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ABSTRACT | Our understanding of social insect behavior has

significantly influenced artificial intelligence (AI) and multi-

robot systems’ research (e.g., ant algorithms and swarm

robotics). In this work, however, we focus on the opposite

question: BHow can multirobot systems research contribute to

the understanding of social animal behavior?[ As we show, we

are able to contribute at several levels. First, using algorithms

that originated in the robotics community, we can track animals

under observation to provide essential quantitative data for

animal behavior research. Second, by developing and applying

algorithms originating in speech recognition and computer

vision, we can automatically label the behavior of animals

under observation. In some cases the automatic labeling is

more accurate and consistent than manual behavior identifi-

cation. Our ultimate goal, however, is to automatically create,

from observation, executable models of behavior. An execut-

able model is a control program for an agent that can run in

simulation (or on a robot). The representation for these

executable models is drawn from research in multirobot

systems programming. In this paper we present the algorithms

we have developed for tracking, recognizing, and learning

models of social animal behavior, details of their implementa-

tion, and quantitative experimental results using them to study

social insects.
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I . INTRODUCTION

Our objective is to show how robotics research in general

and multirobot systems research in particular can accel-
erate the rate and quality of research in the behavior of

social animals. Many of the intellectual problems we face

in multirobot systems research are mirrored in social

animal research. And many of the solutions we have

devised can be applied directly to the problems encoun-

tered in social animal behavior research.

One of the key factors limiting progress in all forms of

animal behavior research is the rate at which data can be
gathered. As one example, Gordon reports in her book that

two observers are required to track and log the activities of

one ant. One person observes and calls out what the ant is

doing, while the other logs the data in a notebook [1]. In

the case of social animal studies, the problem is com-

pounded by the multiplicity of animals interacting with

one another.
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One way robotics researchers can help is by applying
existing technologies to enhance traditional behavioral

research methodologies. For instance computer vision-

based tracking and gesture recognition can automate much

of the tedious work in recording behavior. However, in

developing and applying existing technologies, we have

discovered new, challenging, research problems. Vision-

based multitarget tracking, for instance, is far from being a

solved problem. Algorithms capable of tracking several
targets existed when we began our work in this area, but

research with ants calls for software that can track dozens

or hundreds of ants at once. Similarly, algorithms for

labeling the behavior of one person (or animal) existed

several years ago, but now we must label social behavior

between two or more animals at once. The point being that

the application of robotics algorithms to a new domain also

drives new research in robotics.
Now, in addition to helping animal behavior research-

ers speed up their traditional modes of research, we can

also provide them with entirely new and powerful tools. In

particular, mobile robotics can offer new ways to represent

and model animal behavior [2]. What is the best model of

behavior? It is our position that an executable model

provides the most complete explanation of an agent’s

behavior. By Bexecutable[ we mean that the model can run
in simulation or on a mobile robot. By Bcomplete[ we

mean that all aspects of an agent’s behavior are described:

from sensing, to reasoning, to action. Executable models

provide a powerful means for representing behavior

because they fully describe how perception is translated

into action for each agent. Furthermore, executable

models can be tested experimentally on robots or in a

multiagent simulation to evaluate how well the behavior of
a simulated Bcolony[ matches to the behavior of the ac-

tual animals. Other types of models cannot be tested in

this way.

Robotics researchers are well positioned to provide

formalisms for expressing executable models because the

programs used to control robots are in fact executable

models. Furthermore, researchers who use behavior-based

approaches to program their robots use representations
that are closely related to those used by biologists to

describe animal behavior. Our objective in this regard is to

create algorithms that can learn executable models of

social animal behavior directly from observations of the

social animals themselves.

In this paper we report on our progress in this area over

the last six years. A primary contribution is the idea that

we ought to apply artificial intelligence (AI) and robotics
approaches to these problems in the first place. However,

additional, specific contributions include our approaches

to solving the following challenges.

• Tracking multiple interacting targets: This is an

essential first step in gathering behavioral data. In

many cases, this is the most time-consuming step

for a behavioral researcher.

• Automatically labeling behavior: Once the loca-
tions of the animals are known over time, we can

analyze the trajectories to automatically identify

certain aspects of behavior.

• Generating executable models: Learning an

executable model of behavior from observation

can provide a powerful new tool for social behavior

research.

The rest of the paper follows the order listed above. We
review the challenges of multitarget tracking and our

approach to the problem. We show how social behavior

can be recognized automatically from trajectory logs. Then

we close with a presentation of our approach to learning

executable models of behavior. Each topic is covered at a

high level, with appropriate citations to more detailed

descriptions. We also review the relevant related work in

each area in the beginning of each corresponding section.

II . TRACKING MULTIPLE
INTERACTING TARGETS

Tracking multiple targets is a fundamental task for mobile

robot teams [3]–[5]. An example from RoboCup soccer is

illustrated in Fig. 1. In the small-size league, 10 robots and

a ball must be tracked using a color camera mounted over
the field. In order to be competitive, teams must find the

location of each robot and the ball in less than 1/30 of a

second.

One of the leading color-based tracking solutions,

CMVision was developed in 2000; it is used now by many

teams competing at RoboCup [6]. We used CMVision for

our first studies in the analysis of honeybee dance behavior

[7]. However, for bees, color-based tracking requires
marking all the animals to be observed (Fig. 1)Vthis is

something of a tricky operation, to say the least. Even if the

Fig. 1. Multitarget tracking in robot soccer and social animal research.

In the RoboCup small-size league robots are tracked using an

overhead camera (image courtesy Carnegie Mellon).
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animals are marked, simple color-based tracking often gets
confused when two animals interact.

We now use a probabilistic framework to track multiple

targets by an overhead video camera [8]. We have also

extended the approach for multiple observers (e.g., from

the point of view of multiple sensors or mobile robots).

Comprehensive details on these approaches are reported

in [8]–[11].

Our objective in this first stage (tracking) is to obtain a
record of the trajectories of the animals over time, and to

maintain correct, unique identification of each target

throughout. We have focused our efforts on tracking social

insects in video data, but many of the ideas apply to other

sensor modalities (e.g., laser scanning) as well. The

problem can be stated as follows.

• Given:

1) examples of the appearance of the animals to
be tracked; and

2) the initial number of animals.

• Compute: trajectories of the animals over time

with a correct, unique identification of each target

throughout.

• Assume:

1) the animals to be tracked have similar or

identical appearance;
2) the animals’ bodies do not deform significant-

ly as they move; and

3) the background does not vary significantly

over time.

A. Particle Filter Tracking
Traditional multitarget tracking algorithms approach

this problem by performing a target detection step

followed by a track association step in each video frame.

