
Maria Hybinette, UGA 1

Unix System Programming

 Files

Maria Hybinette, UGA 2

Outline

Last Week:

! UNIX history/interface

! The PC revolution

! UNIX overview - process, shell, file
» system calls vs library routines

! Basic file I/O - open(), close(), read(), write(), lseek()

! Standard file I/O library - fopen(), fclose(), …

This Week:

! UNIX history - more on the key players

! Efficiency read/write

! The File

! File pointer

! File control/access

Maria Hybinette, UGA 3

UNIX Key Players/Time Line

! 1969 Ken Thompson (Unix OS) - ARPANET

! 1971 Dennis Ritchie creates "C" language (1973 UNIX-C)

! 1977 Bill Joy (BSD released, TCP/IP-1980, open source,
Internet backbone, Sun Microsystem in 1982 - NFS)

! 1984 Richard Stallman (RMS, emacs, GPL, GNU, HURD-91)

! 1985 Steve Jobs (NeXT-Mach, Mac OS X - 2001)

! 1985 Avie Tevanian (CMU/Mach)

! 1991 Linus Torvalds (Linux, based on Minix-Tannenbaum)

Maria Hybinette, UGA 4

read/write and efficiency

! Evaluated by copyfile that reads from one file and writes
to another:

while(nread = read(infile, buffer, BUFSIZE)

if(write(outfile, buffer, nread) < nread)

close_return(outfile, infile);

! Time Command
» Granularity is a factor (50, 60, 100 ticks per second)

» User time (not system call)

» System time (kernel time, e.g. performing read() and writes())

» Real time (elapsed time from start to completion)

! What is an appropriate BUFSIZE?
» 1 byte?

» 512 bytes?

» 1000 bytes?

Maria Hybinette, UGA 5

read/write and efficiency (cont)

! 68,307 byte file on computer running SVR 4 UNIX with
block size 512

0.050.010.078192

0.050.000.074096

0.080.020.12512

0.330.120.4664

21.163.1324.491

System TimeUser TimeReal TimeBUFSIZE

! 1 byte at a time bad performance

! Best performance when BUFSIZE is a multiple of block size
» Less system calls, reduces context switches

Maria Hybinette, UGA 6

File Pointer

! Both read() and write() changes the file
pointer.

! The pointer is incremented by exactly the
number of bytes read or written.

! lseek() - repositions the file pointer for
direct access to any part of the file

Maria Hybinette, UGA 7

write() - File Pointer

#
!
/
b
i
n
/
s
h
\n

l
s

0

1

2

3

4

5

6

7

8

9

10

11

Original Position File Pointer
SEEK_CUR
SEEK_SET

SEEK_CUR
SEEK_END12

#!/bin/sh\n lsbuffer:

write(fd, buffer, 10)

! Output file descriptor traditional 1 for standard output,
better to use constants defined in <unistd.h> :
STDOUT_FILENO.

Maria Hybinette, UGA 8

read() - File Pointer

#
!
/
b
i
n
/
s
h
\n

l
s

0

1

2

3

4

5

6

7

8

9

10

11

Original Position File Pointer
SEEK_CUR
SEEK_SET

SEEK_CUR

SEEK_END12

#!/bin/shbuffer:

read(fd, buffer, 10)

buffer:

! Output file descriptor traditional 0 for standard output, better to

use constants defined in <unistd.h> : STDIN_FILENO.

! Recall: Returns -1 on error, 0 end of file, or #bytes read

Maria Hybinette, UGA 9

lseek()

#include <sys/types.h>

#include <unistd.h>

long lseek(int fd, off_t offset, int whence);

! Repositions the offset of the file descriptor fd to argument offset.

! Whence constants:

» SEEK_SET (usually 0)

– The file pointer is set to offset bytes from beginning of file (default 0)

» SEEK_CUR (usually 1)

– The file pointer is set to its current location plus offset bytes (default
1, may be negative).

» SEEK_END (usually 2)

– The file pointer is set to the size of the file plus offset bytes.

