Outline

CSCI: 4210/6210 Simulation & Modeling

Event-Oriented Simulations

Simulation modeling characteristics

- Concept of Time
- A DES computation
- DES System = model + simulation executive
- Data structures
- Program (Code)

Stochastic

Deterministic

ette, UGA

Static

Dynamic

. UGA	Maria Hybinette, UGA	2

Simulation Model Characteristics

- Today we will look at:
- Static or dynamic models
- Stochastic, deterministic or chaotic models
- Discrete or continuous change/models
- Aggregates or Individuals

Maria Hybinette, UGA

Static or Dynamic Models

• Dynamic:

» State variables change over time

» System Dynamics, Discrete Event, Agent-Based

- Static:
 - » Snapshot at a single point in time
 - » Monte Carlo simulation, optimization models

		Inputs						Response
Repetitions	X, 1	X _{1,2}	X, 3		$\mathbf{x}_{i,j}$		X _{i,p}	y,
1								
2								
3								
n								

Deterministic, Stochastic or Chaotic

Continuous Time

Discrete Time

- Deterministic:
 - Predictive behavior. The system is perfectly understood, then it is possible to predict precisely what will happen.
 - » Repeatable
- Stochastic:
- » behavior cannot be entirely predicted.
- Chaotic:

Maria Hybinette, UGA

deterministic model with a behavior that cannot be entirely predicted. Depends so sensitively on the system's initial conditions so that in effect it cannot be predicted.

Maria Hybinette, UGA

3

Discrete or Continuous Models

- Discrete model:
 - » state variables change only at a countable number of points in time.
 - These points in time are the ones at which the event occurs/change in state.
- Continuous model:

Maria Hybinette, UGA

- » state variables change in a continuous way,
- and not abruptly from one state to another.

7

Maria Hybinette, UGA

Maria Hybinette, UGA

» infinite number of states.

Discrete: State variables change at

discrete times

8

10

Simulation

Conclusion about actual system characteristics can be inferred

What is a Simulation Model?

System's Modeling

Entities, Attributes and Activities...

• An entity is an object of interest in the system » Example: Customer Manager Cashier

State and State Variables

- An attribute is a (relevant) property of an entity
 - » Example: Account balance Gender Skills
- Attributes are state variables

Maria Hybinette, UGA

Activities & Delays

Events

- Event:
 - » Occurrence
 - » Instantaneous
 - » May change the state
- Example single server queue:
 - » Arrival -- while the server is busy, so queue length is incremented by 1;
 - » Departure -- the completion of service

Conditional and Primary Events

Primary Events

Maria Hybinette, UGA

- » Scheduled at a certain time
- » Arrival of customers
- Conditional Events
 - » triggered by a certain condition becoming TRUE -- a completion of a delay
 - » Customers moving from queue to service

18

14

How to Create a DES?

A Simulation Example

- DES Modeling raises the following questions?
 - » How does each event affect system state and attributes?
 - » How are activities defined?
 - What events mark beginning and the end?
 - What condition (if any) most hold?
 - » How are delays defined?
 - » How is the simulation initialized?

• Single-server Queue at a bank

One possible problem formulation:
 » "customer have to wait too long in my bank"

Objective:

» Determine the effect of an additional cashier

Data needed:

Maria Hybinette, UGA

Maria Hybinette, UGA

- » inter-arrival time of customers
- » Service times

Maria Hybinette, UGA

19

Simulation Results

Movie

 Series of still images, sufficient to convey recognizable motion

System Snapshots

System Snapshots

20

Time

- *Physical system:* actual or imagined system being modeled
- Simulation: a system that emulates the behavior of a physical system

- physical time: time in the physical system
 » Noon, December 31, 1999 to noon January 1, 2000
 simulation time: representation of physical time within the simulation
- Simulation time, representation of physical time within the simulation
 » floating point values in interval [0.0, 24.0]
 will be form the simulation the simulation simulation

25

27

29

- wallclock time: time during the execution of the simulation, usually output from a hardware clock
- » 9:00 to 9:15 AM on September 10, 1999

