
Free Riding: A New Challenge to Peer-to-Peer File Sharing Systems

Lakshmish Ramaswamy
College of Computing

Georgia Institute of Technology
801 Atlantic Drive Atlanta GA 30332

laks@cc.gatech.edu

Ling Liu
College of Computing

Georgia Institute of Technology
801 Atlantic Drive Atlanta GA 30332

lingliu@cc.gatech.edu

Abstract

Most of the research in the field of peer-to-peer file shar-
ing systems has concentrated on performance issues such as
efficient file lookup, replicating files to improve file down-
load speeds etc. However there is a new challenge that
questions the very existence and usefulness of such systems
in the form of ”Free Riding”. This paper studies the seri-
ousness of the negative impact that free riding can have in
a P2P file sharing system. We introduce the concept of util-
ity function to measure the usefulness of peers to the system
as a whole, and describe a scheme based on this concept to
control free riding. A simple utility function is described to
illustrate the scheme. We design and develop a simulation
model to study various patterns of sharing behaviors among
the peers in a file sharing community and their impact on the
system. A set of experimental results is reported. The exper-
iments indicate that the utility based free riding control can
increase the lifetime of the system by 10 times, even with a
simple utility function.

1 Introduction

The advent of peer-to-peer (P2P) file sharing systems
heralds a new era in the field of Internet technology
[2] [5] [7] [9]. While these systems alleviate the scalabil-
ity problem that has dogged the client-server model, they
present new data management problems.

It is widely believed that the success of P2P file sharing
systems depends upon the quality of service offered by such
systems. Accordingly most of the present research in P2P
systems has been concentrated on issues such as efficient
data placement, fast file lookup, data replication etc.

We argue that, in addition to the quality of service, there
is another key aspect that impacts the success and contin-
ued sustenance of P2P systems. It is the quality of the data
present in the system. For a file sharing system, no mat-
ter how excellent the lookup capabilities of a system are, or

what file download speeds it offers, if the system does not
have a large and growing number of interesting files, it will
eventually fail to attract or retain users. Unfortunately, re-
search on developing mechanisms to maintain or enhance
the quality of data has not yet received much attention from
the P2P research community.

This problem is exemplified by the phenomenon of free
riding in many P2P file sharing systems. A recent study [1]
on Gnutella file sharing system shows that as many as 70%
of its users don’t share any files at all. This means that these
users use the system for free. This behavior of an individ-
ual user who uses the system resources without contribut-
ing anything to the system is the first form of the Free Rid-
ing problem. Such users are referred to as free riders. The
study further indicates that not all file sharers share popu-
lar and desirable files. It shows that as many as 63% of the
peers, who shared some files, never answered a single query.
This implies that these file sharers did not share any desir-
able files. This is a second form of the Free Riding problem,
wherein users share some files that are not useful.

The free riding problem affects the system in two signif-
icant ways. First, the number of files in the system becomes
limited or grows very slowly. The number of popular files
may become even smaller as the time goes by. This ad-
versely affects user’s interest in the system and they eventu-
ally pull out of the system. When users who share popular
files pull out of the system, the system becomes poorer in
terms of the amount of files shared. This is a vicious cy-
cle and it may eventually lead to the collapse of the sys-
tem. Second, if only a few peers share popular files, all the
downloading requests are directed towards those peers. This
causes those peers to become hot spots, overloading their
machines and causing congestion on their network. Peers
frequently experiencing CPU overloads or network conges-
tion due to the P2P system may exit the system if it affects
their other routine activities.

Though freeriding problem appears to be a new phe-
nomenon in the field of information sciences, it has existed
in community-sharing based fields of human endeavor for

1

centuries. Economists have done comprehensive studies on
the twin problems of free riding and The Tragedy of Com-
mons [4]. Over-fishing in deep oceans, pollution in cities,
and over use of pesticides are all recent illustrations of this
age old problem.

In order to maintain the value and ensure the healthiness
of a P2P file sharing system, there is a need for mechanisms
that can help securing cooperation from its users in the form
of sharing popular files. Surprisingly, none of the existing
P2P file sharing systems, to our knowledge, has offered or
incorporated mechanisms that encourage their users to share
files with other users in the system.

In this paper we propose a utility function based scheme
to control free riding in a P2P file sharing system. The
main idea of the utility-based schemes is to create incen-
tives to inspirit users to share interesting files. We identify
three important utility factors for building fair incentives in
the file-sharing context: the total number of files shared,
the total size of data shared, and the popularity of the data
shared. A unique feature of our scheme is the utility func-
tion that utilizes these three utility factors with a built-in re-
ward/penalty mechanism. We report our initial experimen-
tal results, showing the benefits of our utility-based scheme
compared with present systems, which have no control on
free riding.

2 Scenario Based Analysis

Before introducing our utility based scheme, we take a
closer look at the free riding problem in the context of a P2P
file sharing system. We choose to use a typical free riding
scenario and an extreme scenario when the peers share equal
number of files to gain a general understanding of the user
behavior and the free riding problem in the P2P file sharing
systems. Our analysis shows that the health and the lifetime
of a P2P file sharing system is significantly influenced by
the behavior of its users.

