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Unix System Programming 

Processes 
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Overview 

Last Week: 
●  How to program with directories 
●  Brief introduction to the UNIX file system 

This Week: 
●  How to program UNIX processes (Chapters 7-9) 

»  Follow the flow of Ch 8. Process control sprinkled with 
reflections from Ch 7 (e.g., exit, process/program 
memory layout). 

●  fork() and exec() 

Maria Hybinette, UGA 3 

Outline 

●  What is a process? 
●  fork() 
●  exec() 
●  wait() 
●  Process Data 
●  Special Exit Cases 
●  Process Ids 
●  I/O Redirection 
●  User & Group ID real and effective (revisit) 
●  getenv & putenv 
●  ulimit 
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What is a Process?  

 
●  Review: A process is a program in execution (an active 

entity, i.e., it is a running program , this was also on the  
»  Basic unit of work on a computer 
»  Examples:  

–  compilation process,   
–  word processing process 
–  a.out process 
–  Shell process 
–  (we just need to make sure the program is running) 

Maria Hybinette, UGA 5 

What is a Process? 

●  Each user can run many processes at once (e.g., by using &) 
●  A process: 

»  cat file1 file2 & 
●  Two processes started on the command line. 

»  ls | wc -l 
●  A time sharing system (such as UNIX) run several processes 

by multiplexing between them 

OS (schedules process) 

0 1 2 

…
n-1 

Processes 
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What is a Process? 

●  It has both time, and space 
» A container of instructions with some resources 

●  Process reads, and writes (or updates) 
machine resources 

»  e.g., CPU time (CPU carries out the instructions), 
» memory,  
»  files,  
»  I/O devices (monitor, printer) to accomplish its task 
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Formal Process Definition 

A process is a �program in execution�, a 
sequential execution characterized by trace. It 
has a context (the information or data) and 
this �context� is maintained as the process 
progresses through the system. 
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What Makes up a Process?  
size? 

●  Program code (text)   
»  Compiled version of the text 

●  Data  (cannot be shared) 
»  global variables 

–  Uninitialized  (BSS segment) sometimes 
listed separately. 

–  Initialized 

●  Process stack (scopes) 
»  function parameters 
»  return addresses 
»  local variables and functions 

●  <<Shared Libraries >> 
●  Heap: Dynamic memory (alloc) 
●  OS Resources, environment 

»  open files, sockets 
»  Credential for security 

●  Registers  
»  program  counter, stack pointer 

User Mode  
Address  

Space 

heap 

stack 

data 

routine1 
var1 
var2 

main 
    routine1 
    routine2 

arrayB[10] ; 
 
arrayA[10] = {0} 

text 

address space are the shared 
resources of a(ll) thread(s) in a 
program 

0x0 

3GB 
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Info about a process (running 
and foot print) 

●  longsleepHelloW (binary with long sleep) 
●  size a.out. (foot print) 
●  ps !

» 61542 pts/5    00:00:00 longsleepHelloW!
●  cat /proc/61542/status!
●  cat /proc/61542/maps!

●  ppp 
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●  Example: Process with 
4GB Virtual Address 
Space (32 bit 
architectures) 

●  User Space (focused on 
earlier, lower address 
space) 

●  Kernel Space 
User Space 
Virtual Addresses  

Kernel Space 
Virtual Addresses 

0x0 

3GB 

4GB 

0x0 

0xC0000000 

0xFFFFFFFF 
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What is needed to keep track of a Process? 

●  Memory information: 
»  Pointer to memory segments needed 

to run a process, i.e., pointers to the 
address space -- text, data, stack 
segments. 

●  Process management information: 
»  Process state, ID 
»  Content of registers: 

–  Program counter, stack pointer, 
process state, priority, process ID, 
CPU time used 

●  File management & I/O information: 
»  Working directory, file descriptors 

open, I/O devices allocated  
●  Accounting: amount of CPU used. 

Process Number 

Program Counter 

Registers 

Process State 

Memory Limits  

Page tables 

List of opened files 

I/O Devices allocated 

Accounting  

Process  control 
Block (PCB) 
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Process Representation 

Initial  P0 

Process  P1 

Process  P2 

Process  P3 

         

Memory mappings 

Pending requests 

… 

Memory base  

Program counter 

… 

Process  P2  Information System Memory 

Kernel Process Table 

P2 : HW state: resources 

P0 : HW state: resources 

P3 : HW state: resources 

P1 : HW state: resources 

… 
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System Control: 
Process Attributes 

ps and top command can be used to look at 
current processes 
●  PID - process ID: each process has a unique ID 
●  PPID - parent process ID: The process that 
�forked� to start the (child) process 

●  nice value - priority (-20 highest to 19 lowest) 
●  TTY associated with terminal (TTY teletype 

terminal) 
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OS View: Process Control Block 
(PCB)  

●  How does an OS keep track of the state of a 
process? 

» Keep track of �some information� in a structure.  
–  Example: In Linux a process� information is kept in a 

structure called struct task_struct declared in  
#include linux/sched.h!

