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Abstract. Identifying binary code at function level has been applied to
a broad range of software security applications and reverse engineering
tasks, including patch analysis, vulnerability assessment, code plagiarism
detection, malware analysis, etc. However, various anti-reverse engineer-
ing techniques (e.g., obfuscation, anti-emulator, etc.) employed by the
mobile apps make existing approaches ineffective when performing func-
tion identification. In this paper, we propose MobileFindr, an on-device
trace-based function similarity identification framework on the mobile
platform. MobileFindr runs on real mobile devices and mitigates many
prevalent anti-reversing techniques by extracting function execution be-
haviors via dynamic instrumentation, then characterizing functions with
collected behaviors and performing function matching via distance cal-
culation. We have evaluated MobileFindr using real-world top-ranked
mobile frameworks and applications. The experimental results showed
that MobileFindr outperforms existing state-of-the-art tools in terms of
better obfuscation resilience and accuracy.

Keywords: Reverse engineering · Similarity identification · Dynamic
instrumentation.

1 Introduction

With the general availability of closed-source applications, there is a need to iden-
tify function similarity among binary executables. For instance, in the automatic
patch-based exploit generation, detecting the function similarity/difference be-
tween a pre-patch binary and post-patch binary reveals the patched vulnerabil-
ity [22–24,41], and such information can be explored automatically within a few
minutes [19], and generate 1-day exploits [39]. Performing function similarity
measurement between intellectual property protected software binaries and sus-
picious binaries indicate potential cases of software plagiarism [26,32,34,43,44].
Detecting similar malicious functionality between different binary malware sam-
ples is another appealing application emerged in malware analysis, since the
majority of malware samples are not brand new program but rather repacks or
evolutions of previous known malicious function code [31,35].

An inherent challenge shared by the above applications is the absence of
source code. Binary executable becomes the only available resource to be an-
alyzed. A number of semantics-aware binary differencing or function similarity



detecting methods have been proposed. One category is to use static analysis,
which is usually based on control-flow graph (CFG) comparison [22–24, 46]. At
a high level, the CFG based approach extracts various robust features for a
node in the control flow graph [22, 24], or learns higher-level numeric feature
representations from the control flow graph [23], or converts the control flow
graph into embeddings [46], then perform similarity searching for the target
functions. Although these studies have demonstrated that CFG based methods
can be effective and scalable, all of these methods exclude obfuscated binaries,
which appeared in a large number of mobile apps. Basic block semantics model-
ing is another approach for similarity measurement [25,34,41]. It represents the
input-output relations of a basic block as a set of formulas, and then use the-
orem prover to perform the equivalence checking. However, the theorem prover
is computationally expensive and impractical for large code bases of many real
world mobile apps [22].

Another category relies on dynamic analysis, which is usually based on run-
time execution behavior comparison. For example, previous work by Ming et
al. achieves this by collecting system or API calls to slice out corresponding
code segments and then check their equivalence with symbolic execution and
constraint solving [35]. However, their trace logging component is an emulator
based system, which cannot handle the environment-sensitive mobile apps that
can detect sandbox environment. Egele et al. built a system called BLEX to
capture the side effects of functions during execution [21]. Xu et al. built a tool
called CryptoHunt to capture the specific features of cryptography functions
with boolean formula [45]. All of their implementation are based on Intel’s Pin
framework [33], which is not work on mobile platforms generally with ARM
instruction set architecture.

In this paper, we aim at improving the state of the art by proposing trace-
based function similarity mapping, a hybrid method to efficiently search for sim-
ilar functions in mobile binaries. Regardless of the optimization and obfuscation
difference, similar code must still have semantically similar execution behavior,
whereas different code must behave differently [21]. Our key idea is to capture
the dynamic behavior features during the execution of a function along a run-
time trace. More precisely, we propose to record a variety of dynamic runtime
information as dynamic behavior features via dynamic instrumentation, and use
stack backtrace information to locate corresponding functions that can be rep-
resented with these features. Then we calculate the similarity distance based
on such features and return a list of similar functions ranked by the score of
distance.

