
Maria Hybinette, UGA

CSCI 1730 Systems Programming

C++
Crash Tutorial

Maria Hybinette, UGA
2

C++: Motivation?

Working for Google:
»  http://www.forbes.com/sites/quora/2013/06/05/are-

programmers-in-cc-more-preferred-at-google-than-
programmers-in-java/

Ranking of Languages:
●  http://www.tiobe.com/index.php/content/paperinfo/tpci/

index.html
●  http://langpop.com/
●  http://spectrum.ieee.org/computing/software/top-10-

programming-languages
●  http://redmonk.com/sogrady/2014/06/13/language-

rankings-6-14/

Maria Hybinette, UGA
3

What you should learn?

●  http://mashable.com/2014/01/21/learn-
programming-languages/

●  http://tech.pro/blog/1885/top-10-
programming-languages-to-learn-in-2014

Maria Hybinette, UGA
4

C++ and C

C:
●  Low level (close to hardware)
●  No runtime type info (it is compile time)
●  Easy implementation

C++:
●  Originally to add some OO functionality to C
●  Attempt to be a higher-level language
●  Now it�s a totally different language

Maria Hybinette, UGA
5

C/C++ and Java

●  Similar syntax
●  Basic Constructs Similar!

»  If,
»  Loops
»  Function
»  Switch
»  recursion

Maria Hybinette, UGA
6

First the Trusty First Program

{nike:maria:77} make -f Makefile.cpp
g++ -g -c Hello.cpp -o Hello.o
g++ -g -o Hello.out Hello.o

include <iostream>

int main() // like plain.
{
 // Hey this is different! Stream like
 cout << "Hello world!" << endl;
 return 0; // 0 is normal
}

Maria Hybinette, UGA
7

I/O C++ Style: iostream

●  Basic Classes:
»  iostream (cout,cin,cerr)
»  ostringstream, istringstream.

Maria Hybinette, UGA
8

I/O C++ Style
<< : The Output Operator

●  Overloaded, works with any type (built-in)
»  (so different from C, but java-ish)

●  Chaining:

 x = y = z = 55;
 cout << “we are awesome: “ << y << z;

 int k = 2;
 double d = 4/5;
 char c = 'x';

 cout << k << endl; // write an int
 cout << d << endl; // write a double
 cout << c << endl; // write a char

Maria Hybinette, UGA
9

Namespace: and example input

●  using namespace std;

// i/o example

#include <iostream>
using namespace std;

int main ()
{
 int i;
 cout << "Please enter an integer value: ";
 cin >> i;
 cout << "The value you entered is " << i;
 cout << " and its double is " << i*2 << ".\n";
 return 0;
}

Maria Hybinette, UGA
10

namespace

●  Namespaces group functions and variables
under a prefix

●  Analogous to Java Packages
»  (w/o access modification, or path restrictions)

●  Used to avoid name collisions.
●  Declared by:
 namespace <name> {
 }

●  All symbols (functions and variables) are under the
prefix <name>.

●  Symbols accessed by <name>::symbol
●  Namespaces can be nested.
●  You can omit the <name>:: when referring symbols

from the same namespace, or a containing namespace.

Maria Hybinette, UGA
11

using

●  Analogous to Java import statements
●  There are 2 forms:

» using <name>::symbol;
» using namespace <name>;

●  The first form tells the compiler that symbol means
<name>::symbol.

●  The second form tells the compiler to look for
<name>::symbol if it cannot find symbol in the current
namespace.

●  NEVER put using directives in header files!!! Bad
Form!!

●  All standard library symbols are in the namespace std
Maria Hybinette, UGA

12

I/O C++ Style or C Style?

Hmmm….

●  printf(�%.3f rounded to 2 decimals
is %.2f\n�, 2.325, 2.325:

●  cout << setprecision(3) << 2.325
 << � rounded to 2 decimals is �
 << setprecision(2) << 2.325
 << endl;

Maria Hybinette, UGA
13

C and C++ I/O compared

●  C-style I/O:
» No type safety: printf(“%d”, ‘c’);?
» Conversion specifications have a high learning curve.
» Almost all the state of the I/O is contained in the function call.