–  What is in the structure? 

 
–  Where is it defined: 

●  not in /usr/include/linux – only user level code 
●  usr/src/kernel/2.6.32-431.29.2.elf6.x86_64/include/linux 

struct task_struct 

   pid_t pid;   /* process identifier */ 

   long state;   /* state for the process */ 

   unsigned int time_slice  /* scheduling information */ 

   struct mm_struct *mm  /* address space of this process */ 
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Back to user-level 

●  Finding PIDs 
» At the shell prompt  

–  ps u, ps, ps aux,  
●  ps no args  # your process 
●  ps –ef      # every process 
●  ps -p 77851  # particular process 

–  top interative 
»  In a C program: int p = getpid(); // more later 
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Other  Process Attributes 

●  Real user ID 
●  Effective user ID 
●  Current directory 
●  File descriptor table 
●  Environment 
●  Pointer to program code, data stack and heap 
●  Execution priority 
●  Signal information 
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3 General Process Types in UNIX 

Interactive 
–  foreground (shell must wait until complete [takes user input], or  
–  background (&) [no user input] 
–  initiated an controlled terminal session 
–  can accept input form user as it runs and output to the terminal 

Daemons 
–  server processes running in the background (e.g., listening to a port) 
–  Not associated with the terminal 
–  typically started by init process at boot time 
–  Examples: ftpd, httpd, …, mail  
–  If user wants to creates one, detach it from the terminal, kill its parent. (init adopts) 

Batch (at, cron, batch) 
–  Jobs that are queued and processed one after another 
–  recurrent tasks scheduled to run from a queue 
–  periodic, recurrent tasks run when system usage is low, cron-jobs (administered by 

the daemon crond). 
–  Examples: backups, experimental runs.   
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Process  ID conventions, and the 
Process Life Cycle 

●  PID 0  
»  is usually the scheduler process (swapper), a system process 

(does not correspond to a program stored on disk, the 
grandmother of all processes). 

●  init - Mother of all user processes, init is started at  
boot time (at end of the boot strap procedure) and is 
responsible for starting other processes 

»  It is a user process  with PID 1 
»  init uses file inittab and directory /etc/rc?.d 
»  brings the user to a certain specified state (e.g. multiuser) 

●  getty - login process that manages login sessions 
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Hierarchical Processes Tree on a 
(historical) UNIX System 

Process 1 
(init) 

OS Kernel 

Process 0 
(sched - ATT, swapper - BSD) 

Process 2 (BSD) 
pagedaemon 

deamon (e.g. httpd) getty 

login 

bash 

getty 

login 

ksh 

mother of all user processes 
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Display Process Hierarchy 

pstree (processes) 
●  Syntax: pstree | more  (all process) 
●  Syntax: pstree <PID>  
●  Syntax: pstree <username> 
tree (directory) 
●  -d (directories), -a (hidden), -s (size), -p (permissions) 
●  tree –H .  
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Daemon Processes 

 {atlas:maria} ps -efjc | sort -k 2 -n | more  // solaris below 
     UID   PID PPID  PGID SID  CLS PRI    STIME TTY  TIME CMD 
    root     0    0     0   0  SYS  96   Mar 03 ?    0:01 sched 
    root     1    0     0   0   TS  59   Mar 03 ?    1:13 /etc/init -r 
    root     2    0     0   0  SYS  98   Mar 03 ?    0:00 pageout 
    root     3    0     0   0  SYS  60   Mar 03 ? 4786:00 fsflush 
    root    61    1    61  61   TS  59   Mar 03 ?    0:00 /usr/lib/sysevent/syseventd 
    root    64    1    64  64   TS  59   Mar 03 ?    0:08 devfsadmd 
    root    73    1    73  73   TS  59   Mar 03 ?   30:29 /usr/lib/picl/picld 
    root   256    1   256 256   TS  59   Mar 03 ?    2:56 /usr/sbin/rpcbind 
    root   259    1   259 259   TS  59   Mar 03 ?    2:05 /usr/sbin/keyserv 
    root   284    1   284 284   TS  59   Mar 03 ?    0:38 /usr/sbin/inetd -s 
  daemon   300    1   300 300   TS  59   Mar 03 ?    0:02 /usr/lib/nfs/statd 
    root   302    1   302 302   TS  59   Mar 03 ?    0:05 /usr/lib/nfs/lockd 
    root   308    1   308 308   TS  59   Mar 03 ?  377:42 /usr/lib/autofs/automountd 
    root   319    1   319 319   TS  59   Mar 03 ?    6:33 /usr/sbin/syslogd 
 

●  Print out status information of various processes in the system:  
ps -axj (BSD) , ps -efjc (SVR4) , switches / flags varies  

●  process status (ps) 
●  Daemons (d) run with root privileges, no controlling terminal, 

parent process is init 
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PID and Parentage 

#include <sys/types.h> 
#include <unistd.h> 
#include <stdio.h> 
int main(void) 

