GIS tools
[12, 26] on the scientists’ laptop or online watershed delineation
services. However, a drawback from using exiting GIS tools is
that these tools require several steps for the hydrologists to
manually process underlying hydrography data to delineate the
target watershed. Online water modeling services (e.g. ESRI’s
watershed delineation service.2), which are similar with WD-
Cloud, also have several disadvantages. The disadvantages are
black box nature of commercial software service and restricted
use of open source watershed dataset, and high licensing cost.
Another option offered by USGS is StreamStats [7], which
provides online watershed delineation capabilities based on
NHD. However, StreamStats requires significant amounts of
pre-computing steps, which can delay the incorporation of
enhancements in underlying NHD data. Moreover, StreamStats
is not currently available for all of the lower 48 states.

Instead, WDCloud uses nationally consistent and publicly
available underlying data (NHD+) with very minimal pre-
computing of these data required in the tool. Therefore, en-
hancements to this dataset can be quickly incorporated into
WDCloud whereas other systems would require re-running
data pre-computing steps. This is true for both the ESRI’s
ArcGIS tool [3] and USGS Stream Stats to the best of our
knowledge. Furthermore, the typical manual delineation steps
of Digital Elevation Model (DEM) processing that most hy-

2https://www.arcgis.com

drologists would perform requires knowledge of GIS software,
many data processing steps to arrive at the final watershed
boundary of interest, and do not scale well to large (or even
regional) scale watersheds. However, WDCloud, only requires
the users to select a location on a map, effectively removing
data management from the user.

B. National Hydrograph Dataset
The National Hydrography Dataset (NHD) [5] is an openly

available vector and raster dataset. Specifically, we integrated
NHD+ [6], which a version of NHD that includes catch-
ments for each NHD reach feature, into WDCloud because
it possessed several desirable qualities. Namely, the dataset
is quality controlled and assured by the USGS and includes
catchment delineations that enforce flow along NHD reaches
and no flow across boundaries defined in the coarser scale
Watershed Boundary Dataset (WBD)3. This dataset therefore
provides a nationally consistent representation of the hydrologic
connectivity of the landscape.

NHD+ encompasses the entire contiguous United States, is
segmented into 21 HUC regions, and contains approximately
2 million unique catchments. HUC codes are used to segment
watersheds into groupings of 2, 4, 6, and 8 digit HUCs. 2 digit
HUCs are the largest watersheds and contain several 4 digit
HUCs. 4 digit HUCs contain 6 digit HUCs, and 6 digit HUCs
contain 8 digit HUCs. This provides a segmentation to NHD+
catchments that makes it possible to know, based on its HUC,
what 2 digit, 4 digit, 6 digit, and 8 digit HUC watershed that
catchment is within common geospatial dataset.

III. WDCloud DESIGN

A. Design of WDCloud on AWS
WDCloud is composed of six components as shown in

Figure 3. These six components are: 1) a web portal for water-
shed delineation, 2) NHD+ database, 3) automated catchment

3http://nhd.usgs.gov/wbd.html

3

Algorithm 1 Automated Catchment Search for Multiple Regions in NHD+
Require: coord: coordinate for outlet of the target watershed

1: start HUC region ← get regional dataset (coord)
2: terminal paths ← get terminal path infos (start HUC region, coord)
3: catchments ← get catchments (start HUC region, terminal paths)
4:
5: multi region hydroseqs ← get multi region hydroseqs info (start HUC region, terminal paths)
6: if length(multi region hydroseqs) > 0 then
7: related HUC regions ← find related HUC regions (multi region hydroseqs)
8: region index ← 0
9: while region index < legnth(related HUC regions) do

10: catchment for HUC region ← get catchments (related HUC regions[region index], terminal paths)
11: catchments.append(catchment for HUC region)
12: region index++
13: end while
14: end if

search module, 4) geometric union module, 5) execution time
estimator, and 6) compute and storage resources on AWS.

Web Portal for Watershed Delineation: This portal pro-
vides a user interface to select an outlet coordinate for delin-
eating a target watershed. Once a hydrologist selects a point
of interest on the user interface on the portal and clicks on a
submit button, a process for watershed delineation starts. This
portal is also used to confirm the final delineation result for
the input coordinate. The final result will be displayed on this
portal and provided as several files, which are existing GIS
tool-compliant format such as Keyhole Markup Language [4].

NHD+ Database: This component contains NHD+ dataset
required for watershed delineation. Originally, NHD+ consists
of 21 distinct HUC region dataset (for contiguous U.S.). Each
HUC region dataset includes several raw-level hydrography
data such as DEM (Digital Elevation Mode) and flow direc-
tion/accumulations. Each dataset only covers limited areas in
U.S. based on HUC code. In order to facilitate the delineation
for the large-scale watershed (e.g. Mississippi), we extract
necessary data from NHD+ and store these data to Microsoft
SQL Server.

Automated Catchment Search Module: This module is
used to automatically collect relevant catchments for the target
watershed, which is distributed on multiple HUC regions in
NHD+. The details of this automated mechanism will be
described in Section III-B.

