
Maria Hybinette, UGA 1

Unix System Programming

Files

Maria Hybinette, UGA 2

Outline

Previously (and Chap 1 & 2 from text)
●  Covered Brief UNIX history/interface
●  UNIX overview - process, shell, file
●  Brief intro to basic file I/O - open(), close(), read(), write(),

lseek(), fprintf (library call)
●  Week of C

This Week:
●  Read Chapter 3
●  Administrative: Rock.c
●  The Operating System & System Calls
●  UNIX history - more on the key players
●  Efficiency of read/write
●  The File: File pointer, File control/access

Maria Hybinette, UGA 3

Administrative

●  HW2 posted
●  Review rock.c	

Maria Hybinette, UGA
4

Abstraction: File

●  User view
» Named collection of bytes (defined by user)

–  Untyped or typed
–  Examples: text, source, object, executables,

application-specific
»  Permanently and conveniently available

●  Operating system view
» Map bytes as collection of blocks on physical non-

volatile storage device
–  Magnetic disks, tapes, NVRAM, battery-backed RAM
–  Persistent across reboots and power failure

Maria Hybinette, UGA
5

Preview: Files Attributes: Meta-
Data

System information associated with each file:
●  Name – only information kept in human-readable form.
●  Type – needed for systems that support different types.
●  Location – pointer to file location on device/disk.
●  Size – current file size.
●  Protection bits – controls who can do reading, writing, executing.
●  Time, date, and user identification – data for protection, security, and

usage monitoring.
●  Special file?

»  Directory, Symbolic link… more about links shortly.
Meta-data is stored on disk:

»  Conceptually: meta-data can be stored as an array on disk (e.g., directory)

{atlas:maria:143} ls -lig ch11.ppt
231343 -rw-r--r-- 1 profs 815616 Nov 4 2002 ch11.ppt

Maria Hybinette, UGA 6

Preview: File System Expanded

895690 �.�

288767 �..�

287243 �maria.html�

287259 �gunnar.txt�

i-node i-node … 895690

BB SB i-list directory data directory data data data data

Map into the memory
Of the physical storage

device

Maria Hybinette, UGA 7

Focus: File I/O Implementation
●  Create a file:

»  Find space in the file system, and add a directory entry.
●  Write in a file:

»  System call specifying name & information to be written.
–  Given name, system searches directory structure to find file.

System keeps write pointer to the location where next write
occurs, updating as writes are performed. Update meta-data.

●  Read a file:
»  System call specifying name of file & where in memory to

stick contents. Name is used to find file, and a read pointer is
kept to point to next read position. (can combine write & read
to current file position pointer). Update meta-data.

Thought Questions: How should files be accessed on
read() and write()? How can we reading/
searching directory on every read/write access?

Maria Hybinette, UGA 8

●  Cache open file descriptors.
»  HINT: we have file descriptors in UNIX, there is a reason

for this! It just must be.

●  How do we do this procedurally?

Maria Hybinette, UGA 9

open(): Opening Files
●  Observation: Expensive to access files with full pathnames

»  On every read/write operation:

–  Traverse directory structure
–  Check access permissions
\

●  Idea!: Separate open() before first access.
»  User specifies mode: read and/or write
»  Search directories once for filename and check permissions
»  Diving in:

–  Copy relevant meta-data to system wide open file table in
memory (all open files, system wide)

»  Return index in open file table to process (file descriptor)
»  Process uses file descriptor to read/write to file

●  Multi-process support: via a separate per-process-open file table
where each process maintains

»  Current file position in file (offset for read/write)
»  Open mode Maria Hybinette, UGA 10

Multi-Process (User) File Access Support

● Two level of internal tables:
» Per-process open file table

–  Tracks all files open by a process (process-
centric information):

●  Current position pointer (on read/write) where did it
read/write last, and access Rights

●  Indexes into the system-wide table for other sytem
wide info.

» System-wide open file table
–  Process Independent information

●  Location of file on disk
●  Access dates, file size
●  File open count (# processes accessing file)

»  No one points to it, delete the entry (not cache anymore)

Maria Hybinette, UGA 11

Mechanics: Accessing Files
 (Steps via open())

1.  Search directory structure
(part may be cached in
memory)

2.  Get meta-data, copy (if
needed) into system-wide
open file table

3.  Adjust count of #processes
that have file open in the
system wide table.

4.  Entry made in per-process
open file table, w/ pointer
to system wide table

5.  Return pointer to entry in
per-process file table to
application

open(*filename)!

user space kernel space disk space

‘in-core’ directory structure file meta-data

directory structure

read(fd)!
system-wide

open file table
per-process

open file table

file data blocks

file meta data

user space kernel space disk space

Maria Hybinette, UGA 12

File Descriptor

●  POSIX it is an integer of type int
»  0 for standard input (stdin)
»  1 for standard output (stdout)
»  2 for standard error (stderr)
»  These are actually shell attributes, so higher level than

the “kernel”
»  POSIX standard should uses STDIN_FILENO,

STDOUT_FILE_NO, and STDERR_FILE_NO.

