* History
* Overview / Categorize

Game Al Overview » Agent Based Modeling
— Sense-> Think->Act
* FSM in biological simulation (separate slides)
Introduction — Hybrid Controllers
— Simple Perceptual Schemas
* Discussion: Examples
* Resources (Homework, read)

What is Artificial Intelligence Al in Games

* The term Artificial Intelligence (Al) was coined
by John McCarthy in 1956

— “The science and engineering of making intelligent

* Game Al less complicated than Al taught in
machine learning classes or robotics

machines.” — Self awareness
* Al Origin, even than that (of-course)! — World is more limited
— Greek Mythology: — Physics is more limited
* Talos of Crete (Giant Bronze Man) — Less constraints, ‘less intelligent’

* Galatea (lvory Statue)

_ Fiction: Robot — 1921 Karel Patek * More ‘artificial’ than ‘intelligent’ (Donald

* Asimov, Three laws of robotics Kehoe)
* Hal — Space Odyssey
Al in Game Scripted Al
* Pong * Enemy units in the game are designed to

— Predictive Logic: how the computer moves paddle follow a scripted pattern.
* Predicts ball location then moves paddle there * Either move back and forth in a given location
or attack a player if nearby (perception)

* Became a staple technique for Al design.

* Pacman
— Rule Based (hard coded) ghosts
* Always turn left
* Always turns right
* Random
* Turn towards player

More Complex and Traditional Al Game Agents

* Behavior Models * Game Agents, Examples:
— Agent Model (Focus) — Enemy
— Ally
— Neutral

* Loops through : Sense-Think-Act Cycle

(e)

Sensing Thinking

* How the agent perceives its environment * Decision making, deciding what it needs to do

— Simple check the position of the player entity as a result of what it senses (and possible,

— Identify covers, paths, area of conflict what ‘state;” it is in) Coming UP!

— Hearing, sight, smell, touch (pain) ... * Planning — more complex thinking.

* Sight (limited) — Path planning
— Ray tracing . . .
* Range: Reactive to Deliberative
Acting More Complex Agent

* After thinking Actuate the Action! * Behavior depends on the state they are in

* Representation: Finite State Machine

‘:Ly ﬂii.::z
v

| miart | 1 r ‘ll'*l‘lﬂl.llﬂ)

r
N ’

\ \
| Fle@ing ~>Rggressive

https://software.intel.com/en-us/articles/designing-
artificial-intelligence-for-games-part-1

-
-

Finite State Machine

See Enemy —
Wander (Attack)
‘ T~ No Enemy™ /
3 &
% - ™\ 3
<, 5
& Flee)(M

Abstract model of computation
Formally:

— Set of states

— A starting state

— An input vocabulary

— Atransition function that maps inputs and the current state to a

next state

Can Extend FSM easily

* Ex: Add magical scarab (amulet)
* When player gets scarab,

Mummy is afraid. Runs. Wandering
* Behavior
— Move away from player
fast

e Transition
— When player gets scarab
— When timer expires
* Can have sub-states
— Same transitions, but
different actions

* i.e.,- range attack
versus melee attack

Finite-State Machine:
Hardcoded FSM

void Step(int *state) { // call by reference since state can change
switch(state) {

case 0: // Wander
Wander () ;
if (SeeEnemy ())
break;

*state = 1; }

case 1: // Attack
Attack();
if (LowOnHealth()) { *state
if(NoEnemy ()) { *state
break;

case 2: // Flee
Flee();
if(NoEnemy ()) { *state = 0; }
break;

Egyptian Tomb Finite state Machine

* Mummies! Behavior
— Spend all of eternity wandering in
tomb

— When player is close, search Wandering

— When see player, chase > o
* Make separate states 9 2

— Define behavior in each state S E

* Wander — move slowly, randomly
* Search — move faster, in lines
* Chasing — direct to player
* Define transitions
— Close is 100 meters (smell/sense)
— Visible is line of sight

Visible
—
uappiH

How to Implement

* Hard Coded
— Switch Statement

Finite-State Machine:
Object Oriented withPattern
Matching *parameters*

void AgentFSM
{
State(STATE_Wander)
Wander () ;
if (SeeEnemy()) { setState(STATE_Attack) }

State(STATE_ATTACK)
Attack();
if (LowOnHealth) { setState(STATE_Flee) }

¢ AD Hoc Code

* Inefficient
— Check variables frequently

Embellishments

* Adaptive Al
— Memory
* Prediction
* Path Planning, Tomorrow

Path Planning

* Problem: How to navigate from point A to point B in
real time. Possible a 3D terrain.

