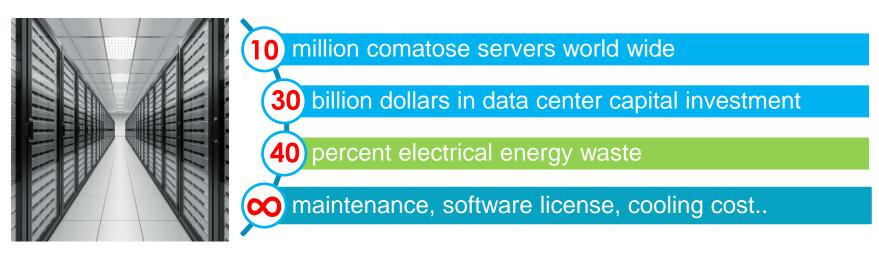
iCSI:

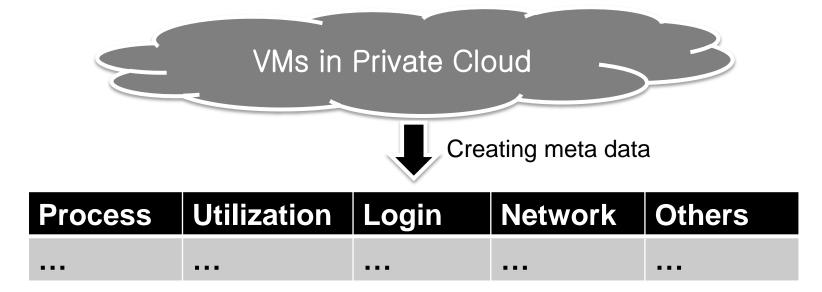

A Cloud Garbage VM Collector for Addressing Inactive VM with Machine Learning

In Kee Kim⁺, Sai Zeng^{*}, Christopher Young^{*}, Jinho Hwang^{*}, and Marty Humphrey⁺ ⁺University of Virginia ^{*}IBM T.J. Watson Research Center

Motivation

- 1 in 3 data center servers is a zombie (not producing any useful work)
 - -Recent study from Stanford University (2015).
- That is translated into:

Motivation (Cont'd)


- •Why Zombie (Inactive) VMs are living in Data Centers?
 - -VMs are cheaper to create, and easier to forget.
 - More common/critical in Private/Hybrid Clouds.
 - -Financial owners may not be the actual user.
 - Many zombie VMs keep legacy installations and data for future use.
 - Identifying active/inactive VMs with certainty is difficult with conventional tools.

- Correlation between "<u>Resource Idleness</u>" and "<u>Requirement</u>
 <u>Idleness</u>" may exist, but not very reliable.
 - -Inactive VMs can look "active"
 - Virus scan; Disk defrag; System update; Other background services.
 - Even worse: running applications that are not actually needed by users.
 - -Active VMs can look "inactive"
 - Users are doing lightweight text editing.
 - Failover VMs that are idle most of the time, but required to be available at any time.

Approach: iCSI – Inactive Cloud Server Identification System

Feature Selection for VM Identification

- •70 (Linux) VMs with Random Sampling.
- Ground-truths were provided by the actual users.
- Linux Primitive Commands are used:
 - ps, netstat, last, ifconfig, etc.
- Extract Information with Five Categories:

Metadata	Description
Process	 Defined 25 classes of <i>significant</i> processes. Ignoring kernel and management processes (e.g., patch update).
Utilization	- CPU/MEM usage of the significant processes.
Login	Login frequency and duration.Differentiate daytime/nighttime login.
Network	- Port # / State of TCP connections.
Others	- IP and Host information.

Correlation Analysis

• Tried to find strong features from metadata:

$$-r = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \bar{X})^2} \sqrt{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}}$$