●  Index to an entry in �kernel�-resident data
structure called the file descriptor table
containing all open files.

Maria Hybinette, UGA 13

File Descriptor Table

Big Picture

Program

fd 0
fd 1
fd 2
fd 3

File status flags

Offset

v-node -> inode

File Table Entry in

out

err

http://en.wikipedia.org/wiki/inode
Maria Hybinette, UGA 14

Preview: Redirection <, >, <<

●  Shell gives you 3 file
descriptors, 0-2

●  You can get more
(via open)

●  You can copy file
descriptors
(duplicate)

●  Initially 0-2 goes to
the terminal (display
-output, keyboard –
input)

Maria Hybinette, UGA 15

Redirection of file descriptors

●  When you run a command at the
shell prompt (1) it creates a new
process that inherits the file
descriptors of the parent, and (2)
then executes the command that
typed.

●  Redirect standard output to a file
(instead of terminal)

»  Command > file
»  Command 1> file [Command 2> file?]

●  Redirect standard input from a
file (instead of reading what you
typed).

»  Command < file
Maria Hybinette, UGA 16

Redirection of file descriptors

●  Redirect standard output and
error

»  Command &> file {bash}
»  Command > file 2>&1

–  Stdout goes to file, then
–  2>&1 : duplicates file descriptor

2 to be a copy of file descriptor
1

–  So they now both goes to the
file

●  Order of redirection matters
»  Command 2>&1 > file

–  First copies stderr to go to same
place as stdout (a terminal)

–  Then moves stout to go to file

Maria Hybinette, UGA 17

Redirection of file descriptors

●  More on this later ..
●  Lets go back to reading an writing.

Maria Hybinette, UGA 18

What we got so far …

!
●  path – is the file name (path)
●  oflag – is formed by ORing together one or more of

the following constants from the <fcntl.h> header.
●  And then we can read and write …
●  Example Application for both read and write

» Copying a file does both!

#include <fcntl.h> ! !/* for open oflags */!
#include <unistd.h> !/* for read, and write */!
!
int open(const char *path, int oflag, ... /* mode_t mode */);!
int read(int fd, char *buf, unsigned nbytes); !

! ! ! !/* 0 if EOF, -1 error, o/w nbytes*/!
ssize_t write(int fd, const void *buf, size_t nbytes);!

Maria Hybinette, UGA 19

OR’ing FLAGS

●  OR’ing:
»  O_WRONLY | O_TRUNC | O_CREAT

●  Options are combined using bit-wise OR operator,
notice it is only one single |, the function is that it
OR’s a BIT MASK together (accumulates the 1 bits)

Maria Hybinette, UGA 20

read/write and efficiency

●  Evaluated by copyfile that reads from one file and writes
to another:

while(nread = read(infile, buffer, BUFSIZE)
if(write(outfile, buffer, nread) < nread)
 close_return(outfile, infile);

●  Time Command
»  Granularity is a factor (50, 60, 100 ticks per second)
»  User time (not system call)
»  System time (kernel time, e.g. performing read() and writes())
»  Real time (elapsed time from start to completion)

●  What is an appropriate BUFSIZE?
»  1 byte?
»  512 bytes?
»  1000 bytes?

Maria Hybinette, UGA 21

read/write and efficiency (cont)

●  68,307 byte file on computer running SVR 4 UNIX with
block size 512

BUFSIZE Real Time User Time System Time
1 24.49 3.13 21.16

64 0.46 0.12 0.33
512 0.12 0.02 0.08

4096 0.07 0.00 0.05

8192 0.07 0.01 0.05

●  1 byte at a time bad performance
●  Best performance when BUFSIZE is a multiple of block size

»  Less system calls, reduces context switches

»  (check book for more current data – same principle)
Maria Hybinette, UGA 22

Where are we?
Ask the File Pointer

●  Both read() and write() changes the file
pointer.

●  The pointer is incremented by exactly the
number of bytes read or written.

●  lseek() - repositions the file pointer for
direct access to any part of the file

Maria Hybinette, UGA 23

write() - File Pointer of
whereareyou.sc!

#!
!!
/!
b!
i!
n!
/!
s!
h!
\n!

l!
s!

0!
1!
2!
3!
4!
5!
6!
7!
8!
9!
10!
11!

Original Position File Pointer
SEEK_CUR!
SEEK_SET!

SEEK_CUR!
SEEK_END!12!

#!/bin/sh\n ls!buffer:!

write(fd, buffer, 10)

●  Output file descriptor traditional 1 for standard output,
better to use constants defined in <unistd.h> :
STDOUT_FILENO.

Maria Hybinette, UGA 24

read() - File Pointer

#!
!!
/!
b!
i!
n!
/!
s!
h!
\n!

l!
s!

0!
1!
2!
3!
4!
5!
6!
7!
8!
9!
10!
11!

Original Position File Pointer
SEEK_CUR!
SEEK_SET!

