
Maria Hybinette, UGA

CSCI 1730 Systems Programming

Threads, and
other IPC:

Shared Memory, and Message Queus

Maria Hybinette, UGA
2

Threads: Questions

●  How is a thread different from a process?
●  Why are threads useful?
●  How can POSIX threads be useful?
●  What are problems with threads?

●  Resources:
●  https://computing.llnl.gov/tutorials/pthreads/

Maria Hybinette, UGA
3

Review: What is a Process?

A thread have
 (1) an execution stream and
 (2) a context

●  Execution stream
»  stream of instructions
»  sequential sequence of instructions
»  1“thread” of control

●  Process ‘context’ (Review)
»  Everything needed to run (restart) the process …
»  Registers

–  program counter, stack pointer, general purpose…
»  Address space

–  Everything the process can access in memory
–  Heap, stack, code

A process is a program in execution…

Running on a
thread

code data files

registers stack

Maria Hybinette, UGA
4

Review: What Makes up a Process?
●  Program code (text)

»  Compiled version of the text

●  Data (cannot be shared)
»  global variables

–  Uninitialized (BSS segment) sometimes
listed separately.

–  Initialized

●  Process stack (scopes)
»  function parameters
»  return addresses
»  local variables and functions

●  <<Shared Libraries >>
●  Heap: Dynamic memory (alloc)
●  OS Resources, environment

»  open files, sockets
»  Credential for security

●  Registers
»  program counter, stack pointer

User Mode
Address

Space

heap

stack

data

routine1
var1
var2

main
 routine1
 routine2

arrayB[10] ;

arrayA[10] = {0}

text

address space are the shared
resources of a(ll) thread(s) in a
program

0x0

3GB

Maria Hybinette, UGA
5

What are are problem’s with
processes?

●  How do processes (independent memory space) communicate?
»  Complicated/Not really that simple (seen it, tried it – and you have too):

–  Message Passing:
●  Remote machine (send and receive): Sockets
●  Local machine via message queues

»  http://beej.us/guide/bgipc/output/html/multipage/mq.html

–  Pipes
–  Signal
–  Shared Memory: Set up a shared memory area

●  http://beej.us/guide/bgipc/output/html/multipage/shm.html

»  Slow/Overhead: All of the methods above add some kernel
overhead lowering performance

–  Process Creation is heavy weight
●  Allocate space/heavy weight

Maria Hybinette, UGA
6

Processes versus Threads

Solution: A thread is a “lightweight process” (LWP)
●  An execution stream that shares an address space

»  Overcome data flow over a file descriptor
»  Overcome setting up `tighter memory’ space

●  Multiple threads within a single process
Examples:
●  Two processes (copies of each other) examining memory

address 0xffe84264 see different values (i.e., different
contents)

»  same frame of reference
●  Two threads examining memory address 0xffe84264 see

same value (i.e., same contents)
●  Illustrate: ctest/i-threading.c, ctest/i-process.c

main()
 {
 i = 55;
 fork();
 // what is i

Maria Hybinette, UGA
7

What Makes up a Thread?

●  Own stack (necessary?)
●  Own registers (necessary?)

»  Own program counter
»  Own stack pointer

●  State (running, sleeping)
●  Signal mask

User Mode
Address
Space

heap

stack

data

routine1
var1
var2

main
 routine1
 routine2

arrayA
arrayB

text

address space are the shared resources
of a(ll) thread(s) in a program

routine1
var1
var2

Stack Pointer

Program Counter

Maria Hybinette, UGA
8

Single and Multithreaded Process

code data files

registers stack

code data files

registers

stack stack stack

registers registers

Process Threads

Maria Hybinette, UGA
9

Why Support Threads?

●  Divide large task across several cooperative threads
●  Multi-threaded task has many performance benefits

●  Examples:
» Web Server: create threads to:

–  Get network message from client
–  Get URL data from disk
–  Compose response
–  Send a response

» Word processor: create threads to:
–  Display graphics
–  Read keystrokes from users
–  Perform spelling and grammar checking in

background
Maria Hybinette, UGA

10

Why Threads instead of a Processes?

●  Advantages of Threads:
»  Thread operations cheaper than corresponding

process operations
–  In terms of: Creation, termination, (context) switching

»  IPC cheap through shared memory
–  No need to invoke kernel to communicate between

threads

●  Disadvantages of Threads:
»  True Concurrent programming is a challenge (what

does this mean? True concurrency?)
»  Synchronization between threads needed to use

shared variables (more on this later – this is HARD).