The track association step solves the problem of converting

the detected positions of animals in each image into

multiple individual trajectories. The multiple hypothesis

tracker [12] and the joint probabilistic data association

filter (JPDAF) [13], [14] are the most influential algorithms

in this class. These multitarget tracking algorithms have
been used extensively in the context of computer vision.

Some example applications are the use of nearest neighbor

tracking in [15], the multiple hypothesis tracker in [16],

and the JPDAF in [17]. A particle filter version of the

JPDAF was proposed in [18].

Traditional trackers (e.g., the extended Kalman–Bucy

filter) rely on physics-based models to track multiple

targets through merges and splits. A merge occurs when
two targets overlap and provide only one detection to the

sensor. Splits are those cases where a single target is

responsible for more than one detection. In radar-based

aircraft tracking, for instance, it is reasonable to assume

that two planes that pass close to one another can be

tracked through the merge by predicting their future

locations based on their past velocities. That approach does

not work well for targets that interact closely and un-
predictably. Ants, for instance, frequently approach one

another, stop suddenly, then move off in a new direction.

Traditional approaches cannot maintain track in such

instances. Our solution is to use a joint particle filter

tracker with several novel extensions.

First we review the operation of a basic particle filter

tracker, then we introduce the novel aspects of our ap-

proach. The general operation of the tracker is illustrated
in Fig. 2. Each particle represents one hypothesis re-

garding a target’s location and orientation. For ant tracking

in video, the hypothesis is a rectangular region approxi-

mately the same size as the ant targets. In the example,

each target is tracked by five particles. In actual exper-

iments we use hundreds of particles per target.

We assume we start with particles distributed around

the target to be tracked. A separate algorithm (not covered
here) addresses the problem of initializing the tracker by

finding animals in the first image of the sequence. After

initialization, the principal steps in the tracking algorithm

include the following.

1) Score: each particle is scored according to how

well the underlying pixels match an appearance

model.

Fig. 2. Particle filter tracking. (a) The appearance model used in tracking ants. This is an actual image drawn from the video data. (b) A set of

particles (white rectangles), are scored according to how well the underlying pixels match an appearance model. (c) Particles are resampled

according to the normalized weights determined in the previous step. (d) The estimated location of the target is computed as the mean of the

resampled particles. (e) The previous image and particles. A new image frame is loaded. (f) Each particle is advanced according to a stochastic

motion model. The samples are now ready to be scored and resampled as above.
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2) Resample: the particles are Bresampled[ accord-
ing to their score. This operation results in the

same number of particles, but very likely particles

are duplicated while unlikely ones are dropped.

3) Average: the location and orientation of the target

is estimated by computing the mean of all the

associated particles. This is the estimate reported

by the algorithm as the pose of the target in the

current video frame.
4) Load new image: read the next image in the

sequence.

5) Apply motion model: each particle is stochasti-

cally repositioned according to a model of the

target’s motion.

6) Go to Step 1.

B. Joint Particle Filter Tracking
The algorithm just described is suitable for tracking an

individual ant, but it fails in the presence of many identical

targets [8]. The typical mode of failure is Bparticle

hijacking[ whereby the particles tracking one animal latch

on to another animal when they pass close to one another.

Three additional extensions are necessary for success-

ful multitarget tracking: First, each particle is extended to
include the poses of all the targets (i.e., they are joint
particles). An example of joint particles for ant tracking is

illustrated in Fig. 3. Second, in the Bscoring[ phase of the

algorithm, particles are penalized if they represent

hypotheses that we know are unlikely because they violate

known constraints on animal movement (e.g., ants

seldomly walk on top of each other). Blocking, in which

particles that represent one ant on another are penalized,
is illustrated in Fig. 3. Finally, we must address the ex-

ponential complexity of joint particle tracking (this is

covered below). These extensions, and evaluations of their

impact on tracking performance, are reported on in detail

in [8] and [10].

The computational efficiency of joint particle tracking
is hindered by the fact that the number of particles and the

amount of computation required for tracking is exponen-

tial in the number of targets. For instance, ten targets

tracked by 200 hypotheses each would require

20010 ¼ 1023 particles in total. Such an approach is clearly

intractable. Independent trackers are much more efficient,

but as mentioned above, they are subject to tracking

failures when the targets are close to one another.
We would like to preserve the advantages of joint

particle filter tracking, but avoid an exponential growth in

complexity. In order to reduce the complexity of joint

particle tracking we propose that targets that are in

difficult to follow situations (e.g., interacting with one

another) should be tracked with more hypotheses, while

those that are isolated should be tracked with fewer

hypotheses. We use Markov chain Monte Carlo (MCMC)
sampling to accomplish this in our tracker [8], [10]. The

approach is rather complex, but the effective result is that

we can achieve the same tracking quality using orders of

magnitude fewer particles than would be required

otherwise. Fig. 4 provides an example of how the approach

can focus more hypotheses on challenging situations while

using an overall smaller number of particles. An example

result from our tracking system using MCMC sampling is
illustrated in Fig. 5. In this example, 20 ants are tracked in

a rectangular arena.

After trajectory logs are gathered they are checked

against the original video. In general, our tracker has a very

low error rate (about one of 5000 video frames contains a

tracking error [8]). However, to correct such errors and

ensure nearly perfect data, we verify and edit the

trajectories using TeamView, a graphical trajectory editing
program also developed in our laboratory [19].

C. Using Tracking for Animal Experiments
Most of our efforts in tracking are focused on social

insect studies. These are examined in more detail in the

Fig. 3. Joint particles and blocking. When tracking multiple animals, we use a joint particle filter where each particle describes the pose of all

tracked animals (left). In this figure there are two particlesVone indicated with white lines, the other with black lines. Particles that overlap

the location of other tracked targets are penalized (right).
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following sections. However, we have also been deeply

involved with the Yerkes Primate Research center to apply
our tracking software to the study of monkey behavior. In

particular, we are helping them evaluate spatial memory in

rhesus monkeys by measuring the paths the monkeys take

as they explore an outdoor three dimensional arena over

repeated trials. In this study we use two cameras to track

the movements of monkeys inside the arena and generate
three-dimensional (3-D) data (see Fig. 6). Over the course

of this study, we have collected over 500 h of trajectory

dataVthis represents the largest corpus of animal tracking

data we are aware of. The design of our tracking system for

this work is reported in [20].