SEEK_CUR!

SEEK_END!12!
#!/bin/sh!buffer:!

read(fd, buffer, 10)

buffer:!

●  Output file descriptor traditional 0 for standard output, better to
use constants defined in <unistd.h> : STDIN_FILENO.

●  Recall: Returns -1 on error, 0 end of file, or #bytes read
●  SEEK_SET relative to beginning of file, rest is self explanatory!

Maria Hybinette, UGA 25

lseek()

#include <sys/types.h>
#include <unistd.h>
long lseek(int fd, off_t offset, int whence);!
!
●  Repositions the offset of the file descriptor fd to argument offset.
●  Whence constants:

»  SEEK_SET (usually 0)
–  The file pointer is set to offset bytes from beginning of file (default 0)

»  SEEK_CUR (usually 1)
–  The file pointer is set to its current location plus offset bytes (default

1, may be negative).
»  SEEK_END (usually 2)

–  The file pointer is set to the size of the file plus offset bytes.
●  The return value is the new value of the pointer if the routine has

executed successfully (offset of 0 returns current value of pointer, -1
indicates an error, negative offsets possible for non-regular files)!

Maria Hybinette, UGA 26

lseek: Simple Examples

● Random access
»  Jump to any byte in a file

● Move to byte #16
» newpos = lseek(file_descriptor, 16, SEEK_SET);!

● Move forward 4 bytes
» newpos = lseek(file_descriptor, 4, SEEK_CUR);!

● Move to 8 bytes from the end
» newpos = lseek(file_descriptor, -8, SEEK_END);!

Maria Hybinette, UGA 27

lseek - Examples

#!
!!
/!
b!
i!
n!
/!
s!
h!
\n!

l!
s!

0!
1!
2!
3!
4!
5!
6!
7!
8!
9!
10!
11!

Original Position File Pointer

lseek(fd, 10, SEEK_SET)

SEEK_CUR!
SEEK_SET!

SEEK_CUR!

SEEK_END!

lseek(fd, -5, SEEK_CUR)
SEEK_CUR!

lseek(fd, 3, SEEK_CUR)
SEEK_CUR!

12!
lseek(fd, -1, SEEK_END)

●  lseek(fd, (off_t) -1, SEEK_END) - 1 bytes before the end of file
●  OK to specify a position beyond the end of a file - next write

creates a hole
●  Not OK to specify a position before the beginning of the file

SEEK_CUR!

Maria Hybinette, UGA 28

lseek - Hole (1) hole.c

a!
b!
c!

0!
1!
2!

SEEK_CUR!
SEEK_SET!

●  OK to specify a position beyond the end of a file - next write
creates a hole (see example, slightly different)

●  Not OK to specify a position before the beginning of the file

char buf1[] != �abc�;!
char buf2[] != �ABC�;!
!
int main()!
{!
if((fd = creat(�hole.txt�, FILE_MODE)) < 0)!

!perror(�creat error�);!
if(write(fd, buf1, 3) != 3)!

!perror(�buf1 write error�);!
if(lseek(fd, 6, SEEK_SET) == -1)!

!perror(�lseek error�);!
if(write(fd, buf2, 3) != 3)!

!perror(�buf2 write error�);!
}!

SEEK_CUR!

#include !<sys/types.h>!
#include !<sys/stat.h>!
#include !<fcntl.h>!
#include !<unistd.h>!
!
#define FILE MODE !
 (S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)
!
int fd;!

Maria Hybinette, UGA 29

lseek - Hole (2)

a!
b!
c!

0!
1!
2!
3!
4!
5!

SEEK_SET!

●  OK to specify a position beyond the end of a file - next write
creates a hole

●  Not OK to specify a position before the beginning of the file

char buf1[] != �abc�;!
char buf2[] != �ABC�;!
!
int main()!
{!
if((fd = creat(�hole.txt�, FILE_MODE)) < 0)!

!err_sys(�creat error�);!
if(write(fd, buf1, 3) != 3)!

!err_sys(�buf1 write error�);!
if(lseek(fd, 6, SEEK_SET) == -1)!

!err_sys(�lseek error�);!
if(write(fd, buf2, 3) != 3)!

!err_sys(�buf2 write error�);!
}!

SEEK_CUR!

SEEK_CUR!

Maria Hybinette, UGA 30

lseek - Hole (3)

a!
b!
c!

0!
1!
2!

\0!
\0!
\0!

3!
4!
5!

A!
B!
C!

6!
7!
8!

SEEK_SET!

SEEK_CUR!

●  subsequent write cause file to be extended
●  All bytes that have not been written are read back as 0.

!
char buf1[] != �abc�;!
char buf2[] != �ABC�;!
!
int main()!
{!
if((fd = creat(�hole.txt�, FILE_MODE)) < 0)!

!err_sys(�creat error�);!
if(write(fd, buf1, 3) != 3)!

!err_sys(�buf1 write error�);!
if(lseek(fd, 6, SEEK_SET) == -1)!