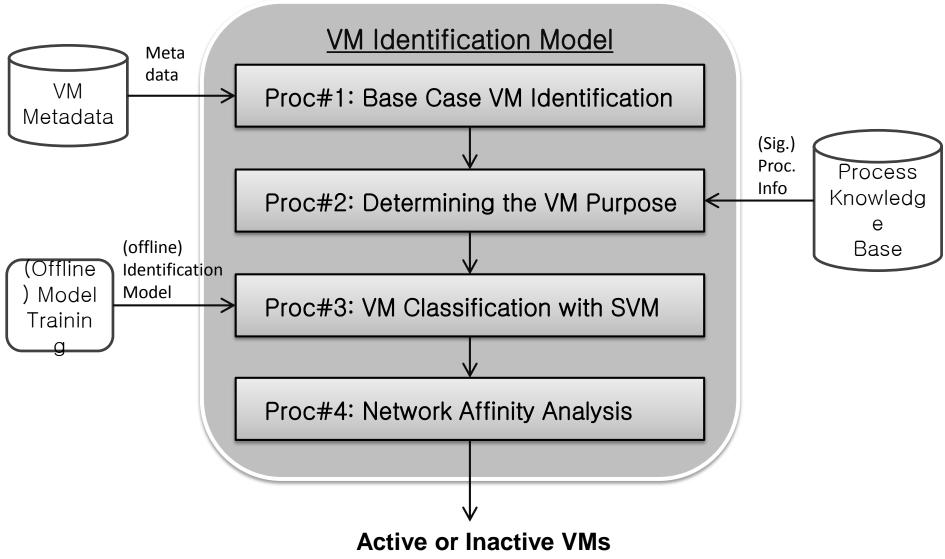
-Failed to find (global) correlation with active / inactive VMs.

• However, there are strong correlated features based upon the purpose of VMs:

<analytics></analytics>						
Features	Correlation					
%CPU of Significant Procs	0.95					
%MEM of VMs	0.95					
# of Important Open Ports	0.90					
# of Established Conn.	0.97					
Etc.						

Correlation
0.72
0.73
0.85
0.91

<Development>


iCSI System Design (Overview)

Lightweight Data Collector

- A **bash script** is deployed to VMs.
 - This script should not mess up production services.
 - Gradually deployed it from a small-scale data center to largescale data centers.
 - Executed in every 4 hours.
 - Only collects 50KB data and sends it to the manager via cURL.
 - Deployed via an IBM Data Center Management tool.
 - Can be replaced with chef, puppet, and others.

VM Identification

Proc#1: Base Case Identification

• Four Rules based on "explicit" usage pattern.

1. Long Running VM Instance:

USER	PID	%CPU	%MEM	VSZ	RSS	TTY	STAT	START	TIME	COMMAND
root	1	0.0	0.6	43720	26040	?	Ss			/sbin/init
root	2	0.0	0.0	0	0	?	S			[kthreadd]
root	3	0.0	0.0	0	0	?	S	2015	0:55	[migration/0]

- 2. No Significant Processes:
 - Based on 25 classes for significant user processes.

3. No Login Activity over last 3 months:

root	pts/0	host1.domain.com	Tue	Jan 19	9 19:57	- 20:34	(00:36)
root	pts/0	host2.domain.com	Tue	Jan 19	9 19:47	- 19:56	(00:09)
root	pts/0	host3.domain.com	Tue	Jan 19	9 19:40	- 19:47	(00:06)

4. No Established Connection with other VMs during data collection period.

COMMAND	PID	USER	FD	TYPE	DEVICE	SIZE/OFF	NODE	NAME
sshd	808	root	Зu	IPv4	8072	0t0	ТСР	*:ssh (LISTEN)
sshd	808	root	4u	IPv6	8074	0t0	ТСР	*:ssh (LISTEN)
process#1	935	root	10u	IPv6	828135	0t0	UDP	*:52311

Listen ports and Mgmt ports are not considered.

Proc#2: Determining the Purpose of VMs

- A key to find strong correlated factors for Active/Inactive VM Identification.
- · Idea: the purpose can be determined by "running process"
 - A VM with MySQL can be used for Storage, Development, Test,...

 $Input: process_i$ $Output: \{purpose_1: w_1, purpose_2: w_2, ..., purpose_n: w_n\}$

Input : MySQL Output : {"Storage" 0.7, "Development" 0.2, "Test" 0.1 Determined with user feedback

Proc#3: Active/Inactive VM Classification

• Idea: Using Linear SVM (Support Vector Machine) with different (specified) correlated features.

Linear SVM:

- -An optimal margin-based classifier with linear kernel.
- -Linear SVM tries to find a small number data points that separate all data points of two classes with a hyperplane.

-Use specific correlated features according to the purpose of VMs.

