
Game	AI	Overview	

Introduc3on	

•  History	
•  Overview	/	Categorize	
•  Agent	Based	Modeling	
–  Sense->	Think->Act	

•  FSM	in	biological	simula3on	(separate	slides)	
– Hybrid	Controllers	
–  Simple	Perceptual	Schemas	

•  Discussion:	Examples	
•  Resources	(Homework,	read)	

What	is	Ar3ficial	Intelligence	
•  The	term	Ar3ficial	Intelligence	(AI)	was	coined	
by	John	McCarthy	in	1956	
– “The	science	and	engineering	of	making	intelligent	
machines.”	

•  AI	Origin,	even	than	that	(of-course)!	
– Greek	Mythology:		
•  Talos	of	Crete	(Giant	Bronze	Man)	
•  Galatea	(Ivory	Statue)	

– Fic3on:		Robot	–	1921	Karel	Patek	
•  Asimov,	Three	laws	of	robo3cs	
•  Hal	–	Space	Odyssey	

AI	in	Games	

•  Game	AI	less	complicated	than	AI	taught	in	
machine	learning	classes	or	robo3cs	
– Self	awareness	
– World	is	more	limited	

– Physics	is	more	limited	

– Less	constraints,	‘less	intelligent’	
•  More	‘ar3ficial’	than	‘intelligent’	(Donald	
Kehoe)	

AI	in	Game	

•  Pong	
– Predic)ve	Logic:	how	the	computer	moves	paddle	

•  Predicts	ball	loca3on	then	moves	paddle	there	

•  Pacman		
– Rule	Based	(hard	coded)	ghosts	

•  Always	turn	leb	
•  Always	turns	right	
•  Random	

•  Turn	towards	player	

Scripted	AI	

•  Enemy	units	in	the	game	are	designed	to	
follow	a	scripted	pacern.	

•  Either	move	back	and	forth	in	a	given	loca3on	
or	acack	a	player	if	nearby	(percep3on)	

•  Became	a	staple	technique	for	AI	design.	

More	Complex	and	Tradi3onal	AI	

•  Behavior	Models	
– Agent	Model	(Focus)	

Game	Agents	

•  Game	Agents,	Examples:	
– Enemy	

– Ally	
– Neutral	

•  Loops	through	:	Sense-Think-Act	Cycle	

Sense Think Act

Sensing	

•  How	the	agent	perceives	its	environment	
– Simple	check	the	posi3on	of	the	player	en3ty	

–  Iden3fy	covers,	paths,	area	of	conflict	
– Hearing,	sight,	smell,	touch	(pain)	…	

•  Sight	(limited)	
–  Ray	tracing	

Thinking	

•  Decision	making,	deciding	what	it	needs	to	do	
as	a	result	of	what	it	senses	(and	possible,	
what	‘state;’	it	is	in)	Coming	UP!	

•  Planning	–	more	complex	thinking.	
– Path	planning		

•  Range:	Reac)ve	to	Delibera)ve	

Ac3ng	

•  Aber	thinking	Actuate	the	Ac3on!	

More	Complex	Agent	

•  Behavior	depends	on	the	state	they	are	in	
•  Representa3on:	Finite	State	Machine	

hcps://sobware.intel.com/en-us/ar3cles/designing-
ar3ficial-intelligence-for-games-part-1	

Finite	State	Machine	

•  Abstract	model	of	computa3on	
•  Formally:	

–  Set	of	states	
–  A	star3ng	state	
–  An	input	vocabulary	
–  A	transi3on	func3on	that	maps	inputs	and	the	current	state	to	a	
next	state	

Wander Attack

Flee

See Enemy

Low
 H

eal
thNo Enemy

No Enemy

•  Mummies!		Behavior	
–  Spend	all	of	eternity	wandering	in	

tomb	
–  When	player	is	close,	search		
–  When	see	player,	chase	

•  Make	separate	states	
–  Define	behavior	in	each	state	

•  Wander	–	move	slowly,	randomly	
•  Search	–	move	faster,	in	lines	
•  Chasing	–	direct	to	player	

•  Define	transi3ons	
–  Close	is	100	meters	(smell/sense)	
–  Visible	is	line	of	sight	

	

Egyp3an	Tomb	Finite	state	Machine	

Wandering

Searching

Chasing

Cl
os

e
by

Vi

si
bl

e

Far away
H

idden

Can	Extend	FSM	easily	

•  Ex:	Add	magical	scarab	(amulet)	
•  When	player	gets	scarab,	

Mummy	is	afraid.		Runs.	
•  Behavior	

–  Move	away	from	player	
fast	

•  Transi3on	
–  When	player	gets	scarab	
–  When	3mer	expires	

•  Can	have	sub-states	
–  Same	transi3ons,	but	

different	ac3ons	
•  i.e.,-	range	acack	
versus	melee	acack	

Wandering

Searching

Chasing

Cl
os

e
by

Vi

si
bl

e

Far away
H

idden
Afraid

Scarab

How	to	Implement	

•  Hard	Coded		
– Switch	Statement	

Finite-State	Machine:		
Hardcoded	FSM	

void Step(int *state) { // call by reference since state can change
 switch(state) {

 case 0: // Wander
 Wander();
 if(SeeEnemy()) { *state = 1; }
 break;

 case 1: // Attack
 Attack();
 if(LowOnHealth()) { *state = 2; }
 if(NoEnemy()) { *state = 0; }
 break;

 case 2: // Flee
 Flee();
 if(NoEnemy()) { *state = 0; }
 break;
 }
}

	
Finite-State	Machine:		