!err_sys(�lseek error�);!
if(write(fd, buf2, 3) != 3)!

!err_sys(�buf2 write error�);!
}!

SEEK_CUR!

{cinnamon:ingrid:35} od -c hole.txt!
0000000 a b c \0 \0 \0 A B C !
0000011!
od -a!
!

Maria Hybinette, UGA 31

File Control - via fcntl()!

#include <unistd.h> !
#include <fcntl.h>!
!
int fcntl(int fd, int cmd);!
int fcntl(int fd, int cmd, long arg);!
int fcntl(int fd, int cmd, struct lock *ldata)!
!

●  Performs operations on an open file, pertaining to the
fd, the file descriptor (changes properties of a file)

●  Performs a variety of functions instead of having a
single well-defined role (duplicates fd, gets info on
them, sets info on them).

●  Possible values of cmd is listed in fcntl.h
●  Third parameter and its type depends on cmd!

cmd is IMPORTANT!

!

Maria Hybinette, UGA 32

fcntl: cmd - get/set file status flags

●  F_GETFL
»  Returns the current file status flags as

set by open().
»  Access mode can be extracted from

AND’ing the return value
–  return_value & O_ACCMODE

●  Gets the access mode out of the string,
so: it returns e.g. O_WRONLY

●  F_SETFL
»  Sets the file status flags associated

with fd.
»  Only O_APPEND, O_NONBLOCK and

O_ASYNC may be set.
»  Other flags are unaffected

File Status Flag Description
O_RDONLY open for reading only
O_WRONLY open for writing only
O_RDWR open for read & write
O_APPEND append on each write
O_NONBLOCK Non blocking mode
O_SYNC wait for writes to finish
O_ASYNC asynchronous I/O

Maria Hybinette, UGA 33

fcntl: cmd - get/set file status flags

●  Example 1: takes a single command line argument that
specifies a file descriptor and prints out a descriptor of the
file flags for that descriptor (p 85 Steven’s)

{saffron} a.out 0 < /dev/tty # stdin file descriptor
read only

{saffron} a.out 1 > tmp.foo # stdout file descriptor

write only

{saffron} a.out 2 2>>temp.txt # stderr file descriptor
write only, append

Maria Hybinette, UGA 34

accmode.c
Example 1: fcntl - F_GETFL

#include <stdio.h>!
#include <sys/types.h>!
#include <fcntl.h>!
#include <stdlib.h> /* exit() */!
!
int main(int argc, char *argv[])!
!{!
!int accmode, val;!

!
 !if(argc != 2) !
! !{!

 !fprintf(stderr, "usage: %s <descriptor#>“, argv[0]);!
 !exit(1);!
 !}!
!
!if((val = fcntl(atoi(argv[1]), F_GETFL, 0)) < 0) !
! !{!

 perror("fcntl error for fd“);!
 exit(1);!
 !}!
!
!accmode = val & O_ACCMODE;!

Maria Hybinette, UGA 35

if(accmode == O_RDONLY)
 printf("read only“);

 else if(accmode == O_WRONLY)
 printf("write only“);

 else if(accmode == O_RDWR)
 printf("read write“);

 else
 {

 fprintf(stderr, "unknown access mode“);
 exit(1);

 }

 if(val & O_APPEND)
 printf(", append");

 if(val & O_NONBLOCK)
 printf(", nonblocking");

 if(val & O_SYNC)
 printf(", synchronous writes");

 putchar('\n‘);
 exit(0);
}

Maria Hybinette, UGA 36

fcntl - FGET_FL & FSET_FL

#include <stdio.h>
#include <sys/types.h>
#include <fcntl.h>

/* flags are file status flags to turn on */
void set_fl(int fd, int flags)
 {
 int val;

 if((val = fcntl(fd, F_GETFL, 0)) < 0)
 {

 perror("fcntl F_GETFL error“);
 exit(1);
 }
 val |= flags; /* turn on flags */
 if(fcntl(fd, F_SETFL, val) < 0)
 {

 perror("fcntl F_SETFL error“);
 exit(1);
 }
 }

Maria Hybinette, UGA 37

errno and perror()

●  Unix provides a globally accessible integer variable
that contains an error code number

●  Error variable: errno – errno.h
●  perror(� a string �): a library routine, not a system call

{atlas} more /usr/include/sys/*errno.h!
.!
.!
.!
!
#define EPERM !1 /* Operation not permitted */!
#define ENOENT !2 /* No such file or directory */!
#define ESRCH !3 /* No such process */!
#define EINTR !4 /* Interrupted system call */!
#define EIO !5 /* I/O error */!
#define ENXIO !6 /* No such device or address */!
.!
.!
.!