Server Purpose	Correlated Features
Analytics	%CPU, %MEM, #OpenPorts
DevOps	#SigProcs, %CPU_SigProcs, %MEM_SigProcs, #EstConns
Development	#LoginFreq (Daytime), AvgLoginHr, #SSH/VNCs, #UserActivityProcs

Proc#3: Active/Inactive VM Classification

- Addressing the multiple purposes for VMs.
 - Run SVM classifier multiple times with different weight.
 - Ensemble of all classification results.
 - Classification Result: $\psi \in \{0, 1\}$
 - Weight for a Purpose: $\omega \in \{0, 1\}$

$$Classification Result = \frac{\sum_{i=1}^{n} \omega_i \times \psi_i}{\sum_{i=1}^{n} \omega_i}$$

Proc#4: Network Affinity Analysis

- Idea: If an active VM-(A) depends on / or is connected with VM-(B), VM-(B) must be active.
- This rule works very well for cluster configurations:
 - -Linear SVM classifier can successfully classify Hadoop/Mesos master as "**active**" but, not for slave nodes.

Recommendation Policies

• 0 \leq VM Identification Result \leq 1 (0: Inactive, 1: Active)

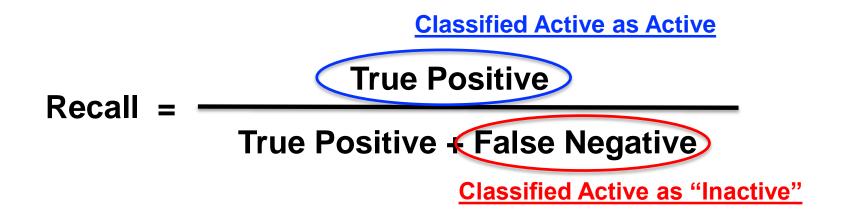
Recommendation	Trigger Conditions
No Action	 Active VMs (Classification Result > 0.5)
Terminating VM	 Classification Result == 0
Suspending VM	• $0 < Classification Result \leq 0.5$
Resizing VM	 0 < Classification Result ≤ 0.5 Significant Processes are running on the VM

• More sophisticated policies can be designed with data center infrastructure.

Performance Evaluation of iCSI

Evaluation Setup

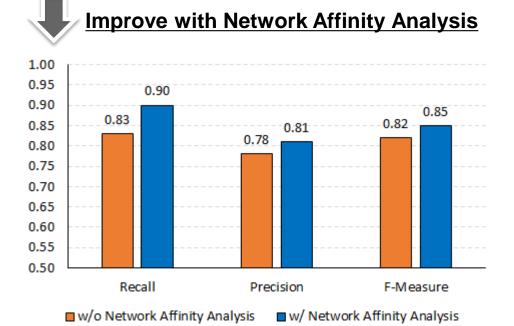
• Evaluation Pool:


- -750 VMs on IBM Research Cloud Infrastructure. (3 data centers)
- -Ground Truth: User Feedbacks

• Evaluation Criteria:

- 1. Classification Accuracy.
 - Goal: Minimizing False Negative Errors
 - Active VMs are incorrectly identified as Inactive.
 - Validated with k-fold CV.
- 2. VM Cost Saving
- 3. VM Utilization Improvement.
- Baselines:
 - -Pleco (CNSM 2016) and Garbo (SoCC 2015)

iCSI Identification Accuracy


# Testset	# Identified as Active VM	Recall
750	460 (63%)	0.90

iCSI Classification Accuracy

Accuracy Comparison with Baselines:

	Recall	Precision	F-Measure
Pleco	0.75	0.69	0.72
Garbo	0.70	0.67	0.68
iCSI	0.90	0.81	0.85