Geometric Union Module: This module performs the ge-
ometric union operation to calculate the final result of the
target watershed. We proposed three strategies to improve the
performance of geometric union operation. The three strategies
will be described in Section III-C.

Execution Time Estimator: This component is used to
provide accurate estimation for delineation time of the target
watershed. We employ LLR (Local Linear Regression) for this
estimation. This estimator will be explained in Section III-D.

Compute and Storage Resources on AWS: WDCloud
uses Amazon Web Service (AWS) [1] cloud infrastructure
for its computing and data management environments. WD-
Cloud utilizes various configurations (e.g. a single VM or
VM cluster) and types of VMs based on the union strategy

TABLE I
THREE ATTRIBUTES FOR AUTOMATED CATCHMENTS SEARCH

MECHANISM.

Attributes Description

HydroSeq Unique hydrologic sequence number
assigned to each region in the dataset.

TerminalPath Hydrologic sequence number of the terminal
feature of the watershed network.

DnHydroSeq Hydrologic sequence number of downstream.

from the geometric union module. These VMs performs actual
delineation process for the watershed. (most processes of wa-
tershed delineation performed on VMs are related to geometric
union of catchments.) The VM resources on WDCloud are
managed by autoscaling mechanism, which will be described
in Section III-E. Moreover, WDCloud leverages Amazon S3
(Simple Storage Service) [1] in order to store pre-compute data
for large-scale watershed and delineation results.

B. Automated Catchment Search Mechanism using NHD+

To automatically search and collect relevant catchments
for the target watershed, we propose an Automated Catch-
ments Search Mechanism (ACSM) using NHD+. For the
ACSM, we leverage three main attributes provided by NHD+.
These three attributes are TerminalPath, HydropSeq, and
DnHydroSeq [10], which are described in Table I.

Algorithm 1 describes the details of the ACSM. The
ACSM starts with finding a proper HUC region dataset
(start HUC region) in NHD+ for an outlet coordinate (input
from a user) of the target watershed (ln 1). Based on the
coordinate and the HUC region dataset for the input outlet, this
automated mechanism finds TerminalPath for the watershed
(ln 2). Using TerminalPath, the ACSM finds catchments
for the target watershed in that HUC region. The ACSM,
then, finds HydropSeqs (multi region hydroseqs at ln 5)
in the HUC region, which encompass the target watershed’s
hydrological flow information with other HUC regions in
NHD+. If multi region hydroseqs exist, this means that the
target watershed is also distributed over other HUC regions
in NHD+ (ln 6). Otherwise, the target watershed is composed
of catchments in a single HUC region (start HUC region).

4

E
FG

Fig. 4. Data-reuse Example – E and F are pre-defined regions. The black
catchment is aggregated. Since the gray catchment flows into the black
catchment, the gray catchment and its watershed, labeled G, must also be
collected.

By leveraging multi region hydroseqs, the ACSM finds all
relevant other HUC region dataset by comparing DnHydroSeq
in other HUC regions with multi region hydroseqs (ln 7).
The ACSM searches for all relevant HUC regions and finds
catchments in those regions by using TerminalPath (ln 10).
Once the ACSM completes to explore all relevant HUC regions,
all catchments to form the target watershed are collected.

C. Performance Improvement Strategies for Geometric Union

Once the ACSM collects all relevant catchments for the target
watershed, the watershed delineation performs geometric union
operation (Figure 2 in Section II-A) using all the catchments to
build a single catchment representing the boundary of the target
watershed. This geometric union is the most time consuming
operation in the watershed delineation. To reduce the execution
time for the geometric union operation, we employ three
strategies: 1) data-reuse, 2) parallel-union, and 3) MapReduce.

Data-Reuse: The general architecture for data-reuse is to
pre-compute catchment unions. When a stored point is ac-
cessed, instead of a full traversal and merge of all the relevant
catchments, traversal halts and a single catchment is read. Pre-
computation and storage eliminates time spent traversing the
catchment network and limits the count of catchments passed to
the union operation. Although, this strategy has similarities with
caching, it is much different. Data-reuse provides a guaranteed
performance enhancement unlike caching. Data-reuse does not
require a specific point of interest to be already selected by a
user in order for that point to achieve a performance increase.
Data-reuse is an offline optimization that targets the large-scale
and multi-region watersheds such as the Mississippi watershed.

By pre-computing every point, the union computation would
require a single file read operation, greatly improving runtime
performance. This level of pre-computation is infeasible be-
cause of two reasons. First, the time required to pre-compute
every point would cause a delay in the adoption of new
data sources. In other words, if new data was desired by the
hydrologists, they would be forced to wait weeks if not months
to actually work with their data. The other is the cost of storing,
possibly 1-2 Gigabytes, each of the 2 million catchments in
NHD+, which quickly removes some of the cost benefit our
system exhibits over other systems.

