
Maria Hybinette, UGA 1

Unix System Programming

Processes

Maria Hybinette, UGA 2

Overview

Last Week:
●  How to program with directories
●  Brief introduction to the UNIX file system

This Week:
●  How to program UNIX processes (Chapters 7-9)

»  Follow the flow of Ch 8. Process control sprinkled with
reflections from Ch 7 (e.g., exit, process/program
memory layout).

●  fork() and exec()

Maria Hybinette, UGA 3

Outline

●  What is a process?
●  fork()
●  exec()
●  wait()
●  Process Data
●  Special Exit Cases
●  Process Ids
●  I/O Redirection
●  User & Group ID real and effective (revisit)
●  getenv & putenv
●  ulimit

Maria Hybinette, UGA 4

What is a Process?

●  Review: A process is a program in execution (an active

entity, i.e., it is a running program , this was also on the
»  Basic unit of work on a computer
»  Examples:

–  compilation process,
–  word processing process
–  a.out process
–  Shell process
–  (we just need to make sure the program is running)

Maria Hybinette, UGA 5

What is a Process?

●  Each user can run many processes at once (e.g., by using &)
●  A process:

»  cat file1 file2 &
●  Two processes started on the command line.

»  ls | wc -l
●  A time sharing system (such as UNIX) run several processes

by multiplexing between them

OS (schedules process)

0 1 2

…
n-1

Processes

Maria Hybinette, UGA 6

What is a Process?

●  It has both time, and space
» A container of instructions with some resources

●  Process reads, and writes (or updates)
machine resources

»  e.g., CPU time (CPU carries out the instructions),
» memory,
»  files,
»  I/O devices (monitor, printer) to accomplish its task

Maria Hybinette, UGA 7

Formal Process Definition

A process is a �program in execution�, a
sequential execution characterized by trace. It
has a context (the information or data) and
this �context� is maintained as the process
progresses through the system.

Maria Hybinette, UGA 8

What Makes up a Process?
size?

●  Program code (text)
»  Compiled version of the text

●  Data (cannot be shared)
»  global variables

–  Uninitialized (BSS segment) sometimes
listed separately.

–  Initialized

●  Process stack (scopes)
»  function parameters
»  return addresses
»  local variables and functions

●  <<Shared Libraries >>
●  Heap: Dynamic memory (alloc)
●  OS Resources, environment

»  open files, sockets
»  Credential for security

●  Registers
»  program counter, stack pointer

User Mode
Address

Space

heap

stack

data

routine1
var1
var2

main
 routine1
 routine2

arrayB[10] ;

arrayA[10] = {0}

text

address space are the shared
resources of a(ll) thread(s) in a
program

0x0

3GB

Maria Hybinette, UGA 9

Info about a process (running
and foot print)

●  longsleepHelloW (binary with long sleep)
●  size a.out. (foot print)
●  ps !

» 61542 pts/5 00:00:00 longsleepHelloW!
●  cat /proc/61542/status!
●  cat /proc/61542/maps!

●  ppp

Maria Hybinette, UGA 10

●  Example: Process with
4GB Virtual Address
Space (32 bit
architectures)

●  User Space (focused on
earlier, lower address
space)

●  Kernel Space
User Space
Virtual Addresses

Kernel Space
Virtual Addresses

0x0

3GB

4GB

0x0

0xC0000000

0xFFFFFFFF

Maria Hybinette, UGA 11

What is needed to keep track of a Process?

●  Memory information:
»  Pointer to memory segments needed

to run a process, i.e., pointers to the
address space -- text, data, stack
segments.

●  Process management information:
»  Process state, ID
»  Content of registers:

–  Program counter, stack pointer,
process state, priority, process ID,
CPU time used

●  File management & I/O information:
»  Working directory, file descriptors

open, I/O devices allocated
●  Accounting: amount of CPU used.

Process Number

Program Counter

Registers

Process State

Memory Limits

Page tables

List of opened files

I/O Devices allocated

Accounting

Process control
Block (PCB)

Maria Hybinette, UGA 12

Process Representation

Initial P0

Process P1

Process P2

Process P3

Memory mappings

Pending requests

…

Memory base

Program counter

…

Process P2 Information System Memory

Kernel Process Table

P2 : HW state: resources

P0 : HW state: resources

P3 : HW state: resources

P1 : HW state: resources

…

Maria Hybinette, UGA 13

System Control:
Process Attributes

ps and top command can be used to look at
current processes
●  PID - process ID: each process has a unique ID
●  PPID - parent process ID: The process that
�forked� to start the (child) process

●  nice value - priority (-20 highest to 19 lowest)
●  TTY associated with terminal (TTY teletype

terminal)

Maria Hybinette, UGA 14

OS View: Process Control Block
(PCB)

●  How does an OS keep track of the state of a
process?

