
MobileFindr: Function Similarity 
Identification for Reversing Mobile 

Binaries

Yibin Liao, Ruoyan Cai, Guodong Zhu, Yue 
Yin, Kang Li



Reverse Engineering

• The process of taking a software program’s binary code and 
recreating it so as to trace it back to the original source code



Reverse Engineering

• Purpose
• Find security flaws

• Test code compatibility

• Enhance new features without source

• Understand the design of malicious code



Tools for Reversing Mobile Apps

• Debugging iOS/Android native codelldb/gdb

• Convert Android executable (DEX) to 
human-readable dalvik bytecode

Apktools / 
Baksmali

• Combines debugger, disassembler 
and decompilerIDA Pro

Etc. 



Disassembling Baidu Mobile (iOS)

Assembly code

Function 
Window



No debug 
symbols

Need to 
determine 
where to add 
breakpoints
• In 167,606

functions

Disassembling Baidu Mobile (iOS)



Baidu mobile (version 9.30) 
Function: sub_137A1FA

Baidu mobile (version 9.35) 
Function: sub_13290FA

Different version, different function name and address, but same code!



Picture Yourself as an Analyst

• You just identified a function of interest

• Questions: 
• Have I seen an equivalent or similar function before?

• How can I find binaries that contain similar functions?



Security Applications of Code 
Similarity Detection

Patch analysis

“patch based exploit” generation

Software plagiarism detection

Malware analysis



Existing Works / Tools 

• E.g., BinDiff, BinGrep, discovRe, 
Genius, Gemini

Focus on control flow 
graph (CFG) extraction

• E.g., BinHunt, Cop   
Based on basic block 

modeling

• E.g., BinSimRun in the emulator

• E.g., BLEX, CryptHuntRely on Pin tool



Existing Works / Tools Limitations 

• Exclude obfuscated binaries
Focus on control flow 
graph (CFG) extraction

• Theorem prover is computationally expensive.

• Impractical for large code bases
Based on basic block 

modeling

• Emulator detectionRun in the emulator

• Not for iOSRely on Pin tool



Example (Objective-C)

1. - (NSString *)encrypt1:(NSString *)message {

2. if ([message length] == 0) {

3. return @"NULL";

4. }

5.

6. NSString *key = [self makeKey1];

7. NSString *encryptedMsg = [self xorWithString:key withMessage:message];

8.

9. NSLog(@"encrypt1: %@", encryptedMsg);

10. return encryptedMsg;

11. }



Code Obfuscation (IDA decompiled code)

LLVM-
Obfuscator

No Obfuscation

Obfuscation



Code Obfuscation

Obfuscator

Original CFG

Obfuscated CFG



Goal



Problems

• What features are useful for semantic similarity comparison?

• How these features are captured on mobile platform?

• How to characterize a function with such features?



MobileFindr

On-device and Trace-based Similarity 
Mapping Framework for iOS Apps



Idea

• What features are useful for semantic similarity comparison?
• dynamic behavior features

• How these features are captured on mobile platform?
• Dynamic instrumentation

• How to characterize a function with such features?
• Thread backtrace



Dynamic Behavior Features

We define the concept of "dynamic behavior features" broadly to 
include any information that can be derived from observations made 
during execution.



Dynamic Behavior Features

• System calls
• E.g., read, write, open, etc. (libsystem_kernel.dylib)

• Library calls
• Memset, memcpy, free. Etc (libSystem.B.dylib)

• _objc_getClass, _objc_getProtocol, etc. (libobjc.A.dylib)

• Etc.

• Framework API calls
• E.g., OpenGLES, CoreMedia, UIKit, etc.



