
Maria Hybinette, UGA 1

Unix System Programming
 The “Operating System” and

System Calls

Maria Hybinette, UGA 2

Outline

Previously (and Chap 1 & 2 from text)
●  Covered Brief UNIX history/interface
●  UNIX overview - process, shell, file
●  Brief intro to basic file I/O - open(), close(), read(), write(),

lseek(), fprintf (library call)
●  Week of C

This Week:
●  Read Chapter 3
●  Administrative: Rock.c
●  The Operating System & System Calls
●  UNIX history - more on the key players
●  Efficiency of read/write
●  The File: File pointer, File control/access

Maria Hybinette, UGA 3

Administrative

●  HW2 posted
●  Review rock.c	

Maria Hybinette, UGA 4

Lets Reflect : What is an
Operating System?

●  Software (�kernel�) that runs at all times
»  Really, the part of the system that runs in �kernel mode�- or in

privileged mode.
–  As always there are exceptions to this �rule�

●  Distinguishing what makes up the OS is
challenging (some grey areas)

●  The Job of the OS is two unrelated functions:
»  (1) Provide abstractions of resources to the users or

applications programs (extends the machine), and
»  (2) Manage and coordinate hardware resources (resource

manager)
–  CPU, memory, disk, printer

Maria Hybinette, UGA 5

The Bigger Picture

●  Operating System
»  Between Hardware and the

Users
»  Provides an interface/

programming environment for
the activities in the system

–  activities� (processes) in
the system.

●  The application programs
–  Definition: A process is an activity

in the system – a running program,
an activity that may need
�services� (we will cover this
concept in detail next week).

System and Application Programs
compiler assembler text editor …

Operating System

Computer
Hardware

user!
1!

user!
2!

user!
n!

…!

Maria Hybinette, UGA 6

The OS provides an
Extended Machine

●  Operating System turn the ugly hardware into
beautiful abstractions.

Maria Hybinette, UGA 7

Example: Resource

●  Example: Accessing a raw disk really involves :
»  specifying the data, the length of data, the disk drive, the track

location(s), and the sector location(s) within the corresponding
track(s). (150 mph)

●  Problem: But applications don’t want to worry about the
complexity of a disk (don�t care about tracks or sectors)

Disk%arm%

Disk%platters%
A%track%

lseek(file, file_size, SEEK_SET);
write(file, text, len);

write(block, len, device, track, sector);

interfaces to OS via
system calls

Heads generate a
magnetic field that
polarize the disk Maria Hybinette, UGA 8

Shell: Another Level of
provided to users

●  Provide �users� with access to the services
of the kernel.

»  A �shell� of-course,– illusion of a thin layer of abstraction
to the kernel and its services.

●  CLI – command line interface to kernel
services (project 1 focus)

●  GUI - graphical user interface to the kernel

Hardware

OS Abstraction

Shell Abstraction

Person

Maria Hybinette, UGA 9

Key Questions in System Design

How to provide a beautiful interface,
consider:

●  What does the OS look like? To the user?
●  What services does an operating system

provide?
»  These services need to be provided in a safe manner

–  E.g., Provision for Safe resource sharing (disk,
memory)

–  What is the mechanism to provide Safety? And why
do we nee it?

System and Application
Programs

compiler assembler text editor …

Operating System

Computer
Hardware

user!
1!

user!
2! … user!

3!
•  Memory Management

•  Process Management

•  File Management

•  I/O System Management

•  Protection & Security

Maria Hybinette, UGA 10

Why Safety?: Resource Sharing

●  Example Goal: Protect the OS from other activities and
provide protection across activities.

●  Problem: Activities can crash each other (and crash the OS)
unless there is coordination between them.

●  General Solution: Constrain an activity so it only runs in its
own memory environment (e.g., in its own sandbox), and
make sure the activity cannot access other sandboxes.

»  Sandbox: Address Space (memory space)
–  It�s others memory spaces that the activity can�t touch

including the Operating System�s address space

Maria Hybinette, UGA 11

Safety: Resource Sharing

●  Example: Areas of protection:
»  Writing to disk (where) – really any form of I/O.

–  Files, Directories, Socket
»  Writing / Reading Memory
»  Creating new processes

●  How do we create (and manage) these
�areas� of protection.
●  Let the Kernel Handle it, and for safety it acts in

privileged mode to access to hardware broadly

Maria Hybinette, UGA 12

Protection Implementation:
“Dual Mode” Operations

●  General Idea: The OS is omnipotent and everything
else isn’t - as simple as that

»  Utilize Two modes CPU operation (provided by hardware)
–  Kernel Mode – Anything goes – access everywhere

(unrestricted access) to the underlying hardware.
●  In this mode can execute any CPU instruction and reference any memory

access

–  User Mode – Activity can only access state within its own
address space (for example - web browsers, calculators,
compilers, JVM, word from microsoft, power point, etc run in
user mode).