» Keep track of �some information� in a structure.
–  Example: In Linux a process� information is kept in a

structure called struct task_struct declared in
#include linux/sched.h!

–  What is in the structure?

–  Where is it defined:

●  not in /usr/include/linux – only user level code
●  usr/src/kernel/2.6.32-431.29.2.elf6.x86_64/include/linux

struct task_struct

 pid_t pid; /* process identifier */

 long state; /* state for the process */

 unsigned int time_slice /* scheduling information */

 struct mm_struct *mm /* address space of this process */

Maria Hybinette, UGA 15

Back to user-level

●  Finding PIDs
» At the shell prompt

–  ps u, ps, ps aux,
●  ps no args # your process
●  ps –ef # every process
●  ps -p 77851 # particular process

–  top interative
»  In a C program: int p = getpid(); // more later

Maria Hybinette, UGA 16

Other Process Attributes

●  Real user ID
●  Effective user ID
●  Current directory
●  File descriptor table
●  Environment
●  Pointer to program code, data stack and heap
●  Execution priority
●  Signal information

Maria Hybinette, UGA 17

3 General Process Types in UNIX

Interactive
–  foreground (shell must wait until complete [takes user input], or
–  background (&) [no user input]
–  initiated an controlled terminal session
–  can accept input form user as it runs and output to the terminal

Daemons
–  server processes running in the background (e.g., listening to a port)
–  Not associated with the terminal
–  typically started by init process at boot time
–  Examples: ftpd, httpd, …, mail
–  If user wants to creates one, detach it from the terminal, kill its parent. (init adopts)

Batch (at, cron, batch)
–  Jobs that are queued and processed one after another
–  recurrent tasks scheduled to run from a queue
–  periodic, recurrent tasks run when system usage is low, cron-jobs (administered by

the daemon crond).
–  Examples: backups, experimental runs.

»  Zombies… don’t count. Maria Hybinette, UGA 18

Process ID conventions, and the
Process Life Cycle

●  PID 0
»  is usually the scheduler process (swapper), a system process

(does not correspond to a program stored on disk, the
grandmother of all processes).

●  init - Mother of all user processes, init is started at
boot time (at end of the boot strap procedure) and is
responsible for starting other processes

»  It is a user process with PID 1
»  init uses file inittab and directory /etc/rc?.d
»  brings the user to a certain specified state (e.g. multiuser)

●  getty - login process that manages login sessions

Maria Hybinette, UGA 19

Hierarchical Processes Tree on a
(historical) UNIX System

Process 1
(init)

OS Kernel

Process 0
(sched - ATT, swapper - BSD)

Process 2 (BSD)
pagedaemon

deamon (e.g. httpd) getty

login

bash

getty

login

ksh

mother of all user processes

Maria Hybinette, UGA 20

Display Process Hierarchy

pstree (processes)
●  Syntax: pstree | more (all process)
●  Syntax: pstree <PID>
●  Syntax: pstree <username>
tree (directory)
●  -d (directories), -a (hidden), -s (size), -p (permissions)
●  tree –H .

Maria Hybinette, UGA 21

Daemon Processes

 {atlas:maria} ps -efjc | sort -k 2 -n | more // solaris below
 UID PID PPID PGID SID CLS PRI STIME TTY TIME CMD
 root 0 0 0 0 SYS 96 Mar 03 ? 0:01 sched
 root 1 0 0 0 TS 59 Mar 03 ? 1:13 /etc/init -r
 root 2 0 0 0 SYS 98 Mar 03 ? 0:00 pageout
 root 3 0 0 0 SYS 60 Mar 03 ? 4786:00 fsflush
 root 61 1 61 61 TS 59 Mar 03 ? 0:00 /usr/lib/sysevent/syseventd
 root 64 1 64 64 TS 59 Mar 03 ? 0:08 devfsadmd
 root 73 1 73 73 TS 59 Mar 03 ? 30:29 /usr/lib/picl/picld
 root 256 1 256 256 TS 59 Mar 03 ? 2:56 /usr/sbin/rpcbind
 root 259 1 259 259 TS 59 Mar 03 ? 2:05 /usr/sbin/keyserv
 root 284 1 284 284 TS 59 Mar 03 ? 0:38 /usr/sbin/inetd -s
 daemon 300 1 300 300 TS 59 Mar 03 ? 0:02 /usr/lib/nfs/statd
 root 302 1 302 302 TS 59 Mar 03 ? 0:05 /usr/lib/nfs/lockd
 root 308 1 308 308 TS 59 Mar 03 ? 377:42 /usr/lib/autofs/automountd
 root 319 1 319 319 TS 59 Mar 03 ? 6:33 /usr/sbin/syslogd