We have designed and implemented a system called MobileFindr, and evalu-
ated it with a set of mobile examples under different obfuscation scheme combi-
nations. Our experimental results show that our system can successfully identify
fine-grained function similarities between mobile binaries, and outperform ex-
isting state-of-the-art approaches in terms of better obfuscation resilience and
accuracy. Our evaluation with top-ranked real-world mobile apps also demon-
strated the effectiveness of our system.



Correspondingly, our contributions in this paper are:

– We have proposed a novel approach, trace-based function similarity map-
ping, to perform function similarity measurement on mobile platforms. Our
key solution is to capture observable dynamic behaviors along an execution
trace via dynamic instrumentation, and characterize functions with such
behaviors. Our approach exhibits stronger resilience to various anti-reverse
engineering techniques for mobile apps. To best of our knowledge, this is the
first work having such ability on mobile platforms.

– We have proposed a variety of dynamic features to record during the function
execution, which allow us to approximate the semantics of a function without
relying on the source code access.

– we have implemented a system called MobileFindr and source code is pub-
licly available at GitHub: https://github.com/tigerlyb/MobileFindr.

– We have demonstrated the viability of our approach for top-ranked real-
world mobile frameworks and apps.

The rest of this paper is organized as following. Section 2 introduces back-
ground and challenges. Section 3 presents the details of our system design and
implementation. Section 4 presents our evaluation and results. Discussion and
limitations are presented in Section 5. Then we present related work in Section
6, and conclude the paper in Section 7.

2 Background

This section introduces the background of reverse engineering, presents the pop-
ular tools that help for reverse engineering mobile apps, including various debug-
gers, disassemblers, decompilers, etc. Then we demonstrate motivating examples
and describe possible reverse engineering challenges that can affect the state of
the art function identification methods.

2.1 Reverse Engineering Mobile Apps

Reverse engineering is the process of taking a program’s binary code and recre-
ating it so as to trace it back to the original source code. It is being widely used
in computer software security to enhance product features without knowing the
source: find security flaws, test code compatibility, add new features or redesign
the product, understand the design of malicious code, etc. In this section, we
present popular reverse engineering tools for mobile apps as follows:

– Debugger: helps developer to understand how the program behaves at run-
time without modifying the code, and allows the user to view and change
the running state of a program. With the release of Xcode 5, the LLDB de-
bugger [12], which is part of the LLVM compiler development suite, becomes
the foundation for the debugging experience on Apple platforms. LLDB is



fully integrated with Xcode and provides deep capabilities in a user-friendly
environment. For Android platform, both LLDB and JDB (Java debugger)
are integrated in the Android Studio debugger [1]. By default, Android Stu-
dio automatically choose the best option for the code you are debugging.
For example, if you have any C or C++ code in the project, Android studio
debugger select LLDB to debug your code. Otherwise, Android Studio uses
the Java debug type.

– Disassembler: a software tool which transforms binary code into a human
readable mnemonic representation called assembly language. Many disas-
semblers are available on the market, both free and commercial. Apktools [2]
and baksmali [15] are free tools that can disassemble the dex format used by
Dalvik, Android’s Java VM implementation. The most powerful commercial
disassembler is IDA Pro [9], published by Hex-Rays. It can handle binary
code for a huge number of processors and has open architecture that allows
developers to write add-on analytic modules.

– Decompiler: a software tool used to revert the process of compilation. De-
compilers are different from disassemblers in one very important aspect.
While both generate human readable text, decompilers generate much higher
level text, which is more concise and much easier to read. For example, An-
droid developer can use Dex2jar [5] to convert dex file to class file, and then
open it in JD-GUI [10] to display Java source code. Hex-Rays Decompiler [8]
is a IDA Pro extension that converts native processor code into human read-
able C-like pseudocode text.

2.2 Challenges

The software security community relies on such reverse engineering tools to ana-
lyze and validate programs. However, various anti-reverse engineering techniques
employed by the latest mobile apps make existing reverse engineering tools inef-
fective. For instance, the anti-debugging and anti-emulator techniques employed
by mobile apps limit the usage of many dynamic analysis tools [28,30,40]. Code
obfuscation scheme provide strong protection against automated static reverse
engineering tools. Moreover, different mobile apps tend to use different obfusca-
tion techniques and even same app changes obfuscation options when updating
its version. In this paper, we focus on analyzing iOS apps. Nowadays iOS develop-
ers heavily rely on code obfuscation to evade detection since iOS is a close-source
platform. Therefore, in this section, we introduce different code obfuscation fea-
tures as well as motivating examples for understanding each features.

