
Behavior-based code generation
for robots and autonomous agents

[& related to AI in Games]

Terrance Medina, Maria Hybinette, and Tucker Balch

University of Georgia
Georgia Institute of Technology

Aphaenogaster cockerelli while they forage for, subdue,
and collect Drosophila melanogaster (fruit flies).	

Ethogram	

Motivation & Big Picture

§  Enabling Agent-Based
Modeling for non-
programmers

§ Bigger ‘Big Picture’:
§  Tracking system (animals)
§  Create Model

§  individual and multi agent
based models

§  Run Model / Simulate and
§  Observe & Experimental

validation of models

Observe	

 Track	

Model	

Simulate	

Motivation: Enabling ABM

§  Agent Based Modeling is an essential
tool for communities ranging from

•  traffic analysis
•  military planning
•  social animal research

Motivation: Enabling ABM

§  Big roadblock: Biologists are not
programmers

§  How can we unlock ABM for non-
programmer researchers?

§  How can we bridge this gap?

Think!

Motivation: Enabling ABM

Idea: Simplify the access to ABM
•  Intermediate language: XML
•  Supports behavior library
•  Supports high performance simulation

engine

Motivation: Enabling ABM

What does this enable? (in the future)
•  GUI-based interfaces – ease of access
•  Multiple “back end” languages
•  Multiple “back end” platforms

The Rest of This Talk

•  Some examples of ABM applications in
biology: Ants, Fish (Big Picture)

•  Details of the XML implementation

Ant HUNT Domain: Observe & Track

Observe	

 Track	

Model	

Simulate	

Behavior Model: Hybrid Controllers:

Observe	

 Track	

Model	

Simulate	

http://gritslab.gatech.edu/Droge/2012/01/behavior-based-mpc/	

Simulation of Controller : Simulate
(BioSim)

Observe	

 Track	

Model	

Simulate	

Test & Validate

§  Phase 1: Initial test of model and
refinement to align with live animal
results (calibrated perception from 1
cm to ½ cm)

§  Phase 2: Perturb (added obstacles)
the environment and assess the
predictive value of model.

Observe	

 Track	

Model	

Simulate	

Experimental Results: Phase 1

Challenge

§  Constructing accurate animal behavior
models is difficult because:
§  it is time intensive
§  it requires domain specialists (ethologists)

to also be capable programmers

Our approach

§  “on-the-fly” automatic behavior-model
generation

§  We combine behavior-based robot
control architectures with an automatic
code-generation framework

§  XML used as an intermediate language

Advantages of our approach

§  Language-neutral
§  we generate Java code from the XML, but

we could choose from many suitable
languages

§  Human readable/writable
§  Machine readable/writable

§  XML is a structured document, which can
be created and modified programatically
through an object model

Automatic code generation

§  template based approach
§  produce code based on some regex

pattern
§  Style sheet (XSLT) match patterns in XML

§  essentially the same problem as
language compilation
§  e.g. YACC, Bison

Concept

Convert XML into
executable Java
§  use XSL (eXtensible

Stylesheet Language)
§  Transform(xml, xsl) -->

output format
§  A 'template' type of system

§  uses XPath to match element
patterns

§  produces code snippets based
on matched patterns

§  think of XPath like RegEx for
XML docs

§  Example files next …

Configuration XML
§  specifies the parameters of the

simulation. (e.g., the number and
types of agents, which controller
modules they use, number and
placement of physical objects)

§  This simple example defines a

single ant placed in the
simulation, driven by a
SpiralAntController controller,
which is defined separately

Controller Specification

1.  Perceptual Schemas
2.  Behaviors
3.  Agent Schema
4.  Triggers
5.  FSM

1. Perceptual Schemas

§  objects, locations and other agents

2. Behaviors

§  simple reactive
behaviorsMotor
Schemas

§  transformed into
instances of Clay
behaviors
§  library of behavior

based primitives
§  support of

controlling a state
machine.

3. Agent Schema

§  Aggregated
into groups
of behaviors

§  serve as
states in the
finite state
machine that
control the
transitions

4. Triggers
edges in a
Finite State
Machine

5. FSM
States = Agent Schemas
edges = Triggers

An even simpler XML behavior tree

This corresponds to ...

A simple model with one
state

§  Two behaviors
§  MOVE_TO_HOMEBASE
§  AVOID_OBSTACLES

§  coordinated by a weighted
average

§  a single trigger,
START_MOVE keeps us in
the same state

GO_HOME	

XSL snippet

And the resulting Java code

§  The XSL has
correctly
generated the
MOVE_TO_HOMEBASE
and AVOID_OBSTACLES

motor schemas for
us

Executing the new code

§  Since the code was dynamically
generated, we'll compile and inject it to
the JVM on the fly

§  We use the ANT build tool for
compilation

§  Java's ClassLoader will load it for us

ANT (Another Neat Tool)

§  We use a dynamically generated build.xml file
to control the compilation process

§  same XSL technique as previously
§  a config xml file specifies simulation parameters

§  number of agents, controller types, and more
§  we use that config file to generate build file
§  ANT is invoked programmatically

§  this also means an agent could (potentially)
modify its own xml controller, and invoke ANT
to recompile itself

Machine Generation of controllers

§  JAXB
§  XML schema (XSD) describes the semantic

structure of an XML controller
§  the xjc compiler generates an object model,

a set of Java classes to create and populate
XML elements

§  we use this object model with a random
number generator, to generate random
controllers

Machine Generation of controllers

XML is machine readable/writable
We have used this to randomly generate

agent controllers using the JAXB
framework (Java Architecture for XML
Binding)

This is the “Agent Schemas” section of a
randomly generated controller.

identifiers have a UUID appended
to ensure uniqueness	

Future work

§  Evolving controllers
§  implement a genetic crossover mechanism, and hook

the generation, crossover and evaluation of the
controllers into an evolutionary computation
framework, e.g., ECJ (George Mason)

§  GUI interface for creating/editing XML
controllers

§  Self adapting agents
§  develop agent controllers with the ability to modify

themselves and swap out controllers while executing

Future Target Domains: Fish
Schooling

Video kindly provided by Iain Couzin
and the Collective Animal Behavior
Lab at Princeton University.	

G-Tech BioSim Lab: Brian Hrolenok and

Tucker Balch. 	

§  Avoid: Separation
§  Align
§  Attract: Cohesion

Target Domain: Dolphins

Target Domain: Monkeys (Yerkes)

§  Dominance Behavior

Target Domain: Apple Snails

Bigger Picture: Apple Snails.