●  Print out status information of various processes in the system:
ps -axj (BSD) , ps -efjc (SVR4) , switches / flags varies

●  process status (ps)
●  Daemons (d) run with root privileges, no controlling terminal,

parent process is init

Maria Hybinette, UGA 22

PID and Parentage

#include <sys/types.h>
#include <unistd.h>
#include <stdio.h>
int main(void)

{
pid_t pid, ppid;
printf(�My PID is� %d\n�, (pid = getpid()));
printf(�My PPID is� %d\n\n�, (pid = getppid()));
}

●  A process ID or PID is a positive integer that uniquely
identifies a running process and is stored in a variable
of type pid_t

●  Example: print the process PID and parent�s PID

{saffron} print-pid
My PID is 3891
MY PPID is 3794

PID COMMAND %CPU TIME
3891 print-ids 0.0% 0:00.00
3874 top 13.6% 0:19.71
3794 ksh 0.0% 0:00.04

Maria Hybinette, UGA 23

●  pstree
●  pidstat
●  top, htop
●  mpstat
●  jobs

»  ^Z, ^C

●  kill %1

Maria Hybinette, UGA 24

●  Linux processes
●  ps -efjc | sort -k 2 -n | more

 {nike:maria:125} ps -efjc | sort -k 2 -n | more # linux Oct 2014 below
UID PID PPID PGID SID CLS PRI STIME TTY TIME CMD
root 1 0 1 1 TS 19 Oct01 ? 00:02:11 /sbin/init
root 2 0 0 0 TS 19 Oct01 ? 00:00:04 [kthreadd]
root 3 2 0 0 FF 139 Oct01 ? 01:23:55 [migration/0]
root 4 2 0 0 TS 19 Oct01 ? 00:01:10 [ksoftirqd/0]
root 5 2 0 0 FF 139 Oct01 ? 00:00:00 [migration/0]
root 6 2 0 0 FF 139 Oct01 ? 00:07:19 [watchdog/0]
root 7 2 0 0 FF 139 Oct01 ? 01:14:54 [migration/1]
root 8 2 0 0 FF 139 Oct01 ? 00:00:00 [migration/1]
root 9 2 0 0 TS 19 Oct01 ? 00:00:32 [ksoftirqd/1]
root 10 2 0 0 FF 139 Oct01 ? 00:07:59 [watchdog/1]
root 11 2 0 0 FF 139 Oct01 ? 01:17:56 [migration/2]
root 12 2 0 0 FF 139 Oct01 ? 00:00:00 [migration/2]
root 13 2 0 0 TS 19 Oct01 ? 00:00:16 [ksoftirqd/2]
root 14 2 0 0 FF 139 Oct01 ? 00:07:17 [watchdog/2]

Maria Hybinette, UGA 25

Linux Processes

●  [] in ps (kernel processes)
»  Example: [kthreadd]
root 3 0.0 0.0 0 0 ? S Nov02 4:39 [ksoftirqd/0]!
root 6 0.0 0.0 0 0 ? S Nov02 0:00 [migration/0]!
root 7 0.0 0.0 0 0 ? S Nov02 0:01 [watchdog/0]!
root 8 0.0 0.0 0 0 ? S Nov02 0:00 [migration/1]

●  ksoftirqd – scheduling process kernel process (per
CPU, soft interrupt handling.

●  migration – migrates processes between CPUs
●  Watchdog – checks that the system is running OK.

Maria Hybinette, UGA 26

Process Life Cycle

●  Create, Run, Die

●  (Creation and Running) In the beginning:
» init and it�s descendants creates all subsequent

processes by a fork()-exec() mechanism
» fork() creates an exact copy of itself called a child

process
» exec() system call places the image of a new

program over the newly copied program of the
parent

●  (Die, Exit)
» When a process demises (completion of killed) it

sends a signal to it�s parent.

Maria Hybinette, UGA 27

fork() a child

Shared
 Program
(read only)

Copied
Data, heap

& stack

Data, heap,
& stack

Parent

pid = fork()

pid == 0 pid == 5

Child (can only
have 1 parent) Parent

Maria Hybinette, UGA 28

fork()

#include <sys/types.h>
#include <unistd.h>

pid_t fork(void);

●  Creates a child process by making a copy of the parent
process

●  Both the child and the parent continue running
●  The return of fork()

»  depends whether you are the child or the parent process:
–  pid == 0 in the child process
–  pid == <process ID of child> in the parent process

●  pid enables the programmer to define different actions for
the parent and the child

Maria Hybinette, UGA 29

Example: parent-child.c
#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>

int main()
 {
 int i;
 pid_t pid;
 pid = fork();
 if(pid > 0)
 { /* parent */
 for(i = 0; i < 1000; i++)
 printf(�\tPARENT %d\n�, i);

 }
 else

{ /* child */
 for(i = 0; i < 1000; i++)
 printf(�\t\tCHILD %d\n�, i);

}
 }

{saffron} parent-child
 PARENT 0
 PARENT 1
 PARENT 2
 CHILD 0
 CHILD 1
 PARENT 3
 PARENT 4
 CHILD 2
 .
 .