Maria Hybinette, UGA
11

Why are Threads Challenging?
pthread1 Example: Output?

main()
{

pthread_t t1, t2;
char *msg1 = “Thread 1”; char *msg2 = “Thread 2”;
int ret1, ret2;
ret1 = pthread_create(&t1, NULL, print_fn, (void *) msg1);
ret2 = pthread_create(&t2, NULL, print_fn, (void *) msg2);

if(ret1 || ret2)
{

fprintf(stderr, “ERROR: pthread_created failed.\n”);
exit(1);

}
pthread_join(t1, NULL);

pthread_join(t2, NULL);
printf(“Thread 1 and thread 2 complete.\n”);

}
void print_fn(void *ptr)
{

printf(“%s\n”, (char *)ptr);
}

Maria Hybinette, UGA
12

Why are Threads Challenging?

●  Example: Transfer $50.00 between two
accounts and output the total balance of the
accounts:

●  Tasks:

M = Balance in Maria’s account (begin $100)

T = Balance in Tucker’s account (begin $50)

B = Total balance

T = 50, M = 100

M = M - $50.00

T = T + $50.00

B = M + T

Idea: on distributing
the tasks:
(1)  One thread debits

and credits
(2)   The other Totals
Does that work?

Maria Hybinette, UGA
13

Why are Threads Challenging?

●  Tasks: T = 50, M = 100

M = M - $50.00

T = T + $50.00

B = M + T

M = M - $50.00

T = T + $50.00

B = M + T

M = M - $50.00

B = M + T

T = T + $50.00

B = M + T

M = M - $50.00

T = T + $50.00

One thread debits
& credits

One thread totals

B = $150 B = $100 B = $150
Maria Hybinette, UGA

14

Common Programming Models

●  Manager/worker
»  Single manager handles input and assigns work to the

worker threads
●  Producer/consumer

»  Multiple producer threads create data (or work) that is
handled by one of the multiple consumer threads

●  Pipeline
»  Task is divided into series of subtasks, each of which is

handled in series by a different thread

Maria Hybinette, UGA
15

Thread Support

●  Three approaches to provide thread support
» User-level threads (Pthreads)
» Kernel-level threads (not cover)

–  Kernel manages the threads (avoids blocking)
» Hybrids

Maria Hybinette, UGA
16

Latencies

●  Comparing user-level threads, kernel threads, and
processes

●  Thread/Process Creation Cost:
»  Evaluate –with Null fork: the time to create, schedule, execute, and complete

the entity that invokes the null procedure

●  Thread/Process Synchronization Cost:
»  Evaluate – with Signal-Wait: the time for an entity to signal a waiting entity and

then wait on a condition (overhead of synchronization)

Procedure call = 7 us
Kernel Trap = 17 us User Level

Threads
Kernel Level

Threads Processes

Null fork 34 948 11,300
Signal-wait 37 441 1,840

30X,12X

Maria Hybinette, UGA
17

User-Level Threads

●  Many-to-one thread mapping
»  Implemented by user-level runtime

libraries
–  Create, schedule, synchronize threads at

user-level, state in user level space
»  OS is not aware of user-level threads

–  OS thinks each process contains only a
single thread of control

P P

●  Advantages
»  Does not require OS support; Portable
»  Can tune scheduling policy to meet application (user level)

demands
»  Lower overhead thread operations since no system calls

●  Disadvantages
»  Cannot leverage multiprocessors (no true parallelism)
»  Entire process blocks when one thread blocks

Maria Hybinette, UGA
18

POSIX Pthreads

● P-threads is a standard set of C library functions
for multithreaded programming

»  IEEE Portable Operating System Interface, POSIX, section
1003.1 standard, 1995

● Pthread Library (60+ functions)
● Programs must include the file pthread.h
● Programs must be linked with the pthread library

(-lpthread)
» Done by default by some gcc’s (e.g., on Mac OS X)

Maria Hybinette, UGA
19

Pthread: Code Base

The subroutines which comprise the Pthreads API can
be informally grouped into Two major groups:
●  Thread management: Routines that work directly on

threads
●  Synchronization:

» Mutexes: Routines that deal with synchronization, called a
"mutex", which is an abbreviation for "mutual exclusion”

»  Locks: Routines that manage read/write locks and barriers
» Condition variables: Routines that address communications

between threads that share a mutex.