By utilizing watershed domain knowledge, we create a data-
reuse mechanism that efficiently stores pre-computed watershed
data by targeting all points requiring multi-region results. This
provides great improvement at very limited cost in terms of
both time and money. In NHD+, the hydrology data for the

Automated Catchment

Search Mechanism
Parallel Task Creation Unit

A Collection

of Catchment

Task #1 Task #NTask #2 . . .

A subset of

Catchments

1st Union Operation

Interim Catchment Union Unit
(2nd Union Operation)

Interim Result

of Catchment Union

Final Delineation Result

for Watershed

Fig. 5. Parallel-Union subsystem.

contiguous U.S. is divided into 21 distinct regions. Each region
can have a few catchments that connect to another region. Data-
reuse stores results that span the regional boundaries, leveraging
the natural segmentation of the data. By storing these multi-
region watersheds, the performance is benefited by eliminating
multiple queries to aggregate the multi-region catchments and
the fact that this allows most of the work to be computed
offline. Figure 4 shows an example for the multi-region data-
reuse strategy. E and F are regions defined as part of the NHD+
dataset. The gray catchment in F flows into the black catchment
in E. This means that when the black catchment is collected,
the gray catchment must also be collected and the watershed of
the gray catchment is shown as the area encompassed by the
dotted line, labeled G. Data-reuse pre-computes the watershed
G and stores it, so it can be retrieved when the black catchment
is collected. The data-reuse limits traversal of the catchments
and the number of catchments sent to the union by targeting
large watersheds. This strategy has a low memory cost since it
consists of storing only 16 files (total file size is 106 MB).

Parallel-Union: The second strategy is parallel-union that
concurrently processes the geometric union via threading. Fig-
ure 5 shows the architecture of the parallel-union subsystem.
The parallel-union starts with receiving a collection of all rele-
vant catchments from the ACSM (described in Section III-B).
The collected catchments are sent to the Parallel Task Creation
Unit (PTCU). The PTCU partitions the catchments into k
subsets evenly. The PTCU, then, initiates k parallel tasks and
sends each subset of catchments to each task that performs
the 1st union operation on a subset of the catchments, and
then sends its interim union result of catchment to the Interim
Catchment Union Unit (ICUU). Once all parallel tasks have
sent their interim results to the ICUU, the k interim results of
catchments are merged by 2nd union operation to create the
final result for the target watershed.

A key issue of parallel-union is how to choose the proper
number of parallel tasks for the watershed delineation. A
common approach is to create the same number of tasks with
the number of cores on a machine. (e.g. 4 parallel tasks for
4 core machine.) However, this approach does not necessarily
work on virtualized environments such as VM on public clouds.
In order to determine the proper number of parallel tasks, we
will show variable evaluation results in Section IV.

The parallel-union approach was essentially designed to
minimize the execution time of the watershed delineation
on multi-core single machine. Even though we can leverage

5

TABLE II
STRATEGY SELECTION CRITERIA FOR CATCHMENT UNION PROCESSING.

Strategy # of Catchments # of VMs
Data-Reuse Multi-HUC region case 1

Parallel-Union # of Catchments < 25K 1
MapReduce # of Catchments ≥ 25K > 1

various VM types offered by AWS, there are limitations4 to
minimize the execution time of watershed delineation by the
parallel-union strategy because of the physical limitations of
the HW specifications. Leveraging a single machine is often
insufficient for a certain scale of watersheds. For those large-
scale watershed, we use multiple machines via MapReduce.

MapReduce: MapReduce is a common distributed program-
ming paradigm consisting of two phases [14]. The first phase
maps the data to an intermediate format. The second phase
reduces the intermediate data to a final output. Although AWS
offers on-demand MapReduce services such as EMR (Elastic
MapReduce)5, we pursue an Apache Hadoop6, an open source
implementation of MapReduce, cluster on AWS. We choose
not to use EMR because this service limits our debugging
capabilities for MapReduce jobs.

Hadoop allows us to distribute data and computation across
several nodes. Hadoop parallelizes operations by creating con-
tainers that run the mapper and/or reducer. These containers
consist of allocated virtual cores and memory. Also, Hadoop
offers HDFS (Hadoop Distributed File System), which can
redundantly store data across the cluster. HDFS partitions the
data to distribute the computation across the clusters nodes and
to stream as input into the map procedures. This partitioning
has an impact on the performance of this system, which will
be described in a later section.

This process of map and reduce intuitively resembles our
system’s current parallel-union model. The mapping phase of
the geometric union is similar with the PTCU and the parallel
tasks themselves shown in Figure 5. The reduce phase is similar
with the ICUU. This strategy utilizes a Hadoop cluster on AWS
to distribute the geometric union to multiple virtual machines.
This allows us to achieve much more performance improvement
than using the parallel-union on a single VM. Thus, when the
collection of catchments for the target watershed is too large to
be unioned in the required time, they are sent to the Hadoop
cluster where they are processed with MapReduce and the result
is then returned.