Consider a community of P2P file sharing system users.
Let the community have

�
peers. Now let us consider two

different scenarios.
In the first scenario, let majority of the peers be free rid-

ers. These peers don’t share any files at all. All the files
available in the system are shared by a small number of
users. For any file sharing system, the attraction for any
user to stay in the system is the amount of new files he can
download from the system. Suppose in a P2P system there
are 2000 files, out of which a single peer ��� has contributed
1000 files. In this situation, the utility of the system to peer� � is the 1000 files that are being contributed by the other
users. After he downloads some of these 1000 files that are
of interest to him, if there are no new files being added, he
would feel the lack of files that are interesting to him and is
likely to withdraw from the system. His withdrawal would

result in the system loosing all the files owned by him. This
causes the system to become suddenly poorer in terms of the
number of files by a large amount. Major file sharers would
all be in this state and would eventually leave the system,
taking the files they shared with them. Hence it is only a
matter of time before which the system would be devoid of
popular files causing the expiry of the community.

There is another dimension to this problem that may go
unnoticed at first sight. To explain this dimension of the
problem, let us assume that the system has

�
peers, and

out of the
�

peers
���

peers have uploaded some files for
sharing. For simplicity of argument let us assume that all
of these

� �
peers have uploaded equal number of files and

all these files are equally popular. On an average let there
be � downloading requests per unit time in the system. It
is easily seen that each of these

� �
file sharing peers would

have to serve ��
	 requests per unit time. If
� �

is small then
each of these

� �
peers would have to serve a large number

of download requests. This may cause network congestion
and CPU overloads on these

���
peers, which affects the

overall performance of peer machines. Frequent network
congestion and CPU overloads on the peer machine may
prompt the user to withdraw from the system in order to
shield their machines from CPU overload and network con-
gestion. This accelerates the process of depleting the user
community causing an early expiry of the system.

Consider the second scenario, where all users share al-
most equal number of files. In this scenario

� �
=
�

and
therefore each peer will serve only a small number of re-
quests at any point of time. Hence there will be much less
concerns on network congestion and CPU overload prob-
lems. Further, if there are � files in such an equal sharing
community, each peer would have
������ ��� files not owned
by itself, which the peer might be interested in download-
ing. In this scenario, each node would have almost equal
number of un-owned files. Contrasting this with the pre-
vious scenario indicates that this is a healthy trend that sus-
tains interest of the user community for a longer time period,
thereby extending the lifetime of the system.

Therefore it can be concluded that free riding has a nega-
tive impact on the lifetime and evolution of P2P file sharing
system. A natural question would be whether P2P system
developers can do something at the data management level
to discourage free riding? If so, what are the policy and im-
plementation issues involved in exercising such a scheme?
We address these questions in the next section.

3 Solutions to Free Riding Problem

We have illustrated how free riding is an unhealthy trend
that has the potential to curtail the lifetime of a community
of P2P users. In this section we describe some technical
solutions to this problem.

3.1 Replication Based Scheme

One of the possible solutions that has been adopted by
some P2P systems like Kazaa [7] is to replicate files at ev-
ery peer that downloaded them. This scheme addresses one
aspect of the free riding problem. It utilizes the disk space
and the network bandwidth resources of the peer download-
ing a particular file to make an extra replica of the file avail-
able for future downloading requests. If there are � replicas
of a file, the next download request is equally likely to be
directed to any of the � peers holding the copy. This would
reduce network congestion and CPU overloading problems
that the small number of peers, who were the original own-
ers of the shared files, would have otherwise experienced.
However, this replication enforcement scheme doesn’t ad-
dress the more serious problem of the system not getting
new files and becoming stagnant. Therefore, the system
still has the danger of users becoming uninterested due to
the lack of new files, leading to its eventual expiry.

3.2 Utility Function Based Schemes

In this section we discuss three utility-based schemes for
controlling free riding in P2P systems. In designing these
scheme we aim at encouraging users to share some of their
own files with others in the community, which we believe
is the key to the long life of any such cooperative commu-
nity. The underlying idea in these schemes is modeling and
measuring the usefulness of every user in the system to the
community as a whole. We term this measure as the Util-
ity of the user to the system. The aim of such a scheme is
to encourage users to improve their own utility value. We
believe that this encouragement can be in some form of re-
ward to those users with high utility value and some form
of penalization of users with little utility value.

We identify three important factors that reflect an
individual user’s usefulness to the system. They are (1) the
number of files shared by a user, (2) the total size of the data
a user has shared, and (3) the popularity of the files shared
by the user. Accordingly utility functions can be designed
incorporating one or more of these factors. We promote
a general utility-based scheme that takes into account all
three factors as the most appropriate utility-based scheme
for controlling free riding. The first utility function only
takes into account the total number of files. The second
utility function is based on the sum total of the sizes of all
the files contributed by individual users. The third utility
function accounts for the number of files, the size of the
files, and also the popularity of the files contributed by each
user. We explain all the three schemes in detail and analyze
their advantages and drawbacks.

Utility Function 1

The first utility function that we consider is based on num-
ber of files shared by each user. This would seem appropri-
ate if the system aims to increase the number of files avail-
able to users. In concrete terms, any utility function based
on the number of files would be similar to the one below.

Let ����������
��! #"#$ � represent the set of files shared by the
peer �! at time instant $ and %&��������
'�! (")$ � represent the
set of files that have been downloaded by peer � till time$. The utility of peer � at time $ represented by ��
�� ")$ �
is given by: *,+.- /�0'13254&68789 *;: =<?>

+.- /�0'132(9 (1)

Where @ is a normalizing constant. It can be easily seen
from the equation that the peers sharing a larger number
would have a higher utility value than those peers sharing
smaller number of files.

The free riding control mechanism for such a utility
function would be to limit the maximum number of files
a peer can download within one unit time to the utility
value. The utility value of all peers should be re calculated
and restored at the end of the unit time frame. This
mechanism ensures that users who share larger number
of files would be entitled to download larger number of files.