System Design

Binary 
Extraction

Addresses 
Extraction

Dynamic 
Instrumentation

Trace Logging

Preprocessing

Backtrace
Analysis

Feature 
Extraction Similarity 

Searching

App 1

App 2

Similar
Function
Candidates

Static Analysis Dynamic Analysis Static Analysis



Preprocessing 

• Binary extraction
• Extract app binaries

• Clutch 2.0

• Remove PIE (Position-independent 
executable)
• Armv7: offset 0x401a

• 0x00 -> 0x01

• Non-armv7(Arm64): offset 0x18
• 0x00 -> 0x01

• Re-sign the binary and copy it back 
to app folder

Binary 
Extraction

Addresses 
Extraction

PreprocessingApp 1

App 2

Static Analysis

Function 
addresses

Function 
addresses



Preprocessing 

• Address extraction
• Implemented with IDAPython API

Binary 
Extraction

Addresses 
Extraction

PreprocessingApp 1

App 2

Static Analysis

Function 
addresses

Function 
addresses





On-device Dynamic Analysis
• Dynamic 

instrumentation
• Implemented with FRIDA 

API: 
https://www.frida.re/
• Hook functions
• Inject JavaScript

• Trace logging
• Framework API 

invocations
• Library function 

invocations
• System call 

invocations
• Thread backtrace

Dynamic 
Instrumentation

Trace Logging

Dynamic Analysis

Function 
addresses

Function 
addresses

https://www.frida.re/






Feature Extraction 

• Analyze the stack backtrace information
• Match the library calls/system calls/api calls to corresponding caller functions



Similarity Searching

• Calculate similarity score 
• Edit distance: sim(fun_x, fun_y)

• E.g., reference function fun_x and target function fun_y



Evaluation

• Experiment Setup
• On-device analysis

• 32GB Apple Jailbroken iPad

• iOS 8.3

• Feature extraction & similarity searching
• CPU: Intel Core i7-6700K Processor (8-core with 4.00 GHz)

• 64 GB memory

• Ubuntu Linux 14.04 TLS

• Python 2.7.12

• IDA Pro 6.6



Evaluation

• Can MobileFindr detect similar functions in different versions of 
same mobile apps?

• Can MobileFindr detect similar functions used by different mobile 
apps

• Can MobileFindr be used for analyzing real-world mobile apps?



Ground Truth Dataset I 

• 8 Open source iOS app samples: 
https://developer.apple.com/library/content/navigation/

• Obfuscated by llvm-obfuscator 4.0
• 8 non-obfuscated vs 8 obfuscated version

• Select functions from non-obfuscated version as reference functions

• Keep Debug symbols
• ground truth through function names

https://developer.apple.com/library/content/navigation/


Comparative Results

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
M

at
ch

in
g 

ac
cu

ra
cy

Mobile Samples

Function Mapping Accuracy in Top 3

MobileFindr BinGrep BinDiff Genius



Evaluation

• Can MobileFindr detect similar functions in different versions of 
same mobile apps?

• Can MobileFindr detect similar functions used by different mobile 
apps

• Can MobileFindr be used for analyzing real-world mobile apps?



Ground Truth Dataset II 

• Top used third-part iOS framework
• AFNetworking 3.0 

• 8 opensource projects from GitHub that use the framework above

• Three obfuscation options: (https://github.com/obfuscator-
llvm/obfuscator/wiki/Features) 
• Control flow flattening (-fla)
• Instruction substitution (-sub)
• Bogus control flow (-bcf)

• Result in 64 apps (56 obfuscated apps + 8 non-obfuscated) 

• Debug symbols -> ground truth through function names

https://github.com/obfuscator-llvm/obfuscator/wiki/Features


Comparative Results

Obfuscation Type

1 NONE

2 -sub

3 -bcf

4 -fla

5 -sub, -bcf

6 -sub, -fla

7 -bcf, -fla

8 -sub, -bcf, -fla

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Top 3 Top 5 Top 10 Top 15

A
cc

u
ra

cy

Top K Candidates

Function Mapping Accuracy

MobileFindr BinGrep Genius



Evaluation

• Can MobileFindr detect similar functions in different versions of 
same mobile apps?

• Can MobileFindr detect similar functions used by different mobile 
apps

• Can MobileFindr be used for analyzing real-world mobile apps?



Analysis Real World Apps

• Collect top-ranked apps from iOS App Store
• Compare different versions of each apps

• E.g., baidu_v9.3 vs baidu_v9.35

• Perform same action for each pair of apps to collect traces
• E.g., perform web searching with same keywords   

• List top 10 similar function candidates
• Based on the similarity score 



Analysis Real World Apps

81.13%
78%

83.70% 81.25%
84%

88.90%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Baidu Weibo NetEase
NewsBoard

Tencent Video Youku Qunar

Function Mapping Accuracy in Top 10

mapping accuracy



Limitations & Discussions

• Path coverage issue
• Incomplete path coverage for dynamic analysis

• May use offloading mechanism for path exploration (presented by Malton, 
USENIX 2017)

• Small function issue
• We only evaluate functions contain more than 5 basic block



Summary

• Designed a trace-based function similarity mapping system for mobile 
apps
• Resilience to various anti-reverse engineering techniques

• Demonstrated the viability of our approach for multiple top-ranked 
real-world iOS frameworks and apps



THANK YOU!
Q&A?