Strategy Selection Criteria: Three performance improve-
ment strategies of WDCloud target different facets of the
performance and therefore are not required for every input.
Table II shows the strategy selection criteria to select a proper
approach for union operation of catchments.

The data-reuse strategy is only utilized when a watershed
crosses a NHD+ regional boundary. This is determined during

4m1–m3 instance types in AWS normally have 1 to 8 of virtual CPU cores
on a single VM [1].

5http://aws.amazon.com/elasticmapreduce/
6http://hadoop.apache.org

Step #1: Collecting similar observations (from the

past execution) for Prediction by kNN.

Step #2: Creating a linear regression model based

on the observations.

Step #3: Make a prediction for target point x by

applying the linear regression model.

Input: Coordinate for Outlet of Watershed

Output: Estimated Delineation Time for Watershed

Proper Samples

Prediction Model

LLR-based

Execution

Time

Estimator

Fig. 6. Local Linear Regression-based execution time estimator for watershed
delineation.

catchment aggregation and its use largely depends on the input
and catchments involved in the watershed.

The parallelization-based approaches (e.g. parallel-union and
MapReduce) can be used in either single machine or a multiple
number of machines. The parallel-union approach will be used
when a single VM can provide the desired performance (e.g.
total delineation time is less than 20 minutes). And MapReduce
approach is for the case that a single VM cannot provide the
desired runtime performance. Thus, the watershed delineation
system automatically determines either approach based on
the number of catchments to be unioned. If the number of
catchment is less than 25K, the system assigns the request to
a single VM on AWS and uses the parallel-union. Otherwise
the system sends this request to Hadoop cluster on AWS for
MapReduce operation.

D. Execution Time Estimation for Watershed Delineation

As we pointed out in Section I, an accurate estimation of the
execution time for the watershed delineation is an important is-
sue to improve the scientists’ productivity for their research. To
estimate execution time of the delineation, we use LLR (Local
Linear Regression) [20] based execution time estimator, which
is investigated by our previous work [23]. Figure 6 shows the
procedure of LLR estimator. This estimator takes a coordinate
for outlet of the target watershed as its input parameter. The
LLR estimator collects similar execution samples (from the
past execution history) with the input coordinate using kNN
method. kNN methods uses three features:
• The number of catchments for the target watershed.
• Geographical closeness to the input coordinate.
• Execution environments (e.g. VM type).
The next step is to create a simple linear regression model

based on the collected samples from the kNN. The parameters
(α and β represent the intercept and slope of the linear
model) for the linear regression model can be calculated by
minimizing the objective function in equation-1. In equation-1,
x0 represents the outlet coordinate for the watershed and V
means the set of similar samples with the outlet coordinate.

min
α(x0),β(x0)

∑
xi∈V

[yi − α(x0)− β(x0)xi]2 (1)

6

LLR estimator, then, provides the estimated execution time
(f(x0)) for the input coordinate by the linear regression model
obtained by the previous step.

f(x0) = α(x0)− β(x0)x0 (2)

E. VM Resource Management: Autoscaling

VM resources used by WDCloud are managed by an au-
toscaling mechanism. The autoscaling mechanism is designed
to automatically manage both under- and over-provisioning of
VMs for WDCloud. Note that autoscaling of WDCloud is
different mechanism from “Auto Scaling” offered by AWS [1].
The under-provisioning of VM resources can result in poor
performance (e.g. slow response time) of WDCloud due to the
lack of computing resources. Over-provisioning can hurt the
cost-efficiency of WDCloud due to a number of idle VMs.

Algorithm 2 Scaling-Up Operation of Autoscaling
Require: jobnew: new request for watershed delineation
1: VMs ← get all running VMs ()
2:
3: i ← 0
4: while i < length(VMs) do
5: comp time ←

∑
Exec T ime of Jobs in Job Queue on VM [i]

+ Jobnew’s Estimated Exec T ime
6: if comp time <threshold then
7: CandidateV Ms.append(VM [i], comp time)
8: end if
9: i++

10: end while
11:
12: if len(CandidateV Ms) > 0 then
13: sort(CandidateV Ms, “comp time”)
14: assign job to VM(CandidateV Ms[0], Jobnew)
15: else
16: newVM = create new VM()
17: assign job to VM(newVM , jobnew)
18: end if

Algorithm 2 shows the scaling-up mechanism of the au-
toscaling. The scaling-up decision is triggered when a new
delineation job (jobnew) arrives. The autoscaling, then, obtains
the information of currently running VMs (ln 1). The next step
is that the autoscaling calculates the estimated job completion
time on each running VM by the sum of estimated execution
times of all existing jobs in work queue on the VM and the
estimated execution time of jobnew (ln 5). For this step, the
autoscaling collaborates with LLR execution time estimator in
Section III-D. The autoscaling compares the estimated com-
pletion time of the new job (jobnew) with a threshold (ln 6),
which is defined by the user (e.g. 30 minutes or 1 hour). If the
estimated completion time of the new job is earlier then the
threshold, the autoscaling stores the VM into a candidate VM
list (CandidateVMs) for the job execution (ln 7). If existing
VMs can completes the jobnew within the threshold (ln 12), the
jobnew will be assigned to a VM that offers earliest completion
of jobnew (ln 13–14). Otherwise, the autoscaling creates a new
VM (scaling-up) and assigned the new job to the new VM (ln
16–17).

