
PE-Header-Based Malware Study and Detection
Yibin Liao

Department of Computer Science
The University of Georgia, Athens, GA 30605

tigerlyb@uga.edu

Abstract—In this paper, I present a simple and faster apporach
to distinguish between malware and legitimate .exe files by simply
looking at properties of the MS Windows Portable Executable
(PE) headers. We extract distinguishing features from the PE-
headers using the structural information standardized by the
Miscrosoft Windows operating system for executables. I use
the following three methodology: (1) collect a large dataset
of malware .exe and legitimate .exe from the two website,
www.downloads.com and www.softpedia.com by using a Web-
Spider, (2) use a PE-Header-Parser to extract the features
of each header field, compare and find the most significant
difference between malware and legitimate .exe files, (3) use a
Icon-Extractor to extract the icons from the PE, find the most
prevalent icons from the malware .exe files.

I have evaluated our apporach on a large dataset which
contains 5598 malware samples and 1237 legitimate samples
respectively. The result of our experiments show that the PE-
Header-Based approach achieves more than 99% detection rate
with less than 0.2% false positive for distinguishing between
benign and malicious executables in less than 20 minutes. We
have also found 3 most prevalent icons from malware that are
seldom seen in legitimate PE files, and 8 types of misleading icons
from malware. My results show that it is possible to identify the
malware by simply looking at some key features from PE headers.

Index Terms—Portable Executables; PE-Header-Based; Mal-
ware Detection;

I. INTRODUCTION

Modern malware detectors employ a variety of detection
techniques. Most of the detectors must determine the type
of the file and then parse the file such as extract the con-
tents and/or find the embedded item. Therefore the antivirus
scanners need to parse a variety of formats, which make
the antivirus more and more complex [1]. However, simplest
malware can evade from sophisticated AVs [2]. PE is a
file format which is standardized by the Microsoft Windows
operating systems for executables, dynamically linked libraries
(DLL), and object files [6]. Zubair et al. presented an accurate
and realtime PE-Miner framework that automatically extracts
distinguishing features from PE to detect malware. They
completed a single-pass scan of all executables in the dataset
and achieves more than 99% detection rate with less than 0.5%
false alarm rate [3]. However, they scan the whole content of
the PE files and cost almost one hour.

In this paper, I introduce a novel and faster approach
to distinguish between malware and legitimate .exe files by
simply looking at properties of the PE headers. Based on my
observation, the features in the header fields show a lot of in-
formation about the file. For example, the NumberOfSections

in the file header shows the number of sections in the PE file;
the SizeOfInitializedData in the optional header shows the size
of the initialized data section of the file; if the file embeds an
icon, it will show in the .rsrc field in the section header. In
order to find the most popular characteristics in malware, I
extract those features and the embedded icons, then compare
them to find the most significant difference between malicious
files and benign files. To setup the experiment, I collect 5598
malware samples and 1237 benign files by a web-spider from
two major download websites.

In summary, this paper makes the following contributions:
(1). I have developed a PE-Header-Parser to extract the fea-
tures from the PE headers and find the most five popular
characteristics from malware. (2). I have developed a Icon-
Extractor to extract the embedded icons from the PE files
and find the most three popular icons and eight misleading
icons from malware. (3). My experiments demonstrate that
the approach detects 99.5% malware with only 0.16% false
positive in only 20 minutes.

This paper is structured as follows: The next section gives
an overview of PE file format. Section III presents details on
the design and implementation of PE-Header-Based detection.
Section IV presents the experimental results. Section V dis-
cusses the limitation and Section VI concludes the paper.

II. OVERVIEW OF PE FILE FORMAT

The overview of PE format is showing as the following
TABLE I.