Maria Hybinette, UGA 38

#include <fcntl.h>!
#include <unistd.h>!
#include <stdio.h>!
!
int main()!
 {!
 extern int errno;!
 int fd;!
!
 /* open file �ughugh" for reading */!
 if((fd = open(�ughugh.txt", O_RDONLY)) == -1)!
 {!
 fprintf(stderr, "Error %d\n", errno);!
 perror(�ugh");!
 }!
 } /* end main */!
!
{saffron:ingrid:57} gcc ugga.c -o ugga!
{saffron:ingrid:57} ls!
ugga ugga.c!
{saffron:ingrid:57} ./ugga!
Error 2!
ugh: No such file or directory!

Maria Hybinette, UGA 39

Stepping Back: Why use system calls
read()/write()/open()/exit()… ?

●  Maximize performance
»  IF you know exactly what you are doing
»  No additional hidden overhead from stdio

●  Control exactly what is written/read at what
times

●  File access system calls form basis for all
input and output by UNIX programs

Maria Hybinette, UGA 40

Alternatives: Library Calls:
Standard I/O Library

#include <stdio.h>

●  System calls are hard to program

»  low-level, thinks of data only in a sequence of bytes
–  file descriptors (recall it is an index to a kernel

resident data structure)
–  stream of bytes

»  Less layers (more efficient, but harder to use)

●  �Higher-Level� library
»  programming-friendly interface"
»  automatic buffering "

Maria Hybinette, UGA 41

Library: FILE *

●  FILE * construct instead of file descriptors

–  a pointer or address to the top of an additional
interface and management layer (the stdio file stream
interface), which is stacked on top of an actual low
level file descriptor on Unix-like systems."

Maria Hybinette, UGA 42

The Standard IO Library

●  fopen,!
●  fclose, !
●  printf, fprintf, sprintf, scanf,
fscanf, getc, putc, gets, fgets,
etc.!

●  #include <stdio.h>!

Maria Hybinette, UGA 43

Dwell Deeper: File Concept - An
Abstract Data Type

●  File Types
●  File Operations
●  File Attributes
●  Internal File Structure

Maria Hybinette, UGA 44

File Types

●  Regular files (text or binary)
●  Directory files (names and pointers of files)
●  Character special files (used by certain devices)
●  Block special files (typically disk devices)
●  FIFOs (used for interprocess communication)
●  Sockets (usually for network communication)
●  Symbolic Links (points to another file)

Maria Hybinette, UGA 45

File Mix on a Typical System

●  File Type Count Percentage
regular file 30,369 91.7%
directory 1,901 5.7
symbolic link 416 1.3
char special 373 1.1
block special 61 0.2
socket 5 0.0
FIFO 1 0.0

Maria Hybinette, UGA 46

File Operations

●  Creating a file
●  Writing a file
●  Reading a file
●  Repositioning within a file
●  Deleting a file
●  Truncating a file

Maria Hybinette, UGA 47

Files Attributes: Meta-Data

System information on disk associated with each file:
●  Name – only information kept in human-readable form.
●  Type – needed for systems that support different types.
●  Location – pointer to file location on device/disk.
●  Size – current file size.
●  Protection bits – controls who can do reading, writing, executing.
●  Time, date, and user identification – data for protection, security, and

usage monitoring.
●  Special file?

»  Directory, Symbolic link, …
»  Information about files are kept in the directory structure, which is maintained

on the disk (later)

{atlas:maria:143} ls -lig ch11.ppt
231343 -rw-r--r-- 1 profs 815616 Nov 4 2002 ch11.ppt!

Maria Hybinette, UGA 48

Obtaining File Information

● stat(), fstat(), lstat()
● Retrieve all sorts of information about

a file
» Which device it is stored on
» Don�t need access right to the file, but need search

rights to directories in path leading to file
»  Information:

– Ownership/Permissions of that file,
– Number of links
–  Size of the file
– Date/Time of last modification and access
–  Ideal block size for I/O to this file

Great for analyzing files.

Maria Hybinette, UGA 49

stat, fstat, lstat

#include <sys/stat.h>!
#include <unistd.h>!
int stat(const char *file_name, !struct stat *buf);!
int fstat(int fd, ! ! !struct stat *buf);!
int lstat(const char *file_name,!struct stat *buf);

● stat(), fstat()
»  Stats the file pointed to by file_name or by fd and fills in

buf.

● lstat()
»  Same as stat() except that the symbolic link is stated

itself (i.e. do not follow the link).

Maria Hybinette, UGA 50

struct stat

struct stat!
!{  
dev_t !st_dev; !/* device num. */  
dev_t !st_rdev; /* device # special files */  
ino_t !st_ino; !/* i-node num. */  
mode_t !st_mode; !/* file type, perms ! */  
nlink_t !st_nlink; !/* num. of links */  
uid_t !st_uid; !/* uid of owner */  
gid_t !st_gid; !/* group-id of owner */  
off_t !st_size; !/* size in bytes */  
time_t !st_atime; !/* last access time */  
time_t !st_mtime; !/* last mod. time */  
time_t !st_ctime; !/* last stat chg time */  
long !st_blksize;!/* best I/O block size */  
long !st_blocks; !/* # of 512 blocks used */  
}

Maria Hybinette, UGA 51

st_dev & st_rdev

● st_dev holds the device number of the file
system where the file is located:

»  usually a hard disk

● st_rdev holds the device number for a special
file.