For the scaling-down operation (Algorithm 3), the autoscal-
ing uses the billing boundary-based VM scaling-down. Because

Algorithm 3 Scaling-Down Operation of Autoscaling
1: while true do
2: VMs ← get all running VMs()
3:
4: for VM ← VMs do
5: if VM ’s running time % Billing Bound == 0 && VM ’s status

is Idle && VM ’s Q is Empty then
6: terminate instance (VM)
7: end if
8: end for
9: end while

WDCloud runs on AWS, the autoscaling uses the hourly billing
bound of AWS (ln 5). A key step of the scaling-down operation
is that a VM will be terminated when the VM’s running time
is approaching the billing bound, the VM’s status is idle state,
and the Queue of the VM is empty (ln 5–6).

IV. EVALUATION

In the evaluations of WDCloud, we focus on two main
aspects of WDCloud, which are the performance improvement
via three strategies (Section III-C) and the accuracy of the
execution time estimation via LLR estimator (Section III-D).

A. Performance Improvement via Three Strategies.

Data-Reuse: The main focus of data-reuse was the specific
targeting of the largest watersheds (e.g. the Mississippi), those
spanning multiple regions. By leveraging the segmentation of
the NHD+, data-reuse achieves a 111x speedup as shown in
Table III. This paragraph discusses about this large speedup.

TABLE III
SPEED-UPS BY DATA-REUSE FOR THE MISSISSIPPI WATERSHED.

Commodity Laptop Data-Reuse Speed-Up
10+ hours 5.5 mimutes 111x

The Mississippi watershed of 1,100,000+ catchments origi-
nally required 10+ hours to perform the geometric union. That
same example required 5.5 minutes to union when utilizing
the data-reuse strategy. To explain this large speed-ups, which
only required the storage of 106 MB of pre-computed data,
we describe an example execution. Our Mississippi example
aggregates a total of 1,117,172 catchments. Once the data-reuse
is used, the Mississippi example aggregates only 29,137 catch-
ments. This equates to pre-computing the union of 1,088,035
catchments, which is 97% of the original catchments. This
111x speedup exceeded our initial estimates (e.g. less than
20 minutes) and resolved the largest class of watersheds, but
several watersheds of approximately 100K to 250K catchments
that took 4+ hours to delineate still remained. These large
watershed will be dealt with other two parallelization strategies.

Parallel-Union: This strategy was designed to maximize
the performance of a single VM, and is used for small- and
medium-scale watersheds (# of catchments < 25K). A key issue
of the parallel-union is how to choose the proper number of
parallel tasks for the watershed delineation. To determine the
proper number of parallel tasks, we executes four example wa-
tersheds with 1 to 32 tasks on different types of VMs on AWS.
These four watersheds contains less than 25K catchments, and

7

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1 2 4 8 16 32

N
or

m
. U

ni
on

 T
im

e

of Parallel Tasks

PA (140 Catch.)
SC (155 Catch.)
VA (430 Catch.)
TN (23K Catch.)

Average

(a) Medium VM (1 Core)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1 2 4 8 16 32

N
or

m
. U

ni
on

 T
im

e

of Parallel Tasks

PA (140 Catch.)
SC (155 Catch.)
VA (430 Catch.)
TN (23K Catch.)

Average

(b) Large VM (2 Cores)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1 2 4 8 16 32

N
or

m
. U

ni
on

 T
im

e

of Parallel Tasks

PA (140 Catch.)
SC (155 Catch.)
VA (430 Catch.)
TN (23K Catch.)

Average

(c) Xlarge VM (4 Cores)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1 2 4 8 16 32

N
or

m
. U

ni
on

 T
im

e

of Parallel Tasks

PA (140 Catch.)
SC (155 Catch.)
VA (430 Catch.)
TN (23K Catch.)

Average

(d) 2Xlarge VM (8 Cores)

Fig. 7. Normalized geometric-union time of watershed delineation by parallel-union strategy on four types of VMs.

they are in Pennsylvania (140 catchments), South Carolina
(155 catchments), Virginia (430 catchments), and Tennessee
(23K catchments). We also used four different types of general
purpose VMs (e.g. m1 instances) [1] for this evaluation. The
results for the parallel-union evaluation are shown in Figure 7,
and all results are normalized to the geometric union time
from non-parallelization case (a single task). Back bold line
in all graphs is an average of normalized geometric union time
of four watersheds by the parallel-union strategy. The results
show that, on average, the parallel-union provides the best
performance improvement when WDCloud creates 8–32 tasks
for the geometric union. (3x speed up on the medium VM, 3.1x
speed up on the large VM, 3.6x speed up on the xlarge VM,
and 2.9x speed up on the 2xlarge VM.) By using the parallel
union strategy, we can complete the delineation for the four
watersheds with 28–150 seconds (8 parallel tasks on 2xlarge
instance). Without the parallel-union, these four watershed
take approximately 500–3200 seconds (single tasks on medium
instance). These results implies WDCloud with the parallel-
union can handle small- and medium-scale watershed (# of
catchments < 25K), but this strategy is not sufficient to obtain
enough performance improvement for large-scale watersheds
(# of catchments ≥ 25K). Those large-scale watersheds will be
handled by the MapReduce strategy.