MS-DOS 2.0 Compatible
EXE Header

Unused
OEM Identifier

OEM Information
Offset to PE Header

MS-DOS 2.0 Stub Program
and

Relocation Table
Unused

PE Header
(Aligned on 8-byte boundary)

Section Headers
Import Pages

Import information
Export Information

Base relocations
Resourcce information

TABLE I
TYPICAL PORTABLE EXE FILE LAYOUT



The PE file header consists of a MS-DOS stub, the PE
signature, the file header, and an optional header. The MS-
DOS stub is a valid application that runs under MS-MOS.
After the MS-DOS stub, at the file offset specified at offset
0x3c, is a 4-byte signature that identifies the file as a PE format
image file. At the beginning of an object file, or immediately
after the signature of an image file, is a standard COFF file
header. Every image file has an optional header that provides
information to the loader. This header is optional in the sense
that some files do not have it. For image files, this header
is required. The optional header itself has three major parts:
Standard fields, Windows-specific fields, and Data directories.
Each row of the section table is, ineffect, a section header. This
section table immediately follows the optional header [6].

Based on my observation, I extract features from the fields
of file header, optional header and section header in my
dataset.

III. PE-HEADER-BASED DETECTION APPROACH

My PE-Header-Based detection approach consists of three
main methodology: (1) develop a Web-Spider to collect a
dataset of benign files, (2) develop a PE-Header-Parser to
extract the features of optional header and section header
fields, (3) develop a Icon-Extractor to extract the icon from
the dataset of both malware and benign files. The overview of
the approach is shown in Figure 1.

Fig. 1. Overview of the Web-Spider

A. Web-Spider

The Web-Spider is written in Python and using another two
third-party python library called BeautifulSoup and Appscript.
Firstly, the Web-Spider is getting the URL from the two
websides: download.com [4] and softpedia.com [5]. Then
the Web-Spider opens the page of the URL and parse the
page using BeatuifulSoup library to find the tag contains the
”href” and the keyword of the downloadable link. Lastly, the

Web-Spider pass the url to the web browser and open the
downloadable link using Appscript library to download the
files.The overview of the Web-Spider is shown in Figure 2.

Fig. 2. Overview of the Web-Spider

B. PE-Header-Parser

The PE-Header-Parser is also written in Python and using
the pefile library. As we described below, the PE headers
contains important information about a file such as the number
of sections, the size of the data, etc. The section header
contains important information about the sections such as
the section name, size, offset, etc. Firstly, the Parser import
the pefile and parse all the files from the malware dataset
and benign dataset respectively. Then the Parser extracts the
features from file header, optional header and section header,
compare the differences between malware and benign files.

1) File Header: The file header consists of the follow-
ing features: Machine, NumberOfSections, TimeDateStamp,
PointerToSymbolTable, NumberOfSymbols, SizeOfOptional-
Header, and Characteristics. Unfortunately, there is no big
differences between malware and legitimate files in each
features.

2) Optional Header: The Optional Header consists of stan-
dard fields (8 features), windows specific fields (21 features),
and data directories. It is interesting to note that the SizeOfIni-
tializedData in some of the malicious executables are equal



to zero, whereas none of them in the benign files are equal
to zero. There are three other features, DLLCharacteristics,
MajorImageVersion, and CheckSum are equal to zero in more
than 90% malware samples. However, most benign executables
contain significant higher values in such fields.

3) Section Header: The section header provides important
characteristics of a section such as its name, address, size,
etc. In this study, I found that many of the malware contain
unknown names such as .6dnn4fh4, .Bga1m3ar, IOu15g4I, etc.
The benign files offen contain the basic section name such as
.text, .data, .rsrc, etc, or meaningful name like .shared, .page,
.init, winzip, etc.

The Figure 3 and Figure 4 summarizes the top five features
that contain than significant differences between malware and
legitimate executables.

Fig. 3. Top 5 Features

Fig. 4. Top 5 Features

C. Icon-Extractor

The Icon-Extractor is written in Python, pywin32 library,
and PyQt4 library. It extracts the icons from the malware and
legitimate executables respectively using ”win32gui” and save
as .ico to external directories. The Icon-Extractor has found
three most prevalent icons and eight misleading icons from
malware.

