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Outline 

  Parallel / Distributed Computers 
  Air Traffic Network Example 
  Parallel Discrete Event Simulation 

»  Logical processes & time stamped messages 
»  Local causality constraint and the synchronization 

problem 
  Chandy/Misra/Bryant - Null Message Algorithm 

» Ground rules 
» An algorithm that doesn�t work 
» Deadlock avoidance using null messages 
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Parallel & Distributed Computers 

  Parallel computers (tightly coupled processors) 
»  Shared memory multiprocessors 
»  Distributed memory multicomputers 

  Distributed computers (loosely coupled processors) 
»  Networked workstations  

Parallel Computers! Distributed Computers!

Physical extent! Machine room" Building, city, global"

Processors! Homogeneous" Often heterogeneous"

Comm. Network! Custom switch" Commercial LAN / WAN"
Comm. Latency!
(small messages)!

A few to tens of"
microseconds"

hundreds of microseconds"
to seconds"
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{  
shared int i; L 
… 
Lock( L ) 
i = i + 1; 
Unlock( L ) 
… 
} 

Processor 1!

{  
shared int i; L 
… 
Lock( L ) 
i = i + 1; 
Unlock( L ) 
… 
} 

Processor 2!

Shared Memory Multiprocessors 

programming model: shared variables; synchronization via locks 

I/O 
devices 

interconnection network 

. . . memory 

.  .  . CPU 

cache 

CPU 

cache 

CPU 

cache 

memory 

Examples: 

Sun 
Enterprises 

SGI Origin 
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{  
int i; … 
Send( 2, &i, sizeof(int)) 
… 
} 

Processor 1!

Distributed Memory 
Multiprocessors 

programming model: no shared variables: message passing 

.  .  . Examples: 

IBM SP 

Intel Paragon 

{  
int j; … 
Receive( &j, sizeof(int)) 
… 
} 

Processor 2!

memory 

CPU 

cache 

Communications  
controllers 

memory 

CPU 

cache 

Communications  
controllers 

interconnection network 
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Hardware Platforms 

Parallel Computers Distributed Computers 

Distributed 
Memory 

(multicomputers) 

Shared  
Memory SIMD  

machines 
Network of 
Workstations 
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state variables!
!Integer: InTheAir;!

Integer: OnTheGround;!
Boolean: RunwayFree;!

Event handler procedures 

Simulation application"

Arrival !
  Event!
{!
   …!
}!

Landed !
  Event!
{!
   …!
}!

Departure !
  Event!
{!
   …!
}!

Pending Event List (PEL)!
9:00!

9:16!
10:10!

Now = 8:45!

Simulation executive" Event processing loop 

while(simulation not finished)!
!E = smallest time stamp event in PEL!
!Remove E from PEL!
!Now := time stamp of E!
!call event handler procedure!

Event-Oriented World View 
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Parallel Discrete Event Simulation 

  Extends example to model a network of airports 
»  Encapsulate each airport simulator in a logical process 
»  Logical processes can schedule events (send messages) for 

other logical processes 
 
More generally... 
  Physical system 

»  Collection of interacting physical processes (airports) 
  Simulation 

»  Collection of logical processes (LPs)  
»  Each LP models a physical process 
»  Interactions between physical processes modeled by 

scheduling events between LPs 
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physical process interactions among physical processes 

LAX!

ORD!

JFK!

Physical system 

logical process time stamped event (message) 

Simulation 

LAX 

arrival 
10:00 

ORD 

JFK 

Parallel Discrete Event 
Simulation: Example 
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LP Simulation Example 

Arrival Event:!
InTheAir := InTheAir+1;!
if( RunwayFree )!
!RunwayFree:=FALSE;!
!Schedule Landed event(local) @ Now + R;!

Now: current simulation time!
InTheAir: number of aircraft landing or waiting to land 
OnTheGround: number of landed aircraft 
RunwayFree: Boolean, true if runway available 

Landed Event:!
InTheAir := InTheAir-1;!
OnTheGround := OnTheGround + 1;!
Schedule Departure event(local) @ Now + G;!
if( InTheAir > 0 ) Schedule Landed event(local) @ Now + R;!
else RunwayFree := True;!

Departure Event: (D = Delay to reach another airport)!
OnTheGround := OnTheGround - 1;!
Schedule Arrival Event (remote) @ (Now+D) @ another airport!
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SFO 

arrival 
10:00 

ORD 

SFO 

Parallel Discrete Event 
Simulation: Example 

  LP paradigm appears well suited to concurrent execution 
  Map LPs to different processors 

»  Multiple LPs per processor OK 

  Communication via message passing 
»  All interactions via messages 
»  No shared state variables 

logical 
process 

time stamped event 
(message) 
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The �Rub� 

Golden rule for each process:  
�Thou shalt process incoming messages in 

time stamp order�  
local causality constraint 

SFO 

arrival 
10:00 

ORD 

SFO 

Safe to  
Process? 
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The Synchronization Problem 

Synchronization Problem: An algorithm is 
needed to ensure each LP processes events 
in time stamp order 

 
Observation:  Ignoring events with the same 

time stamp (for now), adherence to the local 
causality constraint is sufficient to ensure 
that the parallel simulation will produce 
exactly the same results as a sequential 
execution where all events across all LPs are 
processed in time stamp order. 
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The Synchronization Problem 

10"

15" 20"

ORD"

LAX"

Simulation Time!