Maria Hybinette, UGA
20

Thread Management

●  Creating and Terminating Threads
●  Passing Arguments to Threads
●  Joining and Detaching Threads
●  Setting Thread Attributes
●  Miscellaneous Routines

Maria Hybinette, UGA
21

Creating and Terminating
Threads

●  pthread_create(thread,attr,start_routine,arg)3
●  pthread_exit(status)33
●  pthread_join(tid, 0);3

Maria Hybinette, UGA
22

●  Initially, main() has a single thread
●  New threads created via pthread_create

»  Max # threads are platform dependent

●  Threads are peers, and may create other threads.
» No implied hierarchy or dependency between threads.3

Maria Hybinette, UGA
23

Pthread Create

●  thr: Will contain the newly created thread’s id. Must be passed by
reference

●  attr: Give the attributes that this thread will have. Use NULL for the
default ones.

●  start_routine: The name of the function that the thread will run.
Must have a void pointer as its return and parameters values

●  arg: The argument for the function that will be the body of the
Pthreads

#include <pthread.h>

int pthread_create(pthread_t *thr,
 const pthread_attr_t *attr,
 void *(*start_routine)(void*),

 void *arg);

Pointers of the type void can reference ANY type of data, but they CANNOT
be used in any type of operations that reads or writes its data without a
cast Maria Hybinette, UGA

24

Terminating Threads

●  thread returns from its starting routine
●  Thread calls pthread_exit()
●  Thread is canceled by another thread via the

pthread_cancel routine.
●  The entire process is terminated due to a call

to either the exec or exit subroutines.
●  main() finishes … before the threads that it

created.

Maria Hybinette, UGA
25

●  void pthread_exit(void *arg);
»  This function will indicate the end of a pthread and

the returning value will be put in arg

●  pthread_t pthread_self(void)
» Returns the id of the calling thread. Returns a

pthread_t type which is usually an integer type
variable

Maria Hybinette, UGA
26

“Hello World” Example
#include <pthread.h> // +stlib, stio.h

#define NUM_THREADS 5

void *PrintHello(void *threadid)

{ long tid;

 tid = (long)threadid;

 printf("Hello World! It's me, thread #%ld!\n", tid);

 pthread_exit(NULL);

}

int main(int argc, char *argv[])

{ pthread_t threads[NUM_THREADS];

 int rc;

 long t;

 for(t=0;t<NUM_THREADS;t++){

 printf("In main: creating thread %ld\n", t);

 rc = pthread_create(&threads[t], NULL, PrintHello, (void *)t);

 if (rc){

 printf("ERROR; return code from pthread_create() is %d\n", rc);

 exit(-1);

 } }

pthread_exit(NULL); /* Last thing that main() should do */

}

{ingrid:547} 01-hello
In main: creating thread 0
In main: creating thread 1
In main: creating thread 2
In main: creating thread 3
Hello World! It's me, thread #0!
Hello World! It's me, thread #1!
In main: creating thread 4
Hello World! It's me, thread #2!
Hello World! It's me, thread #3!
Hello World! It's me, thread #4!

Maria Hybinette, UGA
27

Passing Arguments to Threads

●  Single Argument
Passing

» Cast its value as a void *
(a tricky pass by value)

» Cast its address as a
void pointer (pass by
reference).

–  The value that the
address is pointing
should NOT change
between Pthreads
creation

●  Multiple Argument
Passing

» Heterogonous: Create an
structure with all the
desired arguments and
pass an element of that
structure as a void
pointer.

» Homogenous: Create an
array and then cast it as a
void pointer

Maria Hybinette, UGA
28

●  02-hello_arg1.c (single argument)
●  02-hello_arg2.c (struct non-homogenous)

Maria Hybinette, UGA
29

Thread Joining

●  Analogous to wait()
●  “Coarse grained” synchronization b/c threads. 33
●  Blocks calling thread until the thread with “id” terminates.
●  A joining thread can match one pthread_join() call.

–  It is a logical error to attempt multiple joins on the same thread.

●  A thread is either joinable or detached (can never be joined).
Maria Hybinette, UGA

30

Joinable or Detached?

●  If a thread requires joining, consider explicitly
creating it as joinable.

»  This provides portability as not all implementations
may create threads as joinable by default.