How does the OS prevent arbitrary programs (run by arbitrary users)
from invoking accidental or malicious calls to halt the operating system
or modify memory such as the master boot sector?

Maria Hybinette, UGA 13

Hardware: Different modes of

protection (>2 Intel)

●  Hardware provides different mode �bits� of protection –
where at the lowest level – ring 0 – anything goes,
unrestricted mode (trusted kernel runs here).

–  Intel x86 architecture provides multiple levels of protection:

Maria Hybinette, UGA 14

Hardware: Example Dual-Mode Operation

●  Mode bit (0 or 1) provided by
hardware

»  Provides ability to distinguish
when system is running user
code or kernel code

»  Mode 1 : normal when address
space is �limited�

»  Mode 0 : Kernel mode more
privileged.

●  Mode bit switches
»  at�interrupt��(trap) to kernel, or
»  when returning from a trap set back

to user mode

kernel" user"

Interrupt/fault, system call"

set user mode"

•  Question: What is the mechanism from the point of
view of a process to access kernel functions (e.g., it
wants to write to disk)? ….

Maria Hybinette, UGA 15

Mechanics of “System Calls”
(e.g., Intel’s trap())

●  System Call: Mechanism for user activities (user
processes) to access kernel functions.

●  Example: UNIX implements system calls (�request
calls�) via the trap() instruction (system call, e.g.,
read() contains the trap instruction, internally).

●  When the control returns to the user code the CPU is
switched back to User Mode.

trap

User%Mode% Kernel/Supervisor%Mode%

Set%Kernel%Mode%

Trusted%Code%

Branch%(Jump)%
Table%1"

2
3%

libc is
intermediate
library that
handles the
�packaging�

Trap in Linux
is INT 0x80
assembly

instruction

Maria Hybinette, UGA 16

Example: I/O �System� Calls

●  All I/O instructions are
privileged instructions.

●  Must ensure that a user
program could never gain
control of the computer in
kernel mode

»  Avoid a user program that, as
part of its execution, stores a
�new address��in the interrupt
vector.

–  libc

System call to perform I/O
Read

read

System Call n

1

Case n

2

3

Execute
System Call

Perform I/O

Return
to user

Calls System
Call

Trap to
 kernel

User
level

Kernel
level

Maria Hybinette, UGA 17

UNIX – details - Steps in Making
a System Call

●  Consider the UNIX read �system�
call (via a library routine)
»  count = read(fd, buffer, nbytes)
»  reads nbytes of data from a file

(given a file descriptor fd) into a
buffer

●  11 steps:
»  1-3: push parameters onto stack
»  4: calls routine
»  5: code for read placed in register

–  Actual system call # goes into EAX register
–  Args goes into other registers (e.g, EBX and ECX)

»  6: trap to OS
–  INT 0x80 assembly instruction I in LINUX

»  7-8: OS saves state, calls the
appropriate handler (read)

»  9-10: return control back to user
program

»  11: pop parameters off stack

Return to caller

Trap to the kernel

Put code for read in register

Increment stack pointer

Call read

Push fd

Push nbytes

Push & buffer

Dispatch Sys call
handlers

User Space

Kernel Space

Address
0xFFFFFFFF

0x0

Read

User
Program
Read

1

2

3

7 8

11
6

4

9

10 5

Art of picking Registers; http://
www.swansontec.com/sregisters.html

P44-45 tannenbaum

Maria Hybinette, UGA 18

System Calls Triva

●  Linux has 319 different system calls (2.6)
●  Free BSD �almost� 330.

Maria Hybinette, UGA 19

Types of System Calls

●  Process control
»  fork, execv, waitpid, exit, abort

●  File management (will cover first)
»  open, close, read, write

●  Device management
»  request device, read, write

●  Information maintenance
»  get time, get date, get process attributes

●  Communications
»  message passing: send and receive messages,

–  create/delete communication connections
»  Shared memory map memory segments

Maria Hybinette, UGA 20

Library Calls

●  System call wrappers

Maria Hybinette, UGA 21

Library Routines: Higher Level
of Abstraction to System Calls

●  Provide another level of
abstraction to system calls
to

»  improve portability and
»  easy of programming

●  Standard POSIX C-Library
(UNIX) (stdlib, stdio):

»  C program invoking printf() library
call, which calls write() system call

●  Win 32 API for Windows
●  JVM

