
Blending	

Mo+va+on	

•  Digital	Images:	Merging	and	Blending	Images	
		

•  Different	methods	for	Combing	Mul+ple	
Images	to	Generate	a	New	Image		
– Merging	two	images		

•  How	are	the	two	signals	blended?	
– Window	sizes	used	for	merging	images		
– Advantages	of	a	using	the	Fourier	Domain		

•  Applica+ons	Panoramas	

Blending	Applica+on:	Panorama	 Merging	Two	Images	

© 2015 Irfan Essa, Georgia Tech, All Rights Reserved

Merging Two Images

© 2015 Irfan Essa, Georgia Tech, All Rights Reserved

Merging Two Images

Merging	Two	Images	

•  Grayscale	

Merging	Two	Images	

•  50/50	Blend	
•  Photoshop	

Merging	Two	Images	

•  Method	1:	50/50	Blend	

Merging	Two	Images	

•  Goal:	Blend	around	the	middle	so	they	blend	
seamlessly	together	
– Remove	Sharp	Line	

Merging	Two	Images	

•  Goal:	Blend	around	the	middle	so	they	blend	
seamlessly	together	
– Remove	Sharp	Line	

© 2015 Irfan Essa, Georgia Tech, All Rights Reserved

Merging Two Images Merging	Two	Images	

•  Method	2:	Cross	Fading	
© 2015 Irfan Essa, Georgia Tech, All Rights Reserved

Cross-Fading Two Images

1.0
0.0

1.0
0.0

+ =

Il Ir It

Merging	Two	Images	

•  Method	2:	Cross	Fading	
© 2015 Irfan Essa, Georgia Tech, All Rights Reserved

Cross-Fading Two Images

1.0
0.0

1.0
0.0

+ =

Il Ir It

© 2015 Irfan Essa, Georgia Tech, All Rights Reserved

Cross-Fading Two Images

1.0
0.0

1.0
0.0

+ =

Il Ir It

© 2015 Irfan Essa, Georgia Tech, All Rights Reserved

Cross-Fading Two Images

1.0
0.0

1.0
0.0

+ =

Il Ir It

Refinements	

•  Window	Size	© 2015 Irfan Essa, Georgia Tech, All Rights Reserved

Cross-Fading Two Images

1.0

0.0
1.0

0.0

+ =
Il Ir It

•  Even	Smaller	
•  Goal	is	the	remove	effect	of	obvious	elending,	
edges,	or	ar+facts	

© 2015 Irfan Essa, Georgia Tech, All Rights Reserved

Cross-Fading Two Images

1.0

0.0
1.0

0.0

+ =

Il Ir It

© 2015 Irfan Essa, Georgia Tech, All Rights Reserved

Cross-Fading Window Size
What	is	the	Best	Window	Size	

•  Too	large	:	Ghostly	ar+facts	
•  Too	small	:	See	edges	or	seam	between	two	
images.	

Affect of Window Size

0

1

0

1

More	Examples	

•  Too	large:	ghosted	
•  Too	small:	seam!	
•  Just	right:	smooth	and	

not	ghosted	

Affect of Window Size

0

1 left

right
0

1

Good Window Size

0

1

“Optimal” Window: smooth but not ghosted

What	is	the	Op+mal	Size?	
•  Avoid	“Seams”	of	too	small	window	sizes	

– Window		size	=	the	size	of	largest	most	prominent	feature	
(window	needs	to	fully	contain	it)	

•  Expand	it:	Otherwise	it	looks	cut	off,	so	expand	it	to	contain	it.		

•  Avoid	Ghostly	Ar+facts	of	too	large	window	sizes	
– Window	size	<=	2*size	of	smallest	prominent	feature	

•  Shrink	it.	

•  Recast	to	related	it	to	Frequency	
–  Image	frequency	should	occupy	one	octave	(power	of	two)	
–  Largest	frequency		<=	2*size	of	smallest		frequency	

h`p://graphics.cs.cmu.edu/courses/15-463/2010_spring/Lectures/blending.pdf	

•  Avoid	Seams:		Image	frequency	content	should	
occupy	one	“octave”	(expand	it	to	allow	it)	

•  Avoid	Ghos+ng:		Largest	frequency	<=	2*size	of	
smallest	frequency		(shrink	it	to	disallow	
ghos+ng)	

•  Idea:	Use	the	frequency	domain	to	extract	the	
window	size	

What is the Optimal Window?
To avoid seams

• window = size of largest prominent feature

To avoid ghosting
• window <= 2*size of smallest prominent feature

Natural to cast this in the Fourier domain
• largest frequency <= 2*size of smallest frequency
• image frequency content should occupy one “octave” (power of two)

FFT

What	if	the	frequency	spread	is	too	wide?	