Object	Oriented	withPacern	
Matching	*parameters*	

void AgentFSM
{
 State(STATE_Wander)
 Wander();
 if(SeeEnemy()) { setState(STATE_Attack) }

 State(STATE_ATTACK)
 Attack();
 if (LowOnHealth) { setState(STATE_Flee) }

 .
 .
 .

 }

•  AD	Hoc	Code	
•  Inefficient	
– Check	variables	frequently	

Becer	

•  Object	Oriented	
•  Transi3ons	are	events	

Embellishments	

•  Adap3ve	AI	
– Memory	

•  Predic3on	
•  Path	Planning,	Tomorrow	

Resources	

•  hcps://sobware.intel.com/en-us/ar3cles/
designing-ar3ficial-intelligence-for-games-
part-1		(there	are	4	parts,	read	the	first	3)	

•  hcp://www.policyalmanac.org/games/
aStarTutorial.htm	(you	will	implement	this	
visualiza3on	as	project	3)	

•  hcp://www-cs-students.stanford.edu/~amitp/
gameprog.html	(great	resources	for	game	AI)	

Path	Planning	

•  Problem:	How	to	navigate	from	point	A	to	point	B	in	
real	3me.	Possible	a	3D	terrain.	
•  We	will	start	with	a	2D	terrain.	

–  What	about	if	we	ignore	the	problem:	

No	Path	Planning	bad	Sensors	

With	Becer	Sensors	(Red)	

•  Blue	Planning.	 – Watch	AI	Naviga3on	Bloopers:	
•  hcp://www.youtube.com/watch?v=lw9G-8gL5o0	

Environment	Assump3ons	

•  2D	Grid	

Problem	Statement	

•  Point	A	(star)	to	Point	B	(x)	:	Shortest	amount	
of	steps	or	fastest	3me	

Explore	the	Environment	

•  Fron3er	Expands	
•  Stops	at	walls	

hcp://www.redblobgames.com/pathfinding/a-star/introduc3on.html	

Common	Theme:	Fron3er	
Implementa3on	

•  Pick	and	remove	a	loca3on	from	fron3er	

•  Mark	loca3on	as	“done		processing”	

•  Expand	my	looking	at	its	unprocessed	
neighbors	and	add	to	fron3er	

Shortest	Path:	Breath	First	

•  We	got	the	visi3ng	part,	now	how	do	we	find	
the	shortest	path?	
– Solu3on:	Keep	track	:	

1.  where	we	came	from,	and		later	compute		

2.  the	distance	traveled	so	far	

Measure	path	links	

•  Start	at	Goal	and	traverse	where	it	‘came	
from’	
– Shortest	path		

Embellishments:	Make	if	more	
efficient	

•  All	Paths	from	one	loca3on	to	all	others	
– Early	exit:	Stop	expanding	once	fron)er	covers	
goal	

Movement	cost	not	enough	

•  Some	movements	may	be	more	expensive	
than	other	to	move	through	
– Use	a	new	heuris3cs	
– Add	to	fron3er	if	cost	is	less.	

•  hcp://www.redblobgames.com/pathfinding/
a-star/introduc3on.html	

•  We:	Board	

•  Th:	Board.	Sketch	out	the	algorithm.	

Summary	from	Board	

•  A	Star	favor	neighbors	with	smallest	F	value.	
–  F	=	H	+	G	

•  Breath	First	Search	
–  Explore	all	neighbors,	typically	using	a	simple	queue	
that	explores	neighbors	first	in	first	out	(FIFO).	

•  Best	First	Search:			H	
–  Favor	neighbors	that	have	shortest	distance	to	goal.	

•  Dijskstra:		G	
–  Favor	neighbors	that	are	closest	to	star3ng	point	
(smallest	G).	

Revisit	Represen3ng	of	grids	as	graphs		

•  Grid	to	Node	Example	 •  Dijkstra	node	on	board.	

Hackathon	tomorrow.	

•  Hackathon	tomorrow	will	be	doing	node	
based	algorithms	on	‘paper’	but	you	will	need	
to	covert	it	to	digital	text.	
– Best	First,	Breath	First,	Dijkstra,	A*	

•  You	will	also	draw	a	FSM	of	some	game	en3ty,	
in	the	same	vain	as	the	mummy	FSM.	