{ 
pid_t pid, ppid; 
printf( �My PID is� %d\n�, (pid = getpid()) ); 
printf( �My PPID is� %d\n\n�, (pid = getppid()) ); 
} 

●  A process ID or PID is a positive integer that uniquely 
identifies a running process and is stored in a variable 
of type pid_t 

●  Example: print the process PID and parent�s PID 

{saffron} print-pid 
My PID is 3891 
MY PPID is 3794 

PID COMMAND      %CPU   TIME  
3891 print-ids    0.0%  0:00.00  
3874 top         13.6%  0:19.71  
3794 ksh          0.0%  0:00.04 
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●  pstree 
●  pidstat 
●  top, htop 
●  mpstat 
●  jobs 

»  ^Z, ^C 

●  kill %1 
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●  Linux processes 
●  ps -efjc | sort -k 2 -n | more 

 {nike:maria:125} ps -efjc | sort -k 2 -n | more  # linux Oct 2014 below 
UID        PID  PPID  PGID   SID CLS PRI STIME TTY          TIME CMD 
root         1     0     1     1 TS   19 Oct01 ?        00:02:11 /sbin/init 
root         2     0     0     0 TS   19 Oct01 ?        00:00:04 [kthreadd] 
root         3     2     0     0 FF  139 Oct01 ?        01:23:55 [migration/0] 
root         4     2     0     0 TS   19 Oct01 ?        00:01:10 [ksoftirqd/0] 
root         5     2     0     0 FF  139 Oct01 ?        00:00:00 [migration/0] 
root         6     2     0     0 FF  139 Oct01 ?        00:07:19 [watchdog/0] 
root         7     2     0     0 FF  139 Oct01 ?        01:14:54 [migration/1] 
root         8     2     0     0 FF  139 Oct01 ?        00:00:00 [migration/1] 
root         9     2     0     0 TS   19 Oct01 ?        00:00:32 [ksoftirqd/1] 
root        10     2     0     0 FF  139 Oct01 ?        00:07:59 [watchdog/1] 
root        11     2     0     0 FF  139 Oct01 ?        01:17:56 [migration/2] 
root        12     2     0     0 FF  139 Oct01 ?        00:00:00 [migration/2] 
root        13     2     0     0 TS   19 Oct01 ?        00:00:16 [ksoftirqd/2] 
root        14     2     0     0 FF  139 Oct01 ?        00:07:17 [watchdog/2] 
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Linux Processes 

●  [] in ps (kernel processes) 
»  Example: [kthreadd] 
root         3  0.0  0.0      0     0 ?        S    Nov02   4:39 [ksoftirqd/0]!
root         6  0.0  0.0      0     0 ?        S    Nov02   0:00 [migration/0]!
root         7  0.0  0.0      0     0 ?        S    Nov02   0:01 [watchdog/0]!
root         8  0.0  0.0      0     0 ?        S    Nov02   0:00 [migration/1] 

●  ksoftirqd – scheduling process kernel process (per 
CPU, soft interrupt handling. 

●  migration – migrates processes between CPUs 
●  Watchdog – checks that the system is running OK. 
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Process Life Cycle 

●  Create, Run, Die 

●  (Creation and Running)  In the beginning:  
» init and it�s descendants creates all subsequent 

processes by a fork()-exec() mechanism 
» fork() creates an exact copy of itself called a child 

process 
» exec() system call places the image of a new 

program over the newly copied program of the 
parent 

●  (Die, Exit) 
» When a process demises (completion of killed) it 

sends a signal to it�s parent. 
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fork() a child 

Shared 
 Program 
(read only) 

Copied  
Data, heap 

& stack 

Data, heap,  
& stack 

Parent 

pid = fork() 

pid == 0 pid == 5 

Child (can only 
have 1 parent) Parent 
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fork() 

#include <sys/types.h> 
#include <unistd.h> 
 
pid_t fork( void ); 

●  Creates a child process by making a copy of the parent 
process 

●  Both the child and the parent continue running 
●  The return of fork()  

»  depends whether you are the child or the parent process: 
–  pid == 0 in the child process 
–  pid == <process ID of child> in the parent process 

●  pid enables the programmer to define different actions for 
the parent and the child 
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Example: parent-child.c 
#include <stdio.h> 
#include <sys/types.h> 
#include <unistd.h> 
 
int main() 
  { 
  int i; 
  pid_t pid;  
 pid = fork(); 
 if( pid > 0 ) 
  {   /* parent */ 
  for( i = 0; i < 1000; i++ ) 
   printf( �\tPARENT %d\n�, i ); 

    } 
 else 

{  /* child */ 
  for( i = 0; i < 1000; i++ ) 
  printf( �\t\tCHILD %d\n�, i ); 

} 
 } 

  

{saffron} parent-child 
 PARENT 0 
 PARENT 1 
 PARENT 2 
  CHILD 0 
  CHILD 1 
 PARENT 3 
 PARENT 4 
  CHILD 2 
 . 
 . 
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Things to Note 