Utility Function 2
A variant of Utility Function 1 would be to take into ac-
count the file size along with the number of files shared.
This would ensure that users who share a few larger files
would be treated on par with the users who share large num-
ber of smaller files. The logic behind this argument is that
the cost incurred (in terms of disk space and network band-
width resources the P2P system uses) to two users, one of
whom, say user A, shares 1 file of 10MB and another, say
user B, who shares 2 files of 5 MB each is approximately the
same. But the utility value allocated by the equation 1 to the
user sharing two files is double that of the utility value allo-
cated to the user sharing a single large file. This utility func-
tion aims to remedy the above said anomaly. Concretely, let���A�(����
�� ")$ � and %&���(�B��
'� ")$ � be defined as in the utility
function 1. Let size(C) be the size of the file C in bytes.
The utility of peer � at time $, denoted by ��
�� ")$ � would
now be: *,+.- /�0'13254�D�7 EF GIHKJ�L�MON /.P'Q FSR /�T UWVSV <� YXKZ

+.[J 2 (2)

It is easily seen that this utility function measures the
usefulness of the user �\ in accordance with the number
of bytes she has shared with the community. The scheme
limits the maximum number of bytes a peer can download
per unit time to the current value of the utility function.

At the first glance both these utility functions seem to be
reasonable. If the utility of the system is measured in terms
of the total number of files or the total number of bytes
available for download, then these two utility functions

would be in direct correspondence with the usefulness mea-
sure of the system to its users. Unfortunately, it would be
inadequate to measure the usefulness of a P2P file sharing
system by sheer number of files or even the number of
bytes available in the system. In order to be really useful to
the community of users the system should not only contain
lots of data but also contain lots of interesting, useful and
popular data. For example if a music file sharing system has
200,000 music files most of which are very old and from
artists who are not so popular then the system can hardly
be deemed as successful. In comparison a system that
has less number of files but a relatively larger number of
popular files may actually be more useful to the community.

Utility Scheme 3
The discussion in the previous section illustrated that it is
necessary to design utility functions that reflect the popu-
larity of the files shared by each individual user. The free
riding control mechanism would then encourage users not
to just share more files but share more files that are popular
with the user community.

The question that crops up immediately is how to mea-
sure popularity of files shared in the system? We observed
that the popularity of a file should not be an attribute that
can be pre-assigned when a file enters the system. Rather
it should be measured by how many times a file was actu-
ally downloaded within some finite time period. It should
also be appreciated that a file, no matter how popular it was
when it entered the system, will gradually loose its popu-
larity as it becomes old. By measuring a file’s popularity
using the number of actual downloads at regular intervals,
we can capture this phenomenon too. Hence we can con-
clude that the actual number of times a file was downloaded
not only indicates its relative popularity in the system but
also reflects the change in the file’s popularity with time.

Accordingly, we have designed a utility function that ac-
counts for the popularity of files as measured by the number
of times it was downloaded. The utility function is made
up of two components which we call as Reward and Penal-
ization. Reward measures a peers utility to the system and
penalization measures how much of the system’s resource
the peer has used.

In concrete mathematical terms, the Reward for �
 , de-
noted by ��
��!)"#$ � , is characterized as: as:

�
+.- /(0'1]254�^_7 EGIHKJBLBMON /YP�Q F`R /(T UaV

+Yb ced�f,g)hji >
+.[J 0�1]2k237 <� YXIZ

+.[J 2
(3)

In equation 3, ���A�(����
�� "#$ � represents the set of files
shared by the peer �\ at time instant $, and %ml�npo]qr��
'CtsW")$ �
denotes the number of times the file Cus has been down-
loaded until the current time T. v\��wOxy
�Cus � denotes the size of
the file in bytes and z is a normalizing constant. The term{

is a constant bias for all files shared by all users. It can

be seen that the reward value of an individual peer is pro-
portional to the number of times his files have been down-
loaded by other peers. The reader would have observed that
in equation 3, the term %ml�npo]qr��
'C s "#$ � is scaled by the
size of the file. This is done for the reason of fairness.

The necessity of having a bias constant (represented by{
in equation 3) is substantiated in the following argument.

When a peer joins the group or shares a new set of files,
the files wouldn’t be downloaded immediately by any user.
There is always a time lag that exists between the time when
a file is shared and the time when it is first downloaded.
Without this initial bias, a peer sharing very popular files
may not have any reward points during the initial period due
to this time lag. The free riding control mechanism (which
is dealt with in detail in the next paragraph), prevents peers
with zero utility points from downloading any files. There-
fore even a peer sharing popular files might be restricted
from downloading files from the system during the time lag.
To rectify this anomaly we included a one time, initial bias
to all files shared by any user.

The Penalization for a peer � in some sense captures
how much of the systems resource the peer has utilized in
the form of files downloaded by it till time $. In mathemat-
ical terms the Penalization for a peer �\ at time $, denoted
as � �
��! #")$ � , is given by- � +.- / 0'13254 EGKH�|'LB}]N /.P'Q FSR / T UWV <� YXIZ

+.[| 2 (4)

The utility value for peer �\ is defined as the difference
between its reward and penalization, i.e., ��
'�\)"#$ ��~��
'�,)"#$ � ��� �
��! #")$ � . Therefore the utility of peer �\
at time $ represented by ��
'�!)"#$ � is given by:*,+.- / 0'13254 EF GIH J L�MON /.P'Q FSR / T UaV.V ^

+Yb cedAf!g#hpi >
+Y[J 0'132k2]7 <� YXKZ

+.[J 2
� EGKH�|�LB}�N /YP�Q F`R / T U�V <� YXIZ

+.[| 2
(5)

In equation 5, ���A�(����
��\ ("#$ � and %&�A�(����
��!)"#$ � are de-
fined as in equation 1. ���?wOxy
�Cus � and %�l�npo]qr��
'Crs�")$ � are
defined as in equation 3.