Maria Hybinette, UGA 30

Things to Note

●  i is copied between parent and child
●  The switching between parent and child

depends on many factors:
» Machine load, system process scheduling, …

●  I/O buffering effects the output shown
» Output interleaving is non-deterministic

–  Cannot determine output by looking at code

Maria Hybinette, UGA 31

Example: talk-to.c

●  A simple communications program :
» A �terminal�
»  copies chars from stdin to a specified port and from

that port to stdout
–  Read from stdin then write to port (copy)
–  Read from port then write to stdout

●  Use port at /dev/ttya (terminal connected to
standard input – a serial communication driver)

child

/dev/tty (�teletypewriter�)

parent

stdin stdout

Maria Hybinette, UGA 32

Example: talk-to.c

#include <stdio.h>
#include <sys/stat.h>
#include <unistd.h>
#include <fcntl.h>

#define BUFSIZE 10

int main(void)
 {
 int fd, count;
 char buffer[BUFSIZE];

 if(fd = open("/dev/tty", O_RDWR) < 0)
 {
 fprintf(stderr, "Cannot open port\n");

 exit(1);
 }

if(fork() > 0)
 { /* parent */
 while(1)
 {
 count = read(fd, buffer, BUFSIZ);
 write(1, buffer, count); /* stdout */
 }
 }
else /* child */
 {
 while(1)
 {
 count = read(0, buffer, BUFSIZ);
 write(fd, buffer, count);
 }
 } /* else */
return 0;
} /* main */
 {saffron} talk-to

hello this is maria
hello this is maria
^C child parent

stdin stdout

tty

fd

Maria Hybinette, UGA 33

ps Output

{saffron} ps –l
UID PID PPID COMMAND
501 3945 371 -ksh
501 3984 3945 talk-to
501 3985 3984 talk-to
.
.
.

ksh

talk-to (parent)

talk-to (child)

fork()

fork()

Maria Hybinette, UGA 34

Process Summary

●  Process: a program in execution
»  Time and Space entity
»  System View : A set of data structures that changes over time.

–  Entity that needs system resources (e.g., CPU & Memory, Files).
» Address Space : User / System

–  Stack / Heap / Data (initialized, uninitialized) / Text
–  Program pointer, Stack pointer

●  Creation/Fork: Identical ‘copy’ of parent initially
starting at next instruction after fork

»  logical (separate) copy of parents address space
»  separate stack and heap
» Caveats: Multi-threaded Processes, Lightweight Processes

–  Shares ‘more’ (e.g., address space).

Maria Hybinette, UGA 35

Replace Program: w/
exec()

●  Family of functions for replacing a process�s running
program (text, data, heap and stack segment) with the
one specified in the exec() call

●  Process ID does not change across exec calls
»  new process is not created, just it�s context is replaced.

●  The old program is obliterated by the new
»  ! no return back to the exec caller - unless there is an ERROR

#include <unistd.h>

int execlp(char *file, char *argv0, char *argv1, … (char *) 0);

execlp(�sort�, �sort�, �-n�, �foobar�, (char *) 0);

same as �sort -n foobar�

Command line arguments: note argv0 is often = file

Maria Hybinette, UGA 36

Example: tiny-menu.c

#include <stdio.h>

#include <unistd.h>

int main()

 {

 char *cmd[] = { �who�, �ls�, �date� };
 int i;

 printf(�0 = who : 1 = ls : 2 = date�);

 scanf(�%d�, &i);

 execlp(cmd[i], cmd[i], (char *) 0);

 printf(�execlp failed\n�);

 }

{saffron:ingrid:40} tiny-menu
0 = who : 1 = ls : 2 = date
0
ingrid console Apr 4 10:58
{saffron:ingrid:41} tiny-menu
0 = who : 1 = ls : 2 = date
2
Fri Apr 8 16:56:47 EDT 2005
{saffron:ingrid:42}

printf() not executed unless
there is a problem with
execlp()

Maria Hybinette, UGA 37

exec(…) family: execute a file
(program)

●  There are 6 versions of the exec function and they all
basically do the same thing; they replace the current
program with the text of the new program.

●  Main difference is how the parameters are passed:
» Permutations:

–  pathname/file (p) :
●  Program name searched for in current execution path (no p,

must give full path name
–  vector/list (v, l) :

●  Null terminated array of pointers to strings
●  L varargs mechanism

–  environment (e)
●  Also accept Environmental variables.