* We will start with a 2D terrain.

— What about if we ignore the problem:

Better

* Object Oriented
* Transitions are events

Resources

* https://software.intel.com/en-us/articles/
designing-artificial-intelligence-for-games-
part-1 (there are 4 parts, read the first 3)

* http://www.policyalmanac.org/games/
aStarTutorial.htm (you will implement this
visualization as project 3)

* http://www-cs-students.stanford.edu/~amitp/
gameprog.html (great resources for game Al)

No Path Planning bad Sensors

start &

With Better Sensors (Red)

e Blue PIanning. — Watch Al Navigation Bloopers:
* http://www.youtube.com/watch?v=lw9G-8gL500

virtual obstacle

4, o
i

Problem Statement

Environment Assumptions

. * Point A (star) to Point B (x) : Shortest amount
* 2D Grid :
of steps or fastest time

. Common Theme: Frontier
Explore the Environment :
Implementation

* Pick and remove a location from frontier
* Mark location as “done processing”

[|
|
e * Expand my looking at its unprocessed
----- neighbors and add to frontier
frontier = Queue()

frontier.put(start)
visited = {}
visited[start] = True

o Fronﬁer Expands while not frontier.empty():
current = frontier.get()
for next in graph.neighbors(current):

* Stops at walls
if next not in visited:
frontier.put(next)

http://www.redblobgames.com/pathfinding/a-star/introduction.html|
visited[next] = True

Shortest Path: Breath First Measure path links

* We got the visiting part, now how do we find * Start at Goal and traverse where it ‘came
the shortest path? from’
— Solution: Keep track : — Shortest path

1. where we came from, and later compute

2. the distance traveled so far
frontier = Queue()
frontier.put(start)

frontier = Queue()
frontier.put(start)

visited = {} came_from = {}
visited[start] = True came_from[start] = None
while not frontier.empty(): while not frontier.empty():
current = frontier.get() current = frontier.get()
for next in graph.neighbors(current): for next in graph.neighbors(current):
if next not in visited: if next not in came_from:
frontier.put(next) frontier.put(next)
visited[next] = True came_from[next] = current

Embellishments: Make if more
Movement cost not enough

efficient
* All Paths from one location to all others * Some movements may be more expensive
— Early exit: Stop expanding once frontier covers than other to move through
goal — Use a new heuristics
— Add to frontier if cost is less.
* http://www.redblobgames.com/pathfinding/ * We: Board

a-star/introduction.html * Th: Board. Sketch out the algorithm.

Summary from Board

* A Star favor neighbors with smallest F value.
—F=H+G
* Breath First Search

— Explore all neighbors, typically using a simple queue
that explores neighbors first in first out (FIFO).

* Best First Search: H
— Favor neighbors that have shortest distance to goal.
* Dijskstra: G

— Favor neighbors that are closest to starting point
(smallest G).

Revisit Representing of grids as graphs

* Grid to Node Example

HaNo Wyl
MABoN)
[F L
[}

[F

L3
T

F

Pathfinding on a grid of nodes from point A (green) to point B (red).

Hackathon tomorrow.

* Hackathon tomorrow will be doing node
based algorithms on ‘paper’ but you will need
to covert it to digital text.

— Best First, Breath First, Dijkstra, A*

* You will also draw a FSM of some game entity,

in the same vain as the mummy FSM.

a_star_search(graph, start, goal):

openList = PriorityQueue() // A Star / Dijskastra / Best First
openList.put(start, 0)

came_from = {}

cost_so_far = {}

came_from[start] =

cost_so_far[start] = 0

openList.empty():
// process node low F cost (dequeue priority queue)
current = openList.get()

// dropped open list, added it to closed list
1/ the a goal node closed list?
current == goal:

// compute neighbors new values.

next graph.neighbors(current):

new_cost = cost_so_far[current] + graph.cost(current, next)
next cost_so_far new_cost < cost_so_far[next]:
cost_so_far[next] = new_cost
priority = new_cost + heuristic(goal, next) // Dijsktra use new cost
openList.put(next, priority)
// each node needs to points to its parent.
came_from[next] = current

came_from, cost_so_far

* Dijkstra node on board.