Code Obfuscation Obfuscation aims at creating obfuscated code that is diffi-
cult for humans to understand. Obfuscation techniques include modifying names
of classes, fields, and methods, reordering control flow graphs, encrypting con-
stant strings, inserting junk code, etc. To obfuscate mobile apps, we rely on a
state-of-the-art open-source obfuscation tool, Obfuscator-LLVM 4.0 [29], which
supports popular obfuscation transformations as follows.



– Control Flow Flattening: The purpose of this pass is to completely flatten
the control flow graph of a program. The flag option -split activates basic
block splitting, which improve the flattening when applied together.

– Instructions Substitution: The goal of this obfuscation technique simply
consists in replacing standard binary operators (like addition, subtraction
or boolean operators) by functionally equivalent, but more complicated se-
quences of instructions.

– Bogus Control Flow: This method modifies a function call graph by
adding a basic block before the current basic block. This new basic block
contains an opaque predicate and then makes a conditional jump to the orig-
inal basic block. The original basic block is also cloned and filled up with
junk instructions chosen at random.

Fig. 1: A Motivating Example: Code

Obfuscation Example We use the example in Figure 2 to illustrate code
obfuscation on iOS platform. Figure 1 shows the Objective-C source code of a
function called encrypt1. It takes a string message as input and xor the message
with a key, then return the encrypted message. Figure 2a shows the original
control flow graph without any obfuscation, which only contains 4 basic blocks.
While Figure 2b is the obfuscated version (combined all three obfuscation options
above) of that function. As mentioned in Section 1, existing static approaches
that rely on control flow graph similarity and basic block level comparison will
likely not be able to make a meaningful distinction in this scenario. Alternative



(a) (b)

Fig. 2: A Motivating Example: CFG

approaches, such as dynamic approaches, either rely on Pin tool or emulator-
based system to capture execution behavior. Pin tool is not able to work on
analyzing most mobile apps, since ARM processors dominate mobile platforms.
The anti-emulator techniques employed by mobile apps also limit the usage of
such emulator-based analysis system. To address the above mentioned challenges
in the scope of matching function for mobile binaries, we design a novel on-device
dynamic instrumentation system.

3 Design and Implementation

In this section, we first illustrate the design of our approach, and then detail the
implementation of our system.

3.1 Overview

We present trace-based function similarity mapping, a hybrid method to effi-
ciently search for similar functions in mobile binaries. More precisely, we pro-
pose to record a variety of dynamic behavior features during the execution of a
function along an execution trace. We define the concept of ”dynamic behavior
features” broadly to include any information that can be derived from observa-
tions made during execution. Our approach works as the following: given two
mobile apps A, B and a function of interest F from A. Both F and any exe-
cuted functions from B are characterized with dynamic behavior features. Then



Fig. 3: Schematic Overview of Trace-based Function Similarity Mapping System

we compute similarity scores between F and each function f from B, to identify
which functions in B are similar to F. The novelty of our approach lies in the
follows.

– What features are useful for semantic similarity comparisons?
– How these features are captured on mobile platforms?
– How to characterize a function with such features?

Figure 3 illustrates the architecture of our system, which comprises four stages:
preprocessing, on-device dynamic analysis, feature extraction and similarity search-
ing. The preprocessing stage, as shown in the left side of Figure 3, involves two
parts: binary extraction and address extraction. It dumps the mobiles binaries
from the app and extract addresses for all functions and imported libraries and
frameworks. All the extracted addresses are passed to the on-device dynamic
analysis stage for instrumentation and trace logging usage. The recorded traces
will be analyzed by the feature extraction stage. Then we perform the similarity
searching based on the function features obtained from feature extraction stage.
Next, we will present each step of our system in the following sections.