●  i is copied between parent and child 
●  The switching between parent and child 

depends on many factors: 
» Machine load, system process scheduling, … 

●  I/O buffering effects the output shown 
» Output interleaving is non-deterministic 

–  Cannot determine output by looking at code 
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Example: talk-to.c 

●  A simple communications program : 
» A �terminal� 
»  copies chars from stdin to a specified port and from 

that port to stdout  
–  Read from stdin then write to port (copy) 
–  Read from port then write to stdout 

●  Use port at /dev/ttya (terminal connected to 
standard input – a serial communication driver) 

child 

/dev/tty  (�teletypewriter�) 

parent 

stdin stdout 
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Example: talk-to.c 

#include <stdio.h> 
#include <sys/stat.h> 
#include <unistd.h> 
#include <fcntl.h> 
 
#define BUFSIZE 10 
 
int main(void ) 
  { 
  int fd, count; 
  char buffer[BUFSIZE]; 
 
  if( fd = open( "/dev/tty", O_RDWR ) < 0 ) 
  { 
   fprintf( stderr, "Cannot open port\n" ); 

 exit(1); 
   } 

   

if( fork() > 0 ) 
  {    /* parent */ 
  while( 1 ) 
     { 
     count = read( fd, buffer, BUFSIZ ); 
     write( 1, buffer, count ); /* stdout */ 
     } 
  } 
else   /* child */ 
  {                 
  while( 1 ) 
     { 
     count = read( 0, buffer, BUFSIZ ); 
     write( fd, buffer, count ); 
     } 
  }       /* else */ 
return 0; 
} /* main */ 
 {saffron} talk-to 

hello this is maria 
hello this is maria 
^C child parent 

stdin stdout 

tty 

fd 
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ps  Output   

{saffron} ps –l 
UID  PID  PPID  COMMAND 
501  3945   371  -ksh 
501  3984  3945  talk-to 
501  3985  3984  talk-to 
. 
. 
. 

ksh 

talk-to (parent) 

talk-to (child) 

fork() 

fork() 
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Process Summary 

●  Process: a program in execution 
»  Time and Space entity 
»  System View : A set of data structures that changes over time. 

–  Entity that needs system resources (e.g., CPU & Memory, Files). 
» Address Space : User / System  

–  Stack / Heap / Data (initialized, uninitialized) / Text 
–  Program pointer, Stack pointer 

●  Creation/Fork: Identical ‘copy’ of parent initially 
starting at next instruction after fork 

»  logical (separate) copy of parents address space 
»  separate stack and heap 
» Caveats: Multi-threaded Processes, Lightweight Processes 

–  Shares ‘more’ (e.g., address space). 
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Replace Program: w/ 
exec() 

●  Family of functions for replacing a process�s running 
program (text, data, heap and stack segment) with the 
one specified in the exec() call  

●  Process ID does not change across exec calls  
»  new process is not created, just it�s context is replaced. 

●  The old program is obliterated by the new  
»  ! no return back to the exec caller - unless there is an ERROR 

 

#include <unistd.h> 

int execlp( char *file, char *argv0, char *argv1, … (char *) 0 ); 

 

execlp( �sort�, �sort�, �-n�, �foobar�, (char *) 0 ); 

same as �sort -n foobar� 

Command line arguments: note argv0 is often = file 
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Example: tiny-menu.c 

#include <stdio.h> 

#include <unistd.h> 
 

int main() 

 { 

 char *cmd[] = { �who�, �ls�, �date� }; 
 int i; 

 printf( �0 = who : 1 = ls : 2 = date� ); 

 scanf( �%d�, &i ); 

  
 execlp( cmd[i], cmd[i], (char *) 0 ); 

 printf( �execlp failed\n� ); 

  } 

{saffron:ingrid:40} tiny-menu      
0 = who : 1 = ls : 2 = date 
0 
ingrid   console  Apr  4 10:58  
{saffron:ingrid:41} tiny-menu 
0 = who : 1 = ls : 2 = date 
2 
Fri Apr  8 16:56:47 EDT 2005 
{saffron:ingrid:42}  

printf() not executed unless 
there is a problem with 
execlp()  
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exec(…) family: execute a file 
(program) 

●  There are 6 versions of the exec function and they all 
basically do the same thing; they replace the current 
program with the text of the new program. 

●  Main difference is how the parameters are passed: 
» Permutations:   

–  pathname/file (p) :  
●  Program name  searched for in current execution path (no p, 

must give full path name 
–  vector/list (v, l) : 

●  Null terminated array of pointers to strings 
●  L varargs mechanism 

–  environment (e) 
●  Also accept Environmental variables. 
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exec(…) family: execute a file 
(program) 

●  There are 6 versions of the exec function and they all 
basically do the same thing; they replace the current 
program with the text of the new program. 