MapReduce: To show the performance improvement by the
MapReduce strategy, three large-scale watersheds on Hadoop
cluster are examined. These three large-scale watersheds are
located in Maine (66K catchments), Kentucky (107K catch-
ments), and South Dakota (253K catchments). In this evalua-
tion, WDCloud uses 4 to 32 cores of Hadoop cluster7. The
evaluation results by the MapReduce strategy are shown in

74 cores of Hadoop cluster uses 4 medium VMs (4 × 1 core). 8 cores of
Hadoop cluster has 4 large VMs (4 × 2 cores). 16 cores of Hadoop cluster
consists of 4 xlarge VMs (4× 4 cores). 32 cores of Hadoop cluster is composed
of 4 2xlarge VMs (4 × 8 cores).

 0

 5

 10

 15

 20

 25

ME(66K) KY(107K) SD(253K)

S
pe

ed
-U

p
(B

as
el

in
e:

 N
o-

P
ar

al
le

l)

Large-Scale Watershed (# of Catchments)

4-cores
8-cores

16-cores
32-cores

Fig. 8. Speed-up for geometric union of large-scale watershed by MapReduce.

Figure 8. As shown in the graph, by leveraging 32 core Hadoop
cluster, WDCloud can achieve 7x of speed-ups for Maine
watershed (66K), 11x of speed-ups for Kentucky watershed
(107K), and 21.2x of speed-ups for South Dakota watershed
(253K). These results also show that the more catchments
a watershed includes, the higher speed-ups WDCloud can
achieve. For the South Dakota watershed, the delineation takes
4.2 hours with no parallelization, but the same delineation takes
only 11.8 minutes with 32 core Hadoop cluster.

B. Execution Time Estimation for Watershed Delineation
The next evaluation is to measure the performance of LLR

estimator of WDCloud for predicting the execution time of
watershed delineation. We employ prediction accuracy and
MAPE (Mean Absolute Percentage Error) for this evaluation
and these metrics are shown in equation (3)–(4). A higher result
of prediction accuracy means better, and lower result of MAPE
indicates better performance.

Pred. Accuracy =

Tactual

Tpredicted
, Tpredicted ≥ Tactual

Tpredicted

Tactual
, Tpredicted < Tactual

(3)

MAPE =
1

n

n∑
i=1

∣∣∣∣Tactual,i − Tpredicted,i

Tactual,i

∣∣∣∣ (4)

8

TABLE IV
OVERALL EVALUATION RESULTS FOR EXECUTION TIME ESTIMATION

LLR Estimator kNN mean
Prediction Accuracy 85.6% 65.7% 42.8%

MAPE 0.19 0.93 1.97

As the baselines of this evaluation, we use kNN [20] and
mean [25]. For the execution time estimation, kNN uses
three features that are 1) geographical closeness to the target
watershed, 2) the number of catchments, and 3) the type of VM
instances, which are the same with LLR estimation.

We measures 420 random coordinates (20 random coordi-
nates of watershed outlets × 21 HUC regions) for execution
time estimation. The overall results are shown in Table IV.
As shown in Table IV, LLR estimator outperforms other
two approaches. The prediction accuracy of LLR estimator is
85.6%, which is 19.9% and 42.8% higher than kNN and mean-
based estimator. The MAPE result of LLR is 0.19, which is
4.9x and 10.4x lower (better) than others.

Moreover, to show the performance of LLR estimator that
can precisely estimate the delineation time for watershed outlets
on all 21 HUC regions in NHD+, we show the estimation
results of three estimators based on each HUC regions. Figure 9
shows the estimation results on all 21 HUC regions. For the
prediction accuracy on all 21 HUC regions (Figure 9(a)), LLR
estimator shows over 80% of prediction accuracy for all 21
regions. For the MAPE results (Figure 9(b)), LLR estimator
has accurate MAPE results, which are less than 0.23, except for
only two HUC regions (08 and 13 HUC regions). These results
show that LLR estimator provides reasonable estimation for the
execution time of the watershed delineation, and can provide
precise estimation results for almost all HUC regions in NHD+.

V. RELATED WORK

Geospatial data analysis research has benefited from the tech-
nical advancements of cloud computing. Several works have
shown the clouds ability to provide performance improvements
to these data and compute intensive applications.