In the initial study, our system only tracked one

monkey at a time. We are now moving towards an

experiment where we hope to track as many as 60 monkeys
at once in a 30 m by 30 m arena. To accomplish this we are

experimenting with a new sensor system: scanning laser

range finders (Fig. 7). Each laser scans a plane out to 80 m

in 0.5� increments. Example data from a test in our lab is

shown in the figure on the right. In this image the outline

of the room is visible, as well as five ovals that represent

the cross sections of five people in the room. We plan to

extend and adapt our vision-based tracking software to this
new sensor modality. The laser-based tracks will be limited

Fig. 5. Example tracking result. 20 ants are tracked in a rectangular

arena. The white boxes indicate the position and orientation of an ant.

The black lines are trails of their recent locations.

Fig. 4. MCMC sampling. (a) Each ant is tracked with three particles, or hypotheses. With independent trackers this requires only 12 particles,

but failures are likely. (b) With a joint tracker, to represent three hypotheses for each ant would require 81 particles altogether. However,

MCMC sampling (c) enables more selective application of hypotheses, where more hypotheses are used for the two interacting ants on the

right side, while the lone ants on the left are tracked with only one hypothesis each.

Fig. 6. Left: experimental setup at Yerkes Primate Research Center for tracking monkeys in an outdoor arena. Center: a monkey

in the arena. Right: an example 3-D trajectory.
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to two–dimensional (2-D) (versus 3-D for the vision-based

tracking). Maja Mataric’s group at USC is also using laser

range-finders to track people [21], [22].

D. Limitations
To date, our vision-based multitarget tracking algo-

rithms have been successful primarily in laboratory en-

vironments in which the lighting is controlled or the

background provides high contrast. Fortunately, the

behavior of some social insects (e.g., Temnothorax
curvispinosus and Apis mellifera) is not significantly affected
by a laboratory environment. However, it would certainly

be preferable to track and assess behavior in the natural

(outdoor) environment of the animal under study.

We have been successful tracking monkeys outdoors

using computer vision, but in those experiments we are

only concerned with tracking one monkey at a time. In our

future investigations, we will use laser-based tracking to

overcome the limitations of vision-based solutions.

III . AUTOMATIC RECOGNITION OF
SOCIAL BEHAVIOR

Behavior recognition, plan recognition, and opponent model-
ing are techniques whereby one agent estimates the
internal state or intent of another agent by observing its

actions. These approaches have been used in the context of

robotics and multiagent systems research to make multi-

robot teams more efficient and robust [23]–[25]. Recog-

nition helps agents reduce communications bandwidth

requirements because they can infer the intent of their

team members rather than having to communicate their

intent. In other cases the objective is to determine the
intentions of an opposing agent or team in order to

respond more effectively. Related problems are studied in

the context of speech recognition, gesture recognition, and

surveillance [26]–[28]. Social animal research offers a

similar challenge: how can we automatically recognize the

behavior of animals under observation?

As an example, in ants, encounters between animals

are thought to mediate individual and colony-level

behavior, including for instance, forager recruitment,
response to external disturbances, and nest selection for

the colony [29]–[32]. Typically, behaviors such as these

are investigated experimentally by having human obser-

vers record observed or videotaped activity. Generating

such records is a time-consuming task for people, however,

especially because the numbers of interactions can in-

crease exponentially in the number of animals.

Computer vision-based tracking and machine analysis
of the trajectories offers an opportunity to accelerate such

research. Once we have trajectories of the animals’

movements, we can analyze them to infer various aspects

of their behavior. We seek to recognize social behavior, so

we focus on aspects of the animals’ movement that reveal

social interaction.

We have explored two approaches to this problem. In

the first approach, we take advantage of a model of the
geometry of the animal’s sensory apparatus to estimate

when significant interactions occur. In the second ap-

proach, we use example labels provided by a human expert

to train the system to label activities automatically.

A. Using Sensory Models to Recognize
Social Behavior

When ants approach one another, they often (perhaps
deliberately) meet and tap one another with their

antennae. Ants of the genus Temnothorax for example,

use such encounters to detect the density of nestmates in a

potential nest site, a crucial cue for their collective de-

cision about whether to move the whole colony to the site

[32]. These encounters can be readily divided into three

types, based on the posture of one ant (the focal ant)

relative to the other: head-to-head (HH), head-to-body
(HB), and body-to-head (BH). Body-to-body (BB) en-

counters may also be important, so we include them for

completeness. It is not known for certain the extent to

which the various encounter types affect behavior

differentlyVin fact, that is one purpose of the research

we are conducting. Formally, we seek to address the

following problem.

• Given:
1) time-stamped trajectories of the pose of

multiple interacting animals; and

2) a geometric model of their sensory field.

• Compute: appropriate labels for the trajectories,

including encounters, automatically.

• Assume: the geometric models accurately reflect

the sensory apparatus of the animals.

To accomplish this we approximate an ant’s antennal
and body sensory fields with a polygon and circle, re-

spectively (Fig. 8). An encounter is inferred when one of

these regions for one ant overlaps a sensory region of

another ant. Our model is adapted from the model in-

troduced for army ant simulation studies by Couzin and

Franks [33]. Note that for this work we do not consider

the visual field of the ant. While the visual field is

Fig. 7. Left: scanning laser range finders mounted on portable boxes

for easy field deployment. Right: data from an experiment in our lab.

The outline of the room is visible, along with 5 oval objectsVpeople

in the room.
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certainly important for guiding ants we consider that it is
not critical for determining whether physical contact

occurs between them.

The following are details of our sensory model for

Aphaenogaster cockerelli. Recall that the tracking software

reports the location of the center of the ant and its

orientation. We estimate the front of the head to be a point

half a body length away from the center point along the

centerline. From the head, the antennae project to the left
and right at 45�. We construct a polygon around the head

and antennae as illustrated, with one point at the center of

the ant’s thorax, two at the outer edges of the antennae

and an additional point, one antenna length away, directly

along the ant’s centerline in front of the head. The inferred

Bantennal field of view[ is the resulting polygon defined

by these points. We assume a body length of 1 cm and

antenna length of 0.6 cm. We estimate an ant’s Bbody[
sensory field to include a circle centered on the ant with a

radius of 0.5 cm.

We assume that any object within the head sensory

field will be detected and touched by the animal’s

antennae, and any object within the range of the body

can be detected by sense organs on the legs or body of the

ant. By considering separate sensory fields for the body and

the antennae, we are able to classify each encounter into
one of the four types described above. To determine when

an interaction occurs, we look for overlaps between the

polygonal and circular regions described above.

Computationally, determining an overlap consists of

checking for intersections between line segments and

circles. Additionally, we require that two ants’ orientations

must differ by at least 5� before an interaction can count as
Bhead-to-head.[ Without this constraint, we noticed many

spurious Bencounters[ logged by the system for ants that

were simply standing next to one another without actually

interacting.

