Objectives

Image Spectra for Beginners

Image Representation

- Reviews: Viewed as pixel intensities varied between -0, 25
- Now we are to see how we to model

- Detail and contrast in images by using sine waves.
- Fine detail is high frequency
- Contrast is course grain detail and low frequency

Basic Principle: Fourier theory states that any signal, in our case visual images, can be expressed as a sum of a series of sinusoids

- Using sines and cosines to reconstruct a signal
- The Fourier Transform
- Frequency Domains for a Signal
- Three properties of Convolution relating to Fourier Transform

Sine Waves

Variables: The variable of a sine function can be a time variable or a spatial variable:

- $Y(t)=A \sin (w t+p) \quad-$ time variable, t. (e.g., sound, pressure waves)
- $Y(t)=A \sin (k x+p) \quad--$ spatial variable x. (e.g., water waves)

Adding Sine Waves

Adding Sine Waves

Adding Sine Waves

- We can also do the opposite
- Take a complex wave and take its sums apart.

Method

1. $0^{\text {th }}$ Wave form: infinite Wave length (average value)
2. $\mathbf{1}^{\text {st }}$ Wave Form: Fundamental: Wave Length is the same as the Complex Wave Form
3. The rest: $1 / 2$, 1/3. ...

- A Fourier transform, or a Fourier decomposition transforms a Complex Wave Form
- Any complex wave form can be decompose it into its separate sine waves.

Step or Square Function Approximation

- Transformation may not be exact it may depend on how many terms you use
_ "resolution"
- Example Overview
- A step function may need infinite number to be correct.
- Or impulse function

Excel Square Function Approximation

$f(x)=\sin x+\frac{1}{3} \sin 3 x+\frac{1}{5} \sin 5 x+\frac{1}{7} \sin 7 x$
$f(x)=\sin x+\frac{1}{3} \sin 3 x+\frac{1}{5} \sin 5 x+\frac{1}{7} \sin 7 x+\frac{1}{9} \sin 9 x$

- Each additional sine wave that we like to add to would have two more oscillations within the period, so odd numbers each time, and we guess we may need to add an infinite number of these waves.

In Excel Approximation same Function

- Approximated in Excel (actually only odd waveforms in the square function)
- How many terms to approximate? 7 or 9?

$f(x)=\sin x+\frac{1}{3} \sin 3 x+\frac{1}{5} \sin 5 x+\frac{1}{7} \sin 7 x$
- The higher the more

$$
\text { precise } \quad f(x)=\sin x+\frac{1}{3} \sin 3 x+\frac{1}{5} \sin 5 x+\frac{1}{7} \sin 7 x+\frac{1}{9} \sin 9 x
$$

http://mathworld.wolfram.com/FourierSeriesSquareWave.html
CP-excel-sine.xIsx (see schedule page exercise duplicate this in python / openCV, matplot).

Fourier Decomposition

$$
\begin{aligned}
& f(x)=\frac{A_{0}}{2}+\sum_{m=1}^{\infty} A_{m} \cos \left(\frac{2 \pi m x}{\lambda}\right)+\sum_{m=1}^{\infty} B_{m} \sin \left(\frac{2 \pi m x}{\lambda}\right) \\
& A_{m}=\frac{2}{\lambda} \int_{0}^{\lambda} f(x) \cos \left(\frac{2 \pi m x}{\lambda}\right) d x \\
& B_{m}=\frac{2}{\lambda} \int_{0}^{\lambda} f(x) \sin \left(\frac{2 \pi m x}{\lambda}\right) d x
\end{aligned}
$$

- Any periodic function $f(x)$ can be decomposed into a series of sine (and also cosine) waves (we will focus in the sine term).
- Question: What is the phase shifts and amplitude of those waves?
- Note: The infinite wave is defined by the first term $\left(A_{0} / 2\right)$.
- To get a feel of the arguments inside sine:
- $m=1:(x: 0 \rightarrow \lambda)$ where λ is the period of complex wave form.
- Sin will go from $0 \rightarrow 2 \pi$ creating 1 oscillation across its "box"
- $m=2:(x: 0 \rightarrow \lambda)$ arguments of
- sin goes from $0 \rightarrow 4 \pi$, creating 2 oscillations within 'box'
- $m=3(x: 0 \rightarrow \lambda)$
- Sin's arguments will go from $0->6 \pi$ creating 3 oscillation across the box.

Hecht and Ganesan, Optics, 2008 Ch 7 pg 288 and Boas, Mathematical Methods, 2007

Result

- We end up with sine waves of different frequencies ranging from:
- From Course to Fine wave forms.

- Instead of adding Φ_{m} into the sine term we can add another term cosine of same wave length as the sine term.

$$
f(x)=\frac{A_{0}}{2}+\sum_{m=1}^{\infty} A_{m} \cos \left(\frac{2 \pi m x}{\lambda}\right)+\sum_{m=1}^{\infty} B_{m} \sin \left(\frac{2 \pi m x}{\lambda}\right)
$$

Amplitude Measure

- We could plot the 'dominance' of each of the frequency of the waves, i.e., how much each wave form contributes,
- Example: Square Wave:

Real space

- Frequency Spectra, or spatial frequency.
- Not that higher frequency waves have less amplitude are less dominant.

Fourier Transform of a Digital Image

Analog versus digital images
y

Another Example: 1D Space

- Lifted Cos Function above X axis.
- Indicates 2 components are present, the DC function that lifts the wave up or down.
- And a cosine wave super imposed

Caveats

- Be Aware:
- The y-axis is Spectra Space is
- typically:
- Amplitude Squared, Intensity or the Power, not just simple Amplitude.
- Direction (forward/backward) of sine waves (in an image is not detectable)
- So we indicate both -1 , and 1 frequencies, it is only one wave but we don't now which wave is present.

2D Space Examples of Sine Waves

- 800x800 sine wave
- Parameter (h, k)
- Miller indices
- h \# oscillations along x, and
- k \# oscillations (along y)
- Degrees
- Note the 0,0 coordinate is lower left so not a typical image.

$h=1, k=0, a=1, p=0 \quad h=0, k=1, a=1, p=0 \quad h=1, k=1, a=1, p=0$ $\begin{array}{lll}(1,0) \text { wave } & (0,1) \text { wave } & (1,1) \text { wave }\end{array}$

$h=1, k=1, a=1, p=180$

More 2D Waves \& A 1 Combination

- Adding 0,1 do the 1,0 to the right interferes
- -h or -k can change the direction the way crests are headed.
- If both are the same they look the same.

$(1,-1) a=1, p=0$

Prent
$+(0,1) a=1, p=0$
$+(1,1) a=100, p=0$

$(2,-3) a=1, p=0$

$(2,5) a=1, p=0$

$(-2,-3) a=1, p=0 \quad(2,3) a=1, p=0$

Adding Many 2D Waves

$(2,5) a=1, p=90 \quad(2,-3) a=3, p=270 \quad(8,3) a=6, p=0$

$(10,-7) a=5, p=90(20,-15) a=7, p=0 \quad(3,-3) a=10, p=0$

2D Image and Transformations

- Pixel intensities $0 \rightarrow 9$ with 10 pixels across
- Send Image to a 2D Fourier Transform Routine - Returns a matrix of Amplitudes and Phase Shifts

- $2,6,10,14$ - Across X (says $1,3,5,7$) on web page, but there are 2 cycles shown)
- Take Home: Message: Finer Grain Detail Dots are Further Apart, and
- Courser Grain Closer together (contrast)

More Examples

- And more:
http://qsimaging.com/ccd noise interpret ffts.html

Practical: High Pass Filter

- High (Low) Pass Filter processing (e.g., finding details in your image)
- Fourier Transform to the Frequency Domain
- HPF Pass only the details (the high frequencies)
- Inverse Fourier transform to observer just the details in the image

Fourier Transforms and Inverse

- A Fourier Transform decomposes any periodic complex function $f(x)$ into a weighted sum of sines and cosines $F(\omega)$. For every ω from 0 to ∞, $F(\omega)$ holds both the amplitude and the phase (ϕ)

- and the inverse $F(\omega) \rightarrow f(x)$.

- Resolution
- Low resolution near origin, low frequency
- High resolution, high frequency
- Low Pass Filter: Only include (pass) pixels from middle of Fourier Transform
- High Pass Filter : Pass higher frequency waves
- Band Pass Filter: Pass frequency that are not low or high frequencies

http://cns-alumni.bu.edu/~slehar/fourier/fourier.html

Convolution Theorem and the Fourier Transform

- Fourier Transform of a convolution (*) of two functions: f, and g, is the product of their Fourier Transforms

$$
\mathcal{F}\{f * g\}=\mathcal{F}\{f\} \cdot \mathcal{F}\{g\}
$$

- Inverse Fourier Transform of the product of two Fourier transforms is the convolution of the two inverse Fourier transforms

$$
\mathcal{F}^{-1}\{f \cdot g\}=\mathcal{F}^{-1}\{f\} * \mathcal{F}^{-1}\{g\}
$$

Convolution in the spatial domain is equivalent to multiplication in the frequency domain

Other Images (and insights)

- http://cns-alumni.bu.edu/~slehar/fourier/ fourier.html
- See above for low pass and high pass filters, and do the next exercise at home
- http://www.cs.unm.edu/~brayer/vision/ fourier.html
- See discussion of edges and the effect on the frequency spectra

Exercise/Homework

- Exercise at home:
- http://docs.opencv.org/3.0-beta/doc/ py tutorials/py imgproc/py transforms/ py fourier transform/py fourier transform.html
- Work on this tutorial at home
- Read:
- http://cns-alumni.bu.edu/~slehar/fourier/fourier.html
- https://www.cs.unm.edu/~brayer/vision/fourier.html
- http://mathworld.wolfram.com/FourierSeries.html

Contributions

- Dr. Grant Jensen, Caltech, Pasadena, CA - http://jensenlab.caltech.edu
- Dr. Mervin Roy, University of Leicester, UK
- Hecht and Ganesan, Optics, 2008, Ch 7 \& 11
- Boas, Mathematical Methods in Physical Sciences, 2007, Ch 8.
- http://cns-alumni.bu.edu/~slehar/fourier/ fourier.html
- https://www.cs.unm.edu/~brayer/vision/ fourier.html