●  Main difference is how the parameters are passed: 
 
#include <unistd.h> 
 
 
 

 
●  Permutations:  pathname/file : vector/list : environment 
 

int execl( const char *path, const char *arg, ... argn,(char *)0 ); 
int execlp( const char *file, const char *arg, ... argn,(char *)0 ); 
int execle( const char *path, const char *arg, ... , argn,(char *)0   

 char *const envp[] ); 
int execv( const char *path, char *const argv[] ); 
int execvp( const char *file, char *const argv[] ); 
int execve( const char *file, char *const argv [],  

 char *const envp[] ); /* actual system call */ 
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exec(…) Family Tree -  

execle() 

execv() 

execve() 

execvp() 

execl() execlp() 

●  Permutations:  pathname/file : vector/list : environment 
●  System call: execve() -> all paths leads to this one 

●  execve(const char *path, char *const argv[], char *const envp[]); 

execl�s argument as 
list 

execv�s argument as 
vector 

Full Pathname Filename 
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Summary 

1.  We created a  process the unix way –  
»  Forking 

2.  We communicated 
3.  And we ran a file/program from a process 

»  Exec�d. 

Combine these 3 things…. 
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Want: fork() & execv() 

Parent 

pid = fork() 

New copy of 
Parent 

Original  
process 

Continues 

fork returns pid == 0 
and runs as cloned 
parent until execv is 
called 
 

pid == 5 

Child pid == 0 Parent 

New program 
(replacement) 

execv( new program ) 

New copy of 
Parent 

Original 
process 

�Make an image of myself� Here 
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Terminating processes 

●  Problem:  Our original menu 
program only allowed a user to 
execute  

» Only one command  
» But now we are forking, couldn’t we 

do more? 

●  Want:  
» Would like child program to finish 

before continuing.  
»  (other instances) perhaps we would  

like to get result from child before 
continuing  

WAIT 
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Process control: wait()& waipid() 

#include <sys/types.h> 
#include <sys/wait.h> 

 
pid_t wait( int *stat ); 
pid_t waitpid( pid_t pid, int *status, int options ); 
 
●  Suspends calling process until child has finished.  
●  Returns the process ID of the terminated child if ok, -1 

on error (check errno for error code) 
●  status can be (int *)0 or a variable which will be 

bound to status information  about the child when 
wait returns (e.g., exit-status of child passed through 
exit). 

●  waitpid(-1, &status, 0); /* = wait() */!
●  options : bitwise OR of any of the following options 
… (see man page) 
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wait()or waitpid()Actions 

●  Parent Suspend (block) if all of its children 
are still running, or 

●  Return immediately with the termination 
status of a child, or 

●  Return immediately with an error if there are 
no child processes 

●  Example … 
 

Maria Hybinette, UGA 45 

wait()or waitpid()Example 

●  Example program:  menu-shell.c illustrates 
wait() and includes: 

#include <stdio.h> 
#include <unistd.h> 
#include <sys/types.h> 
#include <sys/wait.h> 
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Example: menu-shell.c 
int main() 
 { 
 char *cmd[] = { �who�, �ls�, �date� }; 
 int i; 
 pid_t pid; 
 while( 1 ) 
  { 
  printf( �0 = who : 1 = ls : 2 = date ); 
  scanf( �%d�, &i ); 
  if( (pid = fork()) == 0 ) 
     {  /* child */ 
     execlp( cmd[i], cmd[i], (char *) 0 ); 
     perror( �execlp failed\n� ); 
     } 
  else   
     {  /* parent */ 

      printf( "waiting for child %d...", pid ); 
         wait( (int *) 0 ); 
        printf( "child %d finished\n", pid ); 
     } 

         } } 

{saffron:ingrid:40} menu-shell 
0 
ingrid   console  Apr  4 10:58  
waiting for child 4953...child 4953 
finished 
0 = who : 1 = ls : 2 = date 
0 
ingrid   console  Apr  4 10:58  
waiting for child 4954...child 4954 
finished 
0 = who : 1 = ls : 2 = date 
2 
Fri Apr  8 19:05:39 EDT 2005 
waiting for child 4955...child 4955 
finished 
0 = who : 1 = ls : 2 = date 
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menu-shell Execution 

pid = fork() 

menu-shell 

Child Parent 

execlp( cmd[i] ) 

menu-shell 

menu-shell cmd[i] 

wait() 
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Macros for wait (1) 
samples the status  

Enables checking on  status of child after wait returns: 
●  WIFEXITED(status) 

»  Returns true if the child exited normally  
»  Checks 8 low order bits, i.e., the most significant eight bits. 
»   If  macro is zero then child been stopped by another process via 

a signal. 

●   WEXITSTATUS(status) 
»  Details on exit status 
»  Evaluates to the least significant eight bits (high order bits) of the 

return code of the child which terminated, which may have been 
set as the argument to a call to exit( ) or as the argument for a 
return. 

»  This macro can only be evaluated if  WIFEXITED returned non-
zero. 
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Macros for wait (2) 

●  WIFSIGNALED(status) 
»   Returns true if the child process exited because of 

a signal which was not caught. 