Idea	(Burt	and	Adelson)	1983:	
•  Compute	Fleg	=	FFT(Ileg),	Fright	=	FFT(Iright)		
•  Decompose	Fourier	image	into	octaves	(bands)		

–  	Fleg	=	Fleg1	+	Fleg2	+	...		
•  Feather	corresponding	octaves	Flegi	with	Frigh+		
•  Sum	feathered	octave	images	in	frequency	domain		

What if the Frequency Spread is Wide

Idea (Burt and Adelson)
• Compute Fleft = FFT(Ileft), Fright = FFT(Iright)
• Decompose Fourier image into octaves (bands)

– Fleft = Fleft
1 + Fleft

2 + …
• Feather corresponding octaves Fleft

i with Fright
i

– Can compute inverse FFT and feather in spatial domain

• Sum feathered octave images in frequency domain

Better implemented in spatial domain

FFT

Feathering	&	Refinement	

•  Blur	edges	before	‘blending;	makes	the	blend	smoother	
•  Compute	FFT(Ileg)	=	Fleg		,	FFT(Iright)	=	Fright	
•  Decompose	Fourier	Images	into	Octaves	
•  Compute	Inverse	FFT	and	feather	corresponding	octaves	Flegi	

with	Frigh+	in	spaGal	domain		
•  Return	to	Fourier	Domain	and	Sum	Feathered	octave	images	

© 2015 Irfan Essa, Georgia Tech, All Rights Reserved

Feathering

“Blur” the edges before applying the blend operations.

Makes the blend, smoother.

Recap	
•  Key	Insight:	Coarse	structure	should	blend	very	slowly	
between	images	(lots	of	feathering),	while	fine	details	
should	transi+on	more	quickly.		

	
•  Advantage:		Both	ghos+ng	and	seams	are	blended	
•  Disadvantage:	Inefficient	going	back	and	forth	
between	the	frequency	and	the	spa+al	domains.	

•  Next	Approach:	Use	Pyramids	–	avoid	(reduce)	dealing	
with	lots	of	pixels		at	computa+onal	steps	by	
‘modularizing’	image	into	a	set	of	images	of	different	
resolu+ons.	

Gaussian	Pyramid	

•  Convolu+on:	Run	a	Gaussian	3x3	kernel	over	it	to	
make	a	smaller	image	(create	replacement	value)	
and	place	it	in	the	new	‘smaller	image’	

© 2015 Irfan Essa, Georgia Tech, All Rights Reserved

Pyramid Representation: A Gaussian Pyramid

g0

g1

g2
g3
g4

Convolve	&	Down-sample	

•  Refinement:		The	Gaussian	Kernel	is	
approximated	by	a	low	pass	5x5		binomial	filter.		
–  Recall	Pascal	Triangle	

ecimation

low ass a ssian

ecimation

low ass a ssian

ecimation

low ass a ssianBlur	

ecimation

low ass a ssian

Downsample	

Side	Note:	Binomial	Coefficients	
CSE597F
Penn State Aside: Binomial Approximation

Easy to use if you
remember Pascal’s
triangle!

1 1
1 2 1

1 3 3 1
1 4 6 4 1

1 5 10 10 5 1
and so on…

Pascal’s
Triangle

CSE597F
Penn State Aside: Binomial Approximation

Look at odd-length rows of Pascal’s triangle:

1 1
1 2 1

1 3 3 1
1 4 6 4 1

1 5 10 10 5 1
and so on…

[1 2 1]/4 - approximates
Gaussian with sigma=1/sqrt(2)

[1 4 6 4 1]/16 - approximates
Gaussian with sigma=1

Cascaded filters: [1 2 1]/4 * [1 2 1]/4 [1 4 6 4 1]/16

Side	Note:	Separable	Filter	
•  Can	be	split	into	a	ver+cal		component	V	(a	vector)	and	horizontal	

components		H	(a	vector)	that	can	be	applied	independently.		
•  It		be	generated	by		convolving	the	components	

–  Kernel	=	H	*	V	
–  Result	=	I	*	Kernel		is	equivalent	to		
–  Result		=	(I*H)	*	V	due	to	the	associa+vity	of	convolu+on.	