Simulation Time

Modes of Execution

- As-fast-as-possible execution (unpaced): no fixed relationship necessarily exists between advances in simulation time and advances in wallclock time
- Real-time execution (paced): each advance in simulation time is paced to occur in synchrony with an equivalent advance in wallclock time
- Scaled real-time execution (paced): each advance in simulation time is paced to occur in synchrony with S * an equivalent advance in wallclock time (e.g., 2 x wallclock time)

Converting from wallclock to Simulation Time: Simulation Time = W2S(W) = T₀ + S * (W - W₀)

W = wallclock time; S = scale factor

tte, UGA

 $W_0 (T_0)$ = wallclock (simulation) time at start of simulation

Discrete Event Simulation

Discrete event simulation: computer model for a system where changes in the state of the system occur at discrete points in simulation time.

Fundamental concepts:

- system state (state variables)
- state transitions (events)

A DES computation: can be viewed as a sequence of event computations, with each event computation is assigned a (simulation time) time stamp. Each event computation can - modify state variables

- schedule new events

28

Discrete Event Simulation Computation

Unprocessed events are stored in a pending event lis

Events are processed in time stamp order

Discrete Event Simulation System

Event-Oriented World View

	_ Event h	andler procedure	s	
state variables Integer: InTheAir; Integer: OnTheGround; Boolean: RunwayFree;	Arrival Event	Landed Event	Departure Event	
Simulation application	- { }	۲ }	· … }	
Simulation executive Event processing loop				
Pending Event List (PEL) 9:00 9:16 9:17				
Made In Alexand 1974			31	

Maria Hybinette, UGA

Example: Air traffic at an Airport

Sin	gle runway for incoming aircraft, ignore departure queuing R = time runway is used for each landing aircraft (constant) G = time required on the ground before departing (constant)	
Sta	ite:	
	Now: current simulation time	
	InTheAir: number of aircraft landing or waiting to land	
	OnTheGround: number of landed aircraft	
	RunwayFree: Boolean, true if runway available	
Eve	ents:	
	Arrival: denotes aircraft arriving in air space of airport	
	Landed: denotes aircraft landing	
	Departure: denotes aircraft leaving	

Arrival Events

New aircraft arrives at airport. If the runway is free, it will begin to land. Otherwise, the aircraft must circle, and wait to land.

R = time runway is used for each landing aircraft G = time required on the ground before departing Now: current simulation time InTheAir: number of aircraft landing or waiting to land OnTheGround: number of landed aircraft

RunwayFree: Boolean, true if runway available

Arrival Event:

InTheAir := InTheAir+1; if(RunwayFree) RunwayFree:=FALSE; Schedule Landed event @ Now + R;

Maria Hybinette, UGA

Landed Event

An aircraft has completed its landing.

R = time runway is used for each landing aircraft	
G = time required on the ground before departing	
Now: current simulation time	
InTheAir: number of aircraft landing or waiting to land	
OnTheGround: number of landed aircraft	
RunwayFree: Boolean, true if runway available	
Landed Event:	
InTheAir := InTheAir-1;	
OnTheGround := OnTheGround + 1;	
Schedule Departure event @ Now + G;	
if(InTheAir > 0)	
Schedule Landed event @ Now + R;	
else	
RunwayFree := True;	
Maria Hybinatta LICA	

Maria Hybinette, UGA

33

Departure Event

An aircraft on the ground departs for a new destination.

R = time runway is used for each landing aircraft
G = time required on the ground before departing
Now: current simulation time
InTheAir: number of aircraft landing or waiting to land
OnTheGround: number of landed aircraft
RunwayFree: Boolean, true if runway available
Departure Event:
OnTheGround := OnTheGround - 1;

Execution Example

Summary

- Simulation modeling characteristics
- Time
 - Important to distinguish among simulation time, wallclock time, and time in the physical system Paced execution (e.g., immersive virtual environments) vs. unpaced execution (e.g., simulations to analyze systems)
 - »
- DES computation: sequence of event computations
 Modify state variables
 Schedule new events
- DES System = model + simulation executive
- Data structures
 - » Pending event list to hold unprocessed events
 - State variables » Simulation time clock variable
- Program (Code)
 - » Main event processing loop
 - » Event procedures

Maria Hybinette, NGA Events processed in time stamp order