●   WTERMSIG(status) 
» Returns the signal number that caused the child 

process to terminate. 
»  This macro can only be evaluated if WIFSIGNALED 

returned non-zero. 
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waitpid():Particular Child 

#include <sys/types.h> 
#include <sys/wait.h> 

 
pid_t waitpid( pid_t pid, int *status, int opts )  
 

●  waitpid() waits for a particular child and does not 
necessarily need to block until a child terminates  

●  pid > 0 
»  Waits for the child whose ID is equal to pid  

●  pid < -1  
»  Waits for any child process whose process group ID is equal 

to the absolute value of pid. 
●  pid == -1 

»  Wait for any child process (same behavior as wait() ) 
●  pid == 0 

»  Wait for any child process whose process group ID is equal 
to that of the calling process. 
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waitpid() 

●  opts : options when pid > 0 
»  Zero or more of the following constants can be 
OR’ed: 
–  WNOHANG 

●  Return immediately if no child has exited. 
–  WUNTRACED 

●  Also return for children which are stopped, and whose 
status has not been reported (because of a signal). 

●  Returns process ID of child which exits, -1 on 
error, 0 if WNOHANG was used and no child was 
available. 
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Macros for waitpid() 

●   WIFSTOPPED(status) 
» Returns true if the child process which caused the 

return is currently stopped. 
»  This is only possible if the call was done using 
WUNTRACED. 

●   WSTOPSIG(status) 
» Returns the signal number which caused the child 

to stop. 
»  This macro can only be evaluated if WIFSTOPPED 

returned non-zero. 
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Example: waiting.c 

#include <stdio.h> 
#include <sys/wait.h> 
#include <sys/types.h> 
 
int main(void) 

 { 
   pid_t pid; 
   int status; 
 
   if( (pid = fork() ) == 0 )  

  {  /* child */ 
       printf(“I am a child with pid = %d\n”, getpid() ); 
       sleep( 60 ); 
       printf( “child terminates\n” ); 
       exit(0); 
        } 

else   
   { /* parent */ 
   while (1)  

 { 
         waitpid( pid, &status, WUNTRACED ); 
         if( WIFSTOPPED(status) )  

    { 
            printf( “child stopped, 

  signal(%d)\n”, 
                 WSTOPSIG(status) ); 
            continue; 
            } 
         else if( WIFEXITED(status) ) 
            printf( “normal termination with 
                status(%d)\n”, 
                 WEXITSTATUS(status)); 
         else if (WIFSIGNALED(status)) 
            printf( “abnormal termination,    
                 signal(%d)\n”, 
                 WTERMSIG(status)); 
         exit(0); 
       } /* while */ 
   } /* parent */ 
} /* main */ 

{saffron:ingrid:54} waiting 
waiting for child 5022 
child stopped, signal(17) 
waiting for child 5022 
child terminates 
normal termination with status(0) 

{saffron:ingrid:55} waiting 
waiting for child 5024 
abnormal termination,   signal(15) 
{saffron:ingrid:56}  

{saffron:ingrid:40} kill -l 
. 
. 
{saffron:ingrid:48} kill -STOP 5022 
{saffron:ingrid:49} kill -CONT 5022 

{saffron:ingrid:56} kill -TERM 5024 

{saffron:ingrid:54} waiting 
waiting for child 985 
child terminates 
normal termination with status(0) 

returned if child is stopped and not reported (signal)  
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Special Exit Cases  

●  A child exits when its parent is not currently executing 
wait() 

»  the child becomes a zombie  
»  status data about the child is stored until the parent 

does a wait() 
»  Zombie: Terminated process that has not YET been cleaned up. 

Parents are responsible to clean up after their children. Possible 
parent has not YET called wait. 

●  A parent exits when 1 or more children are still running 
»  children are adopted by the system’s init process (/etc/
init) 

–  it can then monitor/kill them 
–  when the adopted child terminates however it does not 

become a zombie, because init automatically calls wait 
when the child finally terminates 

Maria Hybinette, UGA 56 

Zombies 

●  Terminated child process, but 
still around, waiting for its 
parent : to wait() and do the 
cleanup. 

●  Still take up system 
resources, memory, and it 
will never be schedule since 
it is ‘terminated’ 

●  Problem: when there are lots 
of zombies, one by itself not 
bad, but a crowd can be a 
problem 

http://en.wikipedia.org/wiki/Zombie_(fictional) 
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make-zombie.c!
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●  ps -e -o pid,ppid,stat,cmd | grep zom!
●  Child is marked as defunct  

»  Terminated child that has not yet been clean up! 

●  Parents exits without calling wait,  
»  Zombie child is adopted by init, and now init will clean 

up after the unclean parent! 
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Process Data 

●  Recall a process is a copy of the parent, it has 
a copy of the parent�s data. 
 