A system to increase the performance of watershed calibra-
tion by utilizing the cloud was designed by Humphrey et al
[22]. This system reduced an 11 hour computation to a 5 minute
computation by using cloud computing. They focused on core
utilization and the parallelization of the application; instead we
also focus on using specific characteristics of the application
(e.g. Data-reuse) to improve the runtime without such large
compute clusters. Furthermore, we incorporate MapReduce to
distribute our computation instead of performing it manually.

Caching is similar in style to the data-reuse strategy of this
work. Chiu et al [13] proposed a strategy for caching in the
cloud. This caching is most useful for the results of a Service-
Oriented Application (SOA), but not useful for our applications
storage of intermediate data formats. The data-reuse is similar
to caching, but not equivalent because the pre-computed data
will never be swapped while the system is online.

Several works [8, 18, 27] utilize MapReduce to enhance their
GIS and spatial data analysis applications. Hadoop-GIS [8] was

designed to improve spatial query processing capabilities of
GIS via adopting MapReduce. Hadoop-GIS supports several
spatial enhancement capabilities such as spatial data parti-
tioning for parallel processing, and spatial query processing.
Hadoop-GIS is also integrated with Hive. SpatialHadoop [18] is
a low-level extension of Hadoop and supports spatial indexing
for its input dataset to facilitate the spatial data processing. Dart
[27] is another type of GIS on Hadoop. Dart is collaborating
with HBase and provides a hybrid table schema to store spatial
data in HBase. Dart utilizes public cloud infrastructure such as
Amazon EC2. These research are relevant to our work, but our
work is different because we employ MapReduce as a part of
our three strategies to improve the performance of geometric
union in the watershed delineation process.

Alencar et al [9] have reported an on-going research project
to employ cloud infrastructure and capabilities to watershed
research. Their work is to build a cloud-based collaborative
platform for watershed research. A difference from our work
is that they focus on giving collaborative capabilities (e.g.
hydrology data sharing) for stakeholders (e.g. scientists and
decision makers) to watershed research system via CometCloud
[16]. WDCloud does not consider having collaborative capabil-
ities for watershed delineation. Another difference is that it is
unclear which raw dataset they use for their project.

VI. CONCLUSION

Watershed delineation is a process to determine the area
draining to a point on the land surface. This plays a critical role
for hydrologic and water resources research because watershed
delineation is often the first step of an analysis. However,
existing watershed delineation tools are insufficient to support
hydrologists because they have not kept pace with new datasets
that allow for national-scale watershed delineation over the web
without requiring extensive data preprocessing steps. Watershed
delineation applications lack the capabilities to fully leverage
scalable and high performance computing infrastructure (e.g.
public cloud), and provide predictable performance for the
delineation tasks.

To solve these problems, this paper reports on WDCloud,
which is a system for large-scale watershed delineation on
AWS. WDCloud employed three key approaches:
• An automated catchment search mechanism for NHD+,

which is a public watershed dataset from USGS.
• Three performance improvement strategies: Data-reuse,

parallel-union, and MapReduce.
• LLR execution time estimator for watershed delineation.
Our evaluations on WDCloud mainly focus on 1) the per-

formance improvement for watershed delineation via three
strategies and 2) the prediction accuracy for delineation time
by LLR estimator. In terms of the speed up of watershed
delineation tasks, WDCloud achieves 111x speed up for the
Mississippi watershed (the largest watershed in U.S.) through
the data-reuse strategy, up to 21x speed up for large-scale
watershed via MapReduce, and 18x speed up for medium- and
small-scale watershed by using the parallel-union approach.

9

 0

 20

 40

 60

 80

 100

01 (Northeast)

02 (Mid Atlantic)

03N (South Atlantic North)

03S (South Atlantic South)

03W (South Atlantic West)

04 (Great Lake)

05 (Ohio)

06 (Tennessee)

07 (Upper Mississippi)

08 (Lower Mississippi)

09 (Sourus-Red-Rainy)

10U (Upper Missouri)

10L (Lower Missouri)

11 (Ark-Red-White)

12 (Texas)

13 (Rio Grande)

14 (Upper Colorado)

15 (Lower Colorado)

16 (Great Basin)

17 (Pacific Northwest)

18 (California)

Pr
ed

ic
tio

n
Ac

cu
ra

cy
(%

)
LLR
kNN

mean

(a) Prediction Accuracy of three estimators on 21 HUC regions

 0

 0.2

 0.4

 0.6

 0.8

 1

01 (Northeast)

02 (Mid Atlantic)

03N (South Atlantic North)

03S (South Atlantic South)

03W (South Atlantic West)

04 (Great Lake)

05 (Ohio)

06 (Tennessee)

07 (Upper Mississippi)

08 (Lower Mississippi)

09 (Sourus-Red-Rainy)

10U (Upper Missouri)

10L (Lower Missouri)

11 (Ark-Red-White)

12 (Texas)

13 (Rio Grande)

14 (Upper Colorado)

15 (Lower Colorado)

16 (Great Basin)

17 (Pacific Northwest)

18 (California)

M
AP

E

LLR
kNN

mean

(b) MAPE of three estimators on 21 HUC regions

Fig. 9. Execution time estimation results of three estimators on 21 HUC regions.

