
Maria Hybinette, UGA

CSCI 4210/6210 Simulation &
Modeling

Process Oriented Simulation

Maria Hybinette, UGA 2

Review from Last Time

  Motivations to do simulations
  Modeling characteristics
  Time and event driven simulations

Maria Hybinette, UGA 3

Today

 Event-Oriented Simulation (review)
 Process-oriented simulation:

» Fundamental concepts: Processes,
resources

» Simulation primitives
» Example
» Implementation

Maria Hybinette, UGA 4

state variables!
!Integer: InTheAir;!

Integer: OnTheGround;!
Boolean: RunwayFree;!

Event handler procedures

Simulation application"

Arrival !
 Event!
{!
 …!
}!

Landed !
 Event!
{!
 …!
}!

Departure !
 Event!
{!
 …!
}!

Pending Event List (PEL)!
9:00!

9:16!
10:10!

Now = 8:45!

Simulation executive" Event processing loop

while(simulation not finished)!
!E = smallest time stamp event in PEL!
!Remove E from PEL!
!Now := time stamp of E!
!call event handler procedure!

Event-Oriented World View

Maria Hybinette, UGA 5

Example: Event-Oriented Air traffic
Simulation

Arrival Event:!
InTheAir := InTheAir+1;!
if(RunwayFree)!
!RunwayFree:=FALSE;!
!Schedule Landed event @ Now + R;!

Now: current simulation time!
InTheAir: number of aircraft landing or waiting to land
OnTheGround: number of landed aircraft
RunwayFree: Boolean, true if runway available

Landed Event:!
InTheAir := InTheAir-1;!
OnTheGround := OnTheGround + 1;!
Schedule Departure event @ Now + G;!
if(InTheAir > 0) Schedule Landed event @ Now + R;!
else RunwayFree := True;!

Departure Event:!
OnTheGround := OnTheGround - 1;!

Execution Example

OnTheGround!

Simulation Time!

State!
Variables!

RunwayFree!

InTheAir!

0" 1" 2" 3" 4" 5" 6" 7" 8" 9" 10" 11"

true!

0!

0!

R=3!
G=4!

Time! Event!
1 Arrival F1!
3 Arrival F2!

Now=0!

Processing:!

false!

1!

Time! Event!

4 Land F1!
3 Arrival F2!

Arrival F1!

Now=1!

2!

Time! Event!

4 Land F1!

Arrival F2!

Now=3!

1!

1!

Land F1!

Now=4!

Time! Event!

8 Depart F1!
7 Land F2!

0!

2!

true!

Time! Event!

8 Depart F1!

11 Depart F2!

Land F2!

Now=7!

1!

Time! Event!

11 Depart F2!

Depart F1!

Now=8!

0!

Time! Event!

Depart F2!

Now=11!

Maria Hybinette, UGA 7

state variables!
!Integer: InTheAir;!

Integer: OnTheGround;!
Boolean: RunwayFree;!

Event handler procedures

Simulation application"

Arrival !
 Event!
{!
 …!
}!

Landed !
 Event!
{!
 …!
}!

Departure !
 Event!
{!
 …!
}!

Event-Oriented World View

  Event-oriented simulation programs may be difficult to
understand and modify:

»  Program organized around state transitions
» Behavior of an aircraft distributed across multiple event handlers
»  Flow of control among event handlers not obvious
»  Suppose you want to model: Different aircrafts, airlines, pilots – imagine

events for each segment (volume) of airspace
Maria Hybinette, UGA 8

Process Oriented

  A simulation process models a specific entity
with a well defined behavior.

»  It describes the action performed of the process
through out its lifetime.

–  Models a specific entity with well defined behavior
and it is encapsulated within the process.

–  Example: an aircraft

  Event oriented view: lifetime of an event is a
SINGLE instant in time.

  Process oriented view: lifetime is a time
period of the �process� or �thread�

Maria Hybinette, UGA 9

Event versus Process Oriented Views

state variables!
!Integer: InTheAir;!

Integer: OnTheGround;!
Boolean: RunwayFree;!

Process Oriented View

Entities modeled by processes.

Aircraft1!
{!
Arrive!
Land!
Depart!
}!

Aircraft2!
{!
Arrive!
Land!
Depart!
}!

AircraftN!
{!
Arrive!
Land!
Depart!
}!

state variables!
!Integer: InTheAir;!

Integer: OnTheGround;!
Boolean: RunwayFree;!

Focus of model is on EVENTS and how they affect the state of the simulation.

Arrival !
 Event!
{!
 …!
}!

Landed !
 Event!
{!
 …!
}!

Departure !
 Event!
{!
 …!
}!

Event Oriented View

Maria Hybinette, UGA 10

Process Oriented Execution Model

  Focus simulation program around behavior of entities
»  Aircraft: arrives, waits for runway, lands, departs

  Process-oriented simulation
»  Process: Thread of execution describing entity behavior over time
»  Resources: Shared resource used by entities (e.g., the runway)

  Execution: alternate between
»  simulation computations at a single instant of simulation time, and
»  advances in simulation time (no computation)

Computation Time advance Computation Time advance

Wall clock time

Simulation time advances
(no computation) Computation at a single

Instant of simulation time

Maria Hybinette, UGA 11

Simulation Primitives

  AdvanceTime(T) : advance T units of simulation time
»  Also called �hold�
»  Example: AdvanceTime(R) to model using runway R units

of simulation time
  WaitUntil(p) : simulation time advances until predicate
p becomes true

»  Predicate based on simulation variables that can be modified
by other simulation processes