●  If you know in advance that a thread will
never need to join with another thread,

»  consider creating it in a detached state.
»  Some system resources may be able to be freed.

Maria Hybinette, UGA
31

Example

●  i-threading.c

Maria Hybinette, UGA
32

Synchronization

●  Stands for Mutual Exclusion
●  Serializes access to some critical region of

code or data
●  Anytime a global resource is accessed by

more than one thread the resource should
have a Mutex associated with it.

int pthread_mutex_init(pthread_mutex_t * mutex,
 pthread_mutexattr_t *attr);

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
int pthread_mutex_destroy(pthread_mutex_t * mutex);

Maria Hybinette, UGA
33

Synchronization

●  http://www.yolinux.com/TUTORIALS/
LinuxTutorialPosixThreads.html#SYNCHRONI
ZATION

»  Locks. Mutex.

Maria Hybinette, UGA
34

●  void pthread_yield ()

Maria Hybinette, UGA
35

Processes vs. Threads

●  Threads are better if:
»  You need to create new ones quickly, on-the-fly
»  You need to share lots of state

●  Processes are better if:
»  You want protection

–  One process that crashes or freezes doesn’t impact
the others

»  You need high security
–  Only way to move state is through well-defined,

sanitized message passing interface

Maria Hybinette, UGA
36

●  https://computing.llnl.gov/tutorials/pthreads/
#CreatingThreads

Maria Hybinette, UGA
37

Design:
Threading Issues: fork() & exec()

●  fork()
» Duplicate all threads?
» Duplicate only the thread that performs the fork
» Resulting new process is single threaded?
»  -> solution provide two different forks (mfork)

●  exec()
» Replaces the process - including all threads?
»  If exec is after fork then replacing all threads is

unnecessary.

Maria Hybinette, UGA
38

0x0000

0xFFFF

Process 1

Process 2

Message
Queue

Kernel
Memory

Other IPC Mechanisms

38

Message Passing Shared Memory

0x0000

0xFFFF
Kernel
Memory

Process 1

Process 2

Shared
Memory

Write

Read

Write

Read

Maria Hybinette, UGA
39

IPC: Shared Memory

●  Processes
»  Each process has private address space
»  Explicitly set up shared memory segment within

each address space
●  Threads

» Always share address space (use heap for shared
data), don’t need to set up shared space already
there.

●  Advantages
»  Fast and easy to share data

●  Disadvantages
» Must synchronize data accesses; error prone (later)

Maria Hybinette, UGA
40

Shared Memory API

●  shmget () – creates, allocate a shared memory page
●  shmat() – map the memory page into the processes

address space
» Now you can read/write the page using a pointer

●  shmdt () – remove/detaches a shared page
»  Processes with open references may still access the page

●  shmctl() – ipc control, destroy it.

ex-mem.c

Maria Hybinette, UGA
41

POSIX Shared Memory

●  A variation of mapped memory.
●  Uses shm_open() to open the shared memory

object (instead of calling open()) and
●  shm_unlink() to close and delete the object

(instead of calling close() which does not
remove the object).

●  The options in shm_open() are substantially
fewer than the number of options provided in
open().

Maria Hybinette, UGA
42

IPC: Message Passing (also for
threads, similar to processes)

●  Message passing most commonly used between processes
»  Explicitly pass data between sender (src) + receiver (destination)
»  Example: Unix pipes, Message Queues

●  Advantages:
»  Makes sharing explicit
»  Improves modularity (narrow interface)
»  Does not require trust between sender and receiver

●  Disadvantages:
»  Performance overhead to copy messages

●  Issues:
»  How to name source and destination?

–  One process, set of processes, or mailbox (port)
»  Does sending process wait (I.e., block) for receiver?

–  Blocking: Slows down sender
–  Non-blocking: Requires buffering between sender and receiver

Maria Hybinette, UGA
43

●  OpenMP
●  Pthreads:

»  http://www.yolinux.com/TUTORIALS/
LinuxTutorialPosixThreads.html

»  https://computing.llnl.gov/tutorials/pthreads/
»  http://www.dirjournal.com/library/posix-threads.php
»  https://www.sourceware.org/gdb/current/onlinedocs/gdb/

Threads.html#Threads
»  http://www.mit.edu/people/proven/IAP_2000/index.html

●  Advanced IPC (Shared Memory, Message Queues,
Memory Mapped Files)

»  http://beej.us/guide/bgipc/output/html/singlepage/
bgipc.html