! The return value is the new value of the pointer if the routine has
executed successfully (offset of 0 returns current value of pointer, -1
indicates an error, negative offsets possible for non-regular files)

Maria Hybinette, UGA 10

lseek: Simple Examples

!Random access
» Jump to any byte in a file

!Move to byte #16
» newpos = lseek(file_descriptor, 16, SEEK_SET);

!Move forward 4 bytes
» newpos = lseek(file_descriptor, 4, SEEK_CUR);

!Move to 8 bytes from the end
» newpos = lseek(file_descriptor, -8, SEEK_END);

Maria Hybinette, UGA 11

lseek - Examples

#
!
/
b
i
n
/
s
h
\n

l
s

0

1

2

3

4

5

6

7

8

9

10

11

Original Position File Pointer

lseek(fd, 10, SEEK_SET)

SEEK_CUR
SEEK_SET

SEEK_CUR

SEEK_END

lseek(fd, -5, SEEK_CUR)
SEEK_CUR

lseek(fd, 3, SEEK_CUR)
SEEK_CUR

12

lseek(fd, -1, SEEK_END)

! lseek(fd, (off_t) -1, SEEK_END) - 1 bytes before the end of file

! OK to specify a position beyond the end of a file - next write
creates a hole

! Not OK to specify a position before the beginning of the file

SEEK_CUR

Maria Hybinette, UGA 12

lseek - Hole (1)

a
b
c

0

1

2

SEEK_CUR
SEEK_SET

! OK to specify a position beyond the end of a file - next write
creates a hole

! Not OK to specify a position before the beginning of the file

char buf1[] = “abc”

char buf2[] = “ABC”

int main()

{

if((fd = creat(“hole.txt”, FILE_MODE)) < 0)

perror(“creat error”);

if(write(fd, buf1, 3) != 3)

perror(“buf1 write error”);

if(lseek(fd, 6, SEEK_SET) == -1)

perror(“lseek error”);

if(write(fd, buf2, 3) != 3)

perror(“buf2 write error”);

}

SEEK_CUR

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <unistd.h>

#define FILE MODE

 (S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)

int fd;

Maria Hybinette, UGA 13

lseek - Hole (2)

a
b
c

0

1

2

3

4

5

SEEK_SET

! OK to specify a position beyond the end of a file - next write
creates a hole

! Not OK to specify a position before the beginning of the file

char buf1[] = “abc”

char buf2[] = “ABC”

int main()

{

if((fd = creat(“hole.txt”, FILE_MODE)) < 0)

err_sys(“creat error”);

if(write(fd, buf1, 3) != 3)

err_sys(“buf1 write error”);

if(lseek(fd, 6, SEEK_SET) == -1)

err_sys(“lseek error”);

if(write(fd, buf2, 3) != 3)

err_sys(“buf2 write error”);

}

SEEK_CUR

SEEK_CUR

Maria Hybinette, UGA 14

lseek - Hole (3)

a
b
c

0

1

2

\0
\0
\0

3

4

5

A
B
C

6

7

8

SEEK_SET

SEEK_CUR

! subsequent write cause file to be extended

! All bytes that have not been written are read back as 0.

char buf1[] = “abc”

char buf2[] = “ABC”

int main()

{

if((fd = creat(“hole.txt”, FILE_MODE)) < 0)

err_sys(“creat error”);

if(write(fd, buf1, 3) != 3)

err_sys(“buf1 write error”);

if(lseek(fd, 6, SEEK_SET) == -1)

err_sys(“lseek error”);

if(write(fd, buf2, 3) != 3)

err_sys(“buf2 write error”);

}

SEEK_CUR

{cinnamon:ingrid:35} od -c hole.txt
0000000 a b c \0 \0 \0 A B C
0000011

Maria Hybinette, UGA 15

File Control - via fcntl()

#include <unistd.h>

#include <fcntl.h>

int fcntl(int fd, int cmd);

int fcntl(int fd, int cmd, long arg);

int fcntl(int fd, int cmd, struct lock *ldata)

! Performs operations on an open file, pertaining to the
fd, the file descriptor

! Performs a variety of functions instead of having a
single well-defined role

! Possible values of cmd is listed in fcntl.h

! Third parameter and its type depends on cmd

Maria Hybinette, UGA 16

fcntl: cmd - get/set file status flags

! F_GETFL
» Returns the current file status flags as

set by open().