3.2 Preprocessing

Binary Extraction When you download an iOS app from the App Store, Ap-
ple injects a special 4196 byte long header into the signed binary encrypted with
the public key associated with your iTunes account. For this step we choose
Clutch [4], to decrypt and dump app binary. Then we disable the ASLR (Ad-
dress Space Layout Randomization) to get the correct function addresses. ASLR
makes the remote exploitation of memory corruption vulnerabilities significantly
more difficult by randomizing the application objects location in the memory.
By default iOS apps are compiled with -pie flag (Generate Position-Dependent
Code). This flag is automatically checked in the latest version of Xcode in order
to use ASLR. We leverage the tool removePIE [6] to disable the ASLR by flip-
ping the PIE flag. After that, we put the binary back to the app and re-sign it
with ldid [11].



Address Extraction We utilize IDA Pro [9] to disassemble the binary ob-
tained from previous step, extract function addresses as well as imported library
addresses and framework addresses through IDAPython API. This component
is implemented with 155 lines of Python code. Listing 1.1 shows an example of
a function address table extracted from the iOS app binary. Each line consists
of starting address (e.g., 0x11834), ending address (e.g., 0x11980) and function
name (e.g, prepareToRecord from the class MovieRecorder). Listing 1.2 shows
an example of library addresses, which only consist the starting addresses and
library names.

Listing 1.1: Function Addresses

...

0xb7ea ,0xb964 ,-[ VideoSnakeViewController

toggleRecording :]

0xe2cc ,0xe51c ,-[ VideoSnakeSessionManager

startRecording]

0x111d8 ,0x1128c ,-[ MovieRecorder initWithURL :]

0x1161c ,0x116a8 ,-[ MovieRecorder delegate]

0x11834 ,0x11980 ,-[ MovieRecorder prepareToRecord]

0x11d48 ,0x11ebc ,-[ MovieRecorder finishRecording]

...

Listing 1.2: Library Addresses

...

0x1606c ,__Block_copy

0x1607c ,__Block_object_assign

0x1608c ,__Block_object_dispose

0x1609c ,__Unwind_SjLj_Register

0x160ac ,__Unwind_SjLj_Resume

0x160bc ,__Unwind_SjLj_Unregister

...

3.3 On-device Dynamic Analysis

The on-device dynamic analysis stage performs dynamic instrumentation and
trace logging in order to record the needed information.

Dynamic Instrumentation We utilize Frida [7], a dynamic instrumentation
toolkit, to inject scripts in app process that monitor the dynamic behavior during
execution. Frida lets you inject snippets of JavaScript or your own library into
native apps. Frida’s core is written in C and injects Googles V8 engine into the
target processes, where the JavaScript gets executed with full access to memory,
hooking functions and even calling native functions inside the process.



Trace Logging In our implementation we chose features that capture a variety
of system level information (e.g., system calls), as well as higher level attributes,
such as libc calls, objc calls, framework API invocations as follows.

– System Calls: e.g., read, write, open, etc. defined in libsystem kernel.dylib

– Library Calls: e.g., memset, memcpy, free, etc. defined in libSystem.B.dylib,
objc getClass, objc getProtocol, etc. defined in libobjc.A.dylib

– Framework APIs: e.g., OpenGLES, CoreMedia, UIKit, etc.

We leverage the Frida API to inject JavaScript at the library addresses and
framework addresses to record the invocations of such features above, and gen-
erate a backtrace for the current thread, returned as an array of native pointer
addresses for the subsequent steps.

3.4 Feature Extraction

Listing 1.3 illustrates the logged trace data, which consists of arrays of addresses.
Each line indicates an invocation of library call or framework API call, fol-
lowed by its stack backtrace information. First, we transform the addresses to
function names according to the address table obtained from the preprocessing
stage. For instance, 0x1609c is the starting address of Unwind SjLj Register,
0x11892 is in the range of 0x11834 and 0x11980, which indicate the library
Unwind SjLj Register is called by function prepareToRecord. The rest can be

done in the same manner. Listing 1.4 illustrates a full translated results from
Listing 1.3.

Listing 1.3: Stack Backtrace: Address

...

0x1609c ,0x11892 ,0xe498 ,0xb92e ,0 xb15a

0x1621c ,0x118c0 ,0xe498 ,0xb92e ,0 xb15a

0x1620c ,0x118fc ,0xe498 ,0 xb15a

...