●  A change to a variable in the child will not 
change that variable in the parent. 
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Example: global-example.c 
#include <stdio.h> 
#include <sys/types.h> 

#include <unistd.h> 
 

int globvar = 6;  

char buf[] = �stdout write\n�; 
 

int main(void) 

{  
int w = 88; 

pid_t pid; 

 
write( 1, buf, sizeof(buf)-1 ); 
printf( �Before fork()\n� ); 
if( (pid = fork()) == 0 )  
 {  /* child */ 
 globvar++;  
 w++; 
 } 

else if( pid > 0 )  /* parent */ 
 sleep(2); 

else 
 perror( �fork error� ); 
 

printf( �pid = %d, globvar = %d, w = %d\n�, 
 getpid(), globvar, w ); 

return 0; 
} /* end main */ 
 

{saffron:ingrid:62} global-example 
stdout write 
Before fork() 
pid = 5039, globvar = 7, w = 89 
pid = 5038, globvar = 6, w = 88 
{saffron:ingrid:63}  
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Caveat: Process File Descriptors 

●  While child and parent have (separate) copies of the 
file descriptors they share system file table entries. 
» Effect is that the R-W pointer is shared 

 
 

●  This means that a read() or write() in one process 
will affect the other process since the R-W pointer is 
changed. 
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Before and after fork() 

●  Un-related processes 

https://cs230.wikispaces.com/System-Level+IO+Notes 

●  Related processes 
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Example: file-ptr.c 

#include <stdio.h> 
#include <sys/types.h> 
#include <sys/wait.h> 
#include <unistd.h> 
#include <fcntl.h> 
 
void printpos( char *msg, int fd ) /* Print position in file */ 
  { 
  long int pos; 
  if( (pos = lseek( fd, 0L, SEEK_CUR) ) < 0L ) 
        perror("lseek"); 
  printf( "%s: %ld\n", msg, pos ); 
  } 

int main( void ) 
  { 
  int fd;               /* file descriptor */ 
  pid_t pid; 
  char buf[10];         /* for file data */ 
 
  if( (fd = open( �file-ptr.txt", O_RDONLY )) < 0 ) 
        perror("open"); 
  read( fd, buf, 10 );  /* move R-W ptr */ 
  printpos( "Before fork", fd ); 
  if( (pid = fork()) == 0 ) 
        {       /* child */ 
        printpos( "Child before read", fd ); 
        read( fd, buf, 10 ); 
        printpos( "Child after read", fd ); 
        } 
  else if ( pid > 0 ) 
        {       /* parent */ 
        wait( (int *) 0 ); 
        printpos( "Parent after wait", fd ); 
        } 
  else  { 
        perror( "fork" ); 
        } 
  } 

{saffron} cat 
fileptr.txt 
hello 
this is 
the data file 

{saffron} shared-file     
Before fork: 10 
Child before read: 10 
Child after read: 14 
Parent after wait: 14 

what�s happened? 
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I/O redirection: ls > lis.txt!

(1) Open create file – write mode –  
(2) How do we get stdout of ls to go to the file? 

●  The trick: you can change where the standard 
I/O streams are going/coming from after the 
fork but before the exec 
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I/O redirection 

●  Example implementation shell: 
»  {saffron} ls > lis.txt 
»  open a new file lis.txt 
»  Redirect standard output to lis.txt using dup2 

–  Everything that is sent to standard output is also  sent to 
lis.txt 

»  Execute ls in the process 
●  dup2( int fin, int fout ) - copies fin to fout in 

file table 

0 

1 

2  

3 

4 

stdin  STDIN_FILENO 

stdout STDOUT_FILENO 

stderr STDERR_FILENO 

lis.txt 

0 

1 

2  

3 

4 

dup2( 3, 1 ) File table 

lis.txt 
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Example: ls > lis.txt 

#include <unistd.h> 
#include <stdio.h> 
 
int main( void ) 
  { 
  int fileId; 
  int int_stdout; 
 
  fileId = creat( "lis.txt", 0640 ); 
 
  if( fileId < 0 ) 
        { 
        fprintf( stderr, "error creating lis.txt\n" ); 
        exit (1); 
        } 
 
  dup2( fileId, STDOUT_FILENO ); /* copy fileID to stdout */ 
  close( fileId ); 
  execl( "/bin/ls", "ls", 0 ); 
  } 
 

{saffron:6} ls 
lis*    lis.c 
{saffron:7} lis 
{saffron:8} ls 
lis*  lis.c  lis.txt 
{saffron:9} cat lis.txt 
lis 
lis.c 
lis.txt 
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User and Group ID (revisit) 

●  Group ID:  Real and effective 
●  User ID 

» Real user ID 
–  Identifies the user who is responsible for the running 

process 
»  Effective user ID 

–  Used to assign ownership of newly created files, to check 
file access permissions and to check permission to send 
signals to processes 

–  To change euid: execute setuid-program that has the 
set-uid bit set or invodes the setuid() system call 

–  The setuid( uid ) system call, if euid is not superuser, 
uid must be the real uid or saved uid (the kernel also 
resets euid to uid) 