We now explain the free riding control scheme associ-
ated with the above utility function. The mechanism is very
similar to the mechanisms previously discussed. Whenever
a peer attempts to download any file from the system, the
mechanism verifies whether its current utility value is higher
than the size of the file it is attempting to download. The
mechanism denies the request if the peer’s utility value is
lower than the file size. If the utility value is higher than the
file size, the peer is permitted to download the file. How-
ever, upon downloading a file, the peer’s utility value is re-
duced by an amount equal to that of the downloaded file
size.

In addition, we decided to reward every user with some
Freebie utility points at regular intervals, irrespective of
whether she shares any files or not. We felt that this would
be an encouragement for the users to join the P2P commu-
nity and to continue in the community even at times when
they cannot add new files. Some users might want to see
whether the system has the kind of files they would like to
download. Therefore in order to encourage users to stay
on with the system the scheme allocates some freebie util-
ity points to all users at regular intervals. In doing so, we
are aware of the fact that allocating freebies permits some
amount of free riding. But the amount of free riding can
be determined and controlled by the system designers and
maintainers. This is in contrast to the present systems where
the free riding is uncontrolled and rampant.

This free riding control mechanism is simple to im-
plement. Whenever a new peer joins the group, the
system checks the number of files and the sizes of the
files the peer brings along with it. Accordingly, the
initial value of the utility is set as ��
��\ (")$3� ��~ z��� +`��[JI� *r: Y<�>

+.- / 0 1j�)2k2 { ������wOxO
'Crs �\� C���xjxp�8np�?qr�#� . When-
ever another peer downloads file C!� from peer �! , the util-
ity value of � is incremented by z���v\��wOxy
�C � � . If the
peer � adds a new file say C!� , its utility value would go
up by z�� { ��v\��wWxy
�C!� � . If peer � downloads a file
say C i from any other user, the system reduces it utility
value by v\��wOxO
'C i � . At the end of regular intervals of time
(hence forth referred to as epochs), the system allocates
some (small amount of) freebies to all peers whose utility
value has fallen below a preset threshold.

4 Experiments and Results

In this section we describe the simulations we performed
and the corresponding results. It should be noted that we are
dealing with situations which are quite different from the
normal computer systems simulations. The most basic dif-
ference between traditional computer systems and our sim-
ulation is that the former attempts to model a mechanical
or a logical object like computer system, network behavior,
program behavior (or parts thereof), whereas in the later we
attempt at modeling a community of users, the behaviors of
users, and the decisions each user would make.

4.1 Simulation Model

As already stated, the goal of our simulation is to model
a community of users in a P2P system based on the behavior
of individual users. While designing this kind of simulator
we have been influenced by similar work in the area of so-
cial sciences. Social scientists have been using simulations
to study the various social phenomena like evolution and
expiry of societies, cooperation models and their effects on

society, dynamics of decision making process in organiza-
tions, and so forth [3, 10]. We have adopted these ideas to
the specific situation we are dealing with. While our sim-
ulation model draws ideas from a host of these work, our
model has its own unique features.

Each peer in our system is characterized by the follow-
ing parameters. A peer identifier(�8�O%), a list of files that
it owns and shares at any time instant, and a list of files
it has already downloaded from the system. We represent
the list of files a peer �! owns at time $ by ����������
'�! (")$ �
and the list of files downloaded by peer �
 till time $ by%&�A�(����
��! #")$ � . The set of all files available in the system at
time $ is represented by �8����������
�$ � . It is just the union of���A�(��� of all peers present in the system at time T.

�8�����(�B��
�$ �\~ 4 ��
 4 � ���A�(����
��! (")$ � (6)

Each file resource in our model has four parameters. (1)
A file identifier(C����) indicating the system wide unique
identifier allotted to the file, (2) an Owner identifier (���_���)
indicating which peer owns the file, (3) v\��wWx parameter
indicating the size of the file in bytes, and (4) a popularity
metric (�8nK�3�k�p���) which indicates the popularity of the
file. �8nK�3�k�p��� is a random integer between 0 and 100 and
is assigned to a file at the time of its creation. We would
like to explicitly state that this parameter has no relation-
ship with the same term used in section 3.2. The utility
function calculation doesn’t depend upon this parameter.
This parameter is solely used to generate user file access
patterns. As explained later in this subsection, whenever a
peer wants to download a file, it selects the file based on
this �8nK�]�k�p��� parameter.

Modeling user behavior without free riding control
We now explain how we model the behavior of an individ-
ual peer in our P2P system. We would like to model the
user as close to reality as possible. As in actual P2P file
sharing systems, a peer in our model repeatedly attempts to
download files from the system. In doing so it executes the
following cycle.