»  A special file is used to describe a device (peripheral) attached
to the machine:

»  CD drives, keyboard, hard disk, microphone, etc.
»  Special files are usually stored in /dev

Maria Hybinette, UGA 52

st_mode

●  File types (regular file, directory, socket, …)
●  File permissions

Maria Hybinette, UGA 53

st_mode: Getting the Type Information

●  AND the st_mode field with S_IFMT to get the
type bits.

●  then test the result against:
» S_IFREG Regular file
» S_IFDIR Directory
» S_IFSOCK Socket
»  etc.

Maria Hybinette, UGA 54

Example

struct stat sbuf;
 :
if(stat(file, &sbuf) == 0)
 if((sbuf.st_mode & S_IFMT) == S_IFDIR)
 printf(�A directory\n�);

Maria Hybinette, UGA 55

Type Info. Macros

● Modern UNIX systems include test macros
in <sys/stat.h> and <linux/stat.h>:
» S_ISREG() regular file
» S_ISDIR() directory file
» S_ISCHR() char. special file
» S_ISBLK() block special file
» S_ISFIFO() pipe or FIFO
» S_ISLNK() symbolic link
» S_ISSOCK() socket

Maria Hybinette, UGA 56

Type Info. Macros: Example

struct stat sbuf;
 :

 if(stat(file, &sbuf) == 0)
 {
 if(S_ISREG(sbuf.st_mode))
 printf(�A regular file\n�);
 else if(S_ISDIR(sbuf.st_mode))
 printf(�A directory\n�);
 else ...
 }

Maria Hybinette, UGA 57

st_mode: Permission Code

●  Determines who can access and manipulate a directory or file
●  Mode of access: read, write, execute
●  Three classes of users (3 fields of 3 bits each) RWX

 a) owner access 7 ⇒ 1 1 1

 b) group access 6 ⇒ 1 1 0

 c) public access 1 ⇒ 0 0 1

 drw-r—r--- maria profs 512 May 15 22:15 hello.txt

●  Group contains a set of users

chgrp mgroup game

owner"group" public"

chmod" 761"game"

Maria Hybinette, UGA 58

chmod shell command
chmod [-options] modes file/directory!
!
●  options ⇒ option: -R!
●  modes:

»  Who? u|g|o|a
»  Operator? =|+|-
»  Permissions? r|w|x

!
!Example:!
! !chmod u=rwx,g+w,o-w maria.txt!
!

»  Octal - one octal per user, representing 3 bit positions
!!
!

chmod 755 file_name !

r w x
4 2 1

r w x
4 - 1

r w x
4 - 1

user others group

Maria Hybinette, UGA 59

chmod and fchmod

#include <sys/types.h>!
#include <sys/stat.h>!
!
int chmod(const char *path, mode_t mode) ;!
int fchmod(int fd, mode_t mode);!
!
●  Change permissions of a file.
●  The mode of the file given by path or referenced by fd is

changed.
●  mode is specified by OR’ing the following.

–  S_ISUID, S_ISGID, S_ISVTX, S_I{R,W,X}{USR,GRP,OTH}
●  Effective uid of the process must be zero (superuser) or must

match the owner of the file.
●  On success, zero is returned. On error, -1 is returned

Maria Hybinette, UGA 60

chmod example

●  Modify permission on files foo (666) and bar (600)
{atlas} ls -l foo bar!
-rw------- 1 maria !0 Nov 15 !15:43 !bar!
-rw-rw-rw- 1 maria !0 Nov 15 !15:43 !foo!
!

●  So that new state is!
{atlas} ls -l foo bar!
-rw-r--r-- 1 maria !0 Nov 15 !15:43 !bar!
-rw-rwSrw- 1 maria !0 Nov 15 !15:43 !foo!
!

●  Group execute is listed as �S� to set Group ID
!

Maria Hybinette, UGA 61

Example: chmod()
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>

int main(void)
 {

 struct stat statbuf;

 /* turn on set-group-ID and turn off group-execute */
 if(stat("foo", &statbuf) < 0)
 {

 perror("stat error for foo“);
 exit(1);
 }
 if(chmod("foo", (statbuf.st_mode & ~S_IXGRP) | S_ISGID) < 0)
 {

 perror("chmod error for foo");
 exit(1);
 }

Maria Hybinette, UGA 62

/* set absolute mode to "rw-r--r--" */
if(chmod("bar", S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH) < 0)
 {

 perror("chmod error for bar");
 exit(1);
 }
 exit(0);
 }

Maria Hybinette, UGA 63

chown, fchown, lchown

#include <sys/types.h>!
#include <unistd.h>!
int chown(const char *path, uid_t owner, gid_t group);!
int fchown(int fd, uid_t owner, gid_t group);!
int lchown(const char *path, uid_t owner, gid_t group);!
!