LPs!
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Synchronization Algorithms 

  Conservative synchronization:  Avoid violating 
the local causality constraint (wait until it’s 
safe to process an event) 

»  deadlock avoidance using null messages (Chandy/
Misra/Bryant) 

»  deadlock detection and recovery 
»  synchronous algorithms (e.g., execute in �rounds�) 

  Optimistic synchronization:   Allow violations 
of local causality to occur, but detect them at 
runtime and recover using a rollback 
mechanism 

»  Time Warp (Jefferson) 
»  numerous other approaches 
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Outline 

  Parallel / Distributed Computers 
  Air Traffic Network Example 
  Parallel Discrete Event Simulation 

»  Logical processes 
»  Local causality constraint 

  Chandy/Misra/Bryant Null Message Algorithm 
» Ground rules 
» An algorithm that doesn�t work 
» Deadlock avoidance using null messages 
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Conservative Algorithms  

JFK LAX 

ORD 

JFK 
logical 

process 

9 8 2 

4 5 

one FIFO 
queue per 

incoming link 

Goal: Ensure LP processes events in time stamp order"

Assumptions: 
  logical processes (LPs) exchanging time stamped events (messages) 
  static network topology, no dynamic creation of (and connection of LPs) 
  messages sent on each link are sent in time stamp order 
  network provides reliable delivery, preserves order (received in same 

order that they are sent) 
Observation: The above assumptions imply the time stamp of the last message 

received on a link is a lower bound on the time stamp (LBTS) of subsequent 
messages received on that link 
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A Simple Conservative Algorithm 

JFK 
logical 

process 
9 8 2 

4 5 

Algorithm A (executed by each LP): 
Goal: Ensure events are processed in time stamp order: 
 
while( simulation is not over ) 

 wait until each FIFO contains at least one message 
 remove smallest time stamped event from its FIFO 
 process that event 

end-loop 

  process time stamp 2 event 
  process time stamp 4 event 
  process time stamp 5 event 
  wait ( block ) until a message is received 

from ORD.   
 

JFK LAX 

ORD 

ORD 

LAX 
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JFK 
(waiting 
on ORD) 

ORD 
(waiting 
On LAX) 

LAX 
(waiting 
on JFK) 

15 
10 

7 

A cycle of LPs forms where each is waiting on the next LP in the cycle. 
No LP can advance; the simulation is deadlocked. 
 

Deadlock Example 

Observation: Algorithm A is prone to deadlock! (cycle of empty queues…) 

9 8 

Deadlock Avoidance Using Null Messages 

Break deadlock: each LP send �null� messages indicating a lower bound 
on the time stamp of future messages. 

9 8 

JFK 
(waiting 
on ORD) 

ORD 
(waiting 
on LAX) 

LAX 
(waiting 
on JFK) 

15 
10 

7 

Assume minimum delay (flight time) between airports is 3 units of time!
  Recall that JFK is initially at time 5. 
  JFK sends null message to LAX (who is waiting for JFK)  with time stamp 8 = 

(5 +3)   
  LAX sends null message to ORD with time stamp 11 = (8+3) 
  ORD may now process message with time stamp 7 

8 

11 
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Deadlock Avoidance Using Null Messages 

Null Message Algorithm (executed by each LP): 
Goal: Ensure events are processed in time stamp order and avoid deadlock 
 
while( simulation is not over ) 

 wait until each FIFO contains at least one message 
 remove smallest time stamped event from its FIFO 
 process that event 
 send null messages to neighboring LPs with time stamp indicating a  

 lower bound on future messages sent to that LP (current time plus 
 lookahead ) 

end-loop 

The null message algorithm relies on a �lookahead� (flight time in the 
example)  ability. 
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Summary 

  Parallel Discrete Event Simulation 
» Collection of sequential simulators (LPs) possibly 

running on different processors 
»  Logical processes communicating exclusively by 

exchanging messages 

  Chandy/Misra/Bryant Null Message Algorithm 
» Null messages: Lower bound on the time stamp of 

future messages the LP will send 
» Null messages avoid deadlock (non-zero 

lookahead)  
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physical process interactions among physical processes 

SFO!

ORD!

JFK!

Physical system 

logical process time stamped event (message) 

Simulation 

SFO 

arrival 
10:00 

ORD 

SFO 

Parallel Discrete Event 
Simulation: Example 