Listing 1.4: Stack Backtrace: Name

...

__Unwind_SjLj_Register ,-[ MovieRecorder

prepareToRecord ],-[ VideoSnakeSessionManager

startRecording ],-[ VideoSnakeViewController

toggleRecording :],sub_B120

_dispatch_get_global_queue ,-[ MovieRecorder

prepareToRecord ],-[ VideoSnakeSessionManager

startRecording ],-[ VideoSnakeViewController

toggleRecording :],sub_B120

_dispatch_async ,-[ MovieRecorder prepareToRecord ],-[

VideoSnakeSessionManager startRecording ],-[

VideoSnakeViewController toggleRecording :],

sub_B120

...

Next, we match these library calls or framework API calls to its corresponding
caller functions as features. Listing 1.5 represents features of function prepare-
ToRecord, in JSON format. The feature extraction component is implemented
with 280 lines of Python code.

3.5 Similarity Searching

The function feature representation is a length-N feature list. We chose Jaccard
index to measure the similarity between lists. We define sim(f, g) to be the
similarity score between function f and g. We perform similarity searching as the
following: starting with a known reference function in a trace, we are searching
for mobile binaries containing similar functions by calculating similarity score
and listing top K similar function candidates.

Listing 1.5: Function Features

{

"name" : "-[ MovieRecorder prepareToRecord ]",

"features" : [

[

"__Unwind_SjLj_Register",

"_dispatch_get_global_queue",

"_dispatch_async",

"__Block_object_assign",

"__Unwind_SjLj_Unregister"

]

]

}



Fig. 4: Function Mapping between Obfuscated Version and Non-obfuscated Ver-
sion

4 Evaluation

In this section, we evaluate our system from several objectives. Particularly, we
conduct our experiments to evaluate whether our system outperforms existing
binary similarity detection tools in terms of better obfuscation resilience and
accuracy. We designed two controlled datasets so that we have a ground truth
to assess comparison results accurately. We also evaluate the effectiveness of our
system in analyzing real world top-ranked iOS apps from Apple App Store.

4.1 Experiment Setup

Our on-device dynamic analysis is performed on a 32GB Apple Jailbroken iPad
(4th Generation) running iOS 8.3. The configuration of our testbed machine for
feature extraction and similarity searching is shown as follows.

– CPU: Intel Core i7-6700K Processor (Eight-core with 4.00GHz)
– Memory: 64GB
– OS: Ubuntu Linux 14.04 LTS
– Python Version: 2.7.12
– IDA Pro Version: 6.6

4.2 Ground Truth Dataset

Data 1 First, we collect 8 sample codes with different functionalities from official
Apple developer website. For each sample we build both non-obfuscated version
and obfuscated version. The obfuscated version combines all three settings in
Table 1.



Data 2 Then we test our system with third-party frameworks or libraries that
are commonly used by popular mobile apps. In practice, programmers usually
take advantage of existing frameworks or libraries to speed up their develop-
ments. In our evaluation, we choose AFNetworking and SDWebImage, top-two
ranked open source frameworks [16] as the reference implementation. Our pur-
pose is to detect such frameworks or libraries that commonly used in different
mobile apps. To this end, we collect 8 open source projects from GitHub, and
reuse the provided APIs from two libraries above. We built sample apps with
non-obfuscated version and 7 different combinations of the obfuscation settings,
which results in 64 apps in 8 different types. We kept the debug symbols as they
provide a ground truth and enable us to verify the correctness of matching using
the functions symbolic names.

Table 1: Different Obfuscation Types and Flag Settings
Type Flag Setting

1 control flow flattening -fla, -split, -split num=3

2 instruction substitution -sub, -sub loop=3

3 bogus control flow -bcf, -bcf loop=3, -bcf prob=40

4.3 Obfuscation Options

As mentioned in section 2, we use Obfuscator-LLVM to obfuscate our ground
truth mobile samples. Table 1 lists specific obfuscation settings that we use
to build our ground truth iOS samples. We integrate Obfuscator-LLVM into
Xcode, and enable the three obfuscation features described in Section 2, and
apply different settings as shown in Table 1.