In order to evaluate the encounter detection system,

we had a human observer and our detection software label

interactions on the same experimental data (a videotape of

ants interacting in an arena). In cases where the logs
differed, we reviewed the video carefully at that time using

slow-motion playback to determine whether or not an

encounter actually occurred. We categorized each differ-

ence into one of four classes: 1) computer false positives in

which the computer identified an encounter that did not

occur; 2) computer false negatives in which the computer

failed to identify an encounter that actually occurred;

3) human false positives in which the human observer
logged an encounter that did not actually occur; and

4) human false negatives in which the human did not

record interactions that actually occurred. We repeated

this examination for three different videotaped experi-

ments. Quantitative results with standard deviations are

provided in the table at the bottom of this page.

We can clearly benefit from automatic labeling in this

application. Behavior labeling is faster and more accurate
than human labeling. The primary weakness is that some

detected encounters have not actually occurred as in-

dicated by a 7% false positive rate.

B. Using Trainable Models to Recognize
Social Behavior

The geometric sensory model-based method described

above performs well, but it is difficult to apply in general
because a new model would have to be devised for each

application. Accordingly, we have also developed recogni-

tion methods that take advantage of input provided by

human experts. In these systems, a human labels some of

the experimental data (referred to as the training set). A

model of the human’s labeling is created, then used as a

reference to label new examples. The power of this

approach is that it does not require the human expert to
elucidate the considerations involved in the classification

of an event into one of several categories, it only requires

examples of correctly classified observations. This is of

course a well-studied problem. Variations of the problem

are studied in computer vision for gesture recognition, face

recognition, and activity recognition [27], [34], [35]. In

our application, again, we are specifically interested in

Fig. 8. Left: we have examined the problem of detecting different

types of encounters between ants: HH, HB, BH, BB, or no interaction (X).

Right: in one approach, we use a geometric model of an ant’s sensory

system. Parameters of the model include Rb the radius of the animal’s

Bbody[ sensor, Ra the range of antenna sensing, and � the angular

field of view of the antennae.

false positives false negatives false positives false negatives

7%ð2%Þ 0%ð0%Þ 15%ð2%Þ 29%ð12%Þ

Computer Human
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social behavior, so the problem for human-trainable

recognition algorithms is specified as follows.

• Given:

1) time-stamped trajectories of the pose of

multiple interacting animals; and

2) a set of quantitative features defined over
(and between) the trajectories; and

3) labeled example trajectories.

• Compute: appropriate labels for the trajectories,

including encounters, automatically.

• Assume: the features are suitable for discriminating

between the behaviors that should be identified,

and the training examples provided are correct.

For the problem of detecting different types of
interactions between ants, we selected three features of

a potential encounter that can be easily determined from

the time-stamped trajectory data. The features are

illustrated and described in Fig. 10. We use the following

steps to learn and apply behavior labels.

1) Track: animals are tracked using the algorithms

described above.

2) Label: at each frame, the behavior of each animal
is labeled by a human observer (e.g., HH, BH, HB,

or X).

3) Cluster: the data gathered above is processed in

order to determine disjoint regions in feature

space that enclose each type of interaction.

4) Classify: in online operation, we determine in

which region of feature space a particular ob-

servation lies and label it accordingly.
In our current system, the third step of the procedure

is a hill-climbing optimization. For each type of inter-

action (set of thresholds) we seek to maximize the

number of data points with that label within the bounding

box minus the number of data points with different labels

inside the box. Each of the six thresholds is optimized in

turn, with iterations continuing until there is no im-

provement between subsequent loops. The resulting
thresholds determined from a 5-min labeled sequence

are illustrated in Fig. 10.

When the system is run on new (unlabeled) data, it

detects and labels interactions by computing the quanti-

tative features at each time stamp, then finding which

bounding box (if any) the point is enclosed by. It is possible

that one ant may experience several interactions at once

with more than one other ant (the system examines the
three closest other ants). If there are multiple interactions,

we select the highest priority type according to the order:

HH, HB, BH, X. (Note that in these experiments we did

not include BB interactions).

Observe that this is a rather simple approach. There are

more sophisticated algorithms that could also be applied

including, for instance, kernel regression or decision trees

[36], [37]. We compared the quality of our results with
kernel regression and found no significant advantage for

one over the other. We suspect that the feature space in

this application lends itself well to the bounding box

approach.

We evaluated the system by having a human expert

label two 5-min videos of Temnothorax curvispinosus
searching a new habitat. In each segment ants enter the

field of view, interact in various ways, then depart. There
are hundreds of interactions in each video. We used the

labeling of one video as training data for the system, which

then labeled the other video. We then compared theFig. 10. Three features used to classify interactions between ants.

Fig. 9. Ants are tracked and encounters between them are detected automatically in video images. (a) A vision-based multitarget tracker locates

and tracks ants in video. (b) Geometric models of animal sensory fields are checked for overlap. (c) A head-to-head encounter is detected and

indicated by a circle around the interacting animals. (d) Example video in which encounters are detected and highlighted.
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automatic labeling of the test data to the human labeling of

the same data. The automatic method correctly identified

94% of the interactions. We then reversed the order of
training: we trained the system on the second video, then

tested it on the first. In that case the system correctly

identified 87% of the interactions. Example frames from

video labeled by our system are reproduced in Fig. 11.

This performance is good, and it compares favorably

with similar systems used for gesture recognition (e.g.,

[34]). However, as many as 43% of the interactions

reported by the system are false positives; meaning that the
system detects many interactions that never occurred.

All is not lost, however. In similar work in which we

automatically labeled honeybee dance behavior, we

achieved a similar 93% accuracy, but with a substantially

lower false positive rate [7]. The difference is that in the

honeybee work we used a hidden Markov model (HMM)

in addition to the feature-based labeling. HMMs provide a

Bsmoothing[ influence that tends to suppress brief Bnoisy[
detections. As this work with ants progresses, we will

incorporate HMMs as well.

C. Using Automatic Recognition to
Study Behavior in Animals

Our objective in this section is to show how multitarget

tracking and automatic social behavior recognition can be

used in the context of an animal study. We present some

preliminary results from our own experiments, but we

expect even more impact from our collaborative work with

biologists and psychologists.