» Real and effective uid: inherit (fork), maintain (exec) 
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Read IDs 

●  pid_t getuid( void ); 
»  Returns the real user ID of the current process 

●  pid_t geteuid( void ); 
»  Returns the effective user ID of the current process 

●  gid_t getgid( void ); 
»  Returns the real group ID of the current process 

●  gid_t getegid( void ); 
»  Returns the effective group ID of the current process 
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Change UID and GID (1) 

#include <unistd.h> 
#include <sys/types.h> 
 
int setuid( uid_t uid ) 
int setgid( gid_t gid ) 

●  Sets the effective user ID of the current process. 
●  Superuser process resets the real effective user 

IDs to uid. 
●  Non-superuser process can set effective user ID 

to uid, only when uid equals real user ID or the 
saved set-user ID (set by executing a setuid-
program in exec). 

●  In any other cases, setuid returns error. 
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Change UID and GID (2) 

ID 
exec setuid(uid) 

set-user-ID bit off set-user-ID bit on superuser unprivileged 
user 

real-uid unchanged unchanged set to uid unchanged 

effective user ID unchanged set from user ID 
of program file set to uid 

 
set to uid 
 

saved set-uid copied from euid copied from euid uid unchanged 

●  Different ways to change the three user IDs (pg 214) 
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Change UID and GID (3) 

#include <unistd.h> 
#include <sys/types.h> 
 
int setreuid( uid_t ruid, uid_t euid ) 

●  Sets real and effective user ID’s of the current process 
●  Un-privileged users may change the real user ID to the 

effective user ID and vice-versa. 
●  It is also possible to set the effective user ID from the saved 

user ID. 
●  Supplying a value of -1 for either the real or effective user ID 

forces the system to leave that ID unchanged. 
●  If the real user ID is changed or the effective user ID is set to 

a value not equal to the previous real user ID, the saved user 
ID will be set to the new effective user ID. 
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Change UID and GID (4) 

#include <unistd.h> 
#include <sys/types.h> 
 
int seteuid( uid_t uid ); 
 
int setregid( gid_t rgid, gid_t egid ) 
int setegid( gid_t gid ); 

●  Functionally equivalent to setreuid( -1, euid ) 
●  Setuid-root program wishing to temporarily drop root 

privileges, assume the identity of a non-root user, and then 
regain root privileges afterwards cannot use setuid, because 
setuid issued by the superuser changes all three IDs. One can 
accomplish this with seteuid. 
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Environment 

extern char **environ; 

int main( int argc, char *argv[], char *envp[] ) 

NULL 

HOME=/User/ingrid\0 

PATH=/bin:/usr/bin\0 

SHELL=/bin/ksh\0 

USER=ingrid\0 

LOGNAME=ingrid\0 

environment list environment strings environment pointer 

environ: 
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Example: environ.c 

#include <stdio.h> 
 
int main( int argc,  

 char *argv[],  
 char *envp[] ) 

  { 
  int i; 
  extern char **environ; 
 
  printf( "**----> from argument envp\n" ); 
  for( i = 0; envp[i]; i++ ) 
        puts( envp[i] ); 
 
  printf( "\n**----> from global environ\n" ); 
  for( i = 0; environ[i]; i++ ) 
        puts( environ[i] ); 
  } 

 

{saffron} environ 
**----> from argument envp 
_=environ 
PAGER=/usr/bin/more 
PATH=/usr/local/bin:/lib:/
sw:/sw/bin:/sbin:/usr/sbin:/
usr/games::/usr/games:/usr/
local/jdk.lat 
est/bin:/Users/ingrid/bin:/
Users/ingrid/usr/bin 
SHELL=ksh 
TERM_PROGRAM_VERSION=100.1.4 
HOSTNAME=saffron 
USER=ingrid 
. 
. 
**----> from global environ 
_=environ 
PAGER=/usr/bin/more 
. 
. 
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getenv 

#include <stdlib.h> 

char *getenv( const char *name ) 

●  Searches the environement list for a string 
that matches the string pointed by name 

●  Returns a ointer to the value in the 
environment, or NULL if there is no match 
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putenv 

#include <stdlib.h> 

int putenv( const char *string ) 

●  Adds or changes the values of environment variables 
●  The argument string is of the form �name = value� 
●  If the name does not already exist in the environment then 
string is added to the environment 

●  If name does exist then the value of name in the 
environment is changed to value 

●  Returns 0 on successs and -1 if an error occurs 
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Example: getputenv.c 

#include <stdio.h> 
#include <stdlib.h> 
 
int main( void ) 
  { 
  printf( �Home directory is %s\n�,  
       getenv( �HOME� ) ); 
  putenv( �HOME=/� ); 
  printf( �New home directory is %s\n�,  
       getenv( �HOME� ) ); 
  } 

 

{saffron:ingrid:95} getputenv 
Home directory is /Users/ingrid 
New home directory is / 
 