4.4 Peer Tools

We compare our tools with other state-of-the-art similarity detection or diffing
tools that open to public: BinDiff, BinGrap, Genies. BinDiff [17] is a comparison
tool for binary files, that assists vulnerability researchers and engineers to quickly
find differences and similarities in disassembled code. BinGrap [3] is also a static
analysis tool that perform function similarity searching, but it can output a list
of functions in order of similarity. Genius is a bug search engine that performs
function similarity detection based on mapping raw features of a function into a
higher-level numeric vector where each dimension of the vector is the similarity
distance to a categorization in the codebook. However, only partial code is avail-
able, including raw feature extraction and search. Therefore, we re-implement
Genius’ two core steps, codebook generation and feature encoding in python.
We utilized Hungarian algorithm for calculating bipartite graph matching cost
and normalized spectral clustering [38] for ACFGs (Attributed Control Flow



Graph) clustering. In evaluation phrase, we adopt Nearpy [14] for LSH (Locality
Sensitive Hashing) [18] and search. We used SQLite to store function informa-
tion and encoded vectors. As mentioned in section 1, BLEX [21], BinSim [35]
and CryptoHunt [45] are not able to work on iOS platforms. To the best of our
knowledge, we are the first to propose a dynamic strategy for comparing mobile
binary code. This is the reason why we did not compare our evaluation to these
dynamic approaches.

4.5 Evaluation Results

The first evaluation for data 1 is shown in Figure 4. For each sample, We ran-
domly select functions from non-obfuscated version as reference functions, then
perform our trace-based function similarity mapping to see if we can locate the
same function in obfuscated version. The second evaluation for data 2 is shown
in Figure 5. We randomly select one app from each type of apps as reference
known app, and select commonly used APIs in AFNetworking and SDWebImage
from that app as query functions. Then we perform trace-based function simi-
larity mapping for searching the given functions in the rest apps, and list top
K candidates for each app based on the similarity score. We only compare with
Genius and BinGrep since BinDiff is a one-to-one mapping tool, which cannot
list more than 1 candidate.

Fig. 5: Function Mapping Evaluation for Popular Third-party Frameworks



Fig. 6: Function Mapping Evaluation in Real-world Apps

Our evaluation results show that MobileFindr can achieve more than 80%
accuracy in average from top 3 to top 15 similar functions, which outperforms
other tools in terms of much more better accuracy and obfuscation resilience.

4.6 Real-world App Case Study

We tested MobileFindr using real-world apps to evaluate its efficiency. We eval-
uated 6 top-ranked iOS apps in different types, such as search engine, social net-
working, etc. For instance, Baidu is the world’s largest Chinese search engine. We
downloaded two different versions of Baidu app, version 930 and version 935. We
chose version 930 as reference app and performed a simple web searching with
key words: ”security” for trace logging. We collected 430 functions in this trace,
and then perform trace-based function similarity mapping to search similarity
functions in the new version 935, and listed top 10 similar function candidates.
MobileFindr achieve 81.13% accuracy with less than 10 minutes. While match-
ing the same 430 functions in Genius, it only achieved 59.7% accuracy, but spent
around 2 hours in training, more than 40 hours when handling function graph
embeddings. Figure 6 shows the function mapping results for the 6 real-world
apps.

5 Discussion

In this section, we discuss the limitations of our system and potential solutions
to be investigated in future work.

First, a challenge that we already touched upon in Section 4 is the fact that
our approach needs manual verification efforts for real world iOS apps, since



we don’t have access to their source code. The candidate similarity ranking
produced by our system gives an ordered list of matched functions that have to be
manually inspected by an analyst to verify if those functions are actually similar.
Some of the existing dynamic approaches [35, 45] rely on symbolic execution to
generate a set of symbolic formula, and then use theorem prover to perform the
equivalence checking. However, the theorem prover is computationally expensive
and impractical for large code bases of many real world mobile apps. Such an
automatic verification would be ideal, but surely is a research topic in itself and
is outside the scope of this work.