» Access mode can be extracted from
AND’ing the return value

– return_value & O_ACCMODE
! e.g. O_WRONLY

! F_SETFL
» Sets the file status flags associated

with fd.

» Only O_APPEND, O_NONBLOCK and
O_ASYNC may be set.

» Other flags are unaffected

asynchronous I/OO_ASYNC

wait for writes to finishO_SYNC

Non blocking modeO_NONBLOCK

append on each writeO_APPEND

open for read & writeO_RDWR

open for writing onlyO_WRONLY

open for reading onlyO_RDONLY

DescriptionFile Status Flag

Maria Hybinette, UGA 17

fcntl: cmd - get/set file status flags

! Example: takes a single command line argument that

specifies a file descriptor and prints out a descriptor of

the file flags for that descriptor

{saffron} a.out 0 # stdin file descriptor

read only

{saffron} a.out 1 # stdout file descriptor

write only

{saffron} a.out 2 # stderr file descriptor

read write

Maria Hybinette, UGA 18

Example 1: fcntl - F_GETFL

#include <stdio.h>

#include <sys/types.h>

#include <fcntl.h>

int main(int argc, char *argv[])

{

int accmode, val;

 if(argc != 2)

{

 fprintf(stderr, "usage: a.out <descriptor#>“);

 exit(1);

 }

if((val = fcntl(atoi(argv[1]), F_GETFL, 0)) < 0)

{

 perror("fcntl error for fd“);

 exit(1);

 }

accmode = val & O_ACCMODE;

Maria Hybinette, UGA 19

if(accmode == O_RDONLY)

printf("read only“);

 else if(accmode == O_WRONLY)

printf("write only“);

 else if(accmode == O_RDWR)

printf("read write“);

 else

{

 fprintf(stderr, "unknown access mode“);

exit(1);

 }

 if(val & O_APPEND)

printf(", append");

 if(val & O_NONBLOCK)

printf(", nonblocking");

 if(val & O_SYNC)

printf(", synchronous writes");

 putchar('\n‘);

 exit(0);

}

Maria Hybinette, UGA 20

fcntl - FGET_FL & FSET_FL

#include <stdio.h>

#include <sys/types.h>

#include <fcntl.h>

/* flags are file status flags to turn on */

void set_fl(int fd, int flags)

{

int val;

if((val = fcntl(fd, F_GETFL, 0)) < 0)

{

 perror("fcntl F_GETFL error“);

 exit(1);

 }

val |= flags; /* turn on flags */

if(fcntl(fd, F_SETFL, val) < 0)

{

 perror("fcntl F_SETFL error“);

 exit(1);

 }

}

Maria Hybinette, UGA 21

errno and perror()

! Unix provides a globally accessible integer variable
that contains an error code number

! Error variable: errno – errno.h

! perror(“ a string “): a library routine, not a system call

{atlas} more /usr/include/sys/*errno.h
.
.
.

#define EPERM 1 /* Operation not permitted */
#define ENOENT 2 /* No such file or directory */
#define ESRCH 3 /* No such process */
#define EINTR 4 /* Interrupted system call */
#define EIO 5 /* I/O error */
#define ENXIO 6 /* No such device or address */
.
.
.

Maria Hybinette, UGA 22

#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>

int main()
 {
 extern int errno;
 int fd;

 /* open file ”ugh" for reading */
 if(fd = open(”ughugh", O_RDONLY) == -1)
 {
 fprintf(stderr, "Error %d\n", errno);
 perror(”ugh");
 }
 } /* end main */

{saffron:ingrid:57} gcc ugga.c -o ugga
{saffron:ingrid:57} ls
ugga ugga.c
{saffron:ingrid:57} ./ugga
Error 2
ugh: No such file or directory

Maria Hybinette, UGA 23

The Standard IO Library

! fopen,

! fclose,

! printf, fprintf, sprintf, scanf,
fscanf, getc, putc, gets, fgets,
etc.