We are using our behavior recognition methods to

investigate interaction rates in two ant species. At Georgia
Tech we are researching the behavior of colonies of

Aphaenogaster cockerelli. At Princeton, we are exploring

the means by which Temnothorax curvispinosus selects a new

nest site. For T. curvispinosus the colony’s choice depends on

whether the ants achieve a quorum of nestmates at a
candidate site (Pratt et al. [32]). The ants appear to detect

the quorum through their rate of encounters with each

other at the site [32]. Our work is focused on discovering

the parameters of this decision process. Here we report on

our experiments with A. cockerelli because the work with

T. curvispinosus is still underway.

We would like to ascertain whether ants deliberately

seek or avoid encounters with other ants, and whether they
prefer certain types of encounters over others. From casual

observation it seems that the ants are more effective at

exchanging information when they meet head-to-head. It

also seems that when a head-to-head encounter is feasible,

the ants approach one another along a trajectory to ensure

a successful meeting. We are interested in discovering

whether the ants make these choices deliberately or

whether their actions are essentially random. The impor-
tance of encounter rates has been explored by others,

especially Gordon [1], [30], [31], but to our knowledge no

one has examined whether certain types of encounters are

preferred over others. In order to explore this question, we

consider the following null hypothesis.

Null Hypothesis: the rate and type of encounters

between ants arises from random motion of the animals.

If our data contradict this hypothesis, the assertion that
ants move deliberately is supported.

For the experiments, foragers (ants outside the brood

chambers, on or near food), were selected randomly with

forceps and placed in an otherwise empty 10 cm by 15 cm

arena with vertical walls. The walls were treated with fluon

to prevent escape. Two 30-min episodes were recorded,

the first with 10 ants, the second with 20 ants. Both sets of

ants were kept separated from the rest of the colony until
the experiment was completed. In both trials the ants

moved actively around the arena during the entire 30 min

with no apparent degradation in their enthusiasm for

exploration. Additional details regarding the animals and

their habitats are included in Appendix I.

The system counted the total number of each type of

encounter for trials with 10 and 20 ants. There were a total

of 5055 encounters detected: 1382 encounters with 10 ants
and 3673 with 20 ants. The average number of encounters

per ant is reported in Table 1. Observe that as the density of

ants doubles from 10 to 20 ants the total number of

interactions increases by only 33%. Gordon asserts that if

Table 1 Automatically Detected Encounters for 10– and 20–Ant

Experiments

Fig. 11. This image shows an example frame of video of Temnothorax

curvispinosus labeled automatically by our human-trainable system.

The colored triangles over the animals are coded for the different types

of interaction that animal is experiencing (cyan: BH, yellow: HB,

magenta: HH, blue: X).
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the ants moved according to Brownian motion, we should

expect the number of interactions to double. Head-to-

body, body-to-body and body-to-head encounters each
increase by 20%–30%. However, the average number of

head-to-head encounters nearly doubles, growing from

12.6 to 24.3 encounters per ant. All of these proportional

increases are statistically significant (the 95% confidence

intervals do not overlap).

Observe the following regarding these results.

• Although the density of ants increases by 100%

from the first experiment to the second the total
number of encounters increases by only one-third.

• Of the four various types of interactions, head-to-

head interactions make up a small proportion (9%

for 10 ants and 13% for 20 ants).

• In sharp contrast to the other types of interaction,

the number of head-to-head interactions nearly
doubles as the density of ants doubles from the first

experiment to the second.
The first result confirms earlier work by Gordon in

which she explored a number of variations affecting ant

density, and similarly observed that the number of

interactions did not increase in proportion to the density

of animals in the arena [30]. The result that head-to-head

interactions make up a relatively small proportion of the

interactions raises more questions, namely: Does this

represent a deliberate choice on the part of the ants, or is it
merely a consequence of geometry and random motion?

And why does the number of head-to-head interactions

double when the other types only increase by about one

third?

We created a simulation of ant movement to explore

these questions. (Details of the simulation are provided in

Appendix II.) In particular we wanted to examine the

assertion that we would observe the same distribution of
encounters for agents that just move randomly. Our

objective for the simulation was to create antlike (but

random) trajectories, where the simulated ants move

without regard to the location and orientation of other

ants. The simulated ants do not turn towards each other to

initiate an interaction, or turn away in avoidance. In all

other respects, the simulation mimics the movement of

real ants, based on statistics gathered from observation.

Fig. 12 illustrates the types of trajectories generated by the

simulation in comparison to those created by live ants.
We ran ten simulation experiments for both 10- and

20-ant cases. We then ran the same analysis on this data as

we ran on the real ant data. Quantitative results from the

simulation experiments are reported in Table 2. We also

compare the quantitative behavior of real ants with the

behavior of simulated ants in Table 3.

Consider Table 3 first. This data shows how well the

behavior of the real and simulated ants corresponds when
10 ants are in the arena. Overall there is only an 11%

difference in the total number of interactions, but there is

a 75% difference in the number of head-to-head interac-

tions. This indicates that there is a substantial difference in

the way real ants and Brandom[ ants interact head-to-head.

Now consider Table 2. For simulated ants, when the

number of ants doubles from 10 to 20, we see a 68%

increase in the total number of interactions. In the real ant
experiments, however, we see only a 33% increase in the

number of interactions. We suggest that the data supports

the following conclusions.

• Ants seek head-to-head encounters at statistically

significant higher rate than if they moved randomly.

• As the number of ants increases, they deliberately

avoid encounters to maintain a lower encounter

rate than if they moved randomly.
This experiment illustrates how automatic behavior

recognition can facilitate social animal studies. The results

arise from a few minutes of video, yet they represent over

5000 interactions of four different types between closely

Fig. 12. Simulated ant trajectories (left) compared with real ant trajectories (right).

Table 2 Quantitative Results From Simulation for 10 and 20 Ants
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interacting animals. Our use of computer vision-based

tracking and automatic recognition of social interactions

enabled a statistical analysis that would have been very

difficult or impossible to conduct otherwise. We expect to

report additional and more comprehensive results like this
in the future.

IV. LEARNING EXECUTABLE
MODELS OF BEHAVIOR

It is our position that an executable model provides the

most complete explanation of an agent’s behavior. By

Bexecutable[ we mean that the model can run in sim-
ulation or on a mobile robot. By Bcomplete[ we mean that

all aspects of an agent’s behavior are described: from

sensing, to reasoning, to action. In this section we will

propose a formalism for representing executable models,

and support it with examples from biology and robotics.

Later we will introduce algorithms for learning executable

models and illustrate their use.

Behavioral ecologists seek to explain complex behavior
by developing and testing predictive models. There are a

number of methods for modeling social animal behavior at

the individual and colony level. Ethograms are among the

most effective and frequently used approaches [38]. A

sample ethogram of ant behavior is provided in Fig. 13
[39]. The nodes of this diagram represent the behavioral

acts of individual animals. The links between the nodes

show how behaviors are sequenced. The frequency of

observed transitions is also recorded and represented.