•  More	efficient	

Golden	Rules	of	Construc+ng	the	
‘Gaussian’	Kernel	

w	is	a	5	element	uni-modal	vector	(single	maximum)	
1.  The	5	weights		‘w’	that	are	the	same	at	each	level	
2.  Normalized	(applying	w	to	a	‘constant’	image	does	not	alter	

the	image		
	

3.  Symmetric	about	the	center			[c	b	a	b	c]	
4.  Equal	Contribu+on	of	nodes	from	one	level	to	another:	

	 	 	 	 	 	 	a	+	2c	=	2b	=	1/2	

h`p://persci.mit.edu/pub_pdfs/pyramid83.pdf	

w(m) =1
m=−2

2

∑

a+ 2b+ 2c =1

•  To	Sa+sfy	1-4	we	have	2	equa+ons	&	3	
unknowns	è	a	remains	a	free	parameter	

	

Genera+ng	the	Weights	

•  w(2),					w(1)			w(0),	w(-1),	w(-2)	
•  W(2)	=	w(-2)	=	¼	-	a/2,	w(-1)=w(1)	=	1/4	
•  ¼	-	a/2				¼,							a								¼,								¼	-	a/2	
•  Usually	a	is	[0.3,	0.6]	a	changes	the	peak	of	
the	gaussian	distribu+on	

	see	paper	for	detail/		

A	Pyramid	

•  End	up	with	a	pyramid	of	images	of	different	levels:		go,	gn	of	resolu+on	
•  Gaussian	Pyramids		(reduce)	
•  Laplacian	Pyramids	(expand)	

© 2015 Irfan Essa, Georgia Tech, All Rights Reserved

Pyramid Representation: A Gaussian Pyramid

Viewing	the	Pyramids	In	Different	
Domains	

•  Image	Blurring	à	Low	Pass	Filter	

Haifa	

Image Pyramid

High resolution

Low resolution

Image Pyramid
Frequency Domain

High resolution

Low resolution

*

= =

Image Blurring = low pass filtering

~

*

*

*

=

=

=

Image Pyramid

High resolution

Low resolution

Image Pyramid
Frequency Domain

High resolution

Low resolution

*

= =

Image Blurring = low pass filtering

~

*

*

*

=

=

=

Genera+ng	the	Gaussian	Pyramid	

•  gk	=	REDUCE(g(k	-	1))		g0	is	at	the	lowest	level	

Image Pyramid

High resolution

Low resolution

Level 0
2n X 2n

Level 1
2n-1 X 2n-1

Level n
1 X 1

Gaussian Pyramid

Gaussian Pyramid Gaussian Pyramid

Burt & Adelson (1981)

Normalized: Σwi = 1

Symmetry: wi = w-i

Unimodal: wi ≥ wj for 0 < i < j

Equal Contribution: for all j Σwj+2i = constant

w0 w1w-1w-2 w2

w0 w1w-1w-2 w2

Pyramid	Representa+on	of	Images	(A	
Laplacian	Pyramid)		

	

© 2015 Irfan Essa, Georgia Tech, All Rights Reserved

Pyramid Representation of Images (A Gaussian Pyramid)

g0

gk = REDUCE(gk - 1)

gj,n = EXPAND(gj,n-1)

EXPAND is inverse of
REDUCE, as it seeks to
add new values in
between knowns ones.

gj,n is gj expanded n
times

g0,1

g0 - g0,1

g1

•  Opposite	(inverse)	of	the	Gaussian	
Pyramid	
–  gj,n	=	EXPAND(gj,n-1)		
–  seeks	to	add	new	values	in	between	
known	ones.	gj,n	is	gj	expanded	n		

•  A	series	of	“error”	images,		
•  A	difference	between	two	levels	of	

a	Gaussian	Pyramid		

•  x	

What does blurring take away?

smoothed – original

expand

-

expand

expand

-

- =

=

=

Gaussian
Pyramid

Laplacian
Pyramid

Laplacian Pyramid

Gaussian
Pyramid

Laplacian
Pyramid

Frequency
Domain

Laplace Pyramid -
No scaling

from: B.Freeman

Laplacian
Pyramid

Reconstruction of the original image
from the Laplacian Pyramid

+ =

+ =

+ =

= Original
Image

Gl = Ll + G’l

expand

expand

expand

Laplacian Pyramid -
Computational Aspects

Memory:
2NX2N (1 + 1/4 + 1/16 + ...) = 2NX2N * 4/3

Computation:

However coefficients are highly compressible.