! #include <stdio.h>

Maria Hybinette, UGA 24

Why use read()/write()

! Maximal performance
» IF you know exactly what you are doing

» No additional hidden overhead from stdio

! Control exactly what is written/read at what
times

Maria Hybinette, UGA 25

File Concept - An Abstract Data Type

! File Types

! File Operations

! File Attributes

! Internal File Structure

Maria Hybinette, UGA 26

File Types

! Regular files (text or binary)

! Directory files (names and pointers of files)

! Character special files (used by certain devices)

! Block special files (typically disk devices)

! FIFOs (used for interprocess communication)

! Sockets (usually for network communication)

! Symbolic Links (points to another file)

Maria Hybinette, UGA 27

File Mix on a Typical System

! File Type Count Percentage
regular file 30,369 91.7%
directory 1,901 5.7
symbolic link 416 1.3
char special 373 1.1
block special 61 0.2
socket 5 0.0
FIFO 1 0.0

Maria Hybinette, UGA 28

File Operations

! Creating a file

! Writing a file

! Reading a file

! Repositioning within a file

! Deleting a file

! Truncating a file

Maria Hybinette, UGA 29

Files Attributes: Meta-Data

System information on disk associated with each file:
! Name – only information kept in human-readable form.

! Type – needed for systems that support different types.

! Location – pointer to file location on device/disk.

! Size – current file size.

! Protection bits – controls who can do reading, writing, executing.

! Time, date, and user identification – data for protection, security, and
usage monitoring.

! Special file?
» Directory, Symbolic link, …

» Information about files are kept in the directory structure, which is maintained
on the disk (later)

{atlas:maria:143} ls -lig ch11.ppt

231343 -rw-r--r-- 1 profs 815616 Nov 4 2002 ch11.ppt

Maria Hybinette, UGA 30

Obtaining File Information

! stat(), fstat(), lstat()

!Retrieve all sorts of information about
a file

» Which device it is stored on

» Don’t need access right to the file, but need search
rights to directories in path leading to file

» Information:

– Ownership/Permissions of that file,

– Number of links

– Size of the file

– Date/Time of last modification and access

– Ideal block size for I/O to this file

Great for analyzing files.

Maria Hybinette, UGA 31

stat, fstat, lstat

#include <sys/stat.h>
#include <unistd.h>
int stat(const char *file_name, struct stat *buf);
int fstat(int fd, struct stat *buf);
int lstat(const char *file_name, struct stat *buf);

! stat(), fstat()
» Stats the file pointed to by file_name or by fd and fills in
buf.

! lstat()
» Same as stat() except that the symbolic link is stated

itself (i.e. do not follow the link).

Maria Hybinette, UGA 32

struct stat

struct stat

{
dev_t st_dev; /* device num. */
dev_t st_rdev; /* device # special files */
ino_t st_ino; /* i-node num. */
mode_t st_mode; /* file type, perms */
nlink_t st_nlink; /* num. of links */
uid_t st_uid; /* uid of owner */
gid_t st_gid; /* group-id of owner */
off_t st_size; /* size in bytes */
time_t st_atime; /* last access time */
time_t st_mtime; /* last mod. time */
time_t st_ctime; /* last stat chg time */
long st_blksize; /* best I/O block size */
long st_blocks; /* # of 512 blocks used */
}

Maria Hybinette, UGA 33

st_dev & st_rdev

! st_dev holds the device number of the file

system where the file is located:
» usually a hard disk

! st_rdev holds the device number for a special

file.
» A special file is used to describe a device (peripheral) attached

to the machine:

» CD drives, keyboard, hard disk, microphone, etc.

» Special files are usually stored in /dev

Maria Hybinette, UGA 34

st_mode

! File types (regular file, directory, socket, …)

! File permissions

Maria Hybinette, UGA 35

st_mode: Getting the Type Information

! AND the st_mode field with S_IFMT to get the
type bits.

! then test the result against:

» S_IFREG Regular file

» S_IFDIR Directory

» S_IFSOCK Socket

» etc.