Maria Hybinette, UGA 38

exec(…) family: execute a file
(program)

●  There are 6 versions of the exec function and they all
basically do the same thing; they replace the current
program with the text of the new program.

●  Main difference is how the parameters are passed:

#include <unistd.h>

●  Permutations: pathname/file : vector/list : environment

int execl(const char *path, const char *arg, ... argn,(char *)0);
int execlp(const char *file, const char *arg, ... argn,(char *)0);
int execle(const char *path, const char *arg, ... , argn,(char *)0

 char *const envp[]);
int execv(const char *path, char *const argv[]);
int execvp(const char *file, char *const argv[]);
int execve(const char *file, char *const argv [],

 char *const envp[]); /* actual system call */

Maria Hybinette, UGA 39

exec(…) Family Tree -

execle()

execv()

execve()

execvp()

execl() execlp()

●  Permutations: pathname/file : vector/list : environment
●  System call: execve() -> all paths leads to this one

●  execve(const char *path, char *const argv[], char *const envp[]);

execl�s argument as
list

execv�s argument as
vector

Full Pathname Filename

Maria Hybinette, UGA 40

Summary

1.  We created a process the unix way –
»  Forking

2.  We communicated
3.  And we ran a file/program from a process

»  Exec�d.

Combine these 3 things….

Maria Hybinette, UGA 41

Want: fork() & execv()

Parent

pid = fork()

New copy of
Parent

Original
process

Continues

fork returns pid == 0
and runs as cloned
parent until execv is
called

pid == 5

Child pid == 0 Parent

New program
(replacement)

execv(new program)

New copy of
Parent

Original
process

�Make an image of myself� Here

Maria Hybinette, UGA 42

Terminating processes

●  Problem: Our original menu
program only allowed a user to
execute

» Only one command
» But now we are forking, couldn’t we

do more?

●  Want:
» Would like child program to finish

before continuing.
»  (other instances) perhaps we would

like to get result from child before
continuing

WAIT

Maria Hybinette, UGA 43

Process control: wait()& waipid()

#include <sys/types.h>
#include <sys/wait.h>

pid_t wait(int *stat);
pid_t waitpid(pid_t pid, int *status, int options);

●  Suspends calling process until child has finished.
●  Returns the process ID of the terminated child if ok, -1

on error (check errno for error code)
●  status can be (int *)0 or a variable which will be

bound to status information about the child when
wait returns (e.g., exit-status of child passed through
exit).

●  waitpid(-1, &status, 0); /* = wait() */!
●  options : bitwise OR of any of the following options
… (see man page)

Maria Hybinette, UGA 44

wait()or waitpid()Actions

●  Parent Suspend (block) if all of its children
are still running, or

●  Return immediately with the termination
status of a child, or

●  Return immediately with an error if there are
no child processes

●  Example …

Maria Hybinette, UGA 45

wait()or waitpid()Example

●  Example program: menu-shell.c illustrates
wait() and includes:

#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>

Maria Hybinette, UGA 46

Example: menu-shell.c
int main()
 {
 char *cmd[] = { �who�, �ls�, �date� };
 int i;
 pid_t pid;
 while(1)
 {
 printf(�0 = who : 1 = ls : 2 = date);
 scanf(�%d�, &i);
 if((pid = fork()) == 0)
 { /* child */
 execlp(cmd[i], cmd[i], (char *) 0);
 perror(�execlp failed\n�);
 }
 else
 { /* parent */

 printf("waiting for child %d...", pid);
 wait((int *) 0);
 printf("child %d finished\n", pid);
 }

 } }

{saffron:ingrid:40} menu-shell
0
ingrid console Apr 4 10:58
waiting for child 4953...child 4953
finished
0 = who : 1 = ls : 2 = date
0
ingrid console Apr 4 10:58
waiting for child 4954...child 4954
finished
0 = who : 1 = ls : 2 = date
2
Fri Apr 8 19:05:39 EDT 2005
waiting for child 4955...child 4955
finished
0 = who : 1 = ls : 2 = date

Maria Hybinette, UGA 47

menu-shell Execution

pid = fork()

menu-shell

Child Parent

execlp(cmd[i])

menu-shell

menu-shell cmd[i]

wait()

Maria Hybinette, UGA 48

Macros for wait (1)
samples the status

Enables checking on status of child after wait returns:
●  WIFEXITED(status)

»  Returns true if the child exited normally
»  Checks 8 low order bits, i.e., the most significant eight bits.
»  If macro is zero then child been stopped by another process via

a signal.

●  WEXITSTATUS(status)
»  Details on exit status
»  Evaluates to the least significant eight bits (high order bits) of the

return code of the child which terminated, which may have been
set as the argument to a call to exit() or as the argument for a
return.

