
Maria Hybinette, UGA 1

Unix System Programming

 Introduction

Maria Hybinette, UGA 2

Outline

●  UNIX History
●  UNIX Today?
●  UNIX Processes and the Login Process
●  Shells: Command Processing, Running Programs
●  The File
●  The Process
●  System Calls and Library Routines

Maria Hybinette, UGA 3

UNIX History

●  Developed in the late 1960s and 1970s at Bell Labs (the most
versatile, powerful an flexible OS in the word). K. Thomson,
D. Ritchie, McIlroy, Ossanna (nroff) and later Canaday

●  UNICS - a pun on MULTICSn time share system (Multiplexed
Information and Computer Service) which was supposed to
support 1000 on line users but only handled a few (barely 3).
(MULTI-UNiplexed)

●  Thomson writes first version of UNICS in assembler for a
PDP-7 in one MONTH which contains a new type of file
system (initial motivation was the game space travel)

»  Kernel (notion of processes)
»  shell
»  editor and the
»  assembler

●  1969 Thomson writes interpreter B based on BCPL -- Ritchie
improves on B and called it �C� (but first NB).

●  1972 UNIX is rewritten in C to facilitate porting
Maria Hybinette, UGA 4

UNIX History (cont)

●  1973 UNIX philosophy
developed:

»  Write programs that do one
thing and do it well

»  Write programs that work
together

»  Write programs that handle
text streams, because that is
the universal interface

Dennis Ritchie (standing) and Ken Thomson

K.I.S.S.
Keep It Simple, Stupid!

Thomson Ritchie

Maria Hybinette, UGA 5

UNIX Today

●  Supports many users running many
programs at the same time, all sharing the
same computer system

●  Information Sharing
●  Geared towards facilitating the job of creating

new programs
●  Sun: SunOS, Solaris; GNU: Linux; SGI: IRIX;

Free BSD; Hewlett Packard: HP-UX; Apple:
OS X (Darwin)

Maria Hybinette, UGA 6

What Unix Gets Wrong (Raymond)

●  UNIX files have no structure above byte level
●  File deletion is irrevocable
●  Unix security model is too primitive
●  There are too many different kind of names for things
●  Having a file system at all may have been the wrong

choice
●  Final choices are pushed to the as far toward the user as

possible (user know better than OS designers what their
own need are)

»  Loosing non-technical users
»  But maybe longevity because competitors are more tied to one soet

of policy or interface choicdes that fades from view

Maria Hybinette, UGA 7

What Unix Gets Right
(Raymond)

●  Evidence - the Linux revolution
●  Open Source Software (cooperative, re-usable)

»  Key to UNIX�s success
»  David Eckel� agree, his books are freely available and the most

profitable!
●  Cross-Platform portability an open standards

»  Consistent API across heterogeneous mix of computers
»  Scales

●  Internet and the WWW
»  DoD contract for TCP/IP production went to the UNIX development

group because of its open source!
●  Flexibility all the way down (glue program together)
●  Unix is fun to hack
●  The lessons of UNIX can be applied elsewhere

Maria Hybinette, UGA 8

User UNIX Interface: SHELL

●  Provides command line as an interface
between the user and the system

●  Is simply a program that starts automatically
when you login

●  Uses a command language
»  Allows programming (shell scripting) within the shell

environment
»  Uses variables, loops, conditionals, etc.
»  Accepts commands and often makes system calls to

carry them out

Maria Hybinette, UGA 9

Various UNIX shells

●  sh (Bourne shell)
●  ksh (Korn shell)
●  csh (C shell)
●  tcsh
●  bash
● …
●  Differences mostly in scripting details

Maria Hybinette, UGA 10

The Korn Shell (ksh)

●  I will frequently be using ksh as the standard
shell for examples in this class

●  Language is a superset of the Bourne shell
(sh)

Maria Hybinette, UGA 11

Changing Shell

●  On most UNIX machines:
»  which ksh (note path)
»  chsh

●  On the some machines:
»  which ksh (note path /bin/ksh)
»  ypchsh
»  May need to contact system administrator

Maria Hybinette, UGA 12

Environment variables

●  A set of variables the shell uses for certain
operations

●  Variables have a name and a value
●  Current list can be displayed with the env

command
●  A particular variable�s value can be displayed

with echo $<var_name>
●  Some interesting variables: HOME, PATH,
PS1, USER, HOSTNAME, PWD