Peer � prepares a list of all files available in the sys-
tem that are not owned by itself or that have not been al-
ready downloaded by it. We call this list as $�n���xj%m�A�(��� .$�n�� xp%&��������
'� "#$ � denotes all the files in the system that
are not owned by � and have not been downloaded till time$. This list is obtained through the following equation.1 g#¡ Z d

:
 =<?>
+.- /�0'13254�¢ �

:
 Y<�>
+ 1]2 �

+=*r:
 Y<�>
+.- /(0'1]2W£ d : =<?>

+.- /(0'132k2
(7)

The peer then sums up the �8nK�]�k�p��� of all files in the$�n�� xp%&������� to obtain $¤np�(¥O�'�8nK�]���j���r
'�! �"#$ � .1 g >�¦K�
- g�§ �S¨)>k©

+.- /(0'13254 EHKJIL U�ª?«5¬ }�N /.P'Q F`R /#T U�V
- g�§ �.¨#>k©

+Y[J 2 (8)

The peer �! compares $�np�(¥y���8nK�]���p���;
'�! (")$ � with a
preset �8nK�]��$¤­®��x��p­�n��'� . If $¤np�(¥O�'�8nK�]���j���r
'�! ("#$ � ¯

�8nK�]�k$�­®��x��p­�n��'� , then it means that there are not enough file
choices for the peer to download. In this case peer �
 incre-
ments a counter which we call as °±¥O�?�#l�qr��� and chooses to
wait for random time. This models users who on finding out
that there are not enough files in the system choose to wait
and try again later. If °±¥O�?�#l�qr��� exceeds a preset threshold
called the l�qr���p$¤­��px��p­]n���� , then the peer � exits the sys-
tem. This models peers who on repeated attempts find no
new choices of files in the system, hence getting frustrated
exit the system. When peer �\ exits the system all the files
owned by it will be removed from the �8�����(�B� of the system.

If $�np�(¥y���8nK�3�k�p���r
��! �"#$ �³² �8nK�]��$¤­��px��p­]n���� , then
there are enough files for the peer to download. Then
the peer randomly selects a file from the $�n���xp%&�A�(���
based on the �8nK�]���p��� values of individual files in the
list. The file selection process itself works as fol-
lows. The peer places �8nK�]���p��� values of all files in
the $�n���xj%m�A�(��� in an array called the �8nK�]�k�p���5´_�p��¥O� .
Then the peer generates a random number (called the��¥Oqt�O�8nK�]���j���) between 0 and $�np�(¥y���8nK�3�k�p��� . The peer
then searches through the �8nK�]���p���y´��p�p¥O� to find an index �
such that

� s 4 � � �s 4 � �8nK�3�k�p���5´_�p��¥W�rµ ¶�· ¯ ��¥Oqt�W�8nK�3�k�p��� and� s 4 �s 4 � �8nK�]�k�p���5´_�p��¥O�rµ ¶�· ² ��¥Wqt�O�8nK�]���p��� . The file corre-
sponding to the index � in the �8nK�3�k�p���5´_�p��¥O� is chosen for
downloading. It can be seen that in the above described file
selection process, a file with large �8nK�]���j��� value is likely
to be chosen with higher probability than a file with lower�8nK�]�k�p��� value.

Once a file is selected for downloading, the model sim-
ulates downloading of the file by the peer. To model this
effect, we let peer �\ sleeps for

[
 .�.Z(¸O YXIZ¡ ¦ iW¹Kº ¹ >�» time period,

where C�����x�v\��wOx indicates the size of the chosen file in bytes
and ��¥Wqt�W�_���W�#­ indicates the average download speeds in
bytes per second. At the end of downloading the peer again
sleeps for a random time indicating the rest period. We in-
troduced this sleep because in P2P file sharing systems, the
peers would not be continuously downloading files. Rather
they download, wait for some time and then again look for
other files to download. At the end of this random sleeping,
the whole cycle is repeated until the peer exits the system as
discussed earlier.

The P2P system itself expires when the number of files
available in the system becomes very low or when there
are no more peers left in the system. We measure the�A�(¼;xj����½�x of the system as the difference between the
system start time and the system expiration time. This�A�(¼;xj����½�x indicates the sustainability of the system.

Modeling user behavior under the utility scheme
The above model represents a P2P file sharing system with-
out any policies for controlling free riding. This model
needs some modification to adopt it to represent the sce-
nario when the system has policies that discourage free rid-

ing. We now explain how this model has been adopted to
represent a system that has utility function based scheme to
control free riding.

The user behavior in the new scenario is essentially the
same as the previous scenario, except for the fact that when-
ever a peer attempts to download a file, its utility value will
be verified against the size of the file it is trying to down-
load. If the size of the file is lesser than the utility value, the
downloading is permitted and the utility value is reduced by
an amount equal to the size of the file.

If the size of the file is greater than the utility points
available, file downloading is denied. Now the peer has two
choices. Either it can share an extra file, or it can choose to
wait and return later if its utility value has increased suffi-
ciently to permit the downloading (remember that the utility
value can increase either because some other peer down-
loaded a file from this peer or because some Freebie utility
points were allotted to it at the end of an epoch). In our sim-
ulations whenever a peer doesn’t have enough utility points
to download a file, with a some small predetermined proba-
bility (represented as ´��O�O���pna¾) it chooses to add a file and
get additional utility points equal to z¿�À����wWxy
 � x��¤C��?�'x � .
With
(Á��¿´��O�O���pna¾ � it chooses to wait for a random time
and come back again and check whether it has got enough
points to download the file it wants. This cycle repeats till
the peer accumulates enough points for downloading the de-
sired file.

Whenever a peer �! downloads a file from another peer�rs , the utility value of peer �us is increased as indicated in
the previous subsection. In order to allocate freebies, we
have chosen to have epochs in our model. An epoch is a
prespecified time duration. At the end of each epoch, free-
bies are added to each peer.