Computer scientists will recognize a similarity between

the diagram in Fig. 13 and a Markov process (MP). The

nodes representing behavioral acts in an ethogram

correspond to states in an MP. Transitions between
behaviors correspond to the probabilistic transitions of

an MP. Researchers are already investigating methods for

automatically learning Markov models, including some

who apply the approach to learning models of behavior

[40]. A goal of this work is to employ a similar approach to

the task of learning animal behavior models.

The MP is also quite similar to methods for program-

ming sequences of behavior for mobile robots in the
behavior-based paradigm, and we will take advantage of

that similarity. The central idea of behavior-based robotics

is to closely couple a robot’s sensors and actuators so as to

avoid the trouble of maintaining a map of the world or

deliberating over it. Brooks’ subsumption architecture

and Arkin’s motor schemas are the best-known examples

[41], [42]. Both of these approaches were inspired by

biological models.
In the behavior-based approach, primitive behaviors

express separate goals or constraints for a task. As an

example, important behaviors for a navigational task would

include primitive behaviors like avoid_obstacles and

move_to_goal. Behaviors may be grouped to form more

complex, emergent behaviors. Groups of behaviors are

referred to as behavioral assemblages. One way behavioral

assemblages may be used in solving complex tasks is to
develop an assemblage for each subtask and to execute the

assemblages in an appropriate sequence. The steps in the

Fig. 13. Representations of behavior in ants (left) and robots (right). Left: this representation of individual ant behavior (called an ethogram)

is quite similar to a stochastic MP. The MP is one formulation used by AI researchers to model the behavior of intelligent agents. In this

ethogram, behavioral acts, ai, are linked by arcs indicating transitions from act to act. Thicker lines indicate higher probability transitions.

Right: this diagram illustrates a programmed sequence of behaviors for a foraging robot.

Table 3 Comparison of Simulation Experiments With Animal Experiments.

Automatically Detected Encounters for 10 Ants
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sequence are separate behavioral states. Perceptual events

that cause transitions from one behavioral state to another

are called perceptual triggers. A resulting task solving
strategy can be represented as a finite state automaton

(FSA). This technique is referred to as temporal sequencing.

An example FSA for executing a foraging task is

illustrated on the right in Fig. 13. A team of robots exe-

cuting this program are illustrated in Fig. 14. The robots

step through a sequence of assemblages including a search

of the environment (i.e., wander), acquisition of a

detected food object, then delivery of the object to home-
base. It is not necessary to understand the particulars of

the behaviors at this point. What is important, however, is

the idea that transitions from one behavioral assemblage to

another are triggered by perceptual events. As an example,

the deliver_blue behavior, in which a blue item is carried

by the robot back to the homebase (or Bnest[) is activated

when the robot has a blue item in its gripper.

Note that these representations of sequenced behavior
are strongly similar to the representations used by

biologists to model behavior. This is at least partly because

the approaches were inspired by biological mechanisms in

the first place.

A. Learning Executable Models of
Behavior From Observations

Consider the task for an ecologist seeking to describe the
behavior of an ant or bee. Typically, in studying a particular

behavior, a scientist will first define a set of primitive

behaviors that can be observed and recorded. For example,

in social insect foraging, such primitive actions include

searching for and exploiting a food source [29]. Having

defined these actions, the scientist must then determine the

high-level structure of the behavior; that is, what causes the

animal to switch between low-level behaviors. More
formally we define our problem as follows.

• Given:

1) a set of behavioral assemblages (i.e., con-

trollers) an agent may use;

2) a model of the agent’s perception apparatus;

3) a set of perceptions that may cause the agent

to switch behaviors; and

4) example trajectories of the agent interacting
in its environment.

• Compute: an executable model composed of the

behavioral assemblages and the perceptual triggers

that cause transitions between them.

• Assume:

1) the agent acts according to an MP with inputs;

and

2) we have an accurate representation of the
primitive behaviors the agent uses and the

perceptions that cause transitions.

Stated another way: Assume we already know the

constituent behaviors that reside at the nodes (states) of an

FSA (like the one depicted on the right in Fig. 13). The task

then is to learn the transitions between the nodes by

observing animals executing the behaviors.

Our assumptions may sound rather strong; how can we
know the details of the behavioral assemblages that ants

use? As it turns out, in related work we have developed a

means for learning such low level controllers. The ap-

proach has been demonstrated by learning controllers

from live ant data and running them in simulation and on a

mobile robot [43]. Our eventual goal is to combine these

two approaches in order to learn the entire control system.

At present, however, we will focus on learning the high-
level switching, given the lower level controllers.

This work is in contrast to work in activity recognition
where learning is used to build models of activity. These

models are often generative, but their goal is recognition,

not re-creation. If domain knowledge is assumed, it is

typically high-level domain knowledge of the structure of

the activity being recognized, for example, in the form of

topology restrictions or high-level grammars. Such tech-
niques have been used to classify bee behavior [7], [44], for

example. Here we assume that we have knowledge of

detectable low-level actions that we can use to understand

the structure of a behavior sequence and reproduce the

behavior in new situations.

Fig. 14. A team of two robots executes a behavior-based foraging program coded as an FSA.
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Furthermore, we consider that it is important for the
learned model to be understandable by humansVthereby

making the learned models useful to biologists. In this way

our work is similar to imitation learning. The notion of

primitives in [45] is similar to our notion of behavioral

assemblages.

1) The IOHMM Formalism: Hidden Markov models

(HMMs) [26], [46] represent the probability of an ob-
servation sequence Pðy1;y2; . . . ;yTÞ where yt is the

observation vector for time t. Input/output hidden Markov

models (IOHMMs) [47] are a generalization of this

model that represent the conditional probability of an

observation sequence given an input sequence Pðy1;y2;
. . . ;yTju1;u2; . . . ;uTÞ where ut is the input vector for

time t For each state i ¼ 1; . . . ; n in an HMM there is a

transition distribution Pðxtjxt�1 ¼ iÞ and an output
distribution Pðytjxt ¼ iÞ where xt is the discrete state at

time t. In an IOHMM there is a conditional transition

distribution Pðxtjxt�1 ¼ i;utÞ and a conditional output

distribution Pðytjxt ¼ i;utÞ. The standard algorithm for

training IOHMMs is an expectation–maximization (EM)

algorithm that is a straightforward extension of Baum–

Welch for HMMs. After training, the model can be

interactively executed on an input sequence in a manner
similar to a finite state machine.

In our case, ut is our state, including the position of the

agent. The corresponding output yt is the position of the

agent after moving. We think of the inputs as corre-

sponding to the agent’s sensors and the output as the

agent’s low-level actions expressed in terms of observables.