Maria Hybinette, UGA 36

Example

struct stat sbuf;

:

if(stat(file, &sbuf) == 0

if((sbuf.st_mode & S_IFMT) == S_IFDIR)
 printf(“A directory\n”);

Maria Hybinette, UGA 37

Type Info. Macros

!Modern UNIX systems include test macros
in <sys/stat.h> and <linux/stat.h>:
» S_ISREG() regular file

» S_ISDIR() directory file

» S_ISCHR() char. special file

» S_ISBLK() block special file

» S_ISFIFO() pipe or FIFO

» S_ISLNK() symbolic link

» S_ISSOCK() socket

Maria Hybinette, UGA 38

Type Info. Macros: Example

struct stat sbuf;
:

 if(stat(file, &sbuf) == 0)

{
 if(S_ISREG(sbuf.st_mode))
 printf(“A regular file\n”);
 else if(S_ISDIR(sbuf.st_mode))
 printf(“A directory\n”);
 else ...
 }

Maria Hybinette, UGA 39

st_mode: Permission Code

! Determines who can access and manipulate a directory or file

! Mode of access: read, write, execute

! Three classes of users (3 fields of 3 bits each) RWX
a) owner access 7 ! 1 1 1

b) group access 6 ! 1 1 0

c) public access 1 ! 0 0 1

drw-r—r--- maria profs 512 May 15 22:15 hello.txt

! Group contains a set of users
chgrp mgroup game

owner group public

chmod 761 game

Maria Hybinette, UGA 40

chmod shell command

chmod [-options] modes file/directory

! options ! option: -R

! modes:
» Who? u|g|o|a

» Operator? =|+|-

» Permissions? r|w|x

Example:
chmod u=rwx,g+w,o-w maria.txt

» Octal - one octal per user, representing 3 bit positions

chmod 755 file_name

r w x

4 2 1

r w x

4 - 1

r w x

4 - 1

user othersgroup

Maria Hybinette, UGA 41

chmod and fchmod

#include <sys/types.h>
#include <sys/stat.h>

int chmod(const char *path, mode_t mode) ;
int fchmod(int fd, mode_t mode);

! Change permissions of a file.

! The mode of the file given by path or referenced by fd is
changed.

! mode is specified by OR’ing the following.

– S_ISUID, S_ISGID, S_ISVTX, S_I{R,W,X}{USR,GRP,OTH}

! Effective uid of the process must be zero (superuser) or must
match the owner of the file.

! On success, zero is returned. On error, -1 is returned

Maria Hybinette, UGA 42

chmod example

! Modify permission on files foo and bar

{atlas} ls -l foo bar

-rw------- 1 maria 0 Nov 15 15:43 bar

-rw-rw-rw- 1 maria 0 Nov 15 15:43 foo

! So that new state is

{atlas} ls -l foo bar

-rw-r--r-- 1 maria 0 Nov 15 15:43 bar

-rw-rwlrw- 1 maria 0 Nov 15 15:43 foo

! Group execute is listed as ‘l’ to signal mandatory locking

Maria Hybinette, UGA 43

Example: chmod()

#include <stdio.h>

#include <sys/types.h>

#include <sys/stat.h>

int main(void)

{

 struct stat statbuf;

 /* turn on set-group-ID and turn off group-execute */

 if(stat("foo", &statbuf) < 0)

{

 perror("stat error for foo“);

 exit(1);

 }

if(chmod("foo", (statbuf.st_mode & ~S_IXGRP) | S_ISGID) < 0)

{

 perror("chmod error for foo");

 exit(1);

 }
Maria Hybinette, UGA 44

/* set absolute mode to "rw-r--r--" */

if(chmod("bar", S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH) < 0)

{

 perror("chmod error for bar");

 exit(1);

 }

 exit(0);

}

Maria Hybinette, UGA 45

chown, fchown, lchown

#include <sys/types.h>
#include <unistd.h>
int chown(const char *path, uid_t owner, gid_t group);
int fchown(int fd, uid_t owner, gid_t group);
int lchown(const char *path, uid_t owner, gid_t group);

! Change user ID of a file and the group ID of a file.

! Only the superuser may change the owner of a file.

