Game Al Overview

Introduction

What is Artificial Intelligence

- The term Artificial Intelligence (AI) was coined by John McCarthy in 1956
 - "The science and engineering of making intelligent machines."
- Al Origin, even than that (of-course)!
 - Greek Mythology:
 - Talos of Crete (Giant Bronze Man)
 - Galatea (Ivory Statue)
 - Fiction: Robot 1921 Karel Patek
 - Asimov, Three laws of robotics
 - Hal Space Odyssey

- History
- Overview / Categorize
- Agent Based Modeling
 - Sense-> Think->Act
- FSM in biological simulation (separate slides)
 - Hybrid Controllers
 - Simple Perceptual Schemas
- Discussion: Examples
- Resources (Homework, read)

AI in Games

- Game Al less complicated than Al taught in machine learning classes or robotics
 - Self awareness
 - World is more limited
 - Physics is more limited
 - Less constraints, 'less intelligent'
- More 'artificial' than 'intelligent' (Donald Kehoe)

AI in Game

- Pong
 - Predictive Logic: how the computer moves paddle
 - Predicts ball location then moves paddle there
- Pacman
 - Rule Based (hard coded) ghosts
 - Always turn left
 - Always turns right
 - Random
 - Turn towards player

Scripted AI

- Enemy units in the game are designed to follow a scripted pattern.
- Either move back and forth in a given location or attack a player if nearby (perception)
- Became a staple technique for AI design.

More Complex and Traditional AI

- · Behavior Models
 - Agent Model (Focus)

Game Agents

- Game Agents, Examples:
 - Enemy
 - Ally
 - Neutral
- Loops through: Sense-Think-Act Cycle

Sensing

- How the agent perceives its environment
 - Simple check the position of the player entity
 - Identify covers, paths, area of conflict
 - Hearing, sight, smell, touch (pain) ...
 - Sight (limited)
 - Ray tracing

Thinking

- Decision making, deciding what it needs to do as a result of what it senses (and possible, what 'state;' it is in) Coming UP!
- Planning more complex thinking.
 - Path planning
- Range: Reactive to Deliberative

Acting

After thinking Actuate the Action!

More Complex Agent

- Behavior depends on the state they are in
- Representation: Finite State Machine

Finite State Machine

- · Abstract model of computation
- Formally:
- Set of states
- A starting state
- An input vocabulary
- A transition function that maps inputs and the current state to a next state

Egyptian Tomb Finite state Machine

- · Mummies! Behavior
 - Spend all of eternity wandering in tomb
 - When player is close, search
 - When see player, chase
- · Make separate states
 - Define behavior in each state
 - Wander move slowly, randomly
 Search move faster, in lines
 - Chasing direct to player
- Define transitions
 - Close is 100 meters (smell/sense)
 - Visible is line of sight

Can Extend FSM easily

- Ex: Add magical scarab (amulet)
- When player gets scarab, Mummy is afraid. Runs.
- Behavior
 - Move away from player
- Transition
 - When player gets scarab
 - When timer expires
- Can have sub-states
 - Same transitions, but different actions
 - i.e.,- range attack versus melee attack

How to Implement

- Hard Coded
 - Switch Statement

Finite-State Machine: Hardcoded FSM

```
void Step(int *state) { // call by reference since state can change
    switch(state) {
        case 0: // Wander
        Wander();
        if( SeeEnemy() ) { *state = 1; }
        break;

        case 1: // Attack
        Attack();
        if( LowOnHealth() ) { *state = 2; }
        if( NoEnemy() ) { *state = 0; }
        break;

        case 2: // Flee
        Flee();
        if( NoEnemy() ) { *state = 0; }
        break;
}
```

- AD Hoc Code
- Inefficient
 - Check variables frequently

Better

- Object Oriented
- Transitions are events

Embellishments

- Adaptive Al
 - Memory
- Prediction
- Path Planning, Tomorrow

Resources

- https://software.intel.com/en-us/articles/ designing-artificial-intelligence-for-gamespart-1 (there are 4 parts, read the first 3)
- http://www.policyalmanac.org/games/ <u>aStarTutorial.htm</u> (you will implement this visualization as project 3)
- http://www-cs-students.stanford.edu/~amitp/ gameprog.html (great resources for game AI)