●  Change user ID of a file and the group ID of a file.
●  Only the superuser may change the owner of a file.
●  The owner of a file may change the group of the file to

any group of which that owner is a member.
●  When the owner or group of an executable file are

changed by a non-superuser, the S_ISUID and
S_ISGID mode bits are cleared.

Maria Hybinette, UGA 64

st_uid: Users and Ownership: /etc/passwd

●  Every file is owned by one of the system�s users – identity is
represented by the user-id (UID) of owner (st_uid in stat)

●  Password file associated UID with system users.
maria:x:65:20:M. Hybinette:/home/maria:/bin/ksh

login name

[encrypted password]
user ID

group ID
�real� name

command interpreter

home directory

Maria Hybinette, UGA 65

/etc/group

●  Information about system groups
faculty:x:23:maria,eileen,dkl

[encrypted group password]

group ID
list of group members

group name

Maria Hybinette, UGA 66

Real uids

●  The uid of the user who started the program is used as its
real uid.

●  The real uid affects what the program can do (e.g. create,
delete files).

●  For example, the uid of /usr/bin/vi is root (it resides in /
usr/bin/):
{atlas:maria:371} ls -l /usr/bin/vi
-r-xr-xr-x 5 root bin 227828 Jun 19 2002 /usr/bin/vi*

●  But when I use vi, its real uid is maria (not **root), so I

can only edit my files.

●  Every file has an owner and a group owner. The owner is
specified by the st_uid member of the stat structure
that we will talked about earlier.

**root is a special user who can modify every file in the system

Maria Hybinette, UGA 67

Effective UID

Hypothetical Example (and why effective uids was
introduced in the first place).

●  Scenario: Passwords used to be stored in /etc/

passwd file that we saw earlier. This file is owned by the
user root.

●  Suppose we want to change our password.
»  Question: why not use vi and change the file directly?

–  file /etc/passd
»  Problem: only root can change the file
»  Solution: we can contact root, then ask root to modify our

password in the file.
»  Command/program called /usr/bin/passwd that changes a file

called /etc/passwd (one is an executatable program and the
other is a file)

Maria Hybinette, UGA 68

Effective uids

●  Normally executing program�s effective uid is the
same as the real uid, however sometimes a
process may change to use the owner�s ID of a
file/program.

»  the uid of the program owner
»  e.g. the passwd program changes to use its effective uid (root)

so that it can edit the /etc/passwd file

●  The process determines its effective uid by
looking at the file�s mode flag (st_mode)

●  This feature is used by many system tools, such
as logging programs.

Maria Hybinette, UGA 69

Real and Effective Group-ids

●  There are also real and effective group-ids.

●  Usually a program uses the real group-id
(i.e. the group-id of the user).

●  Sometimes useful to use effective group-id
(i.e. group-id of program owner):

»  e.g. software shared across teams

Maria Hybinette, UGA 70

Extra File Permissions

●  Octal Value Meaning
 04000 Set user-id on execution.

 Symbolic: --s --- ---

 02000 Set group-id on execution.

 Symbolic: --- --s ---

 01000 Save-text-image (sticky bit)

 Symbolic: --- --- --t

●  These specify that a program should use the effective
user/group id during execution.

●  For example:
»  $ ls -alt /usr/bin/passwd
-rwsr-xr-x 1 root root 25692 May 24...

Maria Hybinette, UGA 71

Sticky Bit

●  Octal Meaning
01000 Save text image on
execution.

 Symbolic: --- --- --t

●  This specifies that the program code should
stay resident in memory after termination.

»  this makes the start-up of the next execution faster

●  Obsolete due to virtual memory.

Maria Hybinette, UGA 72

st_mode: Permissions

●  This field contains type and permissions (12
lower bits) of file in bit format.

●  It is extracted by AND-ing the value stored
there with various constants

»  see man stat
»  also <sys/stat.h> and <linux/stat.h>
»  some data structures are in <bits/stat.h>

Maria Hybinette, UGA 73

Getting Permission Information

●  AND the st_mode field with one of the
following masks and test for non-zero:
»  S_IRUSR 0400 user read
S_IWUSR 0200 user write
S_IXUSR 0100 user execute

»  S_IRGRP 0040 group read
S_IWGRP 0020 group write
S_IXGRP 0010 group execute

»  S_IROTH 0004 other read
S_IWOTH 0002 other write
S_IXOTH 0001 other execute

●  <sys/stat.h>

Maria Hybinette, UGA 74

Getting Permission Information

●  AND the st_mode field with one of the
following masks and test for non-zero:
»  S_IRUSR 0400 user read
S_IWUSR 0200 user write
S_IXUSR 0100 user execute

»  S_IRGRP 0040 group read
S_IWGRP 0020 group write
S_IXGRP 0010 group execute

»  S_IROTH 0004 other read
S_IWOTH 0002 other write
S_IXOTH 0001 other execute

●  <sys/stat.h>

Maria Hybinette, UGA 75

Example

●  struct stat sbuf;
 :

printf(�Permissions: �);
if((sbuf.st_mode & S_IRUSR) != 0)
 printf(�user read, �);
if((sbuf.st_mode & S_IWUSR) != 0)
 printf(�user write, �);
 :