Maria Hybinette, UGA 13

Setting environment variables

●  Set a variable with
»  Ksh/bash: <name>=<value>
»  tcsh: setenv <name> <value>

●  Examples:
»  TERM=vt100
»  PS1=myprompt>
»  PS1=$USER@$HOSTNAME:
»  PS1=�multiple word prompt> �
»  PATH=$PATH:$HOME
»  DATE=`date`

Maria Hybinette, UGA 14

Aliases

●  Aliases are used as shorthand for frequently-
used commands

●  Syntax:
»  ksh: alias <shortcut>=<command>
»  tcsh: alias <shortcut> <command>

●  Examples:
»  alias ll=�ls -lF�
»  alias la=�ls -la�
»  alias m=more
»  alias up=�cd ..�
»  alias prompt=�echo $PS1�

Maria Hybinette, UGA 15

Repeating commands

●  Use history to list the last 16 commands
●  tcsh: traverse command history:

»  <CNTRL>-P previous history
»  <CNTRL>-N next history

●  ksh: ESC, then k (up), j (down) RETURN

Maria Hybinette, UGA 16

Editing on the command line

●  Some command lines can be very long and
complicated - if you make a mistake you
don�t want to start all over again

●  You can interactively edit the command line
in several ways
»  set -o vi allows you to use vi commands to edit the

command line (ksh)
»  set -o vi-tabcomplete also lets you complete

commands/filenames by entering a TAB

Maria Hybinette, UGA 17

Login scripts

●  You don�t want to enter aliases, set
environment variables, set up command line
editing, etc. each time you log in

●  All of these things can be done in a script that
is run each time the shell is started

●  For ksh:
»  ~/.profile - is read for a login shell
»  ~/.kshrc

●  For tcsh
»  ~/.login
»  ~/.cshrc

Maria Hybinette, UGA 18

Example .profile (partial)

set ENV to a file invoked each time sh is started for
interactive use.
ENV=$HOME/.kshrc; export ENV
HOSTNAME=`hostname`; export HOSTNAME
PS1="$USER@$HOSTNAME>"

alias 'll'='ls -l'
alias 'la'='ls -la'
alias 'ls'='ls -F'
alias 'rm'='rm -i'
alias 'm'='more'

set -o vi
echo ".profile was read"

Maria Hybinette, UGA 19

stdin, stdout, and stderr

●  Each shell (and in fact all programs)
automatically open three �files� when they
start up

»  Standard input (stdin): Usually from the keyboard
»  Standard output (stdout): Usually to the terminal
»  Standard error (stderr): Usually to the terminal

●  Programs use these three files when reading
(e.g. scanf()), writing (e.g. printf()), or
reporting errors/diagnostics

Maria Hybinette, UGA 20

Redirecting stdout

●  Instead of writing to the terminal, you can tell
a program to print its output to another file
using the > operator

●  >> operator is used to append to a file
●  Examples:

»  man ls > ls_help.txt
»  echo $PWD > current_directory
»  cat file1 >> file2

Maria Hybinette, UGA 21

Redirecting stderr

●  Instead of reading from the terminal, you can
tell a program to read from another file using
the:
»  ksh: 2> operator
»  tcsh: &> operator

●  Example: suppose j is a file that does not exist
 {atlas} ls j

 ls: j: No such file or directory
 {atlas} ls j &> hello.txt
 {atlas} cat hello.txt
 ls: j: No such file or directory

Maria Hybinette, UGA 22

Redirecting stdin

●  Instead of reading from the terminal, you can
tell a program to read from another file using
the < operator

●  Examples:
»  mail user@domain.com < message
»  interactive_program < command_list

Maria Hybinette, UGA 23

Pipes and filters

●  Pipe: a way to send the output of one
command to the input of another

●  Filter: a program that takes input and
transforms it in some way
»  wc - gives a count of words/lines/chars
»  grep - searches for lines with a given string
»  more
»  sort - sorts lines alphabetically or numerically

Maria Hybinette, UGA 24

Examples of piping and filtering

●  ls -la | more
●  cat file | wc
●  man ksh | grep �history�
●  ls -l | grep �maria� | wc
●  who | sort > current_users

Maria Hybinette, UGA 25

UNIX Tutorial

●  http://www.ee.surrey.ac.uk/Teaching/Unix/

Maria Hybinette, UGA 26

UNIX File system

●  The file system is your interface to
»  physical storage (disks) on your machine
»  storage on other machines
»  output devices
»  etc.