By using the model interactively in a simulator environ-

ment, we can recreate the global behavior of the agent. We
incorporate domain knowledge by modeling the output

distributions as mixtures over the known low-level actions

Pðytjxt ¼ i;utÞ ¼
X

j

ci;jPðytjat ¼ j;utÞ

where at is the action at time t and ci;j is the mixing weight

for state i and action j.
The actions are known, so only the mixing weights

need to be estimated. Assuming we have calculated

Pðytjat ¼ j;utÞ for each time step and actionVa task we

discuss in the next sectionVthe mixing weights can be
reestimated using the standard formulas for mixtures

within HMMs [6]. These mixing weights provide a soft

mapping between the states of the model and the known

actions. The mapping is not necessarily one-to-one, ad-

mitting models with several states corresponding to the

same low level action and with states that correspond to a

mixture of multiple low-level actions.

Our variation of IOHMMs is less of a discriminant
model than the standard IOHMM formulations because

the actual input–output mappings are fixed. Our primary

reason for selecting IOHMMs over, say, HMMs is that the
conditional transition distributions allow us to more easily

represent behaviors where switching between actions is

triggered by sensors.

In our experiments we condition transition distribu-

tions on a set of binary sensory features (e.g., Bbumped[ or

Bsee_target[), using the standard formulas for reestima-

tion [47]. We represent the transition distributions as

simple look up tables (as opposed to the neural networks
used in some IOHMM work). We also experimented with

an encoding where we ranked the features and took as the

input the index of highest ranking nonzero feature. The

ranking method greatly reduces the number of parameters

and allows for simple diagrams to be drawn of the resulting

models, but choosing a valid feature ranking can be dif-

ficult and requires domain knowledge of the relative

importance of the features.

2) Detecting Low-Level Actions: To estimate the mixing

weights during EM we need Pðytjat;utÞ at each time step;

this is equivalent to detecting which behavioral assemblage

(or blend of them) is active at each step. Unfortunately

motion is complicated by interactions with the environ-

ment, especially near walls and irregularly shaped objects,

so detection is not easy or unambiguous.
However, because we have executable versions of the

behavioral assemblages, we can approximate the distribu-

tion through sampling, observing that sampling from

Pðytjat;utÞ is equivalent to simulating a single time step of

the agent’s motion. Formally we estimate the probability

values using kernel density estimation

Pðytjat ¼ j;utÞ �
1

m

Xm

k¼1

1

VDh
K

yt � ytk

h

� �

where ytk is sampled from Pðytjat ¼ j;utÞ, K is the kernel

function, h is the bandwidth of the kernel, and VDh is the
volume of the kernel function for the bandwidth and the

dimension of the data D. In our experiments we used a

Gaussian kernel. At each step and for each behavioral

assemblage, we run a simulation many times to produce a

distribution of points predicting the next position of the

agent if that behavior were active. We then compare

these point distributions to the actual next position. One

advantage of this method is that it assumes nothing
concerning the representation of the behavioral assem-

blages, as long as they can be executed in simulation. The

method fully captures interactions with the environment

to the extent that the simulation used can recreate them.

In experimental practice, this method of detecting

which behavior is active provides 95% accuracy (detailed

results are provided in the next subsection). Despite

perfect knowledge of the behavioral assemblages, we still
have errors because there are many situations where the
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outputs of several behaviors are indistinguishable. For

example, when the agent bumps into a wall, most be-

haviors direct it to move away from the wall. In this case

action probabilities become almost uniform, indicating

that little can be said about the actions at such times. We

expect situations like these to be typical in real-world data.

B. Using IOHMMs to Learn an Executable
Model of Foraging

In order to test the effectiveness of our model learning

strategy, we applied it to the task of learning an executable

model of foraging from simulation data. Because we have

the original program used to control the simulated agents,

we are able to verify whether the system that was learned
is correct by comparison.

We used the TeamBots simulation platform and motor

schema-based control to program the agents. In this ap-

proach, (which is similar to a hybrid switching controller)

agents can be in one of several behavioral states. Fig. 15

shows the state diagram for the original model and sim-

ulation screenshots. In each state a distinct set of primitive

behaviors is activated. These groupings of behaviors and
their corresponding weights and parameters are referred

to as behavioral assemblages. Agents switch between states

on the basis of perceptual events or triggers. For more

detail on motor schema-based robot navigation, please

see [41].

The agents are provided four behavioral assemblages:

loitering at the base (the center), exploring for targets,

moving toward the closest target, and moving back to base.
There are four binary features that trigger transitions:

bumping into something, seeing a target, being near the

base, and holding an object. If an agent is exploring and

bumps into a loitering agent, that agent also begins to

explore. Some transitions are also triggered randomly

(e.g., agents eventually return to the base if they do not

find a target).

The simulation includes 12 agents and ten objects to

collect. We ran the model in simulation for 5 min with

12 agents at 33 frames per second, waiting for all of the

targets to be carried to base, recording at each frame, the

position and orientation of all agents as well as the posi-

tion of all targets. (Note that the output of the simulation
log file is equivalent in format to the output of our vision-

based tracking software.) Our objective is to learn a du-

plicate of the original model by examining the activities of

the simulated agents recorded in the log file.

We ran 100 trials using EM to learn 100 executable

models (for both ranked and unranked input). Some of the

learned models correspond well with the original models,

but some do not. In order to distinguish poor models from
good ones, we calculated the likelihood scores for all the

models using the standard forward probability recursion

values [47]. Fourteen ranked and 20 unranked input trials

yielded models with likelihood scores higher than the

original model’s. We noted that all models that success-

fully learned appropriate mixing weights had high

likelihood scores. The highest scores for the ranked and

unranked input models were essentially identical to the
original model. We executed the models with the lowest

likelihood scores that were still greater than the likelihood

score for the original model (in some sense the worst of the

successful trials), and found these models were able to

recreate the behavior of the original model. As seen in

Fig. 16, these models also recovered the structure of the

original model.

There were flaws. In some models, bumping into an
object while exploring would sometimes cause the agent to

transition prematurely into the move-to-base state, slowing

foraging. This appears to be a result of detection inaccuracies

from bumping. Similarly, agents would drop a target early if

they bumped into something while returning to base. Also if

an agent was moving towards a target but another agent

picked it up first, the first agent would loiter in place. One

Fig. 15. Left: the original foraging model. Right: two frames from the running simulation that show the agents gathering food items and dropping

them at homebase in the center of the arena.
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reason for these apparent failures is due to the fact that some

of these situations did not occur in the training run.