●  Or use octal values, which are easy to combine:

 if((sbuf.st_mode & 0444) != 0)
 printf(�readable by everyone\n�);

Maria Hybinette, UGA 76

st_mode: Getting Mode Information

● AND the st_mode field with one of the
following masks and test for non-zero:
» S_ISUID set-user-id bit is set
» S_ISGID set-group-id bit is set
» S_ISVTX sticky bit is set

● Example:
 if((sbuf.st_mode & S_ISUID) != 0)
 printf(�set-user-id bit is set\n�);

Maria Hybinette, UGA 77

The superuser

●  Most system admin. tasks can only be done
by the superuser (also called the root user)

●  Superuser
»  has access to all files/directories on the system
»  can override permissions
»  owner of most system files

●  Shell command: su <username>
»  Set current user to superuser or another user with proper

password access

Maria Hybinette, UGA 78

User Mask: umask

●  Unix allows �masks� to be created to set permissions
for �newly-created� directories and files.

●  The umask command automatically sets the
permissions when the user creates directories and
files (umask stands for �user mask�).

●  Prevents permissions from being accidentally turned
on (hides permissions that are available).

»  Disables if setting stuff

●  Set the bits of the umask to permissions you want to
mask out of the file permissions.

●  This process is useful, since user may sometimes
forget to change the permissions of newly-created files
or directories.

fd = open(path, O_CREAT, mode) ⇒
 fd = open(path O_CREAT, (~umask) & mode)

Maria Hybinette, UGA 79

umask (1)

●  Defaults (executable must be manually set - after
they are created)
 File Type Default Mode
 Non-executable files 666
 Directories 777

From this initial mode, Unix subtracts the value of
the umask.

mask Directory (777) File (666)

0 7 (rwx) 6 (rw-)
1 6 (rw-) 6 (rw-)
2 5 (r-x) 4 (r--)
3 4 (r--) 4 (r--)
4 3 (-wx) 2 (-w-)
5 2 (-w-) 2 (-w-)
6 1 (--x) 0 (---)
7 0 (---) 0 (---)

Maria Hybinette, UGA 80

umask: Calculations (2)

●  If you want a file permission of 644 on a regular file, the
umask would need to be 022 (turn of �write� permissions
for group and other).
 Default Mode 666
 umask -022
 New Allowable File Mode 644

●  Bit level: new_mask = mode & ~umask (~ takes

complement, i.e. flips 0�s to 1�s and flips 1�s to 0�s).
 umask = 000010010 = ----w--w = 0022

 ~umask = 111101101
 (default) mode = 110110110 = rw-rw-rw = 0666
 new_mask = 110010010 = rw-r--r- = 0644

Maria Hybinette, UGA 81

umask (3)

●  Common Settings:

mask Directory (777) File (666)

000 (public) 777 (rwx rwx rwx) 666 (rw- rw- rw-)

011 (public) 766 (rwx rw- rw-) 666 (rw- rw- rw-)

022 (write protected) 755 (rwx r-x r-x) 644 (rw- r-- r--)

007 (project private) 770 (rwx rwx ---) 660 (rw- rw- ---)

077 (private) 700 (rwx --- ---) 600 (rw- --- ---)

Maria Hybinette, UGA 82

umask

#include <sys/types.h>!
#include <sys/stat.h>!
mode_t !umask(mode_t mask);!

●  Set file mode creation mask and returns the old
value. mask is formed as the bitwise OR of any
of the nine file permission constants from <sys/
stat.h>: S_IRUSR, S_IWUSR, S_IXUSR, …

●  There is no error return
●  When creating a file, permissions are turned off

if the corresponding bits in mask are set.
●  Return value

–  This system call always succeeds and the
previous value of the mask is returned.

–  “umask” shell command

Maria Hybinette, UGA 83

Example: umask

int main(void)!
!{!
!umask(0); ! ! ! ! !/* --- --- --- */!

!
!if(creat("foo", S_IRUSR|S_IWUSR|S_IRGRP|S_IWGRP|S_IROTH|S_IWOTH) < 0) !!
! !{ ! /* rw- rw- rw- **/!

 !perror("creat error for foo");!
! !exit(1);!

 !}!
!
 umask(S_IRGRP|S_IWGRP|S_IROTH|S_IWOTH); !/* --- rw- rw- */!
 if(creat("bar", S_IRUSR|S_IWUSR|S_IRGRP|S_IWGRP|S_IROTH|S_IWOTH) < 0)!
! !{ ! /* rw- rw- rw- */ !!

 perror("creat error for bar");!
 exit(1);!
 !}!
 !exit(0);!
!}!

{saffron:maria:68} ls -ltra foo bar!
-rw-rw-rw- !1 maria faculty 0 Apr 1 20:35 foo!
-rw------- 1 maria faculty 0 Apr 1 20:35 bar!