»  This macro can only be evaluated if WIFEXITED returned non-
zero.

Maria Hybinette, UGA 49

Macros for wait (2)

●  WIFSIGNALED(status)
»  Returns true if the child process exited because of

a signal which was not caught.

●  WTERMSIG(status)
» Returns the signal number that caused the child

process to terminate.
»  This macro can only be evaluated if WIFSIGNALED

returned non-zero.

Maria Hybinette, UGA 50

waitpid():Particular Child

#include <sys/types.h>
#include <sys/wait.h>

pid_t waitpid(pid_t pid, int *status, int opts)

●  waitpid() waits for a particular child and does not
necessarily need to block until a child terminates

●  pid > 0
»  Waits for the child whose ID is equal to pid

●  pid < -1
»  Waits for any child process whose process group ID is equal

to the absolute value of pid.
●  pid == -1

»  Wait for any child process (same behavior as wait())
●  pid == 0

»  Wait for any child process whose process group ID is equal
to that of the calling process.

Maria Hybinette, UGA 51

waitpid()

●  opts : options when pid > 0
»  Zero or more of the following constants can be
OR’ed:
–  WNOHANG

●  Return immediately if no child has exited.
–  WUNTRACED

●  Also return for children which are stopped, and whose
status has not been reported (because of a signal).

●  Returns process ID of child which exits, -1 on
error, 0 if WNOHANG was used and no child was
available.

Maria Hybinette, UGA 52

Macros for waitpid()

●  WIFSTOPPED(status)
» Returns true if the child process which caused the

return is currently stopped.
»  This is only possible if the call was done using
WUNTRACED.

●  WSTOPSIG(status)
» Returns the signal number which caused the child

to stop.
»  This macro can only be evaluated if WIFSTOPPED

returned non-zero.

Maria Hybinette, UGA 53

Example: waiting.c

#include <stdio.h>
#include <sys/wait.h>
#include <sys/types.h>

int main(void)

 {
 pid_t pid;
 int status;

 if((pid = fork()) == 0)

 { /* child */
 printf(“I am a child with pid = %d\n”, getpid());
 sleep(60);
 printf(“child terminates\n”);
 exit(0);
 }

else
 { /* parent */
 while (1)

 {
 waitpid(pid, &status, WUNTRACED);
 if(WIFSTOPPED(status))

 {
 printf(“child stopped,

 signal(%d)\n”,
 WSTOPSIG(status));
 continue;
 }
 else if(WIFEXITED(status))
 printf(“normal termination with
 status(%d)\n”,
 WEXITSTATUS(status));
 else if (WIFSIGNALED(status))
 printf(“abnormal termination,
 signal(%d)\n”,
 WTERMSIG(status));
 exit(0);
 } /* while */
 } /* parent */
} /* main */

{saffron:ingrid:54} waiting
waiting for child 5022
child stopped, signal(17)
waiting for child 5022
child terminates
normal termination with status(0)

{saffron:ingrid:55} waiting
waiting for child 5024
abnormal termination, signal(15)
{saffron:ingrid:56}

{saffron:ingrid:40} kill -l
.
.
{saffron:ingrid:48} kill -STOP 5022
{saffron:ingrid:49} kill -CONT 5022

{saffron:ingrid:56} kill -TERM 5024

{saffron:ingrid:54} waiting
waiting for child 985
child terminates
normal termination with status(0)

returned if child is stopped and not reported (signal)

Maria Hybinette, UGA 55

Special Exit Cases

●  A child exits when its parent is not currently executing
wait()

»  the child becomes a zombie
»  status data about the child is stored until the parent

does a wait()
»  Zombie: Terminated process that has not YET been cleaned up.

Parents are responsible to clean up after their children. Possible
parent has not YET called wait.

●  A parent exits when 1 or more children are still running
»  children are adopted by the system’s init process (/etc/
init)

–  it can then monitor/kill them
–  when the adopted child terminates however it does not

become a zombie, because init automatically calls wait
when the child finally terminates

Maria Hybinette, UGA 56

Zombies

●  Terminated child process, but
still around, waiting for its
parent : to wait() and do the
cleanup.

●  Still take up system
resources, memory, and it
will never be schedule since
it is ‘terminated’

●  Problem: when there are lots
of zombies, one by itself not
bad, but a crowd can be a
problem

http://en.wikipedia.org/wiki/Zombie_(fictional)

Maria Hybinette, UGA 57

make-zombie.c!

Maria Hybinette, UGA 58

●  ps -e -o pid,ppid,stat,cmd | grep zom!
●  Child is marked as defunct

»  Terminated child that has not yet been clean up!

●  Parents exits without calling wait,
»  Zombie child is adopted by init, and now init will clean

up after the unclean parent!