●  C++ style I/O:
» Manipulators are very verbose/annoying
» Global state gets changed.

–  When you do “cout << 2.4555”, what precision are you set at?
You don’t know. It’s worse with threads.

●  You get more customizability since C++ I/O is classed
based.

●  Should not really mix the two Styles (buffers are not
synchronized)

Maria Hybinette, UGA
14

Dynamic Memory

●  Dynamically sized memory in both C and C++
is manually managed (allocated and freed)

●  Allocate:
●  Free:

» Do not free memory twice (double free).
» Do not free memory that has not been

●  Manual memory management allows for finer
grained control of your program

Maria Hybinette, UGA
15

new, delete, delete[]

●  the new operator allocates new memory,
initializes it and returns a pointer to it.

●  the delete operator deallocates memory
allocated by new

●  If you allocate a new array, you must delete it
with delete[] and not delete

Point2D *p = new Point;
delete p;
p = NULL;

int *ar = new int[50];
delete[] ar;
ar = NULL;

Maria Hybinette, UGA
16

new, delete, delete[]

int * foo;

foo = new int [5];

●  Returns a pointer to the first element
●  No guarantee memory will be granted, What to

do:
»  1) Exception handling. (similar to java)
»  2) No throw

–  Return a null pointer (check it).
–  foo = new (nothrow) int [5];

Maria Hybinette, UGA
17

Example: remember-o-matrix.cpp
int main ()
{
 int i,n;
 int * p;
 cout << "How many numbers would you like to type? ";
 cin >> i;
 p= new (nothrow) int[i];
 if (p == NULL)
 cout << "Error: memory could not be allocated";
 else
 {
 for (n=0; n<i; n++)
 {
 cout << "Enter number: ";
 cin >> p[n];
 }
 cout << "You have entered: ";
 for (n=0; n<i; n++)
 cout << p[n] << ", ";
 delete[] p;
 }
 return 0;
}

Maria Hybinette, UGA
18

What about Alloc, malloc
recalloc?

●  Defined in <cstdlib> (stdlib.h in C)
» As with printf better not to mix new, and C style

memory allocation
»  http://www.cplusplus.com/reference/cstdlib/

●  Not typesafe returns (void *) so need to cast.
●  May be faster, more efficient.

Maria Hybinette, UGA
19

Declaration and Definition

●  Declaration
» Name of variable / structure

●  Definition
» Name, and
» How to store the data

structure/variable
–  Function and objects need

this to be allocate
–  Includes the body of the

function
»  typedef and enumeration

constants

// a definition
// declaration and definition
struct wasp
{ int head;

 int legs;
 int eyes;

};

// declaration only
struct wasp;

Maria Hybinette, UGA
20

1. Function Prototype
Declared in list but doesn’t include its
definition)then it is block scope)

2. Function
Statement labels before it is declared) .. ‘

Ex. Done (visible before it is declared)

3. File (sometimes called global scope)
Outside blocks; functions, structures,

4. Block (sometimes called local scope)
»  Declared within function definition/blocks
»  Includes the parameter list

C++ (1&2) above, + the below:
●  Local : C’s Block scope
●  Name Space : C’s File Scope
●  Class : New

int k;

int f(int i);

int g(int i)
 {
 int j, k;

 {
 int p;
 }

 int h(int n);
 if (i < j) goto done;
 k = 42;
 ...
done:
 return 0;
 }

C/C++ Scope (standard)

C++/C Standards explained by DR Dobbs
http://www.drdobbs.com/cpp/scope-regions-in-c/240002006

Function Prototype Scope

File Scope

Maria Hybinette, UGA
21

Scope (cont)

●  Begins at the end of its
declaration, and before it is
initialized

»  More Complex structures
closely after its ‘tag’

●  C++ additions (plain C):
»  Declarations within loop

definitions (block scope)
»  Namespace (global scope,

one word).
–  Declared either in

namespace or in the
–  C’s equivalent of file

scope (imports it into
scope)