»  Example: WaitUntil(RunwayFree) to wait until runway
becomes available for landing

  Other combinations
»  WaitUntil(p,T) : Wait up to T units of simulation time for

predicate p to become true
»  Not used in the air traffic example

Primitives needed to advance simulation time

Maria Hybinette, UGA 12

Process Model Example: Aircraft

/* simulate aircraft arrival, circling, and landing */
Integer: InTheAir;

Integer: OnTheGround;
Boolean: RunwayFree;

1 InTheAir := InTheAir + 1;
2 WaitUntil(RunwayFree); /* circle */

3 RunwayFree := FALSE; /* land */

4 AdvanceTime(R);

5 RunwayFree := TRUE;
 /* simulate aircraft on the ground */

6 InTheAir := InTheAir - 1;

7 OnTheGround := OnTheGround + 1;
8 AdvanceTime(G);

 /* simulate aircraft departure */

9 OnTheGround := OnTheGround - 1;

A new aircraft process is created with each Arrival event

Execution Example

OnTheGround!

Simulation Time!

!
!

State!
Variables!

RunwayFree!

InTheAir!

0" 1" 2" 3" 4" 5" 6" 7" 8" 9" 10" 11"

true!

0!

0!

R=3!
G=4!

false!

1! 2! 1!

1!

0!

2!

true!

1! 0!

Flight 1!
1 InTheAir := InTheAir+1;!
2 WaitUntil(RunwayFree);!
3 RunwayFree := FALSE;!
4 AdvanceTime(R);!
5 RunwayFree := TRUE;!
6 InTheAir := InTheAir-1;!
7 OnTheGround := OnTheGround +1;!
8 AdvanceTime(G);!
9 OnTheGround:=OnTheGround-1;!

Flight 2!
1 InTheAir := InTheAir+1;!
2 WaitUntil(RunwayFree);!
3 RunwayFree := FALSE;!
4 AdvanceTime(R);!
5 RunwayFree := TRUE;!
6 InTheAir := InTheAir-1;!
7 OnTheGround:=OnTheGround+1;!
8 AdvanceTime(G);!
9 OnTheGround:=OnTheGround-1;!

Maria Hybinette, UGA 14

Implementation

  Lifetime of a simulation process consists of a
sequence of event computations.

  Event computation: computation occurring at an
instant in simulation time

»  Execution of code section ending with calling a primitive
to advance simulation time

  Computation threads
»  Typically implemented with co-routine (threading)

mechanism
  Simulation primitives to advance time

»  Schedule events
»  Event handlers resume execution of processes

Process-oriented simulations are built over event oriented
simulation mechanisms (event list, event processing loop)

Maria Hybinette, UGA 15

Aircraft
Arrival

Aircraft
Landing

Aircraft On
The Ground

Aircraft
Departs

Aircraft Process

/* simulate aircraft arrival, circling, and landing */
Integer: InTheAir;

Integer: OnTheGround;
Boolean: RunwayFree;

1 InTheAir := InTheAir + 1;
2 WaitUntil(RunwayFree); /* circle */

3 RunwayFree := FALSE; /* land */

4 AdvanceTime(R);

5 RunwayFree := TRUE;
 /* simulate aircraft on the ground */

6 InTheAir := InTheAir - 1;

7 OnTheGround := OnTheGround + 1;
8 AdvanceTime(G);

 /* simulate aircraft departure */

9 OnTheGround := OnTheGround - 1;

Identify computation associated with each simulation event

Maria Hybinette, UGA 16

Implementation: AdvanceTime(T)

Execute AdvanceTime(T):
»  Schedule Resume event at time Now+T

»  Suspend execution of thread
»  Return execution to event scheduler program

Process Resume event:
»  Return control to thread

Simulation process"
…"
"
RunwayFree := FALSE;!
!
AdvanceTime(R);!
!
RunwayFree := TRUE;!
!
..."

AdvanceTime(T)!
{!
Schedule a Resume!
 event at Now+T;!
Xfer to Schedule!
}"

Scheduler!
{!
while(sim not done)!
 Remove event from PEL!
 Call event handler!
}"

Resume Event Handler!
{!
Xfer to sim process!
}"

later"

Causes simulation time in the process to advance by T units

Maria Hybinette, UGA 17

Implementation: WaitUntil(p)

Execute WaitUntil(p):
»  Suspend execution of thread, record waiting for p to become true
»  Return execution to event scheduler program

Main scheduler loop
»  For each suspended process, check if execution can resume
»  Prioritization rule if more than one can resume

Simulation process"
…"
"
InTheAir:=InTheAir+1;!
!
WaitUntil(RunwayFree);!
!
RunwayFree:=FALSE;!
!
...!

WaitUntil(p)!
{!
Add to suspended list!
Xfer to Scheduler!
}"

Scheduler!
{!
while(sim not done)!
 Remove event from PEL!
 Call event handler!
 while(a process�s!
 predicate is true)!
 Xfer sim process!
}"later

Suspend until predicate p evaluates to true

Maria Hybinette, UGA 18

Additional Notes

  Theoretically, both views are equivalent:
»  Process-oriented simulations can be transformed to event-

oriented simulations and vice versa

  Practically, runtime performance differs:
»  Event-oriented views typically execute faster than process-

oriented views

Maria Hybinette, UGA 19

Summary

  Process-oriented simulation typically simplifies
model development and modification

  Requires threading (e.g., co-routine) mechanism
  Additional complexity and computation

overhead to suspend and resume simulation
processes