4.2 Model Implementation

We have implemented the above described model in
Java. Each peer in the system is implemented as a thread.
The thread repeatedly executes the operations described in
the previous subsection. In addition to these threads there
is a main thread, that wakes up at the end of each epoch
to allocate freebies. This thread also tabulates the statistics
at the end of each epoch. All the peer threads are created
at the beginning of the simulation. The simulator, at this
point of time doesn’t support peers joining the group after
the simulation has started. We plan to include this feature in
future.

Each thread representing a peer maintains a list of all
files it owns(���A�(���). It also maintains a list of files that it
has already downloaded(%&�A�(���). The global data structures
include a list of all the files available in the system and an-
other list of all the peers present in the system. Each time a
peer wants to download a file, it prepares a $�n�� xp%&���(�B� of

files. This list just contains the files that are present in the
Global file list but not present in either the owned files list
or the downloaded files list of the peer. The peer randomly
chooses a file from the list based on the �8nK�]���j��� value of
all the files in the $¤n�� xp%&�A�(��� as described in the previous
subsection.

Whenever a peer shares an extra file, it is added both to
its �8�A�(��� and to the global file list (�8���������). Whenever a
peer quits a system, it removes all the files that it owns (i.e.,
those in its UList) from the global file list of the system
(�8�'�A�(���). Once a peer quits the system, the thread corre-
sponding to the same would die. When the number of peers
in the system falls to zero or the number of files in the sys-
tem becomes zero, the system expires.

In the next section we explain the actual experiments we
performed and the results obtained.

4.3 Experimental Results

In order to make the above model tractable and the re-
sults comprehensible, we had to make some some assump-
tions regarding the parameters of the model. Before we
discuss the actual experiments and results, we state the as-
sumptions we have made.

First, we assume that all the files in the system are 5.6
MB in size (v\��wOx ~ÃÂ5Ä Å �). Second, we assume that
all peers in the P2P system have the same bandwidth of
56KB/sec (� ¥Oqt�W�_�����#­ ~�ÂaÅWÆ ��Ça�jxpÈ) Downloading each
file takes approximately 100 secs. We also set the rest pe-
riod after a peer downloads a particular file and the wait
period to be a random number around the file download-
ing time duration (100sec). Further we set the duration of
an epoch to be ten times that of downloading a file, which
makes epoch-period to be of 1000 secs. This means that a
peer having enough utility points can download up to 5 files
in each epoch.

Second we set the z and
{

parameters in equation 5 to
be 1. Also the freebie points that are allocated to each peer
is set to be equal to that of the file size (5.6M). This means
that even if a peer doesn’t share any files it can download
a single file in each epoch, where as a peer having enough
points can download as many as 5 files.

Understanding the Effects of Free Riding
In the first experiment we just wanted to test the hypothesis
that the lifetime of a system where everyone shares equal
number of files is higher than the lifetime of a system where
there are just a few peers who share the files and the rest are
free riders. To test this hypothesis, we set up a system with
no free riding control of any sort and subjected the system
to two different scenarios. In both scenarios the number of
files was made equal to 15 times the number of nodes.

The first scenario represents a typical P2P file sharing

system with large number of free riders. 2% of the total
nodes share 250 files each, 4% share 100 files each, 8%
share 50 files each and 8% share 25 files each. The rest
78% are freeriders. In the second scenario each node shares

Figure 1. Lifetime of Systems With and Without Free
Riding

the same number of files. Each peer shares exactly 15 files.
The graphs in Figure 1 show the results of the two scenarios
when the number of peers was 50, 100, 150 and 200. The
Y axis in the graph measures the lifetime of the systems
in number of epochs. It is seen from the graphs that the
system where each node shares the same amount of files
lives for around 15% to 25% longer than the system where
freeriding is rampant.

This phenomenon is explained as follows. In first sce-
nario where free riding is rampant, the $�n���xj%m�A�(��� s for
the peers that share large number of files is much shorter
than those of the free riders. If there are 1500 files in the
system and if one peer owns 250 files, the number of files
that it can download is limited to 1250, whereas a free rider
sharing practically nothing has 1500 files to be downloaded.
Therefore the $�np�(¥y�'�8nK�]�k�p��� of the $�n�� xp%&���(�B� of a peer
sharing large number of files reaches the �8nK�]��$¤­��px��p­]n����
(recall that this threshold denotes the condition of a peer that
experiences lack of popular files in the system and hence
pulls out) much earlier than that of a free rider. Hence it is
likely to loose interest much earlier than a free rider. This
causes it to exit the system. Once a node with large file ex-
its the system, the system becomes poorer in terms of the
total number of available files. This has the cascading effect
of other peers having their own $�n�� xp%&������� list becoming
shorter by a large amount, accelerating their exits from the
system.

In a system wherein each node shares same number of
files, every peer has same number of files to be downloaded
from the system. Hence we don’t observe the phenomenon
of large sharers exiting the system very early, which would
have accelerated its expiry.

To explain this phenomenon further, we have plotted the

Figure 2. Number of Files in the System as a Function
of Epoch Number

graph of the number of files available as a function of the
epoch number for both the equal sharing system and the
free riding rampant system. Figure 2 shows the graph of
the number of files in the system against the epoch num-
ber for a group of 100 peers. As is evident from the graph,
there are sudden large drops in the number of files avail-
able for the free ride rampant system. These indicate the
points where peers who share large files are withdrawing
from the system. When these peers withdraw, suddenly the
system becomes poor due to the loss of a large number of
files. In contrast, in the curve corresponding to the equal
sharing system, the drops are shorter and they also occur
later. This phenomenon can be explained as follows. In a
system with equal sharing peers, each peer has 1485 files
to be downloaded. However a peer sharing 250 files in free
ride rampant system, has only 1250 files. This accelerates
its exit from the system causing the system to become poor
by losing 250 files at once.