●  Everything in UNIX is a file (programs, text,
peripheral devices, terminals, …)

●  There are no drive letters in UNIX! The file
system provides a logical view of the storage
devices

Maria Hybinette, UGA 27

Working directory

●  The current directory in which you are
working

●  pwd command: outputs the absolute path
(more on this later) of your working directory

●  Unless you specify another directory,
commands will assume you want to operate
on the working directory

Maria Hybinette, UGA 28

Home directory

●  A special place for each user to store
personal files

●  When you log in, your working directory will
be set to your home directory

●  Your home directory is represented by the
symbol ~ (tilde)

●  The home directory of �user1� is represented
by ~user1

Maria Hybinette, UGA 29

UNIX file hierarchy

●  Directories may contain
plain files or other
directories

●  Leads to a tree structure
for the file system

●  Root directory: /

/

tmp users bin

maria gunnar

csci1730 joke.txt

lab2.txt lab1.txt

Maria Hybinette, UGA 30

Path names

●  Separate directories by /
●  Absolute path

»  start at root and follow the tree
»  e.g. /users/maria/joke.txt

●  Relative path
»  start at working directory
»  �..� refers to level above
»  �.� refers to working directory
»  If /users/maria/csci1730 is

working dir, all these refer to the
same file
../joke.txt
~/joke.txt
~maria/joke.txt

/

tmp users bin

maria gunnar

csci1730 joke.txt

lab2.txt lab1.txt

Maria Hybinette, UGA 31

Changing directories

●  Change the working directory with the cd
command
»  cd <dir_name>
»  Use absolute or relative path names
»  cd by itself equivalent to cd ~

Maria Hybinette, UGA 32

Output of ls -lF

total 4
lrwxr-xr-x 1 maria user 18 Aug 28 13:41 home -> /usr/people/maria/
-rw-r--r-- 1 maria user 94 Aug 28 13:42 nothing.txt
drwxr-xr-x 2 maria user 9 Aug 28 13:40 test_dir/

File type

Permissions

Owner
Group

Modify date
File name

Number of links

Maria Hybinette, UGA 33

Types of files

●  Plain (-)
»  Most files
»  Includes binary and text files

●  Directory (d)
»  A directory is actually a file
»  Points to another set of files

●  Link (l): A pointer to another file or directory
●  Special: e.g. peripheral devices

Maria Hybinette, UGA 34

Creating links

●  ln –s <existing_file> <link_name>
●  This command creates a symbolic link
●  The file �link_name� will be a pointer to the
�existing_file� which may be in another
directory or even on another physical
machine

Maria Hybinette, UGA 35

File permissions

●  Permissions used to allow/disallow access to
file/directory contents

●  Read (r) 4, write (w) 2, and execute (x) 1
●  For owner, group, and world (everyone)
●  chmod <mode> <file(s)>

»  chmod 700 file.txt
»  chmod g+rw file.txt

Maria Hybinette, UGA 36

File ownership

●  Each file has a single owner
●  chown command can be used to change the

owner (usually only root user can use this
command)

●  There are also various groups to which users
can belong

●  Groups may have different permissions than
everyone else

Maria Hybinette, UGA 37

File modification date

●  Last time the file was changed
●  Useful information when

»  There are many copies of a file
»  Many users are working on a file

●  touch command can be used to update the
modification date to the current date, or to
create a file if it doesn�t exist

Maria Hybinette, UGA 38

Looking at file contents

●  cat <filename(s)>
»  �concatenate�
»  output the contents of the file all at once

●  more <filename(s)>
»  Output the contents of a file one screen at a time
»  Allows forward and backward scroll and search

Maria Hybinette, UGA 39

Moving, renaming, copying, and
removing files

●  mv <file1> <file2> (rename)
●  mv <file1> <dir> (move)
●  mv <file1> <dir/file2> (move & rename)
●  cp <file1>

[<file2>|<dir>|<dir/file2>] (copy)
●  rm [-i] <file(s)> (remove)

Maria Hybinette, UGA 40

Creating and removing
directories

●  mkdir <dir_name>
»  Create a subdirectory of the current directory

●  rmdir <dir_name>
»  Remove a directory (only works for empty directories)

●  rm –r <dir_name>
»  Remove a directory and all of its contents, including

subdirectories

Maria Hybinette, UGA 41

Wildcards in file names

●  All of the commands covered here that take
file names as arguments can also use
wildcards
»  * for any string, e.g. *.txt, obj*, a*.*
»  ? for any character, e.g. doc?
»  [] around a range of characters, e.g. [a-c]*