! The owner of a file may change the group of the file to
any group of which that owner is a member.

! When the owner or group of an executable file are
changed by a non-superuser, the S_ISUID and
S_ISGID mode bits are cleared.

Maria Hybinette, UGA 46

st_uid: Users and Ownership: /etc/passwd

! Every file is owned by one of the system’s users – identity is
represented by the user-id (UID) of owner (st_uid in stat)

! Password file associated UID with system users.

maria:x:65:20:M. Hybinette:/home/maria:/bin/ksh

login name

[encrypted password]

user ID

group ID

“real” name

command interpreter

home directory

Maria Hybinette, UGA 47

/etc/group

! Information about system groups

faculty:x:23:maria,eileen,dkl

[encrypted group password]

group ID

list of group members

group name

Maria Hybinette, UGA 48

Real uids

! The uid of the user who started the program is used as its
real uid.

! The real uid affects what the program can do (e.g. create,
delete files).

! For example, the uid of /usr/bin/vi is root:

» $ ls -alt /usr/bin/vi
lrwxrwxrwx 1 root root 20 Apr 13...

! But when I use vi, its real uid is maria (not root), so I
can only edit my files.

! Every file has an owner and a group owner. The owner is
specified by the st_uid member of the stat structure
that we will talk about shortly.

Maria Hybinette, UGA 49

Effective uids

! Normally executing program’s effective uid is the
same as the real uid, however sometimes a
process may change to use the owner’s ID of a
file/program.

» the uid of the program owner

» e.g. the passwd program changes to use its effective uid (root)
so that it can edit the /etc/passwd file

! The process determines its effective uid by
looking at the file’s mode flag (st_mode)

! This feature is used by many system tools, such
as logging programs.

Maria Hybinette, UGA 50

Real and Effective Group-ids

! There are also real and effective group-ids.

! Usually a program uses the real group-id
(i.e. the group-id of the user).

! Sometimes useful to use effective group-id
(i.e. group-id of program owner):

» e.g. software shared across teams

Maria Hybinette, UGA 51

Extra File Permissions

! Octal Value Meaning

04000 Set user-id on execution.

Symbolic: --s --- ---

02000 Set group-id on execution.

Symbolic: --- --s ---

01000 Save-text-image (sticky bit)
Symbolic: --- --- --t

! These specify that a program should use the effective
user/group id during execution.

! For example:
» $ ls -alt /usr/bin/passwd
-rwsr-xr-x 1 root root 25692 May 24...

Maria Hybinette, UGA 52

Sticky Bit

! Octal Meaning
01000 Save text image on
execution.

Symbolic: --- --- --t

! This specifies that the program code should
stay resident in memory after termination.

» this makes the start-up of the next execution faster

! Obsolete due to virtual memory.

Maria Hybinette, UGA 53

st_mode: Permissions

! This field contains type and permissions (12
lower bits) of file in bit format.

! It is extracted by AND-ing the value stored
there with various constants

» see man stat
» also <sys/stat.h> and <linux/stat.h>

» some data structures are in <bits/stat.h>

Maria Hybinette, UGA 54

Getting Permission Information

! AND the st_mode field with one of the
following masks and test for non-zero:
» S_IRUSR 0400 user read
S_IWUSR 0200 user write
S_IXUSR 0100 user execute

» S_IRGRP 0040 group read
S_IWGRP 0020 group write
S_IXGRP 0010 group execute

» S_IROTH 0004 other read
S_IWOTH 0002 other write
S_IXOTH 0001 other execute

! <sys/stat.h>

Maria Hybinette, UGA 55

Example

! struct stat sbuf;
:

printf(“Permissions: “);
if((sbuf.st_mode & S_IRUSR) != 0)
 printf(“user read, ”);
if((sbuf.st_mode & S_IWUSR) != 0)
 printf(“user write, ”);
 :

! Or use octal values, which are easy to combine:

if((sbuf.st_mode & 0444) != 0)
 printf(“readable by everyone\n”);

Maria Hybinette, UGA 56

st_mode: Getting Mode Information

! AND the st_mode field with one of the
following masks and test for non-zero:
»S_ISUID set-user-id bit is set