Models with low likelihood scores did not perform

well. Their behavior was not at all similar to the original

model. The most common failure mode was the absence of

an important behavioral assemblage as a state in the model

(this is more or less equivalent to learning the wrong
mixing weights). One example Bbad[ model is illustrated

in Fig. 17. Note that it includes two loiter states and it lacks

a move-to-target state.

So far we have applied this method only to data from

simulation (versus live ant data). One important reason for

exploring simulation results first is that by using a

simulation with agents that we program, we are able to

directly compare the learned models with the ground-truth

original. We will not be able to do this with ant data

because it is impossible to know for sure how ants are

really Bprogrammed.[
Nevertheless, we expect to apply this learning tech-

nique to the problem of learning models of real ant

behavior in the near future. We will also augment the

approach with low-level behavior learning so we can relax
our assumption that the low-level behavioral assemblages

are given.

V. CONCLUSION AND LIMITATIONS

The central assertion of this paper is that robotics has

much to offer social animal researchers. Many of the

problems studied in robotics, and multirobot systems

Fig. 17. Left: a low-likelihood learned foraging model. This model includes two loiter states and lacks a move-to-target state. Right: two frames

from the running simulation that show that the agents running this model perform poorly.

Fig. 16. Left: a learned foraging model. Note that there are more transitions between the behavioral states than in the original model.

These transitions, in concert with the ranked inputs result in functional equivalence between this learned model and the original. Right: two

frames from the running simulation that show the agents gathering food items and dropping them at homebase in the center of the arena.

The behavior is nearly identical to the original.
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research, have a dual in social animal research. We focused
on three problems: multitarget tracking, automatic behav-

ior recognition, and learning of executable models.

We have developed and demonstrated capable multi-

target trackers, but we have not yet addressed a number of

remaining challenges in this area. Ant tracking, for in-

stance, is easier than bee tracking because the field of view

is generally more sparse in the case of ants, and the

background provides high contrast. In the case of bees,
however, the field of view is covered by bees, with very

little background visible. And the background that is vis-

ible is the same color as the bees. We are developing new

algorithms to address these problems. We are also be-

ginning to investigate new sensor modalities besides

vision. One sensor in particular that we want to explore

is the scanning laser range finder, and in particular, mul-

tiple distributed sensors.
With regard to behavior recognition, we have focused

on recognizing social behaviorVthose activities that occur

in the context of multiple animals interacting. Using geo-

metric models of an animal’s sensor system and labeled

data, we are able to correctly label behavior with an

accuracy of 90% to 95%. In some cases, however, our

success is diminished by a high false positive rateVwe

identify actions that did not take place. We believe these
failures can be reduced using HMMs and similar

techniques.

We showed how IOHMMs can be used to represent

executable models of behavior. We also showed how

standard EM techniques can be used to learn executable

models from observational data. Our system successfully

learned a model of foraging behavior that was run in

simulation. The learned model also runs in simulation
and it emulates the original very well. Currently the

weakness in the approach lies in the fact that we assume

we know the low-level behaviors already, and that we

need only learn the higher-level sequencing. However, in

other work, we have been able to learn low-level models,

and we expect to integrate the two approaches in the

future.

Finally, we observe that the accuracy of our models are
ultimately limited by the quality and breadth of our

observations. For instance, if we do not observe an ant in a

specific situation, its behavior in this situation will not be

modeled. We will explore these limitations in future

work. h

APPENDIX I
DETAILS REGARDING ANT
EXPERIMENTS

A colony of Aphaenogaster cockerelli was raised from a

fertilized queen captured in September 2000 near Tucson,

AZ. At the time of experiments the colony was composed

of about 400 workers and a queen. The colony did not

include any alates of either sex. The colony was housed in

two 10-cm-square plastic brood chambers, each with a
single 0.5-cm-diameter entrance hole. The chambers were

kept in a larger, 25 cm by 40 cm container in which the

ants were free to roam. The brood chambers include floors

made of hydrostone into which water was occasionally

squirted through a tube to maintain humidity. The colony

was fed a diet of fresh apple slices once per week and

two or three crickets each day. Fresh water was always

available from a test tube with a cotton stopper. Tem-
perature was maintained at about 21 �C throughout the

experiment.

For the experiments, foragers (ants outside the brood

chambers, on or near food), were selected randomly with

forceps and placed in an otherwise empty 10 cm by 15 cm

arena with vertical walls. The walls were treated with fluon

to prevent escape. Two 30-min episodes were recorded,

the first with 10 ants, the second with 20 ants. Both sets of
ants were kept separated from the rest of the colony until

the experiment was completed. In both trials the ants

moved actively around the arena during the entire 30 min

with no apparent degradation in their enthusiasm for

exploration.

Video was captured by a JVC camcorder onto mini-DV

tape. The camera was set to capture images at 30 Hz in a

progressive scan (non-interlaced) mode. A 345-s (5 min,
45 s) clip was selected at random from each 30-min ex-

periment. These clips were analyzed to produce the results

reported below. The video segment used to validate the

encounter detection software (outlined above) was from

the same experiment, but from a different time period than

was used to gather the quantitative data.

APPENDIX II
DETAILS REGARDING SIMULATED
ANT EXPERIMENTS

The simulated ants are initialized at random locations in a

simulated arena the same size as the real ant experiments.

Because our video data is acquired at 30 Hz, the simulation

also progresses in discrete steps of 1/30th of a second. The

simulated ants are constrained within the same size arena
as in the real ant experiments. We did not model the

sensor systems of the ants, because the simulated behavior

only requires detection of collisions with other ants and

the boundaries of the arena. The simulated ants act

according to the following simple Bprogram.[
1) Set heading to a random value.

2) Set speed and move duration to random

values.
3) Set timer ¼ 0.

4) While timer G move duration do

a) Move ant in direction heading for distance

speed=30.

b) If collision with wall, set heading directly

away from the wall, then left or right by a

random amount.
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c) If collision with another ant, set heading

directly away from other ant, then left or

right by a random amount.

d) Increment timer by 1/30 s.

5) Change heading by a random value.

6) Go to 2.

In order to make appropriate random selections for the

variables speed, heading, and move duration, we used

data from the movements of the real ants. Ignoring
encounters with other ants, we observed that the animals

tended to move for some distance in a more or less straight

line, then they would stop, occasionally pause, then move

off in another slightly different direction. We calculated a

mean and standard deviation for the time, speed and
change in direction for each of these movement segments.

These parameters were then used to draw random

numbers for the variables according to a Gaussian dis-

tribution. For speed and move duration, negative values

were clipped at zero. An example of trajectories generated

by the simulation is illustrated in Fig. 12.
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