Moreover, the LLR estimator of WDCloud provides the re-
liable execution time estimation of watershed delineation with
85.6% of prediction accuracy. This result is 23%–43% better
than other state-of-the-art estimation approaches.

REFERENCES

[1] Amazon Web Services. http://aws.amazon.com.
[2] Microsoft Azure. http://azure.microsoft.com.
[3] ESRI – ArcGIS Watershed. http://www.arcgis.com/home/item.html

?id=8e48f6209d5c4be98ebbf90502f41077.
[4] Wikipedia – Keyhole Markup Language.

http://en.wikipedia.org/wiki/Keyhole Markup Language.
[5] National Hydrography Dataset – USGS. http://nhd.usgs.gov, .
[6] NHDPlus Version 2 – Horizon Systems. http://www.horizon-

systems.com/nhdplus/NHDPlusV2 home.php, .
[7] USGS – StreamStats. http://water.usgs.gov/osw/streamstats/.
[8] A. Aji, F. Wang, H. Vo, R. Lee, Q. Liu, X. Zhang, and J. Saltz.

Hadoop-GIS: A High Performance Spatial Data Warehousing System over
Mapreduce. In Proc. VLDB Endowment, 2013.

[9] P. S. C. Alencar, D. D. Cowan, F. McGarry, and R. M. Palmer. Devel-
oping a Collaborative Cloud-based Platform for Watershed Analysis and
Management. In Proc. IEEE CollaborativeCom, 2014.

[10] A. M. Castronova and J. L. Goodall. A Hierarchical Network-based Algo-
rithm for Multi-Scale Watershed Delineation. Computers & Geosciences,
72, 2014.

[11] C. L. Chang. The Impact of Watershed Delineation on Hydrology and
Water Quality Simulation. Environment Monitoring and Assessment, 148,
2009.

[12] D. Chen, S. Shams, C. Carmona-Moreno, and A. Leone. Assessment of
open source GIS software for water resources management in developing
countries. Journal of Hydro-environment Research, 4, 2010.

[13] D. Chiu, A. Shetty, and G. Agrawal. Elastic Cloud Caches for Acceler-
ating Service-Oriented Computations. In Proc. SC, 2010.

[14] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on
Large Clusters. In Proc. USENIX OSDI, 2004.

[15] E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good. The Cost of
Doing Science on the Cloud: The Montage Example. In Proc. SC, 2008.

[16] J. Diaz-Montes, M. AbdelBaky, M. Zou, and M. Parashar. Comet-
Cloud: Enabling Software-Defined Federations for End-to-End Applica-
tion Workflows. IEEE Internet Computing, 19, 2015.

[17] D. Djokic and Z. Ye. DEM Preprocessing for Efficient Watershed
Delineation. In Proc. ‘99 ESRI Intl. User Conference, 1999.

[18] A. Eldawy and M. F. Mokbel. SpatialHadoop: A MapReduce Framework
for Spatial Data. In Proc. 31th IEEE ICDE, 2015.

[19] M. B. Ercan, J. L. Goodall, A. M. Castronova, M. Humphrey, and
N. Beekwilder. Calibration of SWAT models using the cloud. Envi-
ronmental Modeling & Software, 62, 2014.

[20] T. Hastie, R. Tibshirani, and J. Friedman. The Element of Statistical
Learning: Data Mining, Inference, and Prediction. 2011.

[21] C. Hoffa, G. Mehta, T. Freeman, E. Deelman, K. Keahey, B. Berriman,
and J. Good. On the Use of Cloud Computing for Scientific Workflows.
In Proc. IEEE eScience, 2008.

[22] M. Humphrey, N. Beekwilder, J. L. Goodall, and M. B. Ercan. Calibration
of Watershed Models using Cloud Computing. In Proc. IEEE eScience,
2012.

[23] I. K. Kim, J. Steele, Y. Qi, and M. Humphrey. Comprehensive Elastic
Resource Management to Ensure Predictable Performance for Scientific
Applications on Public Iaas Clouds. In Proc. 7th IEEE/ACM UCC, 2014.

[24] S. Kopp. Custom Watersheds at the Click of a Button: Watershed
Delineation in ArcGIS Online. ArcGIS Resources ESRI, Aug, 13, 2013.

[25] W. Smith, I. Foster, and V. Taylor. Predicting Application Run Times
with Historical Information. In Proc. JSSPP, 1998.

[26] M. P. Strager, J. J. Fletcher, J. M. Strager, C. B. Yuill, R. N. Eli, J. T.
Petty, and S. J. Lamont. Watershed analysis with GIS: The watershed
characterization and modeling system software application. Computers
& Geosciences, 36, 2010.

[27] H. Zhang, Z. Sun, Z. Liu, C. Xu, and L. Wang. Dart: A Geographic
Information System on Hadoop. In Proc. IEEE Cloud, 2015.

10