Maria Hybinette, UGA 59

Process Data

●  Recall a process is a copy of the parent, it has
a copy of the parent�s data.

●  A change to a variable in the child will not
change that variable in the parent.

Maria Hybinette, UGA 60

Example: global-example.c
#include <stdio.h>
#include <sys/types.h>

#include <unistd.h>

int globvar = 6;

char buf[] = �stdout write\n�;

int main(void)

{
int w = 88;

pid_t pid;

write(1, buf, sizeof(buf)-1);
printf(�Before fork()\n�);
if((pid = fork()) == 0)
 { /* child */
 globvar++;
 w++;
 }

else if(pid > 0) /* parent */
 sleep(2);

else
 perror(�fork error�);

printf(�pid = %d, globvar = %d, w = %d\n�,
 getpid(), globvar, w);

return 0;
} /* end main */

{saffron:ingrid:62} global-example
stdout write
Before fork()
pid = 5039, globvar = 7, w = 89
pid = 5038, globvar = 6, w = 88
{saffron:ingrid:63}

Maria Hybinette, UGA 61

Caveat: Process File Descriptors

●  While child and parent have (separate) copies of the
file descriptors they share system file table entries.
» Effect is that the R-W pointer is shared

●  This means that a read() or write() in one process
will affect the other process since the R-W pointer is
changed.

Maria Hybinette, UGA 62

Before and after fork()

●  Un-related processes

https://cs230.wikispaces.com/System-Level+IO+Notes

●  Related processes

Maria Hybinette, UGA 63

Example: file-ptr.c

#include <stdio.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#include <fcntl.h>

void printpos(char *msg, int fd) /* Print position in file */
 {
 long int pos;
 if((pos = lseek(fd, 0L, SEEK_CUR)) < 0L)
 perror("lseek");
 printf("%s: %ld\n", msg, pos);
 }

int main(void)
 {
 int fd; /* file descriptor */
 pid_t pid;
 char buf[10]; /* for file data */

 if((fd = open(�file-ptr.txt", O_RDONLY)) < 0)
 perror("open");
 read(fd, buf, 10); /* move R-W ptr */
 printpos("Before fork", fd);
 if((pid = fork()) == 0)
 { /* child */
 printpos("Child before read", fd);
 read(fd, buf, 10);
 printpos("Child after read", fd);
 }
 else if (pid > 0)
 { /* parent */
 wait((int *) 0);
 printpos("Parent after wait", fd);
 }
 else {
 perror("fork");
 }
 }

{saffron} cat
fileptr.txt
hello
this is
the data file

{saffron} shared-file
Before fork: 10
Child before read: 10
Child after read: 14
Parent after wait: 14

what�s happened?

Maria Hybinette, UGA 65

I/O redirection: ls > lis.txt!

(1) Open create file – write mode –
(2) How do we get stdout of ls to go to the file?

●  The trick: you can change where the standard
I/O streams are going/coming from after the
fork but before the exec

Maria Hybinette, UGA 66

I/O redirection

●  Example implementation shell:
»  {saffron} ls > lis.txt
»  open a new file lis.txt
»  Redirect standard output to lis.txt using dup2

–  Everything that is sent to standard output is also sent to
lis.txt

»  Execute ls in the process
●  dup2(int fin, int fout) - copies fin to fout in

file table

0

1

2

3

4

stdin STDIN_FILENO

stdout STDOUT_FILENO

stderr STDERR_FILENO

lis.txt

0

1

2

3

4

dup2(3, 1) File table

lis.txt

Maria Hybinette, UGA 67

Example: ls > lis.txt

#include <unistd.h>
#include <stdio.h>

int main(void)
 {
 int fileId;
 int int_stdout;

 fileId = creat("lis.txt", 0640);

 if(fileId < 0)
 {
 fprintf(stderr, "error creating lis.txt\n");
 exit (1);
 }

 dup2(fileId, STDOUT_FILENO); /* copy fileID to stdout */
 close(fileId);
 execl("/bin/ls", "ls", 0);
 }

{saffron:6} ls
lis* lis.c
{saffron:7} lis
{saffron:8} ls
lis* lis.c lis.txt
{saffron:9} cat lis.txt
lis
lis.c
lis.txt

Maria Hybinette, UGA 68

User and Group ID (revisit)

●  Group ID: Real and effective
●  User ID

» Real user ID
–  Identifies the user who is responsible for the running

process
»  Effective user ID

–  Used to assign ownership of newly created files, to check
file access permissions and to check permission to send
signals to processes

–  To change euid: execute setuid-program that has the
set-uid bit set or invodes the setuid() system call

–  The setuid(uid) system call, if euid is not superuser,
uid must be the real uid or saved uid (the kernel also
resets euid to uid)