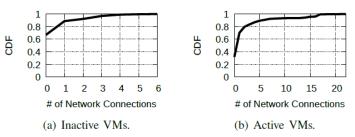
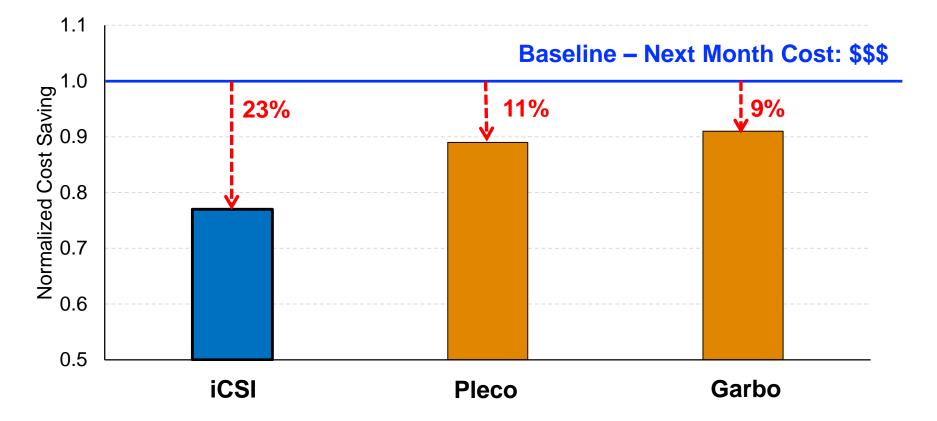


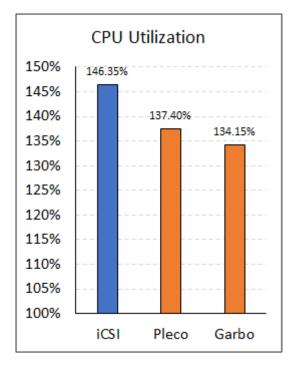
Fig. 5. CDF of External Network Connections of VMs.


TABLE VI
STATISTICS FOR EXTERNAL CONNECTIONS OF VMs.

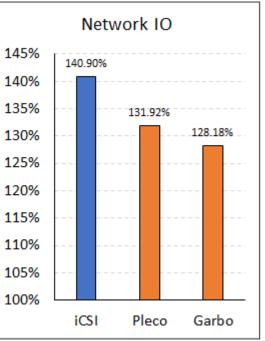
	Active VMs	Inactive VMs
Mean # of External Conns.	2.3	0.5
Standard Deviation	4.1	0.9

Cloud Cost Saving

•Penalty Cost = $\sum_{i=1}^{n} (\omega_i \sum_{j=1}^{m} cost_{vm_j})$


• $Total Cost = Cost_{active_{vm}} + PenaltyCost$




VM Utilization Improvement

Average Utilization Improvement

	iCSI	Pleco	Garbo
Average Improvement of VM Utilization	46%	31%	29%

Conclusion

- •We have created iCSI:
 - A lightweight approach only collects few kbytes data from each VM.
 - -We have found specific correlated features according to the purpose of VMs on the production clouds.
 - Linear SVM classifier directly uses the specific correlation features.
 - -VM identification mechanism is composed of heuristics (rulebased) and machine learning (Linear SVM)
 - -iCSI has over 90% of recall to identify active/inactive VMs.
 - -For the future work, *dealing with privacy regulations* will be an critical issue.

Thank you!

Support – Accuracy Metrics

• False Negative and False Positive:

Identification Result

		Active	Inactive
Truth	Active	TP: Active VMs are correctly identified as active.	FN: Active VMs are incorrectly identified as inactive.
	Inactive	FP: Inactive VMs are incorrectly identified as active.	TN: Inactive VMs are correctly identified as inactive.

Accuracy Metrics

 $\begin{aligned} Recall &= \frac{TP}{TP + FN}, \quad Precision = \frac{TP}{TP + FP} \\ F - Measure &= \frac{2 \times Recall \times Precision}{Recall + Precision} \end{aligned}$

Future Works

- Improving iCSI System:
 - -Current version is focused on managing Linux VMs:
 - Need to be expanded to Windows VMs.
 - Windows VMs covers large portion of VMs in private clouds (e.g. legacy applications)
 - -Need a better approach for determining the purpose of VMs.
 - Need to be verified with larger scale data centers or real production clouds.
- Dealing with Regulations and Privacy Issues.
 - -We could only collect **U.S. Owned VMs** for this work!

	Pleco (CNSM 2016)	Garbo (SoCC 2015)	Janitor Monkey (Netflix 2013)
Desc.	Reference Model (ALDM) + Decision Tree	Graph Theory + "mark and swap"	Aging of VM + User Feedback
Target Platform	Private Clouds	Amazon Web Services	Amazon Web Services
Cons	Expensive Data Collection. App. Dependent. Static Connection.	Only Considering Network Connectivity.	Depending on user feedback. Not fully automated system.