As we have already mentioned, another problem with
free riding is that a few peers that share files receive all
the downloading request. To demonstrate this effect, we
measure a quantity which we term as Average-System-
Skewness(´_ÉWÊ®v\�®�jv { xj�). We define Average-Skewness in
terms of another related quantity called Epoch-Skewness
(ËÌ�;v { xj�). Average-Epoch-Skewness of epoch � is defined
as follows.

Í § ¸
b
Z º
+
 2®4¿Î�Ï peers alive at epoch i Ð

+'Ñt+=* f + § J 0 2 � dAf
+ § J 0 2k2

Ñ 2
Number of peers alive at epoch i

(9)
In equation 9, �8l�
S�®s�"#� � denotes the number of times

any file owned by peer ��s has been downloaded by other
peers during the epoch � . %ml�
`��s�"#� � denotes the number of
files peer � s has downloaded from other peers in the epoch� . This quantity indicates the average difference between
the number of uploads and number of downloads in each
epoch. System-Average-Skewness is defined as the average
of the Epoch-Skewness over all epochs in which the system
was alive.

ÒrÓKÔ ¸O©B<(¸
b
Z º 4 Î Ï /kÕ System alive at i Ð

+ Í § ¸
b
Z º
+
 2k2

Total Number of Epochs
(10)

In a healthy system, the value of Average-System-
Skewness should be close to zero. High values indicate that
there are many peers that are downloading a lot more than
other peers are downloading from it or vice versa.

Figure 3. Average-System-Skewness of System With
and Without Free Riding

Figure 3 indicates this quantity for peer groups of 50,
100, 150 and 200 peers for system with equal sharing and
the system with rampant free riding. The value of Average-
System-Skewness of free riding rampant system of 50 nodes
is 7.2 as against a value of 1.9 for equal sharing system.
The result is expected because in the system with rampant
free riding, there are nodes that only download but don’t
share anything for others to download, whereas in an equal
sharing system each peer can be expected to download as
many files as other peers download from it.

These set of experiments clearly demonstrates that free
riding not only limits the lifetime of a system, but also is an
unhealthy trend.

System performance under the utility scheme
Having demonstrated the need to tackle the free riding

problem in the previous set of experiments, we now turn our
attention to the performance of the system with our utility
function.

In these set of experiments we considered a peer group
of 50, 100 and 150 peers. However, we considered a more
realistic distribution of files on peers. The workload we con-
sidered consisted of 20% of peers sharing 50 files each, an-
other 20% of peers sharing 20 files each and another 20%
share 10 files each. The rest 40% are free riders.

We performed three sets of experiments. The first set
was a system with no control on free riding. The second and
third set of experiments implemented our utility based free
riding control mechanism. In the second set, the ´��O�O���pna¾
(the probability of adding a file when a peer has very few
points) is set to 0.05. In the third set of experiments it was
set to 0.1.

Table 1 indicates the lifetime of each of the three systems

Number of Peers 50 100 150
No Utility Function 119 512 736
Utility Function 3 (A P = 0.05) 224 1200 2653
Utility Function 3 (A P = 0.10) 393 5309 7531

Table 1. Lifetime of Systems With and Without Free
Riding Control

in number of epochs. It is seen that for a 50 peer group,
when the addition probability ´��O�O���pna¾ (´¤� for short) was
set to 0.1, the lifetime of the system with utility based free
riding control was approximately 3.5 times the lifetime of
the system with system with no free riding control. Whereas
the lifetime of a 150-peer system with utility based free rid-
ing control system was 10 times that of the the system with
no free riding control.

It should be noted that the percentage improvement in
lifetime is much higher for the systems with a larger number
of peers when compared the systems with fewer peers. This
phenomenon is explained as follows. In systems with large
number of peers, there are large number of free riders as
well. The utility based free riding control forces these free
riders either to share a new file or wait. Even if the peers
decide to share new files with small probability, the number
of files entering the system would be considerable. This
helps to retain the interests of the peers in the system for
much longer time. Thus the lifetime of the system itself
becomes high.

Figure 4. Number of Files at Various Epochs

Figure 4 indicates the number of files in the system as a
function of the epoch number for a system with 100 peers.
The two curves in the graph correspond to the cases when
the ´��O�O���pna¾ was set to 0.05 and 0.1 respectively. In order
to capture details and for better clarity, we have plotted the
graph for the case of AddProb=0.1 only till the number of
peers in the system falls to half of the original number of
peers. The zig-zag curve in this case clearly demonstrates
that the number of files in the system increases even after a

few nodes have pulled out of the system. In fact the peak
number of files are available in the epoch number 1802, by
this epoch 8 peers had already pulled out of the system. Af-
ter the epoch number 5000, the fall is steep and the whole
system expires within 200 more epochs. The same zig-zag
effect is observed in the case when the ´��O�W����na¾ is 0.05.
However, the effect is on a much smaller scale.

We would like to note that our experiments at this stage
don’t account for new peers entering the system. If we in-
corporate this feature, then we can expect the system to be-
come stabilized and live for much longer time.