Maria Hybinette, UGA 42

Getting help on UNIX
commands

●  These notes only give you the tip of the
iceberg for these basic commands

●  man <command_name> shows you all the
documentation for a command

●  apropos <keyword> shows you all the
commands with the keyword in their
description

Maria Hybinette, UGA 43

The UNIX System - Overview

●  Kernel – Heart of the OS
»  Process scheduling
»  I/O control (accesses)

●  Shell – Interpreter between the user and the
computer

●  Tools and applications
»  Accessible from shell
»  Can be run independently of shell

Maria Hybinette, UGA 44

UNIX System Programming

●  Programs make system (primitive), or library
subroutine (efficient, special purpose) calls to invoke
kernel.

●  Types of system calls
»  File I/O
»  Process management
»  Inter-process communication (IPC) - pipe, signals, shm, sockets,
…

»  Signal handling

●  File concept extends to peripheral & IPC
»  cat file > /dev/rmt0

●  A process an instance of an executing program

Maria Hybinette, UGA 45

System Calls (Library subroutines)

●  System calls: Interface to the kernel

Library fread

Kernel Space

User Space

Program
Code

read
kernel code

read user
code

System call

Maria Hybinette, UGA 46

Basic file I/O

●  Processes keep a list of open files
●  Files can be opened for reading, writing
●  Each file is referenced by a file descriptor

(integer)
●  Three files are opened automatically

»  FD 0: standard input
»  FD 1: standard output
»  FD 2: standard error

Maria Hybinette, UGA 47

File I/O system call: open()

●  fd = open(path, flags, mode)
»  int open(const char *pathname, int flags, [mode_t mode])
»  #include <stdlib>
»  #include <fcntl.h>

●  path: string, absolute or relative path
●  flags:

»  O_RDONLY - open for reading
»  O_WRONLY - open for writing
»  O_RDWR - open for reading and writing
»  O_CREAT - create the file if it doesn�t exist
»  O_TRUNC - truncate the file if it exists
»  O_APPEND - only write at the end of the file

●  mode: specify permissions if using O_CREAT

Maria Hybinette, UGA 48

File I/O system call: close()

●  retval = close(fd)
»  int close(int filedes);

●  Close an open file descriptor
●  Returns 0 on success, -1 on error

Maria Hybinette, UGA 49

File I/O system call: read()

●  bytes_read = read(int fd, void *buffer, size_t count)
●  Read up to count bytes from file and place into buffer
●  fd: file descriptor
●  buffer: pointer to array
●  count: number of bytes to read
●  Returns number of bytes read or -1 if error

Maria Hybinette, UGA 50

File I/O system call: write()

●  bytes_written = write(fd, buffer,
count)

●  Write count bytes from buffer to a file
●  fd: file descriptor
●  buffer: pointer to array
●  count: number of bytes to write
●  Returns number of bytes written or -1 if error

Maria Hybinette, UGA 51

System call: lseek()

●  retval = lseek(fd, off_t offset, whence)
●  Move file pointer to new location
●  fd: file descriptor
●  offset: number of bytes
●  whence:

»  SEEK_SET - offset from beginning of file
»  SEEK_CUR - offset from current offset location
»  SEEK_END - offset from end of file

●  Returns offset from beginning of file or -1

Maria Hybinette, UGA 52

UNIX File access primitives

●  open – open for reading, or writing or create an empty
file

●  creat - create an empty file
●  close
●  read - get info from file
●  write - put info in file
●  lseek - move to specific byte in file
●  unlink - remove a file
●  remove - remove a file
●  fcntl - control attributes assoc. w/ file

Maria Hybinette, UGA 53

Simple file I/O examples

Maria Hybinette, UGA 54

File I/O using FILEs (C Standard I/O)

●  Most UNIX programs use higher-level I/O
functions
»  fopen()
»  fclose()
»  fread()
»  fwrite()
»  fseek()

●  These use the FILE data type instead of file
descriptors

●  Need to include stdio.h

Maria Hybinette, UGA 55

Using data types with file I/O

●  All the functions we�ve seen so far use raw
bytes for file I/O, but program data is usually
stored in meaningful data types (int, char,
float, etc.)

●  fprintf(), fputs(), fputc() - used to
write data to a file

●  fscanf(), fgets(), fgetc() - used to
read data from a file