»S_ISGID set-group-id bit is set

»S_ISVTX sticky bit is set

!Example:
if((sbuf.st_mode & S_ISUID) != 0)
 printf(“set-user-id bit is set\n”);

Maria Hybinette, UGA 57

The superuser

! Most system admin. tasks can only be done
by the superuser (also called the root user)

! Superuser
» has access to all files/directories on the system

» can override permissions

» owner of most system files

! Shell command: su <username>
» Set current user to superuser or another user with proper

password access

Maria Hybinette, UGA 58

User Mask: umask

! Unix allows “masks” to be created to set permissions
for “newly-created” directories and files.

! The umask command automatically sets the
permissions when the user creates directories and
files (umask stands for “user mask”).

! Prevents permissions from being accidentally turned
on (hides permissions that are available).

! Set the bits of the umask to permissions you want to
mask out of the file permissions.

! This process is useful, since user may sometimes
forget to change the permissions of newly-created files
or directories.

fd = open(path, O_CREAT, mode) !

fd = open(path O_CREAT, (~umask) & mode)

Maria Hybinette, UGA 59

umask (1)

! Defaults (executable must be manually set - after
they are created)

File Type Default Mode

Non-executable files 666

Directories 777

From this initial mode, Unix subtracts the value of
the umask.

0 (---)0 (---)7

0 (---)1 (--x)6

2 (-w-)2 (-w-)5

2 (-w-)3 (-wx)4

4 (r--)4 (r--)3

4 (r--)5 (r-x)2

6 (rw-)6 (rw-)1

6 (rw-)7 (rwx)0

File (666)Directory (777)mask

Maria Hybinette, UGA 60

umask: Calculations (2)

! If you want a file permission of 644 on a regular file,
the umask would need to be 022.

Default Mode 666

umask -022

New Allowable File Mode 644

! Bit level: new_mask = mode & ~umask

 umask = 000110110 = ---rw-rw = 0066

 ~umask = 111001001

 mode = 110110110 = rw-rw-rw = 0666

 new_mask = 110000000 = rw------ = 0600

Maria Hybinette, UGA 61

umask (3)

! Common Settings:

600 (rw- --- ---)700 (rwx --- ---)077 (private)

660 (rw- rw- ---)770 (rwx rwx ---)007 (project private)

644 (rw- r-- r--)755 (rwx r-x r-x)022 (write protected)

666 (rw- rw- rw-)766 (rwx rw- rw-)011 (public)

666 (rw- rw- rw-)777 (rwx rwx rwx)000 (public)

File (666)Directory (777)mask

Maria Hybinette, UGA 62

umask

#include <sys/types.h>

#include <sys/stat.h>

mode_t umask(mode_t mask);

! Set file mode creation mask and returns the old
value. mask is formed as the bitwise OR of any
of the nine file permission constants from
<sys/stat.h>: S_IRUSR, S_IWUSR, S_IXUSR, …

! There is no error return

! When creating a file, permissions are turned off
if the corresponding bits in mask are set.

! Return value
– This system call always succeeds and the

previous value of the mask is returned.

– “umask” shell command

Maria Hybinette, UGA 63

Example: umask

int main(void)
{
umask(0); /* --- --- --- */

if(creat("foo", S_IRUSR|S_IWUSR|S_IRGRP|S_IWGRP|S_IROTH|S_IWOTH) < 0)
{ /* rw- rw- rw- **/

 perror("creat error for foo");
exit(1);

 }

 umask(S_IRGRP|S_IWGRP|S_IROTH|S_IWOTH); /* --- rw- rw- */
 if(creat("bar", S_IRUSR|S_IWUSR|S_IRGRP|S_IWGRP|S_IROTH|S_IWOTH) < 0)

{ /* rw- rw- rw- */
 perror("creat error for bar");
 exit(1);
 }
 exit(0);

}

{saffron:maria:68} ls -ltra foo bar
-rw-rw-rw- 1 maria faculty 0 Apr 1 20:35 foo
-rw------- 1 maria faculty 0 Apr 1 20:35 bar