Figure 5. Average-System-Skewness for Utility Based
Scheme

Figure 5 shows the Average-System-Skewness for sys-
tems with 50, 100 and 150 nodes in the three cases, a sys-
tem with no utility function, a system with utility function
at AddProb = 0.05, and a system with utility function at Ad-
dProb = 0.1. In a system with 50 peers the Average-System-
Skewness of the system with no free riding control was
2.5 times that of Average-System-Skewness of the system
with free riding control with AddProb set to 0.1. Average-
System-Skewness was as low as 0.76 for a system with 150
nodes and ´��O�W����na¾ set to 0.1. This indicates that the dif-
ference between the number of uploads and downloads is
extremely low, which is a very healthy trend. This demon-
strates the effectiveness of the utility scheme in protecting
peers being exploited and preventing some peers exploiting
others. Due to space limitations we have not been able to
provide complete set of our experimental results. Interested
reader is referred to the technical report version of the paper
[11] for a more elaborate set of results.

5 Discussion

The experiments we discussed in the previous section
demonstrates a number of important points. The first set of
results illustrated the seriousness of the free riding problem
and the need to tackle this growing menace. The second set
of results demonstrated the effectiveness of the utility func-

tion based schemes in controlling free riding. Even simple
utility functions like the one we used in our experiments not
only increase the lifetime of the system by leaps and bounds,
but also guard against some peers exploiting other peers.

The particular utility function that we have used is a gen-
eral one. Obviously, specialized utility functions should be
designed for specific systems. Our research is a first attempt
to show that utility function based schemes are a promising
option for controlling free riding.

It should also be noted that our simulation at this point of
time, doesn’t incorporate new users entering the system. It
also doesn’t model altruism in actual P2P systems. Altruism
is the behavior of a peer wherein it contributes new files
to the system without any apparent benefit for itself. The
future work would be to incorporate these two features in
our simulation model and also design variants of the basic
utility functions for various special applications. We also
recognise the need for further research on economic models
to better represent the user communities and resources in a
P2P information sharing environment.

6 Related Work

Research in P2P file sharing systems till now, has
predominantly concentrated on file look up mechanisms.
While Napster [9] used a centralized directory, Gnutella
floods the network with query messages. Chord [14] and
Pastry [12] propose novel solutions to this problem by hash-
ing file names to the nodes present in the system. [15] pro-
vides a comparative study of different Peer-to-Peer architec-
tures. [13] reports a detailed measurement study comparing
Napster and Gnutella with respect to various performance
parameters.

The problem of free riding in P2P file sharing systems
was first reported in [1]. However, the paper doesn’t pro-
pose any solution to the problem. Economists and so-
cial scientists have studied the problems of free riding, so-
cial dilemma, and the effect of them in various communi-
ties [4] [10]. Recently, there have been studies on these
problems in the context of information and internet technol-
ogy [8] [6]. But most of these studies stop at recognizing
the problem and don’t propose any solutions. Our work is
unique in the sense that we propose schemes that can effec-
tively counter the free riding problem.

7 Conclusion

While there are several on going research projects on im-
proving the quality of service in P2P file sharing systems,
there hasn’t been any research to counter the problem of free
riding, which is essentially a data quality issue. To address
the free riding problem in P2P systems, we have introduced
the concept of utility function to measure the usefulness of

every user to the system. We have proposed a free riding
control scheme based on the general utility function. Fur-
ther we designed a simulation model to study the user be-
havior patterns in a peer community and the impact of the
policy decisions on the lifetime and health of the system.
We expect that this paper would trigger further research in
this area of P2P systems.

References

[1] E. Adar and B. Huberman. Free riding on
gnutella, September 2000. Available at ÖW×�×YØ ÙÚ�ÚBÛ�ÛÜÛ_Ý ÞOß�àjá ×?â�ã�ä®å�æaç Ý åaè ÚBß'á�áKé5êBá�ÚBß'á�áIéyê�ë�ì)ípÚ æaå�æ àjÚBß ä®å ê�î]Ý Ö�×?â�ï .

[2] Freenet home page. http://www.freenet.sourceforge.com.
[3] N. Gilbert. Emergence in social simulations. In Artificial

Societies, pages 144 – 156. 1995.
[4] N. S. Glance and B. A. Huberman. Dynamics of social dilem-

mas. Scientific American, March 1994.
[5] Gnutella development page. http://gnutella.wego.com.
[6] B. A. Huberman and R. Luckose. Social dilemmas and inter-

net congestion. Science, Volume 277, 1997.
[7] Kazaa home page. http://www.kazaa.com.
[8] D. McFadden. The tragedy of the commons. Available at

http://www.forbes.com/asap/2001/0910/061.html.
[9] Napster home page. http://www.napster.com.

[10] D. Parisi. What to do with a surplus. In Simulating Social
Phenomenon, pages 133 – 151. 1997.

[11] L. Ramaswamy and L. Liu. Free riding: A new challenge
to peer-to-peer file sharing systems. Technical report, Col-
lege of Computing, Georgia Institute of Technology, Atlanta,
2002.

[12] A. Rowstron and P. Dreschel. Pastry: Scalable, decentralized
object location and routing for large-scale peer-to-peer sys-
tems. In Proceedings of the 18th IFIP/ACM International
Conference on Distributed Platforms (Middleware 2001),
November 2001.

[13] P. K. G. Stefan Saroiu and S. D. Gribble. A measurement
study of peer-to-peer file sharing systems. Technical report,
Department of Computer Science and Engineering, Univer-
sity of Washington Seattle, 2002.

[14] I. Stocia, R. Morris, D. Karger, F. Kaashoek, and H. Bal-
akrishanan. Chord: A scalable peer-to-peer lookup service
for internet applications. In Proceedings of ACM SIGCOMM
2001, August 2001.

[15] B. Yang and H. Garcia-Molina. Comparing hybrid peer-to-
peer systems. In Proceedings of 21st International Con-
ference on Very Large Databases, VLDB-2001, September
2001.