Second, the incomplete path coverage is a concern for all dynamic analy-
sis system, including ours. The possible solutions are to explore more paths by
automatic input generation [27, 36]. To trigger as many dynamic behaviors as
possible for trace logging, we can leverage the idea of Malton [47], which pro-
posed an efficient path exploration technique that employs in-memory concolic
execution with an offloading mechanism and direct execution engine. We leave
it as future work.

Third, the functions considered by us need to have a certain amount of com-
plexity for the approach to work effectively. Otherwise, the relatively low combi-
nation number of library calls leads to a high probability for collision. Hence, we
only considered functions with at lease five basic blocks, as noted in Section 4.
For instance, the potential for bugs in small functions, however, is significantly
lower than in large functions, as shown in [13]. Hence, in a real-world scenario
this should be no factual limitation.

6 Related Work

There has been a substantial research on detecting binary code similarity. Ex-
isting semantics aware binary matching techniques can be classified into two
categories. One is based on static information including numeric features and
structural features [20, 22, 23, 34]. Many numeric features (e.g. the number of
basic blocks, the number of edges, logic instructions,local variables, etc) and
control flow graph has been demonstrated to be robust across compilers and dif-
ferent compile options in previous work [24, 25]. The other one executes target
code and collect runtime behavior [21, 35, 42, 45]. Common execution behaviors
includes stack and heap memory access, system call sequences and library calls,
registers values, execution path, etc.

The combination of collected features represent as a signature of target code
for matching step. It is vital to identify robust features and correctly character-
ize target code with the features. Bindiff [17] as an efficient binary diffing tool
using a graph theoretic approach to find similarities and differences. The graph
isomorphism detection on pairs of function works well when two semantically
equivalent binaries have similar control flow. But CFG changes across archi-
tectures and compilers. In [23], Genius maps raw features of a function into a
higher-level numeric vector where each dimension of the vector is the similarity
distance to a categorization in the codebook. However, one common limitation



of static approaches is incapable of handling obfuscated code. BLEX [21] collects
execution side effects during function execution and uses a multidimensional vec-
tor as function signature for similarity assessment. It relies on Pin framework
and can not apply to mobile binaries.

The techniques of binary matching have been driven towards to solve se-
curity problems. One common case in vulnerability assessment is that secure
analysts would want to use a sample of vulnerable binary without source code
to search for the similar bug across all the softwares installed in the company de-
vices [22,37]. It is challenging for vulnerability assessment in a large code base for
the following reasons: first, most commercial software projects are closed-source
and only available in the binary form without debug information. Second, dif-
ferent versions of software may be compiled on different optimization levels and
different compile tool-chain, which would radically changes both the number of
nodes and structure of edges in both the control flow graph and the call graph.
Third, pervasive code protection schemes, such as class and method rename,
encryption of strings, control flow obfuscation and virtualization of code, render
code analysis time consuming. Our evaluation have considered above situations
and demonstrate that our approach can handle it.

With rapid development of open-source projects, the similarity between an
licensed protected binary and a suspicious binary indicates a potential case of
software plagiarism [34,43]. Existing code similarity measurement methods have
been proved to be useful but remain far from perfect. Some software plagiarism
detection approaches based on dynamic system call sequences have also been
proposed [32,43], but they incur false negatives when the number of system calls
are insufficient or when system call replacement is applied. Most of the existing
methods are not effective in the presence of obfuscation techniques. Another ob-
fuscation resilient method [34] based on symbolic execution and theorem proving
bears high computational overhead.

7 Conclusion

We proposed MobileFindr, an on-device trace-based function similarity mapping
system for reverse engineering mobile apps. It records a variety of dynamic run-
time information as dynamic behavior features via dynamic instrumentation,
and use stack backtrace information to locate corresponding functions that can
be represented with these features. We evaluated it with a set of examples under
different obfuscation scheme combinations. Our experimental results show that
our system can successfully identify fine-grained function similarities between
mobile binaries, and outperform existing state-of-the-art approaches in terms of
better obfuscation resilience and accuracy. Our evaluation with top-ranked real-
world frameworks and apps also demonstrated the effectiveness of our system.
To the best of our knowledge, we are the first to propose a dynamic strategy
for function similarity identification on the mobile platform, which is capable of
mitigating many anti-reverse engineering techniques.
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