»  Generalizes the rules of file
scope to include names.

long int *p = NULL, x[N];

http://www.drdobbs.com/cpp/scope-regions-in-c/240002006?pgno=2

struct stag
 {

 ...
 };

enum etag
 {

 ...
 };

namespace identifier
 {
 ...
 }

Maria Hybinette, UGA
22

Scope (cont)

●  Class scope
» Declared within class definition
» Classes in C++ includes Structures & Unions

●  Translational units
» A file after the preprocessor processing (includes

the includes).
» Globals are available within the ‘translational units’
»  ‘Globals’ can extend its scope by ‘external linking’

Maria Hybinette, UGA
23

Focus on Global Variables

● Global Variables are not evil!
» Allocated at program start.
» De-allocated at program end.

● By default (should) initialized to bit-
wise zero

● Next: Modifiers:
» extern,
» static, and
» const

http://www.learncpp.com/cpp-tutorial/42-global-variables/

Maria Hybinette, UGA
24

Global Variables - Gotcha I

/* util.c */

int g_numCalls = 0;

void someFunc(void) {
 fprintf(stderr,
 “Num Calls to %s: %d\n”,
 __func__, g_numCalls);

g_numCalls++;
 ...

}

What is wrong with this code?
/* test.c */
void someFunc(void);
int g_numCalls = 0;

int main(void) {
 fprintf(stderr,
 “Num Calls to %s: %d\n”,
 __func__, g_numCalls);

 someFunc(); someFunc();
 ...

}

compile line: gcc –Wall util.c test.c -o test

Maria Hybinette, UGA
25

Static

●  On a global variable or a function:
static int g_someGlobalVariable;
static void myFunction(void);

Tells the linker not to export the variable or function.
»  Ensures the identifier remains in �file scope,��

–  The linker will not use it fulfill dependencies from other files.
●  On a local (function) variable:

void someFunc(void) {
 static int array[4000];

}
»  Places the variable off the stack.

–  This has the side-effect that it retains it value across calls. It is
often used when a variable is too large to be put on the stack.

●  On class member (later)
Maria Hybinette, UGA

26

Global Variables - Gotcha I
fix A.

/* util.c */

static int g_numCalls = 0;

void someFunc(void) {
 fprintf(stderr,
 “Num Calls to %s: %d\n”,
 __func__, g_numCalls);

g_numCalls++;
 ...

}

/* test.c */
void someFunc(void);
static int g_numCalls = 0;

int main(void) {
 fprintf(stderr,
 “Num Calls to %s: %d\n”,
 __func__, g_numCalls);

 someFunc(); someFunc();
 ...

}

Static // Now the two variables “g_numCalls” have no relation.
Think of them as private to each file.

Maria Hybinette, UGA
27

Global Variables - Gotcha II

/* debug.h */

int debug_level;

…

What is wrong with this code?
/* test.c */

#include “debug.h”
…

compile line: gcc -Wall -ansi *.c -o test

(this actually works with the latest gnu compiler)

/* debug.c */

#include “debug.h”
…

/* otherfile.c */

#include “debug.h”
…

Maria Hybinette, UGA
28

Global Variables - Gotcha II
(bad fix)

/* debug.h */

static int debug_level;

…

/* test.c */

#include “debug.h”
…

compile line: gcc -Wall -ansi *.c -o test

/* debug.c */

#include “debug.h”
…

/* otherfile.c */

#include “debug.h”
…

…but get 3 distinct copies of debug_level …

static with fix the compile [error]…

Maria Hybinette, UGA
29

extern

●  Avoids the extra allocation of variables
»  Declare

–  int debug_level
»  and avoid allocate space for it every time

●  extern int debug_level;
 �there exists an int called debug_level, but the storage is
elsewhere, Go and find it linker.”

●  Function Prototypes are
»  implicitly declared as extern

●  As with prototypes, you must remember to
actually declare the ‘real’ variable

Maria Hybinette, UGA
30

const

Maria Hybinette, UGA
31

Operator Overloading
 (covered in Hackathon)

●  Enables you to define operators (+,-,*,/) for
new types.

●  Operators are usually binary, or unary functions.
»  Examples of unary operators:

 !false, -i
»  Examples of binary operators

 a + b, isBig || isRed
●  The syntax for referring to the operator function

is operator<symbol>
»  Example: prototype for integer addition (+):

 int operator+(int lhs, int rhs);

Maria Hybinette, UGA
32

Example: Operator Overloading
Point2D
operator+(const Point2d &lhs, const Point2d &rhs)
{

 Point2D p;
 p.x = lhs.x + rhs.x;
 p.y = lhs.y + rhs.y;

 return p;

}

Maria Hybinette, UGA
33

friends

●  Classes and functions can be declared as
friends by writing
» friend <classname>;
» friend <function prototype>;

●  Friends have access to a class�s private
members.

●  Only friends can touch each other�s private
variables

Maria Hybinette, UGA
34

Classes

●  Roots come from C-style structs
●  Fairly similar to Java classes in concept.
●  Used to group related data and functions.
●  Can be used to write OO code

Maria Hybinette, UGA
35

Great Resources

●  http://www.cs.washington.edu/orgs/acm/tutorials (Links)
●  http://pages.cs.wisc.edu/~cs368-2/CppTutorial/ (Today)
●  http://cs.brown.edu/courses/cs123/docs/java_to_cpp.shtml’

http://www.cprogramming.com/java/c-and-c++-for-java-
programmers.html

●  Wikipedia/References:
http://en.wikipedia.org/wiki/Comparison_of_Java_and_C%2B%2B

●  Programming -- Principles and Practice Using C++ (Second
Edition) Bjarne Stroustrup (2014)

●  C++ for Java Programmers, by Timothy Budd
●  I think well of Thinking in C++ by Bruce Eckels.
●  Accelerated C++: Practical Programming by Example,

Andrew Koenig and Barabra Moo (2000)

Maria Hybinette, UGA
36

Quiz:
Last Name, First Name - LAB

1.  With regard to UNIX what what was the most
interesting topic

2.  With regard to UNIX which was the least
interesting.

3.  Did we miss a Topic in UNIX that you were
interested in?

4.  What grading issue do you have not been
addressed

Maria Hybinette, UGA
37

Struct vs. Class in C++
Class is more private than Struct

●  Default scope of members:
» Class : private by default and
»  Struct: are public by default.

●  Default access specifier when Deriving IT.
» when deriving a class, default access specifier is

private.
» When deriving a struct, default access specifier is

public.

Maria Hybinette, UGA
38

Java vs. C Parameter Passing

●  Review: Pass by Value – copy of the parameter is
passed

●  Review: Pass by Reference – pass the ‘address; of
the variable (still copies but there reference may
not be copied).

»  In Java copy of the address for large structures, but it
refers to the same address as the original reference.

»  In C (large) structures are automatically copied if passed
by reference.

–  In java need to use & to send it to the method get the same
effect (use * within function).

–  IN C++ use & in parameter list to indicate it is passed by
reference. (in plain C you would use a *).

Maria Hybinette, UGA
39

●  See example. (pass by value .cpp)

Maria Hybinette, UGA
40

Templates and STL

●  http://msdn.microsoft.com/en-us/magazine/
cc163754.aspx

●  Template examples (see schedule page)
»  template <typename T>
»  Function/method template (square.cpp, squareT.cpp)
» Class template (MVector.cpp)

●  Review STL here (on your own).
http://www.mochima.com/tutorials/STL.html

Maria Hybinette, UGA
41

Closing C++ vs. Java

●  Review / Read:
●  http://en.wikibooks.org/wiki/C%2B

%2B_Programming/
Programming_Languages/Comparisons/Java

Maria Hybinette, UGA
42

Schedule

●  We: Hackathon 11 (optional)
» C++/C
» Grade Concerns (record).

●  Th: Showcase, more grade concerns?