IV. EVALUATION

In order to evaluate the approach, I have collected 1237
benign PE files from the two website: downloads.com and
softpedia.com. The 5598 malware samples are provided by
Dr. Perdisci. All files are less than 10MB. I have done the

experiments on an Intel Core i7 2.2GHz processor with 4GB
Memory. The Miscrosoft Windows 7 professional is installed
on this machine.

A. Header Parser Result

I have identified the features’ set that consists of a number
of statically computable features based on the structural infor-
mation of the PE files. It is possible that some of the features
might not convey useful information in a particular scenario.
Therefore, it makes sense to combine them with other similar
features to increase the accuracy.

Figure 5 is the evaluation result showing that combining
each of the features within the index shown in TABLE II
could result different detection rate and false positive rate.
The following Algorithm shows the last combination of 1, 2,
3, 4, 5 fetures. If we combine all the five fetures, we can get
the highest detection rate and the lowest false positive rate.
The total time for the detection is less than 20 minutes.

Algorithm: Combination of 1, 2, 3, 4, 5 features for Malware Detection

Read the file
if SizeOfInitializedData == 0 then

return malware
else if UnknowSectionName then

return malware
else if (DLLCharacteristics == 0

and MajorImageVersion == 0
and CheckSum == 0) then

return malware
else

return benign
end if

Fig. 5. PE-Header-Based Detection Results

B. Icon Extraction Result

The Icon-Extractor has extracted 813 out of 1237 icons
from legitimate executables and 2165 out of 5598 icons from
malware. The most prevalent icons which are seldom seen in
legitimate PE files are shown in Figure 6 with the number of
icons embedded in the malware dataset. Figure 7 shows eight
misleading icons embedded in the malware



Fig. 6. Top 3 Prevalent Icons in Malware

Fig. 7. Misleading Icons

V. LIMITATIONS

The current version of this approach cannot detect all the
malware from the dataset. I believe that there are some other
features can be used as the key features to detect malware,
such as extracting the Flags in the Characteristics fields of
file header and optional header. Those limitations are left for
future work.

VI. CONCLUSION

It’s possible to identify the malware by looking at some
key features from headers such as Checksum, Section Name,
Initialized Data Size, DLL Characteristics and Major image
Version. Looking at the PE header is much faster than scanning
the whole information in the PE files. We can also identify
the malware by extracting the embedded icons such as the
prevalent icons or misleading icons as described below.

ACKNOWLEDGMENT

I would like to thank Dr. Perdisci to assign this project to
me, and give me a lot of advice that greatly helped me to
improve my research experience in Network and Security. I
also want to thank the classmates for their helpful discussion
in my presentation.

REFERENCES

[1] S. Alvarez and T. Zoller. The death of AV defense in depth? - revisit-
ing anti-virus software. http://cansecwest.com/csw08/csw08-alvarez.pdf,
2008.

[2] S. Jana and V. Shmatikov. Abusing File processing in Malware Detectors
for Fun and Profit. In Proceedings of the 33nd IEEE Symposium on
Security & Privacy, San Francisco, CA, U.S.A, May, 2012.

[3] Shafiq, M. Zubair and Tabish, S. Momina and Mirza, Fauzan and Farooq,
Muddassar. PE-Miner: Mining Structural Information to Detect Malicious
Executables in Realtime. In Proceedings of the 12th International Sym-
posium on Recent Advances in Intrusion Detection, RAID ’09, pages
121-141, Saint-Malo, France, 2009.

[4] Downloads. http://www.downloads.com/.
[5] Softpedia. http://www.softpedia.com/.
[6] Microsoft Portable Executable and Common Object File Format Specifi-

cation. http://msdn.microsoft.com/library/windows/hardware/gg463125/.