» Real and effective uid: inherit (fork), maintain (exec)

Maria Hybinette, UGA 69

Read IDs

●  pid_t getuid(void);
»  Returns the real user ID of the current process

●  pid_t geteuid(void);
»  Returns the effective user ID of the current process

●  gid_t getgid(void);
»  Returns the real group ID of the current process

●  gid_t getegid(void);
»  Returns the effective group ID of the current process

Maria Hybinette, UGA 70

Change UID and GID (1)

#include <unistd.h>
#include <sys/types.h>

int setuid(uid_t uid)
int setgid(gid_t gid)

●  Sets the effective user ID of the current process.
●  Superuser process resets the real effective user

IDs to uid.
●  Non-superuser process can set effective user ID

to uid, only when uid equals real user ID or the
saved set-user ID (set by executing a setuid-
program in exec).

●  In any other cases, setuid returns error.

Maria Hybinette, UGA 71

Change UID and GID (2)

ID
exec setuid(uid)

set-user-ID bit off set-user-ID bit on superuser unprivileged
user

real-uid unchanged unchanged set to uid unchanged

effective user ID unchanged set from user ID
of program file set to uid

set to uid

saved set-uid copied from euid copied from euid uid unchanged

●  Different ways to change the three user IDs (pg 214)

Maria Hybinette, UGA 72

Change UID and GID (3)

#include <unistd.h>
#include <sys/types.h>

int setreuid(uid_t ruid, uid_t euid)

●  Sets real and effective user ID’s of the current process
●  Un-privileged users may change the real user ID to the

effective user ID and vice-versa.
●  It is also possible to set the effective user ID from the saved

user ID.
●  Supplying a value of -1 for either the real or effective user ID

forces the system to leave that ID unchanged.
●  If the real user ID is changed or the effective user ID is set to

a value not equal to the previous real user ID, the saved user
ID will be set to the new effective user ID.

Maria Hybinette, UGA 73

Change UID and GID (4)

#include <unistd.h>
#include <sys/types.h>

int seteuid(uid_t uid);

int setregid(gid_t rgid, gid_t egid)
int setegid(gid_t gid);

●  Functionally equivalent to setreuid(-1, euid)
●  Setuid-root program wishing to temporarily drop root

privileges, assume the identity of a non-root user, and then
regain root privileges afterwards cannot use setuid, because
setuid issued by the superuser changes all three IDs. One can
accomplish this with seteuid.

Maria Hybinette, UGA 74

Environment

extern char **environ;

int main(int argc, char *argv[], char *envp[])

NULL

HOME=/User/ingrid\0

PATH=/bin:/usr/bin\0

SHELL=/bin/ksh\0

USER=ingrid\0

LOGNAME=ingrid\0

environment list environment strings environment pointer

environ:

Maria Hybinette, UGA 75

Example: environ.c

#include <stdio.h>

int main(int argc,

 char *argv[],
 char *envp[])

 {
 int i;
 extern char **environ;

 printf("**----> from argument envp\n");
 for(i = 0; envp[i]; i++)
 puts(envp[i]);

 printf("\n**----> from global environ\n");
 for(i = 0; environ[i]; i++)
 puts(environ[i]);
 }

{saffron} environ
**----> from argument envp
_=environ
PAGER=/usr/bin/more
PATH=/usr/local/bin:/lib:/
sw:/sw/bin:/sbin:/usr/sbin:/
usr/games::/usr/games:/usr/
local/jdk.lat
est/bin:/Users/ingrid/bin:/
Users/ingrid/usr/bin
SHELL=ksh
TERM_PROGRAM_VERSION=100.1.4
HOSTNAME=saffron
USER=ingrid
.
.
**----> from global environ
_=environ
PAGER=/usr/bin/more
.
.

Maria Hybinette, UGA 76

getenv

#include <stdlib.h>

char *getenv(const char *name)

●  Searches the environement list for a string
that matches the string pointed by name

●  Returns a ointer to the value in the
environment, or NULL if there is no match

Maria Hybinette, UGA 77

putenv

#include <stdlib.h>

int putenv(const char *string)

●  Adds or changes the values of environment variables
●  The argument string is of the form �name = value�
●  If the name does not already exist in the environment then
string is added to the environment

●  If name does exist then the value of name in the
environment is changed to value

●  Returns 0 on successs and -1 if an error occurs

Maria Hybinette, UGA 78

Example: getputenv.c

#include <stdio.h>
#include <stdlib.h>

int main(void)
 {
 printf(�Home directory is %s\n�,
 getenv(�HOME�));
 putenv(�HOME=/�);
 printf(�New home directory is %s\n�,
 getenv(�HOME�));
 }

{saffron:ingrid:95} getputenv
Home directory is /Users/ingrid
New home directory is /

