Review from Last Time

CSCI 4210/6210 Simulation & Modeling

Process Oriented Simulation

Motivations to do simulations

Modeling characteristics

Maria Hybinette, UGA

3

• Time and event driven simulations

Today

- Event-Oriented Simulation (review)
- Process-oriented simulation:
 - » Fundamental concepts: Processes, resources
 - » Simulation primitives
 - » Example

Maria Hybinette, UGA

Maria Hybinette, UGA

» Implementation

Event-Oriented World View

2

Event handler procedures			
state variables Integer: InTheAir; Integer: OnTheGround; Boolean: RunwayFree;	Arrival Event	Landed Event	Departure Event
Simulation application	- { }	{ }	۲ }
Simulation executive Event processing loop			
Now = 8:45 while (simulation not finished) Pending Event List (PEL) E = smallest time stamp event in PEL 9:00 10:10 9:16 Now := time stamp of E call event handler procedure 4			
Maria Hybinette, UGA			4

Example: Event-Oriented Air traffic Simulation

	_
Now: current simulation time InTheAir: number of aircraft landing or waiting to land OnTheGround: number of landed aircraft RunwayFree: Boolean, true if runway available	
Arrival Event:	1
InTheAir := InTheAir+1;	
if(RunwayFree)	
RunwayFree:=FALSE;	
Schedule Landed event @ Now + R;	
Landed Event:	1
InTheAir := InTheAir-1;	
OnTheGround := OnTheGround + 1;	
Schedule Departure event @ Now + G;	
if(InTheAir > 0) Schedule Landed event @ Now + R;	
else RunwayFree := True;	
Departure Event:	
OnTheGround := OnTheGround - 1;	Ι.
Maria Hybinette, UGA	1 5

Execution Example

Event-Oriented World View

Event handler procedures			
state variables Integer: InTheAir; Integer: OnTheGround; Boolean: RunwavFree:	Arrival Event	Landed Event	Departure Event
	{	{	{
Simulation application	}	}	}

- Event-oriented simulation programs may be difficult to understand and modify:
 - » Program organized around state transitions
 - » Behavior of an aircraft distributed across multiple event handlers
 - » Flow of control among event handlers not obvious
 - » Suppose you want to model: Different aircrafts, airlines, pilots imagine events for each segment (volume) of airspace

Process Oriented

- A simulation process models a specific entity with a well defined behavior.
 - It describes the action performed of the process through out its lifetime.
 - Models a specific entity with well defined behavior and it is encapsulated within the process.
 - Example: an aircraft
- Event oriented view: lifetime of an event is a SINGLE instant in time.
- Process oriented view: lifetime is a time period of the 'process' or 'thread'

Event versus Process Oriented Views

Event Oriented View			
state variables	Arrival	Landed	Departure
<pre>Integer: InTheAir; Integer: OnTheGround;</pre>	Event	Event	Event
Boolean: RunwayFree;	{	{	{
	}	}	}
Focus of model is on EVEN	TS and how they	affect the state of	the simulation.
Process Oriented View			
state variables	Aircraft1	Aircraft2	AircraftN
Integer: InTheAir;	1	1	1
Integer: OnTheGround; Boolean: RunwavFree:	Arrive	Arrive	Arrive
	Land	Land	Land
	Depart	Depart	Depart
	}	}	}

Entities modeled by processes.

Process Oriented Execution Model

• Focus simulation program around behavior of entities » Aircraft: arrives, waits for runway, lands, departs

Process-oriented simulation

nette, UGA

- » Process: Thread of execution describing entity behavior over time
- » Resources: Shared resource used by entities (e.g., the runway)

Execution: alternate between

- » simulation computations at a single instant of simulation time, and
- » advances in simulation time (no computation)

Computation at a single Instant of simulation time		Simulation time advances (no computation)		
\			<u> </u>	
Computation	Time advance	Computation	Time advance	
Hybinette, UGA			Wall clock tir	

Simulation Primitives

Primitives needed to advance simulation time

- AdvanceTime (T) : advance T units of simulation time
 - » Also called "hold"
 - » Example: AdvanceTime (R) to model using runway R units of simulation time
- WaitUntil (p) : simulation time advances until predicate p becomes true
 - » Predicate based on simulation variables that can be modified by other simulation processes
 - » Example: WaitUntil (RunwayFree) to wait until runway becomes available for landing
- Other combinations
 - \gg WaitUntil (p , T) : Wait up to T units of simulation time for predicate p to become true
 - » Not used in the air traffic example
- ybinette, UGA

Process Model Example: Aircraft

۸ı	теи	v aircraft process is created with each Arrival event
	/*	simulate aircraft arrival, circling, and landing */
	In	teger: InTheAir;
	In	teger: OnTheGround;
	Boo	olean: RunwayFree;
	1	<pre>InTheAir := InTheAir + 1;</pre>
	2	<pre>WaitUntil(RunwayFree); /* circle */</pre>
	3	RunwayFree := FALSE; /* land */
	4	AdvanceTime(R);
	5	RunwayFree := TRUE;
		<pre>/* simulate aircraft on the ground */</pre>
	6	InTheAir := InTheAir - 1;
	7	OnTheGround := OnTheGround + 1;
	8	AdvanceTime(G);
		/* simulate aircraft departure */
	9	OnTheGround := OnTheGround - 1;
Ma	rio Hui	signite LICA

8

10

15

Aircraft Process

Identify computation associated with each simulation event			
<pre>/* simulate aircraft arrival, circling, and landing * Integer: InTheAir; Integer: OnTheGround; Boolean: RunwayFree;</pre>	1		
<pre>1 InTheAir := InTheAir + 1; 2 WaitUntil(RunwayFree); /* circle */ 3 RunwayFree := FALSE; /* land */ 4 AdvanceTime(R);</pre>	Aircraft Arrival Aircraft Landing		
<pre>5 RunwayFree := TRUE; /* simulate aircraft on the ground */ 6 InTheAir := InTheAir - 1; 7 OnTheGround := OnTheGround + 1; 8 AdvanceTime(G);</pre>	Aircraft On The Ground		
<pre>/* simulate aircraft departure */ 9 OnTheGround := OnTheGround - 1;</pre>	Aircraft Departs		
Maria Hybinette, UGA			

Implementation: AdvanceTime(T)

Causes simulation time in the process to advance by T units

- Execute AdvanceTime (T) :
 - » Schedule Resume event at time Now+T
 - » Suspend execution of thread
 - » Return execution to event scheduler program

Implementation: WaitUntil(p)

Suspend until predicate p evaluates to true

Execute WaitUntil(p):

- » Suspend execution of thread, record waiting for p to become true
- Return execution to event scheduler program
- Main scheduler loop

. . Maria

- » For each suspended process, check if execution can resume
- » Prioritization rule if more than one can resume

Additional Notes

- Theoretically, both views are equivalent:
 - » Process-oriented simulations can be transformed to eventoriented simulations and vice versa
- Practically, runtime performance differs:
 - » Event-oriented views typically execute faster than processoriented views

Maria Hubinette LIGA

Summary

- Process-oriented simulation typically simplifies model development and modification
- Requires threading (e.g., co-routine) mechanism
- Additional complexity and computation overhead to suspend and resume simulation processes

19