Li can be computed from G0 with a single convolution
with filter: ki = hi-1 - hi

hi-1 hi

- =

ki

k1 k2 k3

Image Mosaicing

Registration

Laplacian	Pyramid	

•  How	can	we	reconstruct	(collapse)	this	
pyramid	into	the	original	image?	

Need	this!	

Original	
image	

Pyramid	Blending	with	Regions	(Mask)	
Given	two	images	A	and	B,	
and	a	mask	M	
1.  Build	Laplacian	Pyramids	LA		and	

LB	
2.  Build	a	Gaussian	pyramid	GM		

from	selected	the	region	M	
3.  Build	a	third		combined	Laplacian	

pyramid	LC	from	LA	and	LB		using	
nodes	of	GM	as	weights:	

		 	where	for	each	level	k,	and		i,	j:	
	
	
4.  Obtain	the	image	C	by	expanding	

and	summing	the	levels	of	LC.	
	

LCk(i,j)	=	GMk(i,j,)*LAk	(i,j)	+	(1-GMk(i,j))*LBk(i,j)	
	
	

Don’t blend, Cut.

•  So	far	we	only	tried	to	blend	between	two	
images.		What	about	finding	an	op+mal	seam?	

Moving	objects	become	ghosts	

Davis,	J.	1998.	Mosaics	of	scenes	with	moving	objects.	In	Proceedings	of	CVPR.	

Don’t	Blend	Cut	
•  Segment the mosaic

– Avoid artifacts along boundaries

•  Moving	objects	cause	“ghos+ng”	
•  Find	an	op+mal	seam	as	opposed	to	blend	between	
images	
–  Idea	minimal	error	cut.	

•  Final	has	exact	pixels	from	an	Image	

© 2015 Irfan Essa, Georgia Tech, All Rights Reserved

Cut, Don’t Blend

Davis (1998)

min. error boundary

Finding	the	Seam	Minimal	error	
boundary	

overlapping blocks vertical boundary

_
=

2

overlap error

Extension:	Crea+ng	New	Images	

•  Kwatra,	Schödl,	Essa,	Turk,	Bobick	(2003),	SIGGRAPH	

© 2015 Irfan Essa, Georgia Tech, All Rights Reserved

Extending Images

Kwatra et al. (2003)

Extensions: Efficient Graph cuts

n-links

s

t a cut hard
constraint

hard
constraint

Minimum cost cut can be computed in polynomial time

(max-flow/min-cut algorithms)

Boykov&Jolly, ICCV’01	

Summary:		

•  Compositing images
– Have a clever blending function

•  Feathering
•  Blend different frequencies differently

–  pyramids

– Choose the right pixels from each image
•  Seams
•  Finding Seams Efficiently: Graph-cuts

Another	Result:	Horror	Photo	

Courtesy: prof. dmartin ©

Resources	
Blending/Feathering:	
•  h`ps://en.wikipedia.org/wiki/Pyramid_(image_processing)	
•  Burt	&	Adelson's,	1st		Pyramid	Paper,	1983	(here)	
•  Burt	&	Adelson’s,	2nd		Pyramid	Paper,	1983		(includes	Mask	pyramid)	(here)	
•  Brown	&	Lowe,	Resent	Blending	using		2	bands,	low	and	high	frequency	(here)	
Cuts/Seams:			
•  Davis,	1998,	Mosaics	of	scenes	with	moving	objects	

–  h`ps://users.soe.ucsc.edu/~davis/panorama		(link	needs	to	be	typed	in)	
•  Efros	&	Freeman	2001,	Image	Quil+ng	

–  h`p://www.eecs.berkeley.edu/Research/Projects/CS/vision/papers/efros-
siggraph01.pdf	

•  Seam	Carving	for	Content-Aware	Image	Resizing	Seam	
–  Shai	Avidan,	Ariel	Shamir,	2007	(here) 	 		
–  h`ps://en.wikipedia.org/wiki/Seam_carving	

•  Boykov	&	Jollym,	2001,	Interac+ve	Graph	Cuts,	ICCV’01	
–  h`ps://people.eecs.berkeley.edu/~efros/courses/AP06/Papers/boykov-

iccv-01.pdf	
•  Kwatra,	Schödl,	Essa,	Turk,	Bobick	(2003),	Graph	Cut	Textures		

–  h`p://www.cc.gatech.edu/gvu/percep+on/projects/graphcu`extures/gc-final.pdf	

•  Kwatra	et	al